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Abstract

Temporal datais pervasive, and challenging to manage in SQL. The June through October issues of Database
Programming and Design (volume 11, issues 6-10) included a special series on temporal databases; the five arti-
clesin that series are reproduced here. Three separate case studies: aneonatal intensive care unit, a commercial
cattle feed yard, and astronomical star catalogs, were used to illustrate how temporal applications can be imple-
mented in SQL. The concepts of valid time versus transaction time and of current, sequenced and nonsequenced
integrity constraints, queries, and modifications were emphasi zed.

1 Of Duplicates and Septuplets

This special series explores the many issues that arise when attempting to define and manage time-varying data.
Such dataispervasive. It has been estimated that one of every 50 lines of database application codeinvolvesadate
or timevalue. Datawarehouses are by definitiontime-varying: Ralph Kimball statesthat every datawarehouse has
atime dimension. Often the time-oriented nature of the datais what lendsit value.

DBAsand application programmersconstantly wrestlewith the vagariesof such data. They find that overlaying
simple concepts, such as duplicate prevention, on time-varying data can be surprisingly subtle and complex. And
they are perplexed that trade publications and booksdo not provide guidance and techniquesfor handling such data.

Thefivearticlesin this serieswill addressthisneed by presenting specific, easily applied waysto managetime-
varying data, generally in SQL. Each will include concrete examples of code that can be immediately used in on-
going development efforts. Equally important, we will introduce and illustrate new ways to think about temporal
data, imposing structure on a messy topic.

In honor of the McCaughey children, the world’s only known set of living septuplets, thisfirst article will con-
sider duplicates, of which septuplets are just anovel special case.

Specifically, we examinethe ostensibly simpletask of preventing duplicaterows, viaaconstraint in atable defi-
nition. Preventing duplicatesusing SQL isthought to betrivial, and truly is, when the datais not time-varying. But
when history is retained, things get much dicier. In fact, over such data several interesting kinds of duplicates can
be defined. And, asis so often the case, the most relevant kind is the hardest to prevent, and requires an aggregate
or acomplex trigger! We'll first use standard SQL-92, then delve into the machinations required when using DB2,
Oracle and Sybase.

1.1 TwinTime

As| writethis on January 6, 1998, K enneth Robert M cCaughey, thefirst to be born and the biggest, isnow at home;
he was released three days ago. The other six are till listed in fair condition, but are expected to come home by the
end of themonth. (Full informationisavailableon, of course, the septuplets web page: www.mccaugheyseptuplet.com)
We consider here aNICUStatus table recording the status of patientsin the Neonatal Intensive Care Unit at Blank
Children’s Hospital in Des Moines, lowa, an excerpt of whichis shown in Figure 1.

In thistemporal table, we made several design decisions, which will be elaborated on in future columns. Each
row, indicating the condition of an infant, is timestamped with a pair of SQL DATESs. The from_date column
indicatesthe day the child first waslisted at that status. The to_date column indicatesthe day the child's condition
changed. In concert, these columns specify a period over which the status was valid. Tables can be timestamped
with values other than periods. This representation of the period is termed closed-open, because the starting date
is contained in the period but the ending date is not. Periods can also be represented in other ways, though it turns
out that the closed-open representation is the best choice. We denote arow that is currently valid with ato_date of
forever, whichin SQL-92is9999-12-31 (thereby introducing a year-9999 problem...) Alternative approachesto
now are certainly possible. Some use the NULL value to denote “now”; others use adate way in the past, such as
1988. Finally, we mention in passing that this table represents the status in reality, termed valid time; there exist
other useful kinds of time. For valid-time tables, the timestamp is termed the period of validity. (Here, the notion
of “timestamp” is entirely separate from the SQL-92 column type TIMESTAMP.)

Suchtablesarevery commonin practice. Often there are many columns, with the timestamp of arow indicating
when that combination of values was valid.

A duplicateinthe SQL senseisarow that exactly matches, column for column, another row. Wewill term such
duplicates nonsequenced duplicates, for reasonsthat will becomeclear shortly. Thelast two rowsof the abovetable



Name Status | from_date to_date

Kenneth Robert | serious | 1997-11-19 | 1997-11-21
Alexis May serious | 1997-11-19 | 1997-11-27
Natalie Sue serious | 1997-11-19 | 1997-11-25
Kelsey Ann serious | 1997-11-19 | 1997-11-26
Brandon James | serious | 1997-11-19 | 1997-11-26
Nathan Roy serious | 1997-11-19 | 1997-11-28
Joel Steven critical | 1997-11-19 | 1997-11-20
Joel Steven serious | 1997-11-20 | 1997-11-26
Kenneth Robert fair 1997-11-21 | 1998-01-03
Alexis May fair 1997-11-27 | 1998-01-11
Alexis May fair 1997-12-02 | 9999-12-31
Alexis May fair 1997-12-02 | 9999-12-31

Figure 1: Excerpt from the NICUStatus table

Name | Status
Alexis May fair
Alexis May fair
Alexis May fair

Figure 2: Current snapshot of the NICUStatus table

are nonsequenced duplicates. However, there are three other kinds of duplicates that are interesting, all present in
thistable. These variants arise due to the temporal nature of the data.

Thelast three rows are value-equivalent, in that the values of all the columns except for those of the timestamp
areidentical. Value equivaenceis a particularly weak form of duplication. It does, however, correspond to the
traditional notion of duplicate for a non-time-varying, snapshat, table, e.g., with only the two columns, Name and
Status.

Thelast threerows are also current duplicates. A current duplicateisone present in the current timeslice of the
table. Asnow is January 6, 1998, the current timedlice of the abovetableis simply as shown in Figure 2. Interest-
ingly, whether a table contains current duplicate rows can change over time, even if no modifications are made to
thetable. In aweek, one of of these current duplicateswill quietly disappear.

Themost useful variant is a sequenced duplicate. The adjective sequenced meansthat the constraint is applied
independently at every point in time. The last three rows are sequenced duplicates. These rows each state that
Alexiswasin fair condition for most of December 1997 and the first eleven days of 1998.

Thefollowing tableindicates how these variantsinteract. Each entry specifieswhether rows satisfying the vari-
ant intheleft columnwill also satisfy the variant listed acrossthetop. A check mark states that the top variant will
be satisfied; an empty entry statesthat it may not. For example, if two rows are non-sequenced duplicates, they will
also be sequenced duplicates, for the entire period of validity. However, two rowsthat are sequenced duplicatesare
not necessarily nonsequenced duplicates, asillustrated by the second-to-last and last rows of the example temporal
table.

| Sequenced Current Vaue-equivalent Nonsequenced
Sequenced Vv Vv
Current 4 4 4
Value-equivalent Vv
Nonseguenced Vv Vv Vv

The least restrictive form of duplication is value equivalence, as it simply ignores the timestamps. Note from
abovethat thisformimpliesno other. The most restrictiveis nonsequenced duplication, asit requiresall the column
values to match exactly. It impliesall but current duplication.



SQL’'s UNIQUE constraint prevents value-equivalent rows.

CREATE TABLE NICUStatus (
Name CHAR(15),
Status CHAR(8),
from_date DATE,
to_date DATE,
UNIQUE (Name, Status)

)

Intuitively, avalue-equivalent duplicate constraint states that “ once aconditionis assigned to a patient, it can never
be repeated later,” because doing so would result in a value-equivalent row.

We can also use a UNIQUE constraint to prevent non-sequenced duplicates, by simply including the timestamp
columns.

CREATE TABLE NICUStatus (

UNIQUE (Name, Status, from_date, to_date)
)

While nonsequenced duplicates are easy to prevent via SQL statements, such constraints are not that useful in
practice. The intuitive meaning of the above nonsequenced unique constraint is something like, “a patient cannot
have a condition twice over identical periods.” However, this constraint can be satisfied by simply shifting one of
therowsaday earlier or later, so that the periods of validity are not identical; it is till the case that the patient has
the same condition at varioustimes.

Preventing current duplicatesinvolvesjust alittle more effort.

CREATE TABLE NICUStatus (

CHECK (NOT EXISTS (SELECT N1.SSN
FROM NICUStatus AS N1
WHERE 1 < (SELECT COUNT(Name)
FROM NICUStatus AS N2
WHERE N1.Name = N2.Name AND N1.Status = N2.Status
AND N1.from_date <= CURRENT_DATE
AND CURRENT_DATE < N1.to_date
AND N2.from_date <= CURRENT_DATE
AND CURRENT_DATE < N2.to_date)))

)

Here theintuition is that no patient can (currently) have two identical status values, or equivalently, “each patient
has at most one status.” The present tense is used to indicate “at the current time.”

As mentioned above, the problem with a current uniqueness constraint is that it can be satisfied today, but vi-
olated tomorrow, even if there are no changes made to the underlying table.

If we know that the application will never store future data, we can approximate a current uniqueness constraint
by simply including the to_date column in the UNIQUE constraint.

CREATE TABLE NICUStatus (

UNIQUE (Name, Status, to_date)
)

Thisworks because al current datawill have the same to_date value, the special value DATE '9999-12-31".

Preventing sequenced duplicates is similar to preventing current duplicates. Operationally, two rows are se-
guenced duplicatesif they are value equivaent and their periods of validity overlap. This definitionis equivalent
to the one given above.



CREATE TABLE NICUStatus (

CHECK (NOT EXISTS (SELECT N1.Name
FROM NICUStatus AS N1
WHERE 1 < (SELECT COUNT(Name)
FROM NICUStatus AS N2
WHERE N1.Name = N2.Name AND N1.Status = N2.Status
AND N1.from_date < N2.to_date AND N2.from_date < N1.to_date)))

)

Thetricky last line just states that the periods of validity overlap.

Theintuition behind a sequenced uniquenessconstraint isthat “ at no time can apatient havetwo identical condi-
tions.” Thisconstraintisanatural one. A sequenced constraint isthelogical extension of aconventional constraint
on anontemporal table.

1.2 Vendor Implementations

Noneof the above SQL-92 codefragmentswork in DB2, for avariety of reasons. First, DB2 (version2.1.2) doesn't
support UNIQUE. Instead, a primary key constraint must be used. However, this constraint requires that all of
the columns so indicated be designated as not null.Preventing value-equivalent rows can be expressed in DB2 as
follows.

CREATE TABLE NICUStatus (
Name CHAR(15) NOT NULL,
Status CHAR(8) NOT NULL,
from_date DATE,
to_date DATE,

PRIMARY KEY (Name, Status)

)

The same trick can be used to present nonsequenced duplicates or current duplicates.

Secondly, check constraintsin DB2 cannot contain subqueries. Unfortunately, several of the above statements
require those pesky subqueries. We can express such constraints as triggers. The check constraint to prevent se-
guenced duplicates can be implemented as an insert trigger (an anal ogous update trigger would also be required).

CREATE TRIGGER seq_duplicates
AFTER INSERT ON NICUStatus FOR EACH ROW MODE DB2SQL
WHEN (EXISTS (SELECT N1.Name
FROM NICUStatus AS N1
WHERE 1 < (SELECT COUNT(Name)
FROM NICUStatus AS N2
WHERE N1.Name = N2.Name AND N1.Status = N2.Status
AND N1.from_date < N2.to_date AND N2.from_date < N1.to_date)))
SIGNAL SQLSTATE 75000’ (‘(Name and Status must be sequenced unique’)

Oracle supportsthe UNIQUE constraint. However, Oracle (version 7.3.2) doesn’t allow tablesto be mentioned
in check congtraints, so preventing current or sequenced duplicates require triggers. Things are a little easier in
Oracle, asasingletrigger can be defined for both insert and update, and the aggregate can be avoided in Oraclevia
the rowid facility.



CREATE OR REPLACE TRIGGER seq_duplicates
AFTER INSERT OR UPDATE ON NICUStatus
DECLARE
valid INTEGER,;
BEGIN
SELECT 1
INTO valid
FROM DUAL
WHERE NOT EXISTS (SELECT N1.Name
FROM NICUStatus N1, NICUStatus N2
WHERE N1.Name = N2.Name AND N1.Status = N2.Status
AND N1.from_date < N2.to_date AND N2.from_date < N1.to_date
AND N1.rowid !'= N2.rowid);

EXCEPTION
WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR ( -20001, 'Name and Status must be sequenced unique’);
END;

Inthistrigger, if the where clauseis not satisfied (i.e., if thereis a sequenced duplicate), then the exception will be
raised, causing the transaction to abort. (DUAL is a dummy system table provided by Oracle for exactly thiskind
of situation.)

Sybase's syb_identity function can also be used to differentiate rows, if “auto identity” is enabled. Thisis
analogousto Oracle srowid facility.

The moral of the story is, adding the timestamp columns to the UNIQUE clause will prevent nonsequenced
duplicates, value-equivalent duplicates, or some forms of current duplicates, which unfortunately israrely what is
desired. The natural temporal generalization of a conventional duplicate on a snapshot tableis a sequenced dupli-
cate. To prevent sequenced duplicates, arather complex check constraint, or even one or moretriggers, isrequired.

Asachallenge, to presage thetopic of afuture article, consider specifying in SQL aprimary key constraint ona
period-stamped valid-timetable. Thentry specifying areferential integrity constraint between two period-stamped
valid-timetables. It is possible, but is certainly not easy.

In the next installment, 1’1l examine waysto query valid-time tables. We'll see strong parallels to the material
here, as | describe current, sequenced, and non-sequenced queries.

1.3 Temporal Databases

The accepted term for a database that records time-varying information is a “temporal database” [1]. The term
“time-varying” database is awkward, because even if only the current state is kept in the database (e.g., the current
stock, the current salary and job title of employees), this database will change as reality changes, and so could
perhapsbe considered atime-varying database. Theterm “ historical database” impliesthat the database only stores
“historical” information, that is, information about the past; atemporal database may store information about the
future, e.g., schedules or plans.

Theofficial definition of temporal databaseis* a database that supports some aspect of time, not counting user-
defined time” [1]. So, what is user-defined time? Thisis defined as* an uninterpreted attribute domain of date and
time. User-defined timeis parallel to domains such as ‘money’ and integer...It may be used for attributes such as
‘birth day’ and ‘hiring date’.” The intuition here is that adding a birthdate column to an employee table does not
render it temporal, especially since the birthdate of an employeeis presumably fixed, and appliesto that employee
forever. The presence of a DATE column will not a priori render the database a temporal database; rather, the
database must record the time-varying nature of the enterpriseit is modeling.

Itis perhaps surprising that temporal databasesis avery active areawithin database research. There have been
some 1600 (') paperswritten about thistopic, over a20-year period. The number of papershasbeenrising exponen-
tially over this period; several hundred now appear each year. Many are included in the most recent bibliography,
which has pointersto somefive prior bibliographies[7]. [2] providesabrief survey of thefield. The most complete
book on thetopic is Tansel et al. [6]; amore recent text provides an updated summary [8].



FDYD_ID | LOT.ID.NUM | PEN.ID | HD.CNT | FROM_DATE | TO_.DATE

1 137 1 17 1998-02-07 1998-02-18
1 219 1 43 1998-02-25 1998-03-01
1 219 1 20 1998-03-01 1998-03-14
1 219 2 23 1998-03-01 1998-03-14
1 219 2 43 1998-03-14 9999-12-31
1 374 1 14 1998-02-20 9999-12-31

Table1l: The LOT_LOC table

2 Querying Valid-Time State Tables

A few days ago Oprah Winfrey won alegal suit brought by Texas cattlemen who had argued that Oprah had made
false statements about U.S. beef in a 1996 television show on mad cow disease.

This case brought to mind the outbreak in the U.S. in the summer of 1997, long after the mad cow disease had
caused so much concerninthe U.K. Sixteen cases of peoplefallingill to alethal strain of the bacterium Escherichia
coli, E. coli 0157:H7, dl in Colorado, were eventually traced back to a processing plant in Columbus, Nebraska.
The plant’s operator, Hudson Foods, eventually recalled 25 million pounds of frozen hamburger to attempt to stem
this outbreak.

That particular plant presses about 400,000 pounds of hamburger daily. Ironicaly, this plant received high
marksfor its cleanliness and adherence to Federal food processing standards. What lead to the recall of about one-
fifth of the plant’s annual output was the lack of data that could link particular patties back to the slaughterhouses
that supply carcasses to the Columbus plant. It is believed that the meat was contaminated in only one of these
slaughterhouses, but without such tracking, all were suspect.

Put simply, the lack of an adequate temporal database cost Hudson Foods over $20 million.

Dr. Brad DeGrootisaveterinarian at the University of Nebraskaat Lincoln, about 60 miles southeast of Colum-
bus. Heis also interested in improving the health maintenance of cows on their way to your freezer. He hopesto
establish the temporal relationships between putative risk factor exposure (e.g., a previously healthy cow sharing
a pen with asick animal) and subsequent health events (e.g., the cow later succumbs to a disease). These rela
tionships can lead to an understanding of how disease is transfered to and among cattle, and ultimately, to better
detection and prevention regimes. As input to this epidemiologic study, he is massaging data from commercial
feed yard record keeping systems to extract the movement of some 55,000 head of cattle through the myriad pens
of several large feed yardsin Nebraska.

These cattle are grouped into “lots’, with subsets of lots moved from pen to pen. One of Brad's tables, the
LOT_LOC table, recordshow many cattle from each ot are residing in each pen of each feed yard. Thefull schema
for this table has nine columns.

LOT_LOC(FDYD.ID, LOT.ID.NUM, PEN_ID, HD_CNT, FROM_DATE, FROM_MOVE_ORDER,
TO_DATE, TO_.MOVE_ORDER, RECORD_DATE)

Thistableis a“valid-time state table”, in that it records information valid at some time, and it records states,
that is, facts that are true over a period of time. The FROM and TO columns delimit the “period of validity” of
the information in the row. The “temporal granularity” of thistable is somewhat finer than a day, in that the move
ordersare sequential, allowing multiplemovementsin aday to beorderedintime. TheRECORD_DATE identifies
when this information was recorded; we will explain thiskind of information in Section 4, below. For the present
purposes, we will omit the FROM_MOVE_ORDER, TO_.MOVE_ORDER, and RECORD_DATE columns, and
express our queries on the simplified schema. Thefirst four columns are integer columns; the last two are of type
DATE.

In the above instance, 17 head of cattle were in pen 1 for 11 days, moving inauspiciously off the feed yard on
February 18. 14 head of cattle from lot 374 are still in pen 1 (we use “forever” to denote currently valid rows), and
23 head of cattle from lot 219 were moved from pen 1 to pen 2 on March 1, with the remaining 20 head of cattle
inthat lot moved to pen 2 on March 14, where they till reside.

The previous section discussed three basic kinds of uniqueness assertions. current, sequenced, and nonse-
guenced. A current uniqueness constraint (of patient and status, on a table recording the status of patientsin a



neonatal intensive care unit) was exemplified with “each patient has at most one status condition,” a sequenced
constraint with “at no time can a patient have two identical conditions,” and a nonsequenced constraint with “a
patient cannot have a condition twice over identical periods.” We saw that the sequenced constraint was the most
natural analog of the nontemporal constraint, yet was the most challenging to expressin SQL. For the LOT_LOC
table, the appropriate uniqueness constraint would be that FDYD_ID, LOT_ID_NUM, PENL_ID are unique at every
time, which is a sequenced constraint.

2.1 Temporal Projection and Selection

These notions carry over to queries. In fact, for each conventional (non-temporal) query, there exist current, se-
guenced, and non-sequenced variants over the corresponding valid-time state table. Consider the non-temporal
guery, “How many head of cattle from lot 219 in feed yard 1 are in each pen?’ over the non-temporal table
LOT_LOC_SNAPSHOT(FDYD_ID, LOT_ID_-NUM, PEN_ID, HD_CNT). Such aquery is easy to writein SQL.

SELECT PEN.ID, HD_CNT
FROM LOT_LOC
WHERE FDYD_ID =1 AND LOT.ID_.NUM = 219

The current analog over the LOT_LOC valid-time state tableis “How many head of cattle from lot 219inyard
1 are (currently) in each pen?’ For such a query, we only are concerned with currently valid rows, and we need
only to add a predicate to the “where” clause asking for such rows.

SELECT PENL.ID, HD_CNT

FROM LOT_LOC

WHERE FDYD_ID =1 AND LOT.ID_.NUM = 219
AND TO_DATE = DATE '9999-12-31’

This query returnsthe following result, stating that all the cattle in the lot are currently in a single pen.

PEN_ID | HD_-CNT
2 743

The sequenced variant is“ Givethe history of how many head of cattlefromlot 219inyard 1 werein each pen.”
Thisisalso easy to expressin SQL. For selection and projection (which iswhat this query involves), converting to
a sequenced query involves merely appending the timestamp columnsto the target list of the select statement.

SELECT PENL.ID, HD_CNT, FROM_DATE, TO_DATE
FROM LOT_LOC
WHERE FDYD_ID =1 AND LOT.ID_.NUM = 219

The result provides the requested history. We see that lot 219 moved around a bit.
PEN_ID | HD_.CNT | FROM_DATE | TO_DATE

1 43 1998-02-25 1998-03-01
1 20 1998-03-01 1998-03-14
2 23 1998-03-01 1998-03-14
2 43 1998-03-14 9999-12-31

The non-sequenced variant is “How many head of cattle from lot 219 in yard 1 were, at some time, in each
pen?’ Here we don't care when the data was valid. Note that the query doesn’t ask for totals; it isinterested in
whenever a portion of the requested lot was in a pen. The query is simple to express in SQL, as the timestamp
columns are simply ignored.

SELECT PENL.ID, HD_CNT
FROM LOT_LOC
WHERE FDYD_ID =1 AND LOT.ID_.NUM = 219



PEN_ID | HD_CNT

1 43
1 20
2 23
2 43

Non-sequenced queries are often awkward to express in English, but can sometimes be useful.

2.2 Temporal Joins

Temporal joinsare considerably moreinvolved. Consider the non-temporal query “Which lots are co-residentin a
pen?’ Such aquery could be afirst step in determining exposureto putativerisks. Indeed, the entire epidemiologic
investigation revolves around such queries.

Again, we start by expressing the query on ahypothetical snapshot table, LOT_LOC_SNAPSHOT, asfollows.
The query involvesaself-join on thetable, along with projection and selection. Thefirst predicate ensureswedon't
get identical pairs; the second and third predicates test for co-residency.

SELECT L1.LOT.ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID
FROM LOT_LOC_SNAPSHOT AS L1, LOT_LOC_SNAPSHOT AS L2
WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

AND L1.FDYD.ID = L2.FDYD_ID

AND L1.PEN.ID = L2.PEN_ID

The current version of this query on the temporal table is constructed by adding acurrency predicate (aTO_DATE
of forever) for each correlation namein the from clause.

SELECT L1.LOT.ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID
FROM LOT_LOC AS L1, LOT_LOC AS L2
WHERE L1.LOT_ID_.NUM < L2.LOT_ID_NUM

AND L1.FDYD.ID = L2.FDYD_ID

AND L1.PEN.ID = L2.PEN_ID

AND L1.TO_DATE = DATE '9999-12-31’

AND L2.TO_DATE = DATE '9999-12-31’

This query will return the empty table on the above data, as none of the lots are currently co-resident (lots 219 and
374 are currently in the feed yard, but in different pens).

The non-sequenced variant is “Which lots were in the same pen, perhaps at different times?’ Asbefore, non-
sequenced joins are easy to specify: just ignore the timestamp columns.,

SELECT L1.LOT.ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID
FROM LOT_LOC AS L1, LOT_LOC AS L2
WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

AND L1.FDYD.ID = L2.FDYD_ID

AND L1.PEN.ID = L2.PEN_ID

The result is the following: all threelots had once beenin pen 1.

L1 | L2 | PEN.D
137 | 219 | 1
137 | 219 | 1
137 | 374 | 1
219 1 374 | 1
219 1 374 | 1

Note however that at no time were any cattle from lot 137 co-resident with either of the other two lots. To
determine co-residency, the sequenced variant is used: “Give the history of lots being co-resident in apen.” This
requires the cattle to actually be in the pen together, at the same time. The result of this query on the above table
isthe following.



L1 | L2 | PEN.ID | FROM.DATE | TO_DATE
219 | 374 | 1 | 1998-02-25 | 1998-03-01

A sequenced join is somewhat challenging to expressin SQL. We assume that the underlying table contains no
(sequenced) duplicates, that is, alot can bein a pen at most once at any time.

The sequenced join query must do a case analysis of how the period of validity of each row L1 of LOT_LOC
overlapsthe period of validity of each row L2, also of LOT_LOC,; there are four possible cases.

Inthefirst case, the period associated with the L1 row isentirely contained in the period associated with the L2
row. Since we are interested in those times when both lots are in the same pen, we compute the intersection of the
two periods, whichinthis caseisthe contained period, that is, the period from L1.FROM_DATE to L1. TO_DATE.
Below, we illustrate this case, with the right end emphasizing the closed-open representation.

L1

L2

In the second case, neither period contains the other, and the desired period is the intersection of the two periods
of validity.

L1

L2

The other cases similarly identify the overlap of the two periods. Each case is trandlated to a separate select
statement, because the target list is different in each case.

SELECT L1.LOT_ID_NUM, L2.LOT_.ID_NUM, L1.PEN.ID, L1.FROM_DATE, L1.TO_DATE
FROM LOT_LOC AS L1, LOT_LOC AS L2
WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM
AND L1.FDYD.ID = L2.FDYD_ID
AND L1.PEN.ID = L2.PEN_ID
AND L2.FROM_DATE <= L1.FROM_DATE
AND L1.TO_DATE <= L2.TO_DATE
UNION
SELECT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN.ID, L1.FROM_DATE, L2.TO_DATE
FROM LOT_LOC AS L1, LOT_LOC AS L2
WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM
AND L1.FDYD.ID = L2.FDYD_ID
AND L1.PEN.ID = L2.PEN_ID
AND L1.FROM_DATE > L2.FROM_DATE
AND L2.TO_DATE < L1.TO_DATE
AND L1.FROM_DATE < L2.TO_DATE
UNION



SELECT L1.LOT_ID_NUM, L2.LOT_.ID_NUM, L1.PEN.ID, L2.FROM_DATE, L1.TO_DATE
FROM LOT_LOC AS L1, LOT_LOC AS L2
WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM
AND L1.FDYD.ID = L2.FDYD_ID
AND L1.PEN.ID = L2.PEN_ID
AND L2.FROM_DATE > L1.FROM_DATE
AND L1.TO_DATE < L2.TO_DATE
AND L2.FROM_DATE < L1.TO_DATE
UNION
SELECT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN.ID, L2.FROM_DATE, L2.TO_DATE
FROM LOT_LOC AS L1, LOT_LOC AS L2
WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM
AND L1.FDYD.ID = L2.FDYD_ID
AND L1.PEN.ID = L2.PEN_ID
AND L2.FROM_DATE >= L1.FROM_DATE
AND L2.TO_DATE <= L1.TO_DATE

This query requires care to get the fourteen inequalities and the four select target lists correct. The cases where
either the start times or the end times match are particularly vexing. The case where the two periods are identical
(i.e, L1.FROM_DATE = L2.FROM_DATE AND L1.TO_DATE = L2.TO_DATE) is covered by two of the cases:
thefirst andthelast. Thisintroducesan undesired duplicate. However, the UNION operator automatically removes
duplicates, so theresult is correct.

The downside of using UNION is that it does a lot of work to remove these infrequent duplicates generated
duringthe evaluation of thejoin. We canreplace UNION with UNION ALL which retainsduplicates, and generally
runs faster. If we do that, then we must also add the following to the predicate of the last case.

AND NOT (L1.FROM_DATE = L2.FROM_DATE AND L1.TO_DATE = L2.TO_DATE)

Theresult of this query containstwo rows.

LOT_ID_-NUM | LOT_ID-NUM | PEN.ID | FROM.DATE | TO_DATE
219 ‘ 374 ‘ 1 ‘ 1998-02-25 ‘ 1998-03-01

219 374 1 1998-03-01 1998-03-14

This result contains no sequenced duplicates (at no time are there two rows with the same values for the non-
timestamp columns). Converting this result into the equivalent, but shorter,

LOTID.NUM | LOT.ID.NUM | PEN.ID | FROM_DATE | TO_DATE
219 7374 1 | 1998-02-25 | 1998-03-14

isastory unto itself.
The SQL-92 CASE expression allows this query to be written asasingle SELECT statement.

SELECT L1.LOT.ID_NUM, L2.LOT_ID_NUM, L1.PEN.ID,
CASE WHEN L1.FROM_DATE > L2.FROM_DATE
THEN L1.FROM_DATE
ELSE L2.FROM_DATE END,
CASE WHEN L1.TO_DATE > L2.TO_DATE
THEN L2.TO_DATE
ELSE L1.TO_DATE END
FROM LOT_LOC AS L1, LOT_LOC AS L2
WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM
AND L1.FDYD.ID = L2.FDYD_ID
AND L1.PEN.ID = L2.PEN_ID
AND (CASE WHEN L1.FROM_DATE > L2.FROM_DATE
THEN L1.FROM_DATE
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ELSE L2.FROM_DATE END) <

(CASE WHEN L1.TO_DATE > L2.TO_DATE
THEN L2.TO_DATE
ELSE L1.TO_DATE END)

Thefirst CASE expression simulates alast_instant function of two arguments, the second afirst_instant function
of thetwo arguments. The additional where predicate ensuresthe period of validity iswell formed, that its starting
instant occurs before its ending instant. Asthisversion is not based on UNION, it does not introduce extraneous
duplicates.

2.3 DBMS Specifics

DB2 supportsthe CASE construct. However, other approaches are necessary to avoid the multiple UNIONswhen
the CASE construct is not available.

On dternative is to implement the first_instant and last_instant functions directly, as SQL/PSM (persistent
stored module) FUNCTIONS.

CREATE FUNCTION first_instant (one DATE, two DATE)
RETURNS DATE
LANGUAGE SQL

RETURN CASE WHEN one > two
THEN one
ELSE two END

A last_instant function can similarly defined. In fact, we can exploit polymorphism in SQL/PSM by defining a
host of first_instant and last_instant functions, each taking two parameters of each of the various temporal types
(e.g., TIME, TIMESTAMP, TIMESTAMP(3)) and returning the same type.

With these functions, the sequenced join is considerably simplified.

SELECT L1.LOT.ID_NUM, L2.LOT_ID_NUM, L1.PEN.ID,
last_instant(L1.FROM_DATE, L2.FROM_DATE), first.instant(L1.TO_DATE, L2.TO_DATE)
FROM LOT_LOC AS L1, LOT_LOC AS L2
WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM
AND L1.FDYD.ID = L2.FDYD_ID
AND L1.PEN.ID = L2.PEN_ID
AND last_instant(L1.FROM_DATE, L2.FROM_DATE) < first.instant(L1.TO_DATE, L2.TO_DATE)

Unfortunately, vendorsdon'’t (yet) support the SQL/PSM standard. In Informix-SQL, thefirst_instant function
can be written asa PROCEDURE that returns aresult.

CREATE PROCEDURE first_instant (one DATE, two DATE)
RETURNING DATE;
IF one < two THEN RETURN one;
ELSE RETURN two;
END IF
END PROCEDURE;

Several vendors also support user-defined functions, generally in the C language, for example Informix’s Uni-
versal Server and IBM’s DB2.

While Oracle does not support SQL-92's CASE expression, it does support the functions GREATEST and
LEAST, which are generdlizations of the last_instant and first_instant SQL/PSM functions defined above. (Inthe
following, we use TODATE, because TO_DATE is a predefined function in Oracle.)

SELECT L1.LOT.ID_NUM, L2.LOT_ID_NUM, L1.PEN.ID,
GREATEST(L1.FROM_DATE, L2.FROM_DATE), LEAST(L1.TODATE, L2.TODATE)
FROM LOT_LOC AS L1, LOT_LOC AS L2
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WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM
AND L1.FDYD.ID = L2.FDYD_ID
AND L1.PEN.ID = L2.PEN_ID
AND GREATEST(L1.FROM_DATE, L2.FROM_DATE) < LEAST(L1.TODATE, L2.TODATE)

In summary, we haveinvestigated current, nonsequenced, and sequenced variants of common types of queries.
Current queries are easy: add a currency predicate for each correlation namein the from clause. Non-sequenced
variants are also straight-forward: just ignore the timestamp columns, or treat them as regular columns.

Sequenced queries are of the form, “Give the history of...” and arise frequently. For projections, selections,
union, and order by, of which only the first two are exemplified here, the conversion is also easy: just append the
timestamp columnsto the target list of the select statement. Sequenced tempora joins, however, can be awkward
unless a CASE construct or first_instant type of function is available.

In the section, we' Il tackle modification of valid-time state tables.

All the above approaches assume that the underlying table contains no sequenced duplicates. As a challenge,
consider performing in SQL atemporal join on atable possibly containing such duplicates. The result should re-
spect the duplicatesof theinput table. If that istoo easy, try writing in SQL the sequenced query, “ Give the history
of the number of cattlein pen 1.” Thiswould return the following.

PEN_ID | HD_.CNT | FROM_DATE | TO_.DATE

1 17 1998-02-07 1998-02-18
1 14 1998-02-20 1998-02-25
1 57 1998-02-25 1998-03-01
1 34 1998-03-01 1998-03-14
1 14 1998-03-14 9999-12-31

3 Modifying Valid-Time State Tables

Inthe previoussection we discussed tracking cattle asthey moved frompentopeninafeedyard. | initially hesitated
in discussing this next topic dueto its sensitive nature, especially for the animals concerned. But the epidemiologic
factors convinced me to proceed.

3.1 Terminology

An aside on terminology. A “bull” is a male bovine animal (the term also denotes a male moose). A “cow” isa
female bovine animal (or afemale whale). A “calf” isthe young of a cow (or ayoung elephant). A “heifer” isa
cow that has not yet borne a calf (or ayoung female turtle). “Cattle” are collected bovine animals.

A “steer” isacastrated male of the cattle family. To steer an automobileor acommitteeisemphatically different
from steering a calf. Cows and heifers are not steered, they are spayed, or generically, neutered, rendering them a
“neutered cow” . Thereis no single term for neutered cow paralleling the term steer, perhaps because spayingisa
more invasive surgical procedure than steering, or perhaps because those doing the naming are cowboys.

Bullsare steered to reduceinjuriesto themselves (bullsare quite aggressive animal s) aswell asto enhance meat
quality. Basically, all that fighting reduces glycogen in the muscle fibers, which increases the water content of the
meat, which resultsin less meat per pound-thewater boils off during cooking. Heifers are spayed only if they will
feed in open fields, because calving in the feed yard is expensive and dangerousto the cow.

Figure 3illustrates the transitions in gender that are possible, al of which areirreversible.

Capturing the (time-varying) gender of alot (a collection of cattle) is important in epidemiological studies,
for the gender can affect disease transfer to and between cattle. Hence, Dr. Brad De Groot's feed yard database
schemaincludesthevalid-time state table LOT, adlice of which isshown in Table 2 (in this excerpt, we' ve omitted
the FDYD_ID, IN.WEIGHT, OWNER, and several other columns not relevant to this discussion).

The GNDR_CODE is an integer code. For expository purposes, we will use single letters, with c=bull calf,
h=heifer and s=steer. The FROM_DATE and TO_DATE in concert specify the time period over which the values
of all the other columnsof the row werevalid. Inthistable, on March 23, 1998, arather momentousevent occurred
for the cattlein lot 101: they were steered. Lot 234 consists of calves, a TO_DATE of forever denotes a row that
iscurrently valid. Lot 234 arrived in the feed yard on February 17; lot 799 arrived on March 12.
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Figure 3: Gender transitions

LOT_ID.NUM | GNDR_CODE | FROM.DATE | TO_DATE

101 c 1998-01-01 1998-03-23
101 S 1998-03-23 9999-12-31
234 c 1998-02-17 9999-12-31
799 S 1998-03-12 9999-12-31

Table 2: An excerpt from the LOT table

Brad collects data from the feed yard to populate his database. In doing so he makes a series of modifications
to histables, including the LOT table (modifications comprise insertions, deletions, and updates). We previously
presented current, sequenced, and non-sequenced uniqueness constraints and queries. So you’ ve probably already
guessed that I'll be discussing here current, sequenced and nonseguenced modifications.

3.2 Current Modifications
Consider anew lot of heifersthat arrivestoday. The current insertion would be coded in SQL asfollows.

INSERT INTO LOT
VALUES (433, 'h’, CURRENT_DATE, DATE '9999-12-31")

The statement provides a timestamp from “now” to the end of time.

The message from previous case studies is that it is best to initially ignore the timestamp columns, as they
generally confound rather than illuminate. Consider lot 101 leaving the feed yard. Ignoring time, this would be
expressed as a deletion.

DELETE FROM LOT
WHERE LOT_ID_NUM = 101

A logical current deletion on avalid-time state tableis expressed in SQL as an update. Current deletions apply
from “now” to “forever”.

UPDATE LOT
SET TO_DATE = CURRENT_DATE
WHERE LOT_ID_NUM = 101

AND TO_DATE = DATE '9999-12-31’

There are two scenariosto consider: the general scenario, where any modification is allowed to the valid-time
state table, and the restricted scenario, where only current modifications are performed on the table. The scenarios

13



LOT.ID_.NUM | GNDR_CODE | FROM_DATE | TO_DATE

101 c 1998-01-01 1998-03-23
101 S 1998-03-23 9999-12-31
234 c 1998-02-17 1998-10-17
234 S 1998-10-17 9999-12-31
799 c 1998-03-12 9999-12-31

Table 3: Another excerpt, the general scenario

LOT_ID_-NUM | GNDR_CODE | FROM_DATE | TO_DATE

101
101
234
799

C

S
C
C

1998-01-01
1998-03-23
1998-02-17
1998-03-12

1998-03-23
9999-12-31
1998-07-29
9999-12-31

Table 4: Result of a current deletion on Table 3

differentiate the data upon which the modification is performed, and consider whether a non-current modification
might have been performed in the past. Often we know a priori that only current modifications are possible, which
tells us something about the data that we can exploit in the (current) modification being performed.

The above statement works only in the restricted scenario. Consider the excerpt of LOT shown in Table 3,
which isthe general scenario. Assumetoday is July 29. Thistable indicatesthat lot 234 is scheduled to be steered
on October 17, though we don't tell that to the calves...

A logical current deletion of lot 234, meaning that the lot |eft the feed yard today, in the general scenario is

implemented as a physical update and a physical delete.

UPDATE LOT

SET TO_DATE = CURRENT_DATE

WHERE LOT_ID_NUM = 234

AND TO_DATE >= CURRENT_DATE
AND FROM_DATE < CURRENT_DATE

DELETE FROM LOT
WHERE LOT_ID_NUM = 234

AND FROM_DATE > CURRENT_DATE

These two statements can be donein either order, as the rows they alter are digoint. Applying these operationsto

Table 3 resultsin Table 4. All information on lot 234 after today has been deleted.
Consider steering the cattlein lot 799. On a non-temporal table, thiswould be stated as

UPDATE LOT
SET GNDR_CODE ="'s’
WHERE LOT_ID_NUM = 799

A logical current updateisimplemented asaphysical delete coupled with aphysical insert. So thismodification
onavalid-time state tablein therestricted scenariois asfollows. (In Oracle, onecan replacethe outer FROM LOT
with FROM DUAL, and thereby omit DISTINCT.)
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Figure 4: Current update cases, in the general scenario

INSERT INTO LOT
SELECT DISTINCT 799, 's’, CURRENT_DATE, DATE '9999-12-31’
FROM LOT
WHERE EXISTS (SELECT *
FROM LOT
WHERE LOT_ID_NUM = 799
AND TO_DATE = DATE '9999-12-31")

UPDATE LOT
SET TO_DATE = CURRENT_DATE
WHERE LOT_ID_NUM = 799

AND GNDR_CODE <> 's’

AND TO_DATE = DATE '9999-12-31’

The update terminates current values at “now” and the insert adds the new values. The update must occur after the
insertion. Alternatively, the portion up to now could be inserted and the update could change the GNDR_CODE
to’s and the FROM_DATE to “now”.

In the general scenario, alogical current update is more complicated, as there may exist rows that start in the
future, as well as rows that end before “forever”. For the former, only the GNDR_CODE need be changed. For
the latter, the TO_DATE must be retained on the inserted row.

Figure 4 shows the three cases. The period of validity of the row from the table being modified is shown, with
time moving left to right and “now” indicated with a vertical dashed line. In case 1, if arow’s period of validity
terminatesin the past, then the (logical) update will not affect that row. (Recall that the logical update appliesfrom
“now” to “forever”.) If therow is currently valid (case 2), then the portion before “now” must be terminated and
a new row, with an updated gender, inserted, with the period of validity starting at “now” and terminating when
the original row did. If the row starts in the future (case 3), the row can be updated as usual. These machinations
require two updates and an insertion.

INSERT INTO LOT
SELECT LOT_ID_NUM, ’'s’, CURRENT_DATE, TO_DATE
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FROM LOT

WHERE LOT_ID_NUM = 799
AND FROM_DATE <= CURRENT_DATE
AND TO_DATE > CURRENT_DATE

UPDATE LOT
SET TO_DATE = CURRENT_DATE
WHERE LOT_ID_NUM = 799
AND GNDR_CODE <> 's’
AND FROM_DATE < CURRENT_DATE
AND TO_DATE > CURRENT_DATE

UPDATE LOT
SET GNDR_CODE ="s’
WHERE LOT_ID_NUM = 799
AND FROM_DATE >= CURRENT_DATE

The second update can appear anywhere, but the first update must occur after the insertion.

3.3 Sequenced M odifications

A current modification applies from “now” to “forever”. A sequenced modification generalizesthisto apply over
a specified period, termed the period of applicability. This period could be in the past, in the future, or overlap
“now”.

Most of the previousdiscussion appliesto sequenced modifications, with CURRENT _DATE replaced with the
start of the period of applicability of the modification and DATE '9999-12-31" replaced with the end of the period
of applicability.

In asequenced insertion, the application providesthe period of applicability. Asan example, lot 426, a collec-
tion of heifers, was on the feed yard from March 26 to April 14.

INSERT INTO LOT
VALUES (426, 'h’, DATE '1998-03-26’, DATE '1998-04-14")

Recall that a current deletion in the general scenario is implemented as an update, for those currently valid
rows, and a delete, for periods starting in the future. For a sequenced deletion, there are four cases, as shown in
Figure 5. In each case, the period of validity (PV) of the original tuple is shown above the period of applicability
(PA) for the deletion. In case (1), the original row covers the period of applicability, so both the initial and final
periodsneed to beretained. Theinitia period isretained by setting the TO_DATE to the beginning of the period of
applicability; thefinal period isinserted. In case (2), only theinitial portion of the period of validity of the original
row is retained. Symmetrically, in case (3) only the final portion of the period need be retained. And in case (4),
the entire row should be deleted, as the period of applicability coversit entirely.

A sequenced del etion requires four physical modifications. We wish to record that lot 234 will be absent from
thefeed yard for thefirst three weeks of October, when the steering will take place (asrecorded in Table 3). Hence,
the period of applicability is DATE '1998-10-01’ to DATE '1998-10-22’ (we're using an TO_DATE of the day
after the period ends).

INSERT INTO LOT
SELECT LOT_ID_NUM, GNDR_CODE, DATE '1998-10-22’, TO_DATE
FROM LOT
WHERE LOT_ID_NUM = 234
AND FROM_DATE <= DATE '1998-10-01’
AND TO_DATE > DATE '1998-10-22’

16



Case 1: }
| PA
{
Result: }—H
PV
Case 2: }
| PA
{
Reslt I
P\/
Case 3. }
| PA
{
Result:
P\/
Case 4: }
PA

Result: entire row deleted

Figure 5: Seguenced deletion cases
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UPDATE LOT
SET TO_DATE = DATE '1998-10-01
WHERE LOT_ID_NUM = 234
AND FROM_DATE < DATE '1998-10-01
AND TO_DATE >= DATE '1998-10-01’

UPDATE LOT
SET FROM_DATE = DATE '1998-10-22’
WHERE LOT_ID_NUM = 234
AND FROM_DATE < DATE '1998-10-22’
AND TO_DATE >= DATE '1998-10-22’

DELETE FROM LOT

WHERE LOT_ID_NUM = 234
AND FROM_DATE >= DATE '1998-10-01’
AND TO_DATE <= DATE '1998-10-22’

Case (1) is reflected in the first two statements; the second statement also covers case (2). The third statement
handles case (3) and the fourth, case (4). All four statements must be evaluated in the order shown. They have
been carefully designed to cover each case exactly once.

A sequenced updateis the temporal analogue of a nontemporal update, with a specified period of applicability.
Let us again consider steering the cattle in lot 799.

UPDATE LOT
SET GNDR_CODE ="s’
WHERE LOT_ID_NUM = 799

We now convert this to a sequenced update. As with sequenced deletions, there are more cases to consider
for sequenced updates, as compared with current updates. The four casesin Figure 6 are handled differently in an
update. Incase1 of thefigure, theinitial and final portionsof the period of validity areretained (viatwo insertions),
and the affected portionisupdated. Inthe second case, only theinitial portionisretained; inthethird case, only the
final portion isretained. In case 4, the period of validity isretained, asit is covered by the period of applicability.

In summary, we needto (1) insert the old values from the FROM_DATE to the beginning of the period of appli-
cability; (2) insert the old values from the end of the period of applicability to the TO_DATE; (3) updatethe explicit
columns of rows that overlap the period of applicability; (4) update the FROM_DATE to begin at the beginning of
the period of applicability of rowsthat overlap the period of applicability; and (5) update the TO_DATE to end at
the end of the period of applicability of rowsthat overlap the period of applicability.

Thefollowing is a sequenced update, recording that the lot was steered only for the month of March. (Some-
thing magical happened on April 1. Theidea hereisto show how to implement sequenced updatesin general, and
not just on cattle.) The period of applicability isthus DATE '1998-03-01' to DATE '1998-04-01".

The first insert statement handles the initial portions of cases 1 and 2; the second handles the final portions
of cases 2 and 3. The first update handles the update for all four cases. The second and third updates adjust the
starting (for cases 1 and 2) and ending dates (for cases 1 and 3) of the updated portion. Note that the last three
update statementswill not impact the row(s) inserted by the two insert statements, asthe period of validity of those
rows lies outside the period of applicability. Again, al five statements must be evaluated in the order shown.

INSERT INTO LOT
SELECT LOT_ID_.NUM, GNDR_CODE, FROM_DATE, DATE ’1998-03-01’
FROM LOT
WHERE LOT_ID_NUM = 799
AND FROM_DATE < DATE '1998-03-01’
AND TO_DATE > DATE ’'1998-03-01'
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INSERT INTO LOT
SELECT LOT.ID_.NUM, GNDR_CODE, DATE '1998-04-01’, TO_DATE
FROM LOT
WHERE LOT_ID_NUM = 799
AND FROM_DATE < DATE '1998-04-01’
AND TO_DATE > DATE '1998-04-01

UPDATE LOT

SET GNDR_CODE ="'s’

WHERE LOT_ID_NUM = 799
AND FROM_DATE < DATE '1998-04-01’
AND TO_DATE > DATE '1998-03-01'

UPDATE LOT
SET FROM_DATE = DATE '1998-03-01’
WHERE LOT_ID_NUM = 799
AND FROM_DATE < DATE '1998-03-01’
AND TO_DATE > DATE '1998-03-01

UPDATE LOT
SET TO_DATE = DATE '1998-04-01’
WHERE LOT_ID_NUM = 799
AND FROM_DATE < DATE '1998-04-01"
AND TO_DATE > DATE '1998-04-01'

3.4 Nonsequenced M odifications

Aswith constraintsand queries, anonsequenced modification treatsthetimestampsidentically to the other columns.
Consider the modification, “Delete lot 234.” The current variant is “Lot 234 has just left the feed yard.” A se-
guenced variant, with a period of applicability, is “Lot 234 will be absent from the feed yard for the first three
weeks of June.” A nonsequenced deletion mentions the period of validity of the rows to be deleted. An example
is“Delete the records of lot 234 that have duration greater than three months.”

DELETE FROM LOT
WHERE LOT_ID_NUM = 234
AND (TO_DATE - FROM_DATE MONTH) > INTERVAL '3 MONTH

The current and sequenced deletes mention what happened in reality, because they model changes. The non-
seguenced statement concerns the specific representation (deleting particular records). Conversely, the associated
SQL statements for the current and sequenced variants are much more complex than that for the nonsequenced
delete, for the same reason: the latter is expressed in terms of the representation.

Most modificationswill befirst expressed as changesto the enterprise being modeled (some fact becomestrue,
or will betrue sometimein the future; some aspect changes, now or in thefuture; somefactisnolonger true). Such
modifications are either current or sequenced modifications. Nonsequenced modifications, while generally easier
to expressin SQL, arerare.

For those who want a challenge, alter the above modification statements to ensure sequenced primary key and
referential integrity constraints.

Asafina comment, it might be surprising that a time-varying gender is relevant outside of cattle databases.
I’ ve been told that Pacific Bell’s personnel database has a date field associated with gender; more than a dozen of
its employees change their gender each month. Only in California...
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RA. | RA_ | RA_ | Dec. Dec_ Discoverer | Mag-
Hour | Min | Sec | Degree | Minute First
00 00 | 08 75 30 'A 1248 10.5
05 57 |40 | 00 02 '‘BU 1190' | 6.5

04 13 |20 |50 32 'CHR 1%’ 155
01 23 |70 | -09 55 'HJ 3433’ 10.5

Table 5: An excerpt from the WDS table

4 Transaction-Time State Tables

Temporal datais datathat varies over time. However, it may surprise readersthat some of the approaches outlined
above are applicable even when the enterprise being modeled does not vary over time.

Consider astronomical data, specifically, that of stars. While stars coalesce out of galactic dust, heat up, and,
when their fuel is spent, explode or die out, perhaps ending up as black holes, this progression is played out over
hundred of millions, or even billions, of year. For al intentsand purposes, the position, magnitude (brightness) and
spectral type of astar istime-invariant over a comprehensible scale such as a person’slifetime. This static nature
has encouraged the compilation of star catalogues, such as the Smithsonian Astrophysical Observatory J2000 Cat-
alogue (http://www.fc.net/ brianc/man/saoj.ms0), containing almost 300,000 stars, or the Washington Double
Star Catalogue (http://aries.usno.navy.mil/ad/wds/wds.htm), containing some 78,000 double and multiple star
systems.

What is time-varying is our knowledge about these stars. For example, the WDS is based on some 451,000
individual observations, by a host of discoverers and observers over the last century. Datais continually being
incorporated, to add newly discovered binary systems and to refine the data on known systems, some of which
enjoy as many as 100 individual observations.

The challenge in assembling such a catalogue lies in correlating the data and winnowing out inconsistent or
spurious measurements. Assuch, it isdesirableto capturewith each changeto the catal ogue when that change was
made, as well as additional information such as who made the change and the source of the new information. In
this way, past versions of the catalogue can be reconstructed, and the updates audited, to enable analysis of both
the resulting catalogue and of its evolution.

We previoudy considered valid-time state tabl es, which model time-varying behavior of an enterprise. We now
examine transaction-time state tables, which record an evolving understanding of some static system.

A subtle but critical paradigm shift isat play here. A valid-time table modelsthe fluid and continual movement
of reality: cattle are transfered from pen to pen, a caterpillar becomes a chrysalisin its cocoon, later to emerge
as a butterfly, salaries rise (and sometimes fall) in fits and sputters. A transaction-time table instead captures the
succession of states of the stored representation of some (static) fact: astar was thought to have aparticul ar spectral
type but is later determined to have somewhat different spectral characteristics, the bond angle within a chemical
structureisrefined as new X-ray diffraction data becomes available, intermediate configurations within a nuclear
transformation are corrected as accelerator datais analyzed.

These two characterizations of time-varying behavior, valid time and transaction time, are orthogonal. We will
consider for the most part only transaction time here, bringing it together with valid timein one gloriously expres-
sive structure only at the end.

4.1 Transaction-Time State Tables

We consider asubset of the Washington Double Star (WDS) catalogue. The WDS Bible contains 21 columns; only
afew will be used here.

RA denotes “Right Ascension”; Dec denotes “declination”; these first five columns place the star positionally
in the heavens. The discoverer isidentified by a one-to-threeletter code, along with a discoverer’s number. This
column provides the primary key for the table. The last column records the magnitude (brightness) or the first
component of the dual or multiple star system.
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RA_ | RA_ | RA_ | Dec. Dec_ Discoverer | Mag_ | Trans_ Trans_
Hour | Min | Sec | Degree | Minute First | Start Stop

00 00 00 75 30 ‘A 1248’ 12.0 | 1989-03-12 | 1992-11-15
00 00 09 75 30 ‘A 1248’ 12.0 | 1992-11-15 | 1994-05-18
00 00 09 75 30 ‘A 1248’ 10.5 | 1994-05-18 | 1995-07-23
00 00 08 75 30 ‘A 1248’ 10.5 | 1995-07-23 | 9999-12-31
05 57 40 00 02 '‘BU 1190" | 6.5 1988-11-08 | 9999-12-31
04 13 20 50 32 'CHR 15’ 15.5 | 1990-02-09 | 9999-12-31
01 23 70 -09 55 'HJ 3433’ 10.5 | 1991-03-25 | 9999-12-31
02 33 10 -09 25 '‘LDS3402" | 10.6 | 1993-12-19 | 1996-07-09

Table 6: The audit log (WDS_TT) for the WDS table

Asmentioned previoudly, thistableis constantly updated with new binary stars and with correctionsto existing
stars. To track these changes, we define a new table, WDS_TT, with two additional columns, Trans_Start and
Trans_Stop, yidding a transaction-time state table. We term this table an audit log, differentiating it from the
origina table, which has no timestamps. Trans_Start specifies when the row was inserted into the original table,
or when the row was updated (the new contents of the row are recorded here). Trans_Stop specifies when the
row was deleted from the original table, or was updated (the old contents of the row are recorded here). Consider
the following audit log for the WDS table. We show the timestamps as DATEsS, but they often are of much finer
granularity, such as TIMESTAMP(6), to distinguish multipletransactionsoccurringin aday, or evenwithinasingle
second.

A Trans_Stop time of “forever” (9999-12-31) indicates that the row is currently in WDS. And as we saw
above, WDS currently contains four rows, so four rows of WDS_TT have a Trans_Stop value of “forever”. The
binary star LDS3402 was inserted the end of 1993, then deleted in July, 1996, when it was found to be in error.
The binary star A 1248 was first inserted in 1989, and was subsequently modified, in November 1992 (to correct
its RA_Sec position), May 1994 (to refine its magnitude), and July 1995 (to refineits position slightly). Note that
these changes do not mean that the star is changing, rather that the prior measurements were in error, and have
since been corrected. Rows with a past Trans_Stop date are (now) known to be incorrect.

4.2 Maintaining The Audit Log

The audit log can be maintained automatically using triggers defined on the original table. The advantageto doing
so is that the applications that maintain the WDS table need not be altered at all when the audit log is defined.
Instead, the audit log is maintained purely as a side-effect of the modifications applied to the original table.

Using triggers has another advantage: it simplifies specifying the primary key of the audit log. In Section 1,
we saw that it is challenging to define unique columns or a primary key for avalid-time state table. Not so for a
transaction-time state table: all that is necessary is appending Trans_Start to the primary key of the original table.
Hence, the primary key of WDS_TT is (Discoverer, Trans_Start).

The triggers ensure that the audit log captures all the changes made to the original table. When arow isin-
serted into the original table, it is also inserted into the audit log, with Trans_Start initialized to “now” (CUR-
RENT_DATE), and Trans_Stop isinitialized to “forever”. To logically delete arow, the Trans_Stop of the row
is changed to “now” in the audit log. An updateis handled as a deletion followed by an insertion.

CREATE TRIGGER INSERT_WDS

AFTER INSERT ON WDS

REFERENCING NEW AS N

FOR EACH ROW

INSERT INTO WDS_TT(RA_Hour, RA_Min, RA_Sec, Dec_Degree, Dec_Minute,
Discoverer, Mag_First, Trans_Start, Trans_Stop)

VALUES (N.RA_Hour, N.RA_Min, N.RA_Sec, N.Dec_Degree, N.Dec_Minute,
N.Discoverer, N.Mag_First, CURRENT_DATE, DATE '9999-12-31")
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CREATE TRIGGER DELETE_WDS

AFTER DELETE ON WDS

REFERENCING OLD AS O

FOR EACH ROW

UPDATE WDS_TT

SET STOP_TIME = CURRENT_DATE

WHERE WDS_TT.Discoverer = O.Discoverer
AND WDS_TT.Trans_Stop = DATE '9999-12-31"

CREATE TRIGGER UPDATE_P
AFTER UPDATE ON WDS
REFERENCING OLD AS O NEW AS N
FOR EACH ROW

BEGIN ATOMIC

UPDATE WDS_TT

SET Trans_Stop = CURRENT_DATE

WHERE WDS_TT.Discoverer = O.Discoverer

AND WDS_TT.Trans_Stop = DATE '9999-12-31";

INSERT INTO WDS_TT(RA_Hour, RA_Min, RA_Sec,
Dec_Degree, Dec_Minute, Discoverer, Mag_First,
Trans_Start, Trans_Stop)

VALUES (N.RA_Hour, N.RA_Min, N.RA_Sec,
N.Dec_Degree, N.Dec_Minute, N.Discoverer, N.Mag_First,
CURRENT_DATE, DATE '9999-12-31");

END

These triggers could be augmented to al so store other information in the audit log, such as CURRENT_USER.

Note that WDS_TT is monotonically increasing in size. The INSERT trigger adds a row to WDS_TT, the
DELETE trigger just changes the value of the Trans_Stop column, and the UPDATE trigger does both, adding
one row and updating another. No row is ever deleted from WDS_TT.

4.3 Querying The Audit Log

In Section 2, we discussed three variants of queries on valid-time state tables: current, sequenced, and nonse-
guenced. These variants also apply to transaction-time state tables. To determine the current state of the WDS
table, we can either look directly to that table, or get the information from the audit log.

SELECT RA_Hour, RA_Min, RA_Sec, Dec_Degree, Dec_Minute, Discoverer, Mag_First
FROM WDS_TT
WHERE Trans_Stop = DATE '9999-12-31’

Theutility of an audit log becomesapparent when wewish to rollback the WDS tabletoits state asof aprevious
pointintime. Say wewishto seethe WDS tableasit existed on April 1, 1994. Thisreconstructionisbest expressed
asaview.

CREATE VIEW WDS_April_1 AS

SELECT RA_Hour, RA_Min, RA_Sec, Dec_Degree, Dec_Minute, Discoverer, Mag_First
FROM WDS_TT

WHERE Trans_Start <= DATE '1994-04-01' AND DATE '1994-04-01’ < Trans_Stop

Theresult of thisis Table 7.

Note that LDS3402 is present here (the mistake hadn't yet been detected), and that A1248 has an incorrect
magnitude and position (these errors aso hadn’'t been corrected as of April 1, 1994). What we've done hereis
rolled back time to April 1, 1994, to see what the WDS table looked like at that time. Queries on WDS_April_1
will return the same result as queries on WDS that were presented to the DBM S on that date. So, if we ask, which
stars are of magnitude 11 or brighter, as currently known,
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RA. | RA_ | RA_ | Dec. Dec_ Discoverer | Mag-
Hour | Min | Sec | Degree | Minute First
00 00 | 09 75 30 'A 1248 12.0
05 57 |40 | 00 02 '‘BU 1190' | 6.5

04 13 |20 |50 32 'CHR 1%’ 155
01 23 |70 | -09 55 'HJ 3433’ 10.5
02 33 10 | -09 25 'LDS3402' | 10.6

Table 7: Transaction timeslice of WDS_T as of April 1, 1994.

SELECT Discoverer
FROM WDS
WHERE Mag_First <=11.0

(brighter stars have smaller magnitudes), three double stars would be identified.

Discoverer
'A 1248’
'BU 1190’
'HJ 3433’

Asking the same question, as best known on April 1, 1994,

SELECT Discoverer
FROM WDS_April_1
WHERE Mag_First <=11.0

yields adifferent set of stars,

Discoverer
'BU 1190’
'HJ 3433
'LDS3402'

because A 1248 was thought then (erroneously) to be of magnitude 12, and L DS3402 was thought then (also erro-
neously) to be a double star system, of magnitude 10.6.

Interestingly, the WDS_April_1 can also be defined as atable, instead of as aview. The reason is that no fu-
ture modifications to the WDS table will alter the state of that table back in April, and so any future query of
WDS_April_1, whether aview or atable, will return the same result, independently of when that query is spec-
ified. The decision to make WDS_April_1 aview or atableis entirely one of query efficiency versusdisk space.

We emphasize that only past states can be so queried. Even though the Trans_Stop valueis“forever” (chosen
to make the queries discussed below easier to write), this must be interpreted as “now” . We cannot unequivocally
state what the WDS table will record in the future; all we know is what is recorded now in that table, and the
(erroneous) values that were previously recorded in that table.

Sequenced and nonsequenced queries are also possible on transaction-time state tables. Consider the query,
“When was it recorded that A1248 had a magnitude other than 10.57" Thefirst part, “when was it recorded” in-
dicates that we are concerned with transaction time, and thus must use the WDS_TT table. It aso impliesthat if
a particular time is returned, the specified relationship should hold during that time. This indicates a sequenced
guery. Inthis case, the query isasimple selection and projection.

SELECT Mag_First, Trans_Start, Trans_Stop
FROM WDS_TT
WHERE Discoverer ='A 1248’

AND Mag_First <> 10.5

24



The following result

Mag_ | Trans_ Trans_

First | Start Stop

12.0 | 1989-03-12 | 1992-11-15
12.0 ‘ 1992-11-15 | 1994-05-18

indicatesthat for alittle over 5 years, the magnitude of thefirst star in this double star system was recorded incor-
rectly in the database.

We can use all thetricksdiscussed in Section 3 to write sequenced querieson WDS_TT. The query “When was
it recorded that a star had a magnitude equal to that of A12487" The first part again indicates a transaction-time
sequenced query; the last part indicates a self-join. This can be expressed in Oracle as

SELECT W1.Discoverer,
GREATEST(WL1.Trans_Start, W2.Trans_Start), LEAST(W1.Trans_Stop, W2.Trans_Stop)
FROM WDS_TT W1, WDS_TT W2
WHERE W1.Discoverer = 'A 1248’
AND W2.Discoverer <> W1.Discoverer
AND W1.Mag_First = W2.Mag_First
AND GREATEST(WL1.Trans_Start, W2.Trans_Start) < LEAST(W1.Trans_Stop, W2.Trans_Stop)

Thisresultsin

Discoverer | Trans_ Trans_
Start ‘ Stop

'HJ 3433’ 1994-05-18 | 1995-07-23

'HJ 3433’ ‘ 1995-07-23 ‘ 9999-12-31

stating that in May 1994 it was recorded that HJ3433 had the same magnitude as A1248, and this is still thought
to be the case.

Nonsequenced queries on transaction-timetables are effectivein identifying changes. “When wasthe RA_Sec
position of a double star corrected?’ A correctionisindicated by two rows that meet in transaction time, and that
concern the same double star, but have different RA_Sec values.

SELECT W1.Discoverer, W1.RA_Sec AS Old_Value, W2.RA_Sec AS New_Value,
W1.Trans_Stop AS When_Changed
FROM WDS_TT AS W1, WDS_TT AS W2
WHERE W1.Discoverer = W2.Discoverer
AND W1.Trans_Stop = W2.Trans_Start
AND W1.RA_Sec <> W2.RA_Sec

The result indicates that the position of A1248 was changed twice, first from 0 to 9, and then to 8.

Discoverer | Old_ New_ | When_
Value | Value | Changed

'A 1248 00 09 1992-11-15

'A 1248’ ‘ 09 ‘ 08 ‘ 1995-07-23

4.4 Modifying The Audit Log

While queries on transaction-time tables can be current, sequenced, or non-sequenced, the same does not hold for
modifications. In fact, the audit log (WDS_TT) should be changed only as a side effect of modifications on the
origina table (WDS). In the terminology introduced in Section 3 on valid-time state table modifications, the only
modifications possible on transaction-time state tables are current modifications, effecting the currently stored state.
The triggers defined above are very similar to the current modifications described for valid-time tables.

Sequenced and non-sequenced modifications can change the previous state of a valid-time table. But doing
so to an audit log violates the semantics of that table. Say we manually insert today intoWDS_TT arow with a
Trans_Start value of 1994-04-01. Thisimpliesthat the WDS table on that date a so contained that same row. But
we can’t changethe past, specifically, what bits were stored on the magnetic disk. For this reason, manual changes
to an audit log should not be permitted; only the triggers should modify the audit log.

25



Discoverer | Mag- | Trans. Trans. Valid_ Valid_

First ‘ Start ‘ Stop ‘ From To
'A 1248’ 12.0 | 1989-03-12 | 1995-11-15 | 1922-05-14 | 9999-12-31
'A 1248’ 12.0 | 1995-11-15 | 9999-12-31 | 1922-05-14 | 1994-10-16
'A 1248’ 10.5 | 1995-11-15 | 9999-12-31 | 1994-10-16 | 9999-12-31

Table 8: A bitemporal table (WDS_B)

45 Bitemporal Tables

Because valid time and transaction time are orthogonal, it is possiblefor each to be present or absent independently.
When both are supported simultaneoudly, the table is called a bitemporal table.

While starsare stationary to the eye, sophisticated astronomical instruments can sometimes detect slight motion
of somestars. Thismovementiscalled “ proper motion”, to differentiateit from the apparent movement of the stars
in the night-time sky as the earth spins. Star cataloguesthus list the star’s position as of a particular “epoch”, or
point in time. The Washington Double Star catalogue lists each star system’s location as of January 1, 2000, the
so-called J2000 epoch. It also indicates the proper motion, in units of seconds of arc per 1000 years. Some star
systems are essentially stationary; BU733 is highly unusual in that it moves aimost an arc second a year, both in
ascension and in declination. Stars can sometimes also change magnitude.

We can capture this information in abitemporal table, WDS_B. Here we show how this table might look.

This table has two transaction timestamps, and thus records transaction states (the period of time a fact was
recorded in the database). The table also has two valid-time timestamps, and thus records valid-time states (the
period of time when something was true in reality). While the transaction timestamps should generally be of a
finer granularity (e.g., microseconds), the valid time is often much coarser (e.g., day).

Bitemporal tablesareinitially somewhat challenging to interpret, but such tables can express complex behavior
quite naturally. Thefirst photographic plate containing A1248 (presumably by discoverer A, who is R.G. Aitken,
who was active in double star sitings for the first four decades of the twentieth century) was taken on May 14,
1922. However, thisinformation had to wait almost 70 years before being entered into the database, in March 1989.
Thisrow hasaValid_To date of “forever”, meaning that the magnitude was not expected to change. A subseguent
plate was taken in October 1994, indicating a slightly brighter magnitude (perhaps the star was transitioning to
a supernova), but was not entered into the database until November 1995. This logical update was recorded in
the bitemporal table by updating the Trans_Stop date for the first row to “now”, and by inserting two more rows,
one indicating that the magnitude of 12 was only for a period of years following June 1922, and indicating that a
magnitude of 10.5 wasvalid after 1994. (Actually, we don’t know exactly when the magnitude changed, only that
it had changed by the timethe October 1994 plate wastaken. In other applications, the valid-timefrom and to dates
are generally quite accurately known.)

Modifications to a bitemporal table can specify the valid time, be of any of the varieties, current, sequenced,
or non-sequenced. However, the transaction time must always be taken from CURRENT_DATE, or better, CUR-
RENT_TIMESTAMP, when the modification was being applied.

Queries can be current, sequenced, or non-sequenced, for both valid and transaction time, in any combination.
Asone example, consider “What was the history recorded as of January 1, 19947 “History” implies sequencedin
valid time; “recorded as” indicates a transaction timeslice.

CREATE VIEW WDS_VT_AS_OF_Jan_1 AS
SELECT Discoverer, Mag_First, Valid_From, Valid_To
FROM WDS_B
WHERE Trans_Start <= DATE '1994-01-01
AND DATE '1994-01-01’ < Trans_Stop

This returns a valid-time state view, in this case, just the first row of the abovetable. Valid-time queries can then
be applied to this view. This effectively rolls back the database to the state stored on January 1, 1994; valid-time
gueries on this view will return exactly the same result as valid-time queries actually typed in on that date.

Now consider “List the corrections made on plates taken in the 1920's.” “corrections’ implies non-sequenced
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intransactiontime; “takeninthe 1920's” indicates sequenced in valid time. This query can be expressed in Oracle
as

SELECT B1.Discoverer, B1.Trans_Stop AS When_Changed,
GREATEST(B1.Valid_From, B2.Valid_From) AS Valid_From,
LEAST(B1.Valid_To, B2.Valid_To) AS Valid_To
FROM WDS_B B1, WDS_B B2
WHERE B1.Discoverer = B2.Discoverer
AND B1.Trans_Stop = B2.Trans_Start
AND GREATEST(B1.Valid_From, B2.Valid_From) < DATE '1929-12-31’
AND DATE '1920-01-01' < LEAST(B1.Valid_To, B2.Valid_To)
AND GREATEST(B1.Valid_From, B2.Valid_From) < LEAST(B1.Valid_To, B2.Valid_To)

This query searchesfor pairs of rows that meet in transaction time, that were valid in the 1920's, and that overlap
in valid time. For the above data, one such changeis identified.

Discoverer

When_ Valid_ Valid_
Changed From To
'A 1248’ | 1995-11-15 | 1922-05-14 | 1994-10-16

Thisresult indicatesthat erroneousdata concerninginformation during the period from 1922 to 1994 was corrected
in the database in November 1995.

Bitemporal tables record the history of the modeled redlity, as well as recording when that history was stored
in the database, perhaps erroneously. They are highly useful when the application needsto know both when some
fact was true, and when that fact was known, i.e., stored in the database.

5 Temporal Support in Standard SQL

The previous four sections have shown that expressing integrity constraints, queries, and modifications on time-
varying datain SQL is challenging. Thisfina section looks to the future, examining enhancementsto SQL that
bring temporal processing to the masses. With just afew additional concepts, SQL can just as easily expresstem-
poral queries as it does now for nontemporal queries.

Many knotty problems arise when we have to contend with time-varying datain SQL.

Avoiding duplicatesin atime-varying table requires an aggregate or complex trigger.

A simple three-line join when applied to time-varying tables explodes to a 37-line query consisting of four
SELECT statements or a complex 20-line statement with four CASE expressions.

A three-line UPDATE of atime-varying table trandates into five modification statements totaling 29 lines.

Maintaining an audit log requires several triggers comprising some three dozen lines.

What is the source of this daunting complexity? While SQL-92 supports time-varying data through the DATE,
TIME, and TIMESTAMP data types, the language really has no notion of atime-varying table. SQL also has no
concept of current or sequenced constraints, queries, modificationsor views, nor of the critical distinction between
valid time (modeling the behavior of the enterprise in reality) and transaction time (capturing the evolution of the
stored data). In the terminology introduced before, all that SQL supports is nonsequenced operations, which we
saw were often the least useful.

Fortunately, there are now specific proposals for temporal support in SQL3 that are being considered by the
standards committees (see Section 5.4) and are starting to be incorporated into products by vendors. Here | will
summarize these new SQL 3 constructs and revisit the appli cations discussed above, showing how these constructs
greatly simplify writing SQL for time-varying applications. In the following, when | mention an SQL 3 construct,
| am referring to the constructs introduced in the proposals referenced in Section 5.4, or are already present in
the draft SQL3. | should emphasize that these proposals are still under consideration for SQL3. The constructs
may well change; indeed, SQL 3 as awhole is still undergoing refinement as it inches towards publication as an
international standard.
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51 SQL

SQL 3 adds anew datatype, PERIOD, actually, a series of datatypes. PERIOD(DATE), of aday granularity, PE-
RIOD(TIME) of asecond granularity, and PERIOD(TIMESTAMP) of a microsecond granularity, with additional
variants possible by specifying a precision, e.g., PERIOD(TIMESTAMP(3)) has a granularity of 10~3 seconds
(milliseconds) and a range of 9999 years.

SQL 3 a'so addsthe notion of atablewith temporal support. Thetable can have valid-time support, transaction-
time support, or both (bitemporal support). Finally, SQL3 providesfacilitiesfor current and sequenced operations,
and retains the ability to perform nonsequenced operations.

Section 1 considered a table called NICUStatus (Neonatal Intensive Care Unit Status), and a uniquenessin-
tegrity constraint. Let's assume that the application was initially non-temporal, in that it captured in the NICU-
Status table only the current situation: the infants present in the NICU and their current status.

CREATE TABLE NICUStatus (
Name CHAR(15),
Status CHAR(8),
UNIQUE (Name, Status)

)

We now wish to retain the history of thisinformation: how the status of infantsvaried over time. In SQL 3, this
can be donewith an ALTER statement.

ALTER TABLE ADD VALIDTIME PERIOD(DATE)

Here we add valid-time support, at the granularity of a day. Each row of the table is now associated with a
valid-time period. The rowsin the table when valid-time support was added are associated with the period from
“now” to “forever”.

SQL 3istemporally upward compatible, meaning that the non-temporal application is unaffected when tempo-
ral support is added. The benefit of thisimportant property is that the tens of thousands of lines of code associated
with the NICU application continue to work as before, without altering asingleline of code. Queriesin this appli-
cation code on this table which now has valid-time support are interpreted as current queries. To ascertain which
infants are currently in serious condition, the following query

SELECT Name
FROM NICUStatus
WHERE Status = 'serious’

works just as before.
Modifications are interpreted as current modifications, capturing the history. To update Alexis May’s status to
fair, the following modification

UPDATE NICUStatus
SET Status = 'fair’
WHERE Name ="Alexis May’

still worksfine, and also automatically retainsthe prior status, as aside effect of thetable having valid-time support.
Integrity constraints are handled in the same way. The initial uniqueness constraint, specified when the table
was created, is considered to be a current constraint; no infant can (currently) have two identical status values.
Expressing the sequenced anal ogue, at no time can an infant have two identical conditions, requires an aggre-
gate or trigger in SQL-92. In SQL 3, sequenced statements are indicated with the keyword VALIDTIME:

ALTER TABLE NICUStatus ADD CONSTRAINT VALIDTIME UNIQUE (Name, Status)

Onelinein SQL 3 sufficesfor many in SQL-92. We will encounter similarly dramatic reductionsin code size again
and again as we express our application in SQL3.
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5.2 Back in the Pens

In Section 2, we looked at recording the movement of cattle between pens. Heretoo avalid-timetableis appropri-
ate.

CREATE TABLE LOT_LOC (
FDYD_ID INT,
LOT_ID_NUM INT,
PEN_ID INT,
HD_CNT INT
) AS VALIDTIME PERIOD(DATE)

Asbefore, current queries require no specia attention. “How many head of cattle from lot 219 in feed yard 1
are (currently) in each pen?”’

SELECT PENL.ID, HD_CNT
FROM LOT_LOC
WHERE FDYD_ID =1 AND LOT.ID_.NUM = 219

The sequenced variant, “Give the history of the number of head of cattle from lot 219 in feed yard 1 in each
pen,” istrivia: just prepend VALIDTIME:

VALIDTIME SELECT PEN.ID, HD_CNT
FROM LOT_LOC
WHERE FDYD_ID =1 AND LOT.ID_.NUM = 219

The nonsequenced variant, “How many head of cattle fromlot 219 inyard 1 were, at sometime, in each pen?’,
isalso easy to specify: just prepend NONSEQUENCED VALIDTIME:

NONSEQUENCED VALIDTIME SELECT PEN.ID, HD_CNT
FROM LOT_LOC
WHERE FDYD_ID =1 AND LOT.ID_.NUM = 219

Thesetwo rules(prepend VALIDTIME for sequenced, and NONSEQUENCED VALIDTIME for nonsequenced)
appliesto all nontemporal SQL statements. Consider joins. Thecurrentjoin, “Which lotsare co-residentin apen?’
could be written by anyone knowing SQL in about two minutes.

SELECT L1.LOT.ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID
FROM LOT_LOC AS L1, LOT_LOC AS L2
WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

AND L1.FDYD.ID = L2.FDYD_ID

AND L1.PEN.ID = L2.PEN_ID

The sequenced version, “Give the history of...”, in SQL3 requires but a few more seconds to write: add one
keyword.

VALIDTIME SELECT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN.ID
FROM LOT_LOC AS L1, LOT_LOC AS L2
WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

AND L1.FDYD.ID = L2.FDYD_ID

AND L1.PEN.ID = L2.PEN_ID

Recall that this query in SQL-92is 37 lineslong! (See Section 2.)

The nonsequenced version, “Which lots were in the same pen, perhaps at different times?’ requires adding
NONSEQUENCED.

Section 3 considered modifications applied to the following table, with valid-time support, which capturesthe
(changing) gender of lots of cattle.

29



CREATE TABLE LOT (
LOT_ID_-NUM INT,
GNDR_CODE CHAR(1)

) AS VALIDTIME PERIOD(DATE)

Current modifications on such tables require no additional keywords.
“A new lot of heifers arrivestoday.”

INSERT INTO LOT
VALUES (433, 'h")

“Lot 101 isleaving the feed yard.”

DELETE FROM LOT
WHERE LOT_ID_NUM = 101

“The cattlein lot 799 are being steered today.”

UPDATE LOT
SET GNDR_CODE ="'s’
WHERE LOT_ID_NUM = 799

This simple modification when expressed in SQL-92 requiresan INSERT and two UPDATES, or 16 linesof SQL-
92 code.

By now, the reader may guess (correctly!) that a sequenced modification is signaled with the keyword VALID-
TIME. The period of applicability is assumed to be over al time; it can also be explicitly stated with a period ex-
pression following this keyword.

“Lot 426, acollection of heifers, was on the feed yard from March 26 to April 14.”

VALIDTIME PERIOD '[1998-03-26 - 1998-04-14)’
INSERT INTO LOT
VALUES (426, 'h")

Herewe seethefirst use of aperiod literal. Theleft ‘[' bracket indicatesthe period includes March 26; theright ‘)’
specifies that the period ends just before (or during) April 14.

Sequenced modifications can apply in the past, in the future, or in the past through the future.

“Lot 234 will be absent from the feed yard for the first three weeks of October, when the steering will take
place.”

VALIDTIME PERIOD '[1998-10-01 - 1998-10-22)'
DELETE FROM LOT
WHERE LOT_ID_NUM = 234

Consider “The lot was steered only for the month of March,” which, while difficult to effect, doesillustrate a
sequenced update.

VALIDTIME PERIOD '[1998-03-01 - 1998-04-01)’
UPDATE LOT

SET GNDR_CODE ="'s’

WHERE LOT_ID_NUM = 799

This update when expressed in SQL-92 requirestwo INSERT statements and three UPDATE statements, or some
29 lines of code.

Section 4 considered transaction time, specifically, capturing the succession of states of the Washington Double
Star Catalogue.
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CREATE TABLE WDS_TT (
RA_Hour INT,
RA_Min INT,
RA_Sec INT,
Dec_Degree INT,
Dec_Minute INT,
Discoverer CHAR(7),
Mag-First DECIMAL(5,2)
) AS TRANSACTIONTIME

Here the precision is automatically assigned by the DBMS, but is sufficient to distinguish transactions (and so is
probably on the order of microseconds, if the DBMS can sustain a high transaction processing rate).

Recall that maintaining this audit log in SQL-92 required three onerous triggers, or 37 lines of code; SQL3
requires but two additional keywords. More importantly, SQL 3 will ensure that the semantics of transaction time
is maintained, so that accessing prior states will obtain the correct result. It is not possible to guarantee thisin
SQL-92: anyone with update permission on the table could modify the audit log to reflect a different sequence of
changes than had actually occurred.

Asbefore, current queriesrequire nothing extraon tableswith temporal support. “Which starsare of magnitude
11 or brighter, as currently known?’

SELECT Discoverer
FROM WDS
WHERE Mag_First <=11.0

Sequenced queriesover all time are easy to expressin SQL 3. “When wasit recorded that A1248 had a magni-
tude other than 10.57

TRANSACTIONTIME SELECT Mag_First
FROM WDS_TT
WHERE Discoverer = 'A 1248 AND Mag_First <> 10.5

“When was it recorded that a star had a magnitude equal to that of A12487

TRANSACTIONTIME SELECT W2.Discoverer,
FROM WDS_TT AS W1, WDS_TT AS W2
WHERE W1.Discoverer = A 1248’
AND W2.Discoverer <> W1.Discoverer
AND W1.Mag-First = W2.Mag_First

This query is twice as long and much more complicated in SQL-92.

Nonseguenced queries, on the other hand, are quite similar in SQL-92 and SQL 3. “When wasthe RA_Sec po-
sition of adoublestar corrected?’ Here, “corrected” meanswe ook at two consecutive transaction-time states (that
is, their timestamps meet). This query is nonsequenced because states at two different transaction times are being
compared. Consistent with valid time, to access the transaction time in a nonsegquenced operation, use TRANS-
ACTIONTIME().

NONSEQUENCED TRANSACTIONTIME

SELECT W1.Discoverer, W1.RA_Sec AS Old_Value, W2.RA_Sec AS New_Value,
END(TRANSACTIONTIME(W1)) AS When_Changed

FROM WDS_TT AS W1, WDS_TT AS W2

WHERE W1.Discoverer = W2.Discoverer
AND W1.RA_Sec <> W2.RA_Sec
AND TRANSACTIONTIME(W1) MEETS TRANSACTIONTIME(W?2)

Asvalid time and transaction time are orthogonal, they can be easily used together in SQL 3.
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CREATE TABLE WDS_B (
Discoverer CHAR(7),
Mag-First DECIMAL(5,2)
) AS VALIDTIME PERIOD(DATE) AND TRANSACTIONTIME

With six keywords we get a table with both valid-time and transaction-time support, that is, a bitemporal table.
“What was the history recorded as of January 1, 19947" is sequenced in valid time (“history”) and atimeslice
in transaction time (“recorded as of ).

CREATE VIEW WDS_VT_AS_OF_Jan_1 AS

VALIDTIME AND NONSEQUENCED TRANSACTIONTIME

SELECT Discoverer, Mag_First

FROM WDS_B

WHERE TRANSACTIONTIME(WDS_B) OVERLAPS DATE '1994-01-01’

“List the correctionsmade on platestakenin the 1920's’ implies sequencedin valid time (“taken in the 1920s")
and nonsequenced in transaction time (“ corrections’, expressed with MEETS).

VALIDTIME AND NONSEQUENCED TRANSACTIONTIME
SELECT B1.Discoverer, END(TRANSACTIONTIME(B1)) AS When_Changed
FROM WDS_B AS B1, WDS_B AS B2
WHERE B1.Discoverer = B2.Discoverer
AND B1.Trans_Stop = B2.Trans_Start
AND TRANSACTIONTIME(B1) MEETS TRANSACTIONTIME(B2)
AND VALIDTIME(B1) OVERLAPS PERIOD ’[1920-01-01 - 1929-12-31]

This query expressed in SQL-92 requires 24 lines of highly complex code.
Current modificationswill automatically track the behavior of both valid and transactiontime. “ A photographic
plate indicates that the magnitude of A1248is 10.5.”

UPDATE WDS_B
SET Mag_Start = 10.5
WHERE Discoverer = 'A 1248’

Current modificationsin SQL 3 require absol utely no changeswhen expressed on tableswith valid-time, transaction-
time, or bitemporal support, as this exampleillustrates. The same holds for queries, constraints, views, etc. Ex-
pressing this modificationin SQL-92, manually managing the valid and transaction timestampsin the table, isquite
challenging.

Of course, sequenced and nonsequenced (in valid-time) modifications are relevant on a bitemporal table.

To convince yourself of the advantages of the new SQL 3 constructs, try expressing the following in SQL-92.

All can beformulated in SQL 3 in just afew minutes; they would take an SQL-92 expert many hoursto expressin
that language.

“LOT_LOC.LOT.ID is a(sequenced) foreign key to LOT,” meaning that at every point in time the value of
LOT.ID isin LOT at that time.

ALTER TABLE LOT_LOC ADD CONSTRAINT VALIDTIME FOREIGN KEY LOT_ID REFERENCES LOT
“Give the history of the number of cattlein pen 1.”

VALIDTIME SELECT COUNT(*)
FROM LOT_LOC
WHERE PEN_ID =1

“Ten head of cattle were added today to lot 219.” Thisis acurrent update.

UPDATE LOT_LOC
SET HD_.CNT = HD_CNT + 10
WHERE LOT =219

“When was it recorded that A1248 had a magnitude but no other stars were known of that magnitude?’ This
is sequenced in transaction time (“when was it recorded”).
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TRANSACTIONTIME SELECT Mag_First
FROM WDS_B AS W1
WHERE Discoverer ='A 1248’
AND NOT EXISTS (SELECT * FROM WDS_B AS W2 WHERE W1.Mag_First = W2.Mag_First)

“A photographic plate taken in October 1994 indicated that the magnitude of A1248is 10.5” is sequenced in
valid time; the semantics of transaction time are automatically handled in SQL 3.

VALIDTIME PERIOD '[1994-10-16 - 9999-12-31)’
UPDATE WDS_B

SET Mag_Start = 10.5

WHERE Discoverer = 'A 1248’

5.3

Herein the Lesson

Torecap, | list five requirementsthat must be satisfied if alanguage or DBM S can be claimed to provide temporal
support.

1.

Both valid time and transaction time are supported, in a compatible and orthogonal manner.

In particular, the semantics of transaction time, where the state as of atime in the past can be reconstructed,
must be guaranteed by the DBMS.

Upward compatibility is ensured.

Existing constructs applied to nontemporal data should operate exactly as before. Thisrequirementisfairly
easy to satisfy.

Temporal upward compatibility is ensured.

This means that an existing nontemporal application will not be broken when temporal support is added to
atable, say viaan ALTER TABLE statement. No changes to application code should be required when the
history of the enterprise (valid time) or the sequence of changes to the data (transaction time), or both, is
retained. Thisimplies, for example, that a conventional query on tables with temporal support should be
interpreted as a current query.

Sequenced variants should be easy to expressfor all constructs of the language, including queries, modifi-
cations, views, assertions and constraints, and cursors.
In particular, complex rewritings of the statement should not be necessary.

Nonsequenced variants should also be easy to express.

In part, such variants enable data with temporal support to be converted to and from data without temporal
support.

The SQL 3 constructs discussed here satisfy these requirements.

1.

Valid time can be added to atable via AS VALIDTIME PERIOD; transaction time can be added with AS
TRANSACTIONTIME. Only current modificationsare allowed in transaction time, to ensurethat timeslices
will be correct. Either kind of time can be used individually, or together, forming a bitemporal table.

. SQL/Temporal is defined as an upward compatible extension of the other parts of SQL3.

. All conventional queries (modifications, views, assertions, constraints, cursors) on tableswith temporal sup-

port are interpreted as current queries (resp., modifications, etc.) As an example, when valid-time support
was added to the NICUStatus table, the existing code of this application, perhapstens of thousandsof lines,
did not require a single change.
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4. A gquery can be converted to a sequenced query in SQL3 simply by prepending the keyword VALIDTIME.
This aso holds for modifications (e.g., VALIDTIME UPDATE), views (e.g., CREATE VIEW AS VALID-
TIME SELECT), and congtraints (e.g., VALIDTIME UNIQUE). And of coursethis also appliesto transac-
tion time, viathe TRANSACTIONTIME keyword.

5. Nonsequenced statements require the additional keyword NONSEQUENCED. The valid timestamp asso-
ciated with arow is accessible via the function VALIDTIME() and the transaction timestamp via TRANS-
ACTIONTIME().

Aswe have shownwith sample SQL 3 statements, these proposed constructs (three new reserved words, VALID-
TIME, TRANSACTIONTIME and NONSEQUENCED, in additionto thosealready in SQL/Temporal) can greatly
simplify application development, often reducing the amount of SQL code that needs to be written by a factor of
10 or more, whileimproving the comprehensibility of that code. We ook forward to the day when these constructs
areinthe SQL standard, and even more importantly, when they are supported by products.

5.4 Building the Standard

SQL -86 and SQL -89 have no notion of time. SQL-92 added datetime and interval datatypes, though no product has
yet been validated for conformanceto this standard (some products have been validated at the entry level, which
does not include the temporal datatypes). However, it haslong been recognized in the temporal database research
community, and asthe case studiesin this special series haveillustrated, that these data types alone are inadequate.
Momentum for atemporal extension to SQL designed by that community first became evident at the Workshop on
an Infrastructure for Temporal Databases, held in Arlington, Texas in June, 1993.

The TSQL 2 committee was subsequently formed, producing a preliminary language specification thefollowing
January. Thefinal version was completed in September, 1994, and a book describing the language and examining
in detail its underlying design decisionswas rel eased at the VL DB International Workshop on Temporal Databases
in Zurichin September, 1995 [3].

TheANSI and | SO SQL 3 committeesbecameinvolvedinlate 1994. A new partto SQL 3, termed SQL/Temporal,
was proposed and formally approved by the SQL 3 International Organization for Standardization (1SO) in Ottawa
in July, 1995 as Part 7 of the SQL 3 draft standard. Jim Melton agreed to edit this new part. The first task was to
definea PERIOD datatype, which isnow included in Part 7.

Discussionsthen commenced on adding further temporal support. Two change proposal sresulted, oneon valid
time support and one on transaction time support [4, 5]. These change proposal s have been unanimously approved
by the ANSI SQL 3 committee (ANSI X3H2) for consideration by the SO SQL 3 committee (ISO/IEC JTC 1/SC
21/WG 3 DBL). Thefull story may be found at <http://www.cs.arizona.edu/people/rts/tsql2.html>.

Inthe meantime, the SQL committees decided to focuson parts1, 2, 4, and 5 of the SQL 3 draft standard. These
parts are expected to be finalized as an international standard next year. At that time, the committees will revisit
the other parts and move them through the exhaustive process towards standardization.

6 Code Samples

Codesamplesfor all the case studies, inavariety of DBMSs, can befound at <www.arizona.edu/people/rts/DBPD>.
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