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Abstract. Do algorithms for drawing graphs pass the Turing Test? That1

is, are their outputs indistinguishable from graphs drawn by humans? We2

address this question through a human-centred experiment, focusing on3

‘small’ graphs, of a size for which it would be reasonable for someone to4

choose to draw the graph manually. Overall, we find that hand-drawn5

layouts can be distinguished from those generated by graph drawing al-6

gorithms, although this is not always the case for graphs drawn by force-7

directed or multi-dimensional scaling algorithms, making these good can-8

didates for Turing Test success. We show that, in general, hand-drawn9

graphs are judged to be of higher quality than automatically generated10

ones, although this result varies with graph size and algorithm.11
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1 Introduction12

It is common practice to use node-link diagrams when presenting graphs to13

an audience (e.g., online, in an article, to support a verbal presentation, or for14

educational purposes), rather than the alternatives of adjacency matrices or edge15

lists. Automatic graph layout algorithms replace the need for a human to draw16

graphs; it is important to determine how well these algorithms fulfil the task of17

replacing this human activity,18

Such algorithms are essential for creating drawings of large graphs; it is less19

clear that this is the case for drawing smaller graphs. In our experience as graph20

drawing researchers, it is often preferable to draw a small graph ourselves, how we21

wish to depict it, than be beholden to the layout criteria of automatic algorithms.22

The question therefore arises: are automatic graph layout algorithms any23

use for small graphs? Indeed, for small graphs, is it even possible to tell the24

difference? If automatic graph layout algorithms were doing their job properly25

for small graphs, then they should produce drawings not dissimilar to those we26

would choose to create by hand.27
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Distinguishing human and algorithmic graph drawings can be considered a28

‘Turing Test’; as in Turing’s 1950 ‘Imitation Game’ [44], if someone cannot tell29

the difference between machine output and human output more than half the30

time, the machine passes the Turing Test. Thus, if someone cannot tell the dif-31

ference between an algorithmically-drawn graph and a hand-drawn graph more32

than half the time, the algorithm passes the Turing Test: it is doing as good a job33

as human graph drawers. Of course, algorithms are useful for non-experts and34

for large graphs that cannot be drawn by humans effectively, but in the context35

of experts presenting a small graph, can their creations be distinguished from36

products from layout algorithms? Turing Tests have never yet been performed37

on graph layout algorithms.38

This paper presents the results of an experiment where participants were39

asked to distinguish between small hand-drawn graphs and those created by40

four common graph layout algorithms. Using different algorithms and graphs of41

different size allows us to investigate under what conditions an algorithm might42

pass the Turing Test. Our Turing Test results led us to also ask, in common43

with the NPR Turing Test observational study [30], which of the two methods of44

graph drawing (by hand, or by algorithm) produce better drawings. We find that45

distinguishing hand-drawn layouts from automatically generated ones depends46

on the type of the layout algorithm, and that subjectively determined quality47

depends on graph size and the type of the algorithm.48

2 Related Work49

2.1 Automatic Graph Layout algorithms50

We focus on four popular families of layout algorithms [13, 25]: force-directed,51

stress-minimisation, circular and orthogonal.52

Most general-purpose graph layout algorithms use a force-directed (FD) [15,53

19] or stress model [12, 34]. FD works well for small graphs, but does not scale54

for large networks. Techniques to improve scalability often involve multilevel55

approaches, where a sequence of progressively coarser graphs is extracted from56

the graph, followed by a sequence of progressively finer layouts, ending with a57

layout for the entire graph [8, 21, 26, 28, 29].58

Stress minimisation, introduced in the general context of multi-dimensional59

scaling (MDS) [35] is also frequently used to draw graphs [31, 40]. Simple stress60

functions can be optimised by exploiting fast algebraic operations such as ma-61

jorisation. Modifications to the stress model include the strain model (classical62

scaling) [43], PivotMDS [12], COAST [22], and MaxEnt [23].63

Circular layout algorithms [41] place nodes evenly around a circle with edges64

drawn as straight lines. Layout quality (in particular the number of crossings)65

is influenced by the order of the nodes on the circle. Crossing minimisation in66

circular layouts is NP-hard [36], and various heuristics attempt to find good67

vertex orderings [9, 24, 33].68

The orthogonal drawing style [16] is popular in applications requiring a clean69

and schematic appearance (e.g., in software engineering or database schema).70
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Edges are drawn as polylines of horizontal and vertical segments only. Orthogo-71

nal layouts have been investigated for planar graphs of maximum degree four [42],72

non-planar graphs [10] and graphs with nodes of higher degree [11, 20].73

We seek to understand if drawings produced by these types of algorithms can74

be distinguished from human-generated diagrams for small networks. We do this75

by asking experimental participants to identify the hand-drawn layout when it76

is paired with an algorithmically-created one.77

2.2 Studies of Human-Created Graph Layouts78

Early user studies [37, 38] confirmed that many of the aesthetic criteria incor-79

porated in layout algorithms (e.g., uniform edge length, crossing minimisation)80

correlate with user performance in tasks such as path finding. Van Ham and81

Rogowitz [27] investigated how humans modified given small graph layouts so as82

to represent the structure of these graphs. They found that force-directed lay-83

outs were already good representations of human vertex distribution and cluster84

separation. Dwyer et al. [14] focused on the suitability of graph drawings for85

four particular tasks (identifying cliques, cut nodes, long paths and nodes of low86

degree), and found that the force-based automatic layout received the highest87

preference ratings, but the best manual drawings could compete with these lay-88

outs. Circular and orthogonal layouts were considerably less effective. Purchase89

et al. [39] presented graph data to participants as adjacency lists and asked them90

to create drawings by sketching; their findings include that the participants pre-91

ferred planar layouts with straight-line edges (except for some non-straight edges92

in the outer face), nodes aligned with an (invisible) grid, and somewhat similar93

edge lengths. Kieffer et al. [32] focused on orthogonal graph layouts, asking par-94

ticipants to draw a few small graphs (13 or fewer nodes) orthogonally by hand.95

The human drawings were compared to orthogonal layouts generated by yEd [46]96

and the best human layouts were consistently ranked better than automatic ones.97

They then developed an algorithm for creating human-like orthogonal drawings.98

This paper builds on this prior work by considering drawings of small to99

medium-sized graphs (up to 108 nodes) and an example from each of four families100

of standard graph layout algorithms. We address the question of whether people101

can distinguish between algorithmic and human created drawings, and if so, is102

this the case for all layout algorithms?103

3 Experiment107

3.1 Stimuli108

The Graphs. Our experiment compares unconstrained hand-drawn graphs109

with the same graphs laid out using different algorithmic approaches. We con-110

sidered 24 graphs, from which we selected 9, based on the following criteria:111

– A balanced split between real-world graphs and abstract graphs, the abstract112

graphs being ones of graph-theoretic interest;113
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Table 1. Characteristics of the experimental graphs. The size column indicates
how the graphs were divided into sub-sets (small, medium, large) for the purposes
of the experiment; (rw): real-world graphs; (ab): abstract graphs.

104

105

106

Lines: 0

1 graph nodes edges density mean
shortest
path

clustering
coefficient

diam. planar size reference

2 G1(rw) 108 156 0.03 5.03 0.11 11 N L Causes of obesity [7]
3 G2(rw) 22 164 0.71 1.30 0.78 2 N S Causes of social problems in Al-

berta, Canada [4]
4 G3(rw) 85 104 0.03 6.05 0.04 13 Y L Cross posting users on a news-

group (final timeslice) [18]
5 G4(rw) 34 77 0.14 2.45 0.48 5 N M Social network [47]
6 G5(ab) 20 30 0.16 2.63 0.00 5 Y S Fullerene graph with 20 nodes [3]
7 G6(ab) 24 38 0.14 3.41 0.64 6 N S A block graph (chordal, ev-

ery biconnected component is a
clique) [2]

8 G7(ab) 42 113 0.13 2.55 0.48 5 Y M A maximal planar graph [6]
9 G8(ab) 37 71 0.11 2.76 0.70 5 Y M A planar 2-tree [5]

10 G9(ab) 18 27 0.18 2.41 0.00 4 N S Pappus graph (bipartite, 3-
regular) [1]

11 mean 43.3 86.7 0.18 3.18 0.36 6.2
12 median 34 77 0.14 2.63 0.48 5

– A balanced split between planar and non-planar graphs;114

– A range in the number of nodes between 15 and 108;115

– A range in the number of edges (for our graphs, between 27 and 164);116

– Connected and undirected graphs only: directionality was removed from the117

real-world graphs as necessary.118

Our graphs exhibit a range of values for other graph characteristics: diameter,119

density, average shortest path length, and clustering coefficients (Table 1).120

The Algorithms. We included examples of major families of graph drawing121

algorithms (Table 2: force-directed, stress-based, circular, orthogonal), as im-122

plemented in yEd [46] and GraphViz [17]. HOLA [32] was considered, but its123

orthogonal design was deliberately based on human preferences (unlike the other124

algorithms), and so its inclusion would introduce a bias that could distort hu-125

man judgements. We considered structure-specific algorithms (e.g., algorithms126

designed for planar graphs or trees), but for generality used generic algorithms127

that could handle all nine graphs, leaving specific algorithms for future work.128

The Hand-Created Drawings. The process of creating hand-drawn graphs130

mimicked the context of a graph drawing researcher deciding whether to man-131

ually draw a small graph, or to use a well-established graph layout algorithm.132

Thus, the graphs were drawn in the knowledge they would compete against133

drawings created by algorithms, making the Turing test as hard as possible.134

This process was therefore a mini-experiment, with four of the authors (all with135
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Table 2. The four graph layout algorithms used.129

Lines: 0

1 algorithm ID algorithm type original name parameters

2 AFD force-directed Organic [46] default
3 AMDS stress-based MDS [17] default
4 AC circular Circular [46] default
5 AO orthogonal Orthogonal [46] classic, default

graph drawing expertise, called the ‘drawers’, D1-D4) as participants, the con-136

text of the study being clear to them. While the drawers might have recognised137

some of the graphs they were asked to draw, this scenario is comparable to a138

real-world situation where graph drawing researchers might know the nature of139

the graph to be drawn.140

The first author asked the drawers to lay out the graphs using yEd [46],141

starting from a random layout (the yEd ‘Random’ tool). There were no other142

instructions: it was not specified, for example, that edges needed to be straight143

lines rather than splines or multiple segments, nor that nodes should not over-144

lap, nor edges cross over nodes. To improve ecological validity, all drawers were145

told that they could use yEd tools to support their drawing process if they146

wished (as likely to happen in practice). However, somewhat surprisingly, they147

all drew the graphs without any yEd tool support (automatic layout or oth-148

erwise) (Appendix D). The drawers suggested doing the exercise again on a149

‘manually-adjusted’ basis; that is, using the output from a yEd layout algorithm150

of their choice as an initial starting point. However, once we paired the algorith-151

mic drawings with their manually-adjusted versions, most of them were visually152

almost identical. We therefore only used the initial hand-drawn versions.153

The mini-experiment output is a set of visual stimuli comprising 9 graphs154

(G1, ..., G9), each with four layout algorithms applied G1AFD, G1AMDS, . . . ,155

G2AC, . . . , G9AO) and each with four hand-drawn versions (G1D1, G1D2, . . . ,156

G2D1, . . . , G9D4), all represented in yEd. All 72 drawings were subject to the157

same automatic scaling process to ensure the same vertex size and edge thickness.158

After scaling, all drawings were automatically converted into jpeg images.159

3.2 Experimental Design160

Each experimental trial (Fig. 1) comprises two versions of the same graph, one162

hand-drawn, and one created by a layout algorithm. For each graph, we firstly163

paired the four algorithmic versions (on the left) with the four hand-drawn ver-164

sions (right) (16 pairs). We then flipped the algorithmic versions along the y axis165

(reducing the possibility of participants remembering the algorithm drawings),166

and paired the flipped versions (right) with the four drawn versions (left) (32167

pairs for each graph). Putting all graphs in one experiment means 288 trials,168

an unreasonably long experiment. The alternative of running a separate exper-169

iment for each graph means several very small experiments, greatly increasing170
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Fig. 1. Screen shot of the experimental system.161

the number of participants needed. As a compromise, we divided our 9 graphs171

into three sets, (loosely ‘small’, ‘medium’ and ‘large’ (Table 1)), a convenience172

decision so as to reduce the duration of each experiment while ensuring we would173

be able to recruit enough participants. We thus had three sub-experiments, one174

‘small’ (128 trials), one ‘medium’ (96 trials) and one ‘large’ (64 trials).175

Using a custom-built online experimental system, participants read instruc-176

tions and information about graphs (referred to as ‘networks’) and indicated177

consent before proceeding. They were told it would always be the case that the178

two drawings presented were the same graph. Twelve practice trials used a differ-179

ent graph of similar size for familiarisation purposes. Experimental trials were180

presented in random order, with no distinction between graphs. Participants181

took a self-timed break every 20 trials, and demographic data was collected.182

4 Results and Data Analysis183

The experimental link was distributed to authors’ colleagues, students, family184

and friends. Participants were considered outliers if their mean time over all185

trials was unreasonably low (less than 1 second, n = 2), or if they consistently186

responded one side for a large number of consecutive trials (e.g., always left,187

n = 1). No participants consistently alternated left and right. We removed the188

data from one participant who used a very small screen (198 × 332 pixels),189

unconvinced that the stimuli could be perceived sufficiently well. Although some190

participants did not complete the experiment, since the answer to each trial191

is a data point in its own right (i.e., it is independent and its value to the192

experiment does not depend on answers to any other trial), we retained all data193

for participants who completed at least 3/4 of the trials, inferring that those194

who did not do so (n = 20) might not have taken the experiment seriously.195

Data from 46 participants was analysed; a total of 4364 independent de-196

cisions. We categorised participants as expert (n = 21) if their self-declared197

knowledge of network drawings was ‘expert’, ‘highly knowledgeable’, or ‘knowl-198

edgeable’, and novice (n = 22) for ‘somewhat knowledgeable’ or ‘no knowledge’.199

Three participants did not provide full demographic details (Appendix C).200
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4.1 Data Analysis Methods201

Our data was analysed in three parts: Part 1 investigates the extent to which202

‘human’ was chosen over ‘algorithm’, comparing the proportion of responses with203

random selection. We look at overall responses, responses for each algorithm, for204

each graph size, for novice and expert participants, for planar and non-planar205

graphs, and consider the combination of graph size and algorithm. The Binomial206

distribution test compares observed proportion against the ‘random’ proportion207

of 0.5, where each trial is independent; its calculated p-value represents the208

probability that the mean of the population distribution (based on the observed209

samples) is equal to 0.5. A p-value < 0.05 indicates a significant result: that is,210

the observed choice proportion is so much greater than 0.5 that there is a very211

low probability that the hand-drawn and algorithmically drawn graphs cannot212

be distinguished; statistically, this means there is insufficient evidence to indicate213

Turing Test success. A p-value > 0.05 is a high probability that hand-drawn and214

algorithmically drawn graphs cannot be distinguished: thus, Turing Test success.215

We apply p-value Bonferroni corrections when dividing the data sets.216

Part 2 considers response times with respect to different algorithms, sizes,217

expertise, and planarity, using non-parametric tests since our data is not nor-218

mally distributed. Response time is considered as a proxy for the perception of219

difficulty of the task: participants will take longer if they find the task difficult.220

Part 3 identifies trials with extreme responses (high or low response time, or221

extreme proportional choice).222

A choice for a hand-drawn graph is scored as 1; a choice for an algorithmic223

drawings is 0. Thus, proportions > 0.5 indicate that the human drawing was224

selected more often on average. Proportions < 0.5 indicate that the algorithmic225

drawing was (incorrectly) selected with greater frequency.226

4.2 Results227

Choice of drawing. Our hypotheses are:228

– H0: It is not possible to distinguish algorithmic drawings from hand-drawn229

ones; thus, the true proportion = 0.5; the algorithm passes the Turing test.230

This hypothesis is accepted if the Binominal p-value > 0.05.231

– H1: It is possible to distinguish algorithmic drawings from hand-drawn ones;232

thus, the true proportion 6= 0.5.233

Binomial test results over all 4364 data points are shown in Table 3. Accepting234

H0 means it is not possible to distinguish between hand-drawn and algorithmic235

drawings: the Turing Tests succeeds. Rejecting it means that there is insufficient236

support for the hypothesis; we infer that telling the difference is possible. There237

are no proportions < 0.5, so no cases where, on average, algorithmically-drawn238

graphs were incorrectly selected more often than hand-drawn ones.239

The results indicate that people can distinguish between algorithmic and246

hand-drawn graphs (over all graphs and algorithms), correctly choosing the247

hand-drawn graph 56% of the time (p < 0.001). This result applies equally well248
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Table 3. Binomial test results for ‘Which network was drawn by a human?’
Accepting H0 indicates Turing Test ’pass’. Although 0.049 < 0.05, statistical
correction means the MDS p-value threshold is 0.05/4 = 0.0125. The corrected
Novice p-value threshold is 0.05/2 = 0.025, a significant result.

240

241

242

243

Lines: 0

1 Number of
samples

Mean
response
time (s)

Observed
proportion

Binomial
p-value

Result

2 All trials 4364 3.14 0.56 p < 0.001 reject H0

3 Force-Directed (AFD) 1094 4.26 0.51 p = 0.566 accept H0

4 MDS (AMDS) 1090 3.32 0.53 p = 0.049 reject H0

5 Circular (AC) 1090 2.85 0.56 p < 0.001 reject H0

6 Orthogonal (AO) 1090 2.79 0.65 p < 0.001 reject H0

7 Small graphs (G2, G5, G6, G9) 1656 2.58 0.55 p < 0.001 reject H0

8 Medium graphs (G4, G7, G8) 1817 3.08 0.55 p < 0.001 reject H0

9 Large graphs (G1, G3) 891 4.28 0.62 p < 0.001 reject H0

10 Expert participants 1915 3.99 0.63 p < 0.001 reject H0

11 Novice participants 2101 2.74 0.53 p = 0.016 reject H0

12 Planar graphs 2069 3.15 0.55 p < 0.001 reject H0

13 Non-planar graphs 2295 3.49 0.58 p < 0.001 reject H0

Table 4. Binomial test results by graph size and algorithm; * indicates responses
sufficiently close to random for Turing Test ‘pass’.

244

245

Lines: 0

1 Force-Directed MDS Circular Orthogonal
2 proportion p-value proportion p-value proportion p-value proportion p-value

3 small 0.52* 0.432 0.57* 0.006 0.51* 0.786 0.62 < 0.001
4 medium 0.49* 0.851 0.52* 0.542 0.53* 0.205 0.64 < 0.001
5 large 0.52* 0.640 0.49* 0.789 0.73 < 0.001 0.74 < 0.001

regardless of graph size, viewer expertise, or graph planarity: the tests all reveal249

significant difference between the observed proportion and 0.5. Thus, overall, the250

Turing test fails.251

There is a difference, however, when the algorithm is taken into account:252

the observed proportion for Force-Directed algorithm trials was 0.51, sufficiently253

close to the random response proportion of 0.50 that we can accept H0, and state254

that this algorithm passes the Turing Test. The proportion of 0.53 for MDS is255

very close (but not really close enough in statistical terms), and we clearly reject256

H0 for circular and orthogonal algorithms.257

The size/algorithm combination (threshold p-value = 0.05/12 = 0.0042) re-258

veals additional results according to the size of the graph (Table 4). As expected,259

the Force-Directed algorithm gives proportions close to 0.5 for all graph sizes.260

The MDS results suggest Turing Test success for all three sizes when analysed261

separately (albeit a marginal result for the smallest graphs), even though the262

overall MDS result reported above (at p = 0.049) indicates rejection of the null263

hypothesis. The MDS result is therefore clearly on the boundary of success. There264

are Turing Test passes for small and medium graphs for the Circular algorithm.265
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Response Time. Non-parametric tests on response time for algorithm and266

graph size (Table 3) reveals that MDS decisions were slower than orthogonal ones267

(adjusted pairwise comparison after repeated measures Freidman, p = 0.022),268

decisions on large graphs were slower than on small graphs (adjusted pairwise269

comparison after independent measures Kruskal Wallis, p = 0.039), and experts270

made slower decisions than novices (independent measures Mann-Whitney, p =271

0.014). There was no statistical difference between response times with respect272

to graph planarity.273

Extreme Examples Extreme trials (response time: Figure 2; proportion: Fig-274

ure 3) are identified as GiAj and GiDk: Gi (graph), Aj (algorithm), Dk(drawer).275

All experimental stimuli jpeg files can be found in the supplementary material276

included with the paper submission.277

Three slow trials relate to a particular FD graph, suggesting that this form278

of drawing was seen by participants as possibly hand-drawn – it shows clus-279

ters and symmetry, while the drawers all attempted to remove crosses. The280

combinations of G4AMDS/G4D4 and G7AC/G7D4 (top row of Figure 2) are281

interesting because, for each, the overall shape of the human-drawn graph is282

similar to that produced by the algorithm: it is not hard to see why participants283

found this choice difficult. Three quick responses (G5AFD/G5D3, G5AC/G5D4,284

G9AMDS/G9D1, bottom row of Figure 2) demonstrate effort on the part of the285

drawer to depict symmetry that is not highlighted by the algorithms; the other286

two relate to the orthogonal algorithm, which, as noted above, produced worst287

performance in making a human vs algorithm judgements.288

Of the four combinations where participants gave mostly correct responses,291

it is not hard to see why for G1AC/G1D2 and G1AC/G1D1 (top row of Fig-292

ure 3), since the human-drawn graphs lack any clear structure or visual ele-293

gance in comparison with those created by the circular algorithm. The fact that294

G5AMDS is geometrically precise in its node positioning (while G5D2 has slight295

mis-positionings) can explain the 0.92 accuracy for this combination, although296

we note that this decision still took above average time (32.4 seconds). More297

difficult to explain is the high proportion associated with G6AFD/G6D3, since298

the human drawing is highly structured and symmetrical. Of the combinations299

where the average accuracy is low, three algorithmic drawings depict some ex-300

tent of symmetry (G3AMDS, G9AC , G5AFD, bottom row of Figure 3), while the301

fourth is compared against a human drawing which used an approach that, if302

adopted by an algorithm, would have resulted in a more geometrically precise303

diagram. The examples in Figure 3 (top and bottom rows) suggest that regu-304

lar node and edge placements (that is, grid-like or evenly spaced on a circle),305

indicate an algorithmically-drawn graph.306

Key factors affecting the human vs algorithm choice were thus depiction of307

symmetry (even if only approximate), and geometric precision (i.e. very precise308

node placement, with regular spacing or grid-like).309
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Slow Response Time (Seconds)

1 G4AMDS/G4D4 G7AC/G7D4 G3AFD/G3D2 G3AFD/G3D1 G3AFD/G3D4

2 (47.88s) (48.09s) (48.32s) (49.49s) (50.03s)
3 prop = 0.40 prop = 0.45 prop = 0.46 prop = 0.43 prop = 0.61

4 A
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Fast Response Time (Seconds)

6 G5AFD/G5D3 G8AO/G8D1 G5AC/G5D4 G7AO/G7D1 G9AMDS/G9D1

7 (16.86s) (19.16s) (19.44s) (19.50s) (19.98s)
8 prop = 0.58 prop = 0.68 prop = 0.58 prop = 0.66 prop = 0.62

9 A
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r
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m

10 H
u
m

a
n

Fig. 2. Trials with slow response times (top) and quick response times (bottom).
Time in seconds, and human-selection proportion shown.

289

290

5 Discussion312

In general, over all graphs and algorithms, participants can correctly distin-313

guish hand-drawn layouts from algorithmically created ones: graph drawing al-314

gorithms (in general) effectively fail the Turing Test. The only exception is the315

Force-Directed algorithm, where we did not find evidence that participants could316

reliably distinguish between the algorithmic and hand-drawn layouts. We spec-317

ulate this might be because our drawers (consciously or unconsciously) created318

drawings with similar FD layout principles in mind: separating unconnected319

nodes, and clustering connected ones together. The MDS algorithm provided320
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High proportion of correct answers (human selected)

1 G6AFD/G6D3 G1AC/G1D2 G1AC/G1D1 G5AMDS/G5D2

2 (27.27s) (37.89s) (32.01s) (32.40s)
3 prop = 0.85 prop = 0.85 prop = 0.86 prop = 0.92
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High proportion of incorrect answers (algorithm selected)

1 G3AMDS/G3D1 G9AC/G9D2 (28.6s) G2AMDS/G2D1 G5AFD/G5D1 G3AMDS/G3D3

2 (38.59s) (28.6s) (23.14s) (26.60s) (34.30s)
3 prop = 0.18 prop = 0.23 prop = 0.27 prop = 0.27 prop = 0.29

4 A
lg

o
r
it
h
m

5 H
u
m

a
n

Fig. 3. Trials with a high proportion of correct (human drawing chosen, upper)
and incorrect (algorithm drawing chosen, lower) answers.

310

311

some evidence of passing the test (in particular for medium and large graphs);321

it produces similar shapes to FD.322

We were not surprised that it was easy to distinguish circular (especially323

large circular) and orthogonal graph drawings from hand-drawn ones, since they324

make use of precise node placement: equal separation around the circle circum-325

ference, placement on equally-spaced horizontal lines or on an underlying unit326

grid. While the human drawers sometimes used such placements (G2D1 and327

G5D1 in Figure 3), in many cases (G8D1 in Figure 2, G5D2 in Figure 3) they328

did not. We were also not surprised to find that larger graphs took more time329

than the smaller ones, but were surprised that experts took longer than novices –330
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Table 5. Results for the ‘Which is better’ question, by graph size and algorithm.
* indicates statistically significant results (p < 0.05/12 = 0.0042)

352

353

Lines: 0

1 Force-Directed MDS Circular Orthogonal
2 proportion p-value proportion p-value proportion p-value proportion p-value

3 small 0.83* < 0.001 0.68* < 0.001 0.55 0.040 0.62* < 0.001
4 medium 0.44 0.006 0.42* 0.001 0.62* < 0.001 0.74* < 0.001
5 large 0.19* < 0.001 0.42 0.009 0.41* 0.002 0.63* < 0.001

we had expected the converse; perhaps experts made more considered analytical331

decisions as opposed to novices’ more spontaneous ones.332

6 The Quality of the Drawings333

Our study shows that some graph drawing algorithms produce diagrams that334

are obviously perceived as different from those drawn by graph drawing experts.335

This raises the question: if algorithmic drawings are perceived as being different336

from hand-drawn ones, are they any better? And even if they are not perceived337

as different, is there a perceived difference in quality?338

We followed our Turing experiment with a supplementary, almost identical339

study, using the same paired stimuli and experimental system. The only differ-340

ence was the question asked: ‘Which drawing is better?’. We deliberately did not341

give a definition for ‘better’, since (at least for this initial study), we wished to get342

an overall judgement, rather than, for example, one based on a particular task343

or defined aesthetic. 52 participants took part, producing a total of 4887 data344

points. As before, hand-drawn graphs are scored 1, and algorithmic drawings 0.345

Thus, proportions > 0.5 indicate the human drawing was, on average, consid-346

ered better. Over all graphs and algorithms, the vote was for hand-drawn graphs347

(proportion=0.57, p < 0.001). However, size and algorithm data show variations348

within this overall result (Table 5). Hand-drawn graphs were always preferred349

over orthogonal drawings; FD and MDS were only preferred for medium and350

large graphs, and circular only for the large graphs.351

Thus, even when it is not possible to distinguish between hand-drawn and354

algorithmic drawings (as for FD and MDS), subjective judgement determines355

that algorithmic ones are ‘better’, especially for the larger graphs. The orthog-356

onal algorithm had no wins: it did not pass the Turing Test, and was always357

considered worse than the hand-drawn versions. There were mixed results for358

the circular algorithm: easy to distinguish from hand-drawn layouts when small359

or medium, and only preferred when large.360

7 Conclusions and Future Work361

This is the first experiment that compares graphs drawn by graph drawing re-362

searchers to those produced by graph drawing algorithms as a Turing Test.363

Overall, we found that hand-drawn graphs could be reliably distinguished from364
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those generated by algorithms – thus, on average, Turing Test failure. However,365

we did not find evidence that force-directed and (marginally) MDS algorithms366

could be reliably distinguished from hand-drawn layouts – they therefore ef-367

fectively ‘pass’ the Turing Test. We speculate that this is the case because of368

the prevalence of these algorithms in the popular media (e.g., for depicting so-369

cial networks); further studies could establish exactly why these two algorithms370

perform differently from the others.371

The generalisability of our conclusions is, of course, limited by our experi-372

mental scope. While we used a good range of real-world and abstract graphs,373

differently sized graphs, planar and non-planar graphs, and good coverage of374

various graph metrics, our data set comprises nine experimental graphs. Using375

only ‘small’ graphs (15 to 108 nodes) was an obvious design decision when con-376

sidering the feasibility of creating hand-drawn layouts. We chose four common377

layout algorithms representing different approaches, and four human drawers378

(experts in graph drawing research). Despite these experimental limitations, our379

results represent the first empirical attempt to compare perception of a range of380

hand-drawn versus algorithmic graph layouts as a ‘Turing Test’.381

Our motivation for these studies arose from a desire to determine whether382

algorithms depicting small graphs produce results that are similar to human383

efforts. Our results show that, in general, people notice when a graph has been384

hand-drawn. This result must, of course, be weighed against the length of time385

that it takes to draw a graph: we found that it takes much longer than we had386

anticipated to create drawings by hand. We also need to consider that, when387

considering the algorithmic approaches separately, some algorithmic versions388

were considered ‘better’ than the hand-drawn ones – the notable exception being389

the orthogonal algorithm.390

Graph drawing algorithms are often inspired by assumptions about what a391

human would do in generating a drawing. Therefore, understanding what makes392

a drawing human-like will help inform future algorithm designers to make algo-393

rithms of higher quality. In future work, we would like to explore whether we get394

similar results if we explicitly match graph structure with graph algorithm (e.g.,395

tree algorithms for trees, planar algorithms for planar graphs), use other less396

common algorithms (e.g., HOLA [32], Wang et al. [45]), and use graphs drawn397

by a wider range of people (including non-experts). In addition, gathering both398

quantitative and qualitative data in future studies will help determine those399

attributes of a graph drawing that suggest that it is human-like or machine-like.400
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B Example graph in all eight versions535

Graph number 4 (G4) in the experiment shown below in all eight versions. All536

the experimental stimuli can be found in the supplementary material included537

with the submission.538

Table 6. Graph number 4 in all eight versions.539

540

541 Circular Force Directed Multi-dimensional Scaling Orthogonal

542

543 Human Drawer 1 Human Drawer 2 Human Drawer 3 Human Drawer 4
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C Demographics544

Fig. 4. Distribution of demographic information of our participants in the ex-
periment.

545

546

547

D Time Taken for Human Drawing548

The drawers were asked to note the length of time taken to draw each graph;549

one drawer, D3, did not note the length of time, but said that drawing all nine550

graphs took over 24 hours.551

Table 7. Length of time taken to draw the graphs, in minutes552

553 G1 G2 G3 G4 G5 G6 G7 G8 G9

554 D1 42 9 27 15 12 5 17 9 12
555 D2 74 5 53 37 10 12 23 20 33
556 D4 36 50 40 19 18 4 15 12 34

557 mean 50.7 21.3 40.0 23.7 13.3 7.0 18.3 13.7 26.3


