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Abstract. Readability criteria, such as distance or neighborhood preser-1

vation, are often used to optimize node-link representations of graphs to2

enable the comprehension of the underlying data. With few exceptions,3

graph drawing algorithms typically optimize one such criterion, usually4

at the expense of others. We propose a layout approach, Graph Drawing5

via Gradient Descent, (GD)2, that can handle multiple readability crite-6

ria. (GD)2 can optimize any criterion that can be described by a smooth7

function. If the criterion cannot be captured by a smooth function, a8

non-smooth function for the criterion is combined with another smooth9

function, or auto-differentiation tools are used for the optimization. Our10

approach is flexible and can be used to optimize several criteria that11

have already been considered earlier (e.g., obtaining ideal edge lengths,12

stress, neighborhood preservation) as well as other criteria which have13

not yet been explicitly optimized in such fashion (e.g., vertex resolution,14

angular resolution, aspect ratio). We provide quantitative and qualitative15

evidence of the effectiveness of (GD)2 with experimental data and a func-16

tional prototype: http://hdc.cs.arizona.edu/~mwli/graph-drawing/.17

1 Introduction18

Graphs represent relationships between entities and visualization of this infor-19

mation is relevant in many domains. Several criteria have been proposed to eval-20

uate the readability of graph drawings, including the number of edge crossings,21

distance preservation, and neighborhood preservation. Such criteria evaluate dif-22

ferent aspects of the drawing and different layout algorithms optimize different23

criteria. It is challenging to optimize multiple readability criteria at once and24

there are few approaches that can support this. Examples of approaches that25

can handle a small number of related criteria include the stress majorization26

framework of Wang et al. [34], which optimizes distance preservation via stress27

as well as ideal edge length preservation. The Stress Plus X (SPX) framework28

of Devkota et al. [12] can minimize the number of crossings, or maximize the29

minimum angle of edge crossings. While these frameworks can handle a limited30

set of related criteria, it is not clear how to extend them to arbitrary optimiza-31

tion goals. The reason for this limitation is that these frameworks are dependent32

on a particular mathematical formulation. For example, the SPX framework was33

designed for crossing minimization, which can be easily modified to handle cross-34

ing angle maximization (by adding a cosine factor to the optimization function).35

This “trick” can be applied only to a limited set of criteria but not the majority36

of other criteria that are incompatible with the basic formulation.37

http://hdc.cs.arizona.edu/~mwli/graph-drawing/
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Fig. 1. Three (GD)2 layouts of the dodecahedron: (a) optimizing the number of
crossings, (b) optimizing uniform edge lengths, and (c) optimizing stress.

38

39

In this paper, we propose a general approach, Graph Drawing via Gradient40

Descent, (GD)2, that can optimize a large set of drawing criteria, provided that41

the corresponding metrics that evaluate the criteria are smooth functions. If the42

function is not smooth, (GD)2 either combines it with another smooth function43

and partially optimizes based on the desired criterion, or uses modern auto-44

differentiation tools to optimize. As a result, the proposed (GD)2 framework45

is simple: it only requires a function that captures a desired drawing criterion.46

To demonstrate the flexibility of the approach, we consider an initial set of47

nine criteria: minimizing stress, maximizing vertex resolution, obtaining ideal48

edge lengths, maximizing neighborhood preservation, maximizing crossing an-49

gle, optimizing total angular resolution, minimizing aspect ratio, optimizing the50

Gabriel graph property, and minimizing edge crossings. A functional prototype51

is available on http://hdc.cs.arizona.edu/~mwli/graph-drawing/. This is52

an interactive system that allows vertices to be moved manually. Combinations53

of criteria can be optimized by selecting a weight for each; see Figure 1.54

2 Related Work55

Many criteria associated with the readability of graph drawings have been pro-56

posed [35]. Most of graph layout algorithms are designed to (explicitly or implic-57

itly) optimize a single criterion. For instance, a classic layout criterion is stress58

minimization [24], where stress is defined by
∑
i<j

wij(|Xi−Xj |−dij)2. Here, X is59

a n×2 matrix containing coordinates for the n nodes, dij is typically the graph-60

theoretical distance between two nodes i and j and wij = d−αij is a normalization61

factor with α equal to 0, 1 or 2. Thus reducing the stress in a layout corresponds62

to computing node positions so that the actual distance between pairs of nodes63

is proportional to the graph theoretic distance between them. Optimizing stress64

can be accomplished by stress minimization, or stress majorization, which can65

speed up the computation [20]. In this paper we only consider drawing in the66

Euclidean plane, however, stress can be also optimized in other spaces such as67

the torus [8].68

http://hdc.cs.arizona.edu/~mwli/graph-drawing/
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Stress minimization corresponds to optimizing the global structure of the69

layout, as the stress metric takes into account all pairwise distances in the graph.70

The t-SNET algorithm of Kruiger et al. [25] directly optimizes neighborhood71

preservation, which captures the local structure of a graph, as the neighborhood72

preservation metric only considers distances between pairs of nodes that are close73

to each other. Optimizing local or global distance preservation can be seen as74

special cases of the more general dimensionality reduction approaches such as75

multi-dimensional scaling [26,32].76

Purchase et al. [28] showed that the readability of graphs increases if a lay-77

out has fewer edge crossings. The underlying optimization problem is NP-hard78

and several graph drawing contests have been organized with the objective of79

minimizing the number of crossings in the graph drawings [2,7]. Recently several80

algorithms that directly minimize crossings have been proposed [29,31].81

The negative impact on graph readability due to edge crossings can be miti-82

gated if crossing pairs of edges have a large crossings angle [3,13,22,23]. Formally,83

the crossing angle of a straight-line drawing of a graph is the minimum angle84

between two crossing edges in the layout, and optimizing this property is also85

NP-hard. Recent graph drawing contests have been organized with the objective86

of maximizing the crossings angle in graph drawings and this has led to several87

heuristics for this problem [4,10].88

The algorithms above are very effective at optimizing the specific readability89

criterion they are designed for, but they cannot be directly used to optimize90

additional criteria. This is a desirable goal, since optimizing one criterion often91

leads to poor layouts with respect to one or more other criteria: for example,92

algorithms that optimize the crossing angle tend to create drawings with high93

stress and no neighborhood preservation [12].94

Recently, several approaches have been proposed to simultaneously improve95

multiple layout criteria. Wang et al. [34] propose a revised formulation of stress96

that can be used to specify ideal edge direction in addition to ideal edge lengths97

in a graph drawing. Devkota et al. [12] also use a stress-based approach to min-98

imize edge crossings and maximize crossing angles. Eades et al. [17] provided a99

technique to draw large graphs while optimizing different geometric criteria, in-100

cluding the Gabriel graph property. Although the approaches above are designed101

to optimize multiple criteria, they cannot be naturally extended to handle other102

optimization goals.103

Constraint-based layout algorithms such as COLA [15, 16], can be used to104

enforce separation constraints on pairs of nodes to support properties such as105

customized node ordering or downward pointing edges. The coordinates of two106

nodes are related by inequalities in the form of xi ≥ xj + gap for a node pair107

(i, j). These kinds of constraints are known as hard constraints and are different108

from the soft constrains in our (GD)2 framework.109
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Fig. 2. The (GD)2 framework: Given a graph and a set of criteria (with weights),
formulate an objective function based on the selected set of criteria and weights.
Then compute the quality (value) of the objective function of the current layout
of the graph. Next, generate the gradient (analytically or automatically). Using
the gradient information, update the coordinates of the layout. Finally, update
the objective function based on the layout via regular or stochastic gradient
descent. This process is repeated for a fixed number of iterations.
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3 The (GD)2 Framework110

The (GD)2 framework is a general optimization approach to generate a layout111

with any desired set of aesthetic metrics, provided that they can be expressed by112

a smooth function. The basic principles underlying this framework are simple.113

The first step is to select a set of layout readability criteria and a loss functions114

that measures them. Then we define the function to optimize as a linear combi-115

nation of the loss functions for each individual criterion. Finally, we iterate the116

gradient descent steps, from which we obtain a slightly better drawing at each117

iteration. Figure 2 depicts the framework of (GD)2: Given any graph G and read-118

ability criterion Q, we find a loss function LQ,G which maps from the current119

layout X (i.e. a n × 2 matrix containing the positions of nodes in the draw-120

ing) to a real value that quantifies the current drawing. Note that some of the121

readability criteria naturally correspond to functions that should be minimized122

(e.g., stress, crossings), while others to functions that should be maximized (e.g.,123

neighborhood preservation, angular resolution). Given a loss function LQ,G of X124

where a lower value is always desirable, at each iteration, a slightly better layout125

can be found by taking a small (ε) step along the (negative) gradient direction:126

X(new) = X − ε · ∇X LQ,G.127

To optimize multiple quality measures simultaneously, we take a weighted135

sum of their loss functions and update the layout by the gradient of the sum.136

3.1 Gradient Descent Optimization137

There are different kinds of gradient descent algorithms. The standard method138

considers all vertices, computes the gradient of the objective function, and up-139

dates vertex coordinates based on the gradient. For some objectives, we need140
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to consider all the vertices in every step. For example, the basic stress formu-141

lation [24] falls in this category. On the other hand, there are some problems142

where the objective can be optimized only using a subset of vertices. For exam-143

ple, consider stress minimization again. If we select a set of vertices randomly144

and minimize the stress of the induced graph, the stress of the whole graph is145

also minimized [36]. This type of gradient descent is called stochastic gradient146

descent. However, not all objective functions are smooth and we cannot compute147

the gradient of a non-smooth function. In that scenario, we can compute the sub-148

gradient, and update the objective based on the subgradient. Hence, as long as149

the function is continuously defined on a connected component in the domain,150

we can apply the subgradient descent algorithm. In table 3, we give a list of loss151

functions we used to optimize 9 graph drawing properties with gradient descent152

variants. In section 4, we specify the loss functions we used in detail.153

When a function is not defined in a connected domain, we can introduce a154

surrogate loss function to ‘connect the pieces’. For example, when optimizing155

neighborhood preservation we maximize the Jaccard similarity between graph156

neighbors and nearest neighbors in graph layout. However, Jaccard similarity157

is only defined between two binary vectors. To solve this problem we extend158

Jaccard similarity to all real vectors by its Lovász extension [5] and apply that to159

optimize neighborhood preservation. An essential part of gradient descent based160

algorithms is to compute the gradient/subgradient of the objective function. In161

practice, it is always not necessary to write down the gradient analytically as it162

can be computed automatically via automatic differentiation [21]. Deep learning163

packages such as Tensorflow [1] and PyTorch [27] apply automatic differentiation164

to compute the gradient of complicated functions.165

When optimizing multiple criteria simultaneously, we combine them via a166

weighted sum. However, choosing a proper weight for each criterion can be tricky.167

Consider, for example, maximizing crossing angles and minimize stress simulta-168

neously with a fixed pair of weights. At the very early stage, the initial drawing169

may have many crossings and stress minimization often removes most of the170

early crossings. As a result, maximizing crossing angles in those early stages can171

be harmful as moves nodes in direction that contradict those that come from172

stress minimization. Therefore, a well-tailored weight scheduling is needed for a173

successful outcome. Continuing with the same example, a better outcome can be174

achieved by first optimizing stress until it converges, and later adding weights175

for the crossing angle maximization. To explore different ways of scheduling, we176

provide an interface that allows manual tuning of the weights.177

3.2 Implementation178

We implemented the (GD)2 framework in JavaScript. In particular we used179

the automatic differentiation tools in tensorflow.js [33] and the drawing library180

d3.js [6]. The prototype is available at http://hdc.cs.arizona.edu/~mwli/181

graph-drawing/.182

http://hdc.cs.arizona.edu/~mwli/graph-drawing/
http://hdc.cs.arizona.edu/~mwli/graph-drawing/
http://hdc.cs.arizona.edu/~mwli/graph-drawing/
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4 Properties and Measures183

In this section we specify the aesthetic goals, definitions, quality measures and184

loss functions for each of the 9 graph drawing properties we optimized: stress,185

vertex resolution, edge uniformity, neighborhood preservation, crossing angle,186

aspect ratio, total angular resolution, Gabriel graph property, and crossing num-187

ber. In the following discussion, since only one (arbitrary) graph is considered,188

we omit the subscript G in our definitions of loss function LQ,G and write LQ189

for short. Other standard graph notation is summarized in Table 1.190

Notation Description

G Graph
V The set of nodes in G, indexed by i, j or k
E The set of edges in G, indexed by a pair of nodes (i, j) in V
n = |V | Number of nodes in G
|E| Number of edges in G
Adjn×n and Ai,j Adjacency matrix of G and its (i, j)-th entry
Dn×n and dij Graph-theoretic distances between pairs of nodes and the (i, j)-th entry
Xn×2 2D-coordinates of nodes in the drawing
||Xi −Xj || The Euclidean distance between nodes i and j in the drawing

θi ith crossing angle
ϕijk Angle between incident edges (i, j) and (j, k)

Table 1. Graph notation used in this paper.191

4.1 Stress192

We use stress minimization to draw a graph such that the Euclidean distance be-193

tween pairs of nodes is proportional to their graph theoretic distance. Following194

the ordinary definition of stress [24], we minimize195

LST =
∑
i<j

wij(|Xi −Xj |2 − dij)2 (1)

Where dij is the graph-theoretical distance between nodes i and j, Xi and Xj196

are the 2D coordinates of nodes i and j in the layout. The normalization factor,197

wij = d−2ij , balances the influence of short and long distances: the longer the198

graph theoretic distance, the more tolerance we give to the discrepancy between199

two distances. When comparing two drawings of the same graph with respect to200

stress, a smaller value (lower bounded by 0) corresponds to a better drawing.201
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4.2 Ideal Edge Length202

When given a set of ideal edge lengths {lij : (i, j) ∈ E} we minimize the average203

deviation from the ideal lengths:204

LIL =

√√√√ 1

|E|
∑

(i,j)∈E

(
||Xi −Xj || − lij

lij
)2 (2)

For unweighted graphs, by default we take the average edge length in the current205

drawing as the ideal edge length for all edges. lij = lavg = 1
|E|

∑
(i,j)∈E

||Xi −206

Xj || for all (i, j) ∈ E. The quality measure QIL = LIL is lower bounded by207

0 and a lower score yields a better layout.208

4.3 Neighborhood Preservation209

Neighborhood preservation aims to keep adjacent nodes close to each other in210

the layout. Similar to Kruiger et al. [25], the idea is to have the k-nearest (Eu-211

clidean) neighbors (k-NN) of node i in the drawing to align with the k near-212

est nodes (in terms of graph distance from i). A natural quality measure for213

the alignment is the Jaccard index between the two pieces of information. Let,214

QNP = JaccardIndex(K,Adj) =
|{(i,j):Kij=1 and Aij=1}|
|{(i,j):Kij=1 or Aij=1}| , where Adj denotes the215

adjacency matrix and the i-th row in K denotes the k-nearest neighborhood in-216

formation of i: Kij = 1 if j is one of the k-nearest neighbors of i and Kij = 0217

otherwise.218

To express the Jaccard index as a differentiable minimization problem, first,219

we express the neighborhood information in the drawing as a smooth function of220

node positions Xi and store it in a matrix K̂. In K̂, a positive entry K̂i,j means221

node j is one of the k-nearest neighbors of i, otherwise the entry is negative. Next,222

we take a differentiable surrogate function of the Jaccard index, the Lovász hinge223

loss (LHL) [5], to make the Jaccard loss optimizable via gradient descent. We224

minimize225

LNP = LHL(K̂, Adj) (3)

where LHL is given by Berman et al. [5], K̂ denotes the k-nearest neighbor226

prediction:227

K̂i,j =

{
−(||Xi −Xj || −

di,πk+di,πk+1

2 ) if i 6= j
0 if i = j

(4)

where di,πk is the Euclidean distance between node i and its kth nearest neighbor228

and Adj denotes the adjacency matrix. Note that K̂i,j is positive if j is a k-NN229

of i, otherwise it is negative, as is required by LHL [5].230
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4.4 Crossing Number231

Reducing the number of edge crossings is one of the classic optimization goals in232

graph drawing, known to affect readability [28]. Following Shabbeer et al. [31],233

we employ an expectation-maximization (EM)-like algorithm to minimize the234

number of crossings. Two edges do not cross if and only if there exists a line235

that separate their extreme points. With this in mind, we want to separate236

every pair of edges (the M step) and use the decision boundaries to guide the237

movement of nodes in the drawing (the E step). Formally, given any two edges238

e1 = (i, j), e2 = (k, l) that do not share any nodes (i.e., i, j, k and l are all239

distinct), they do not intersect in a drawing (where nodes are drawn at Xi =240

(xi, yi), a row vector) if and only if there exists a decision boundary w = w(e1,e2)241

(a 2-by-1 column vector) together with a bias b = b(e1,e2) (a scalar) such that:242

LCN,(e1,e2) =
∑
α=i,j,k or l ReLU(1− tα · (Xαw + b)) = 0.243

Here we use (e1, e2) to denote the subgraph of G which only has two edges244

e1 and e2, ti = tj = 1 and tk = tl = −1. The loss reaches its minimum at 0 when245

the SVM classifier fw,b : x 7→ xw + b predicts node i and j to be greater than 1246

and node k and l to be less than −1. The total loss for the crossing number is247

therefore the sum over all possible pairs of edges. Similar to (soft) margin SVM,248

we add a term |w(e1,e2)|2 to maximize the margin of the decision boundary:249

LCN =
∑

e1=(i,j), e2=(k,l)∈E
i, j, k and l all distinct

LCN,(e1,e2) + |w(e1,e2)|2. For the E and M steps, we250

used the same loss function LCN to update the boundaries w(e1,e2), b(e1,e2) and251

node positions X:252

w(new) = w − ε∇wLCN (M step 1)

b(new) = b− ε∇bLCN (M step 2)

X(new) = X − ε∇XLCN (X; w(new), b(new)) (E step)

To evaluate the quality we simply count the number of crossings.253

4.5 Crossing Angle Maximization254

When edge crossings are unavoidable, the graph drawing can still be easier to255

read when edges cross at angles close to 90 degrees [35]. Heuristics such as those256

by Demel et al. [10] and Bekos et al. [4] have been proposed and have been257

successful in graph drawing challenges [11]. We use an approach similar to the258

force-directed algorithm given by Eades et al. [18] and minimize the squared259

cosine of crossing angles: LCAM =
∑

all crossed edge pairs
(i,j),(k,l)∈E

(
〈Xi−Xj ,Xk−Xl〉
|Xi−Xj |·|Xk−Xl| )

2. We260

evaluate quality by measuring the worst (normalized) absolute discrepancy be-261

tween each crossing angle θ and the target crossing angle (i.e. 90 degrees):262

QCAM = maxθ |θ − π
2 |/

π
2 .263
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4.6 Aspect Ratio264

Good use of drawing area is often measured by the aspect ratio [14] of the265

bounding box of the drawing, with 1 : 1 as the optimum. We consider multiple266

rotations of the current drawing and optimize their bounding boxes simultane-267

ously. Let AR = minθ
min(wθ,hθ)
max(wθ,hθ)

, where wθ and hθ denote the width and height268

of the bounding box when the drawing is rotated by θ degrees. A naive approach269

to optimize aspect ratio, which scales the x and y coordinates of the drawing by270

certain factors, may worsen other criteria we wish to optimize and is therefore271

not suitable for our purposes. To make aspect ratio differentiable and compatible272

with other objectives, we approximate aspect ratio based on 4 (soft) boundaries273

(top, bottom, left and right) of the drawing. Next, we turn this approximation274

and the target (1 : 1) into a loss function using cross entropy loss. We minimize275

LAR =
∑

θ∈{ 2πk
N , for k=0,···(N−1)}

crossEntropy([
wθ

wθ + hθ
,

hθ
wθ + hθ

], [0.5, 0.5])

(5)

where N is the number of rotations sampled (e.g., N = 7), and wθ, hθ are the276

(approximate) width and height of the bounding box when rotating the drawing277

around its center by an angle θ. For any given θ-rotated drawing, wθ is defined278

to be the difference between the current (soft) right and left boundaries, wθ =279

right − left = 〈softmax(xθ), xθ〉 − 〈softmax(−xθ), xθ〉, where xθ is a collection280

of the x coordinates of all nodes in the θ-rotated drawing, and softmax returns a281

vector of weights (. . . wk, . . . ) given by softmax(x) = (. . . wk, . . . ) = exk∑
i e
xi

. Note282

that the approximate right boundary is a weighted sum of the x coordinates283

of all nodes and it is designed to be close to the x coordinate of the right-284

most node, while keeping other nodes involved. Optimizing aspect ratio with285

the softened boundaries will stretch all nodes instead of moving the extreme286

points. Similarly, hθ = top− bottom = 〈softmax(yθ), yθ〉 − 〈softmax(−yθ), yθ〉287

Finally, we evaluate the drawing quality by measuring the worst aspect ratio288

on a finite set of rotations. The quality score ranges from 0 to 1 (where 1 is289

optimal): QAR = minθ∈{ 2πk
N , for k=0,···(N−1)}

min(wθ,hθ)
max(wθ,hθ)

290

4.7 Angular Resolution291

Distributing edges adjacent to a node makes it easier to perceive the informa-292

tion presented in a node-link diagram [23]. Angular resolution [3], defined as the293

minimum angle between incident edges, is one way to quantify this goal. For-294

mally, ANR = minj∈V min(i,j),(j,k)∈E ϕijk, where ϕijk is the angle formed by295

between edges (i, j) and (j, k). Note that for any given graph, an upper bound296

of this quantity is 2π
dmax

where dmax is the maximum degree of nodes in the297

graph. Therefore in the evaluation, we will use this upper bound to normalize298

our quality measure to [0, 1], i.e. QANR = ANR
2π/dmax

. To achieve a better drawing299
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quality via gradient descent, we define the angular energy of an angle ϕ to be300

e−s·ϕ, where s is a constant controlling the sensitivity of angular energy with301

respect to the angle (by default s = 1), and minimize the total angular energy302

over all incident edges:303

LANR =
∑

(i,j),(j,k)∈E

e−s·ϕijk (6)

4.8 Vertex Resolution304

Good vertex resolution is associated with the ability to distinguish different305

vertices by preventing nodes from occluding each other. Vertex resolution is306

typically defined as the minimum Euclidean distance between two vertices in307

the drawing [9,30]. However, in order to align with the units in other objectives308

such as stress, we normalize the minimum Euclidean distance with respect to a309

reference value. Hence we define the vertex resolution to be the ratio between310

the shortest and longest distances between pairs of nodes in the drawing, V R =311

mini6=j ||Xi−Xj ||
dmax

, where dmax = maxk,l ||Xk − Xl||. To achieve a certain target312

resolution r ∈ [0, 1] by minimizing a loss function, we minimize313

LV R =
∑

i,j∈V,i6=j

ReLU(1− ||Xi −Xj ||
r · dmax

) 2 (7)

In practice, we set the target resolution to be r = 1√
|V |

, where |V | is the number314

of vertices in the graph. In this way, an optimal drawing will distribute nodes315

uniformly in the drawing area. In the evaluation, we report, as a quality measure,316

the ratio between the actual and target resolution and cap its value between 0317

(worst) and 1 (best).318

QV R = min(1.0,
mini,j ||Xi −Xj ||

r · dmax
) (8)

4.9 Gabriel Graph Property319

A graph is a Gabriel graph if it can be drawn in such a way that any disk320

formed by using an edge in the graph as its diameter contains no other nodes.321

Not all graphs are Gabriel graphs, but drawing a graph so that as many of322

these edge-based disks are empty of other nodes has been associated with good323

readability [17]. This property can be enforced by a repulsive force around the324

midpoints of edges. Formally, we establish a repulsive field with radius rij equal325

to half of the edge length, around the midpoint cij of each edge (i, j) ∈ E, and326

we minimize the total potential energy:327
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LGA =
∑

(i,j)∈E,
k∈V \{i,j}

ReLU(rij − |Xk − cij |) 2 (9)

where cij =
Xi+Xj

2 and rij =
|Xi−Xj |

2 . We use the (normalized) minimum dis-328

tance from nodes to centers to characterize the quality of a drawing with respect329

to Gabriel graph property: QGA = min(i,j)∈E,k∈V
|Xk−cij |

rij
.330

5 Experimental Evaluation331

In this section, we describe the experiment we conducted on 10 graphs to assess332

the effectiveness and limitations of our approach. The graphs used are depicted333

in Figure 3 along with information about each graph. The graphs have been334

chosen to represent a variety of graph classes such as trees, cycles, grids, bipartite335

graphs, cubic graphs, and symmetric graphs.336

In our experiment we compare (GD)2 with neato [19] and sfdp [19], which337

are classical implementations of a stress-minimization layout and scalable force-338

directed layout. In particular, we focus on 9 readability criteria: stress (ST), ver-339

tex resolution (VR), ideal edge lengths (IL), neighbor preservation (NP), crossing340

angle (CA), angular resolution (ANR), aspect ratio (AR), Gabriel graph properties341

(GG), and crossings (CR). We provide the values of the nine criteria correspond-342

ing to the 10 graphs for the layouts computed by by neato, sfdp, random, and 3343

runs of (GD)2 initialized with neato, sfdp, and random layouts in Table 2. Bold344

values are the best. Green cells show an improvement, yellow cells show a tie,345

with respect to the initial values.346

In this experiment, we focused on optimizing a single metric. In some applica-352

tions, it is desirable to optimize multiple criteria. We can use a similar technique353

i.e., take a weighted sum of the metrics and optimize the sum of scores. In the354

prototype (http://hdc.cs.arizona.edu/~mwli/graph-drawing/), there is a355

slider for each criterion, making it possible to combine different criteria.356

6 Limitations357

Although (GD)2 is a flexible framework that can optimize a wide range of crite-358

ria, it cannot handle the class of constraints where the node coordinates are re-359

lated by some inequalities, i.e., the framework does not support hard constraints.360

Similarly, this framework does not naturally support shape-based drawing con-361

straints such as those in [15, 16, 34]. (GD)2 takes under a minute for the small362

graphs considered in this paper. We have not experimented with larger graphs363

as the implementation has not been optimized for speed.364

http://hdc.cs.arizona.edu/~mwli/graph-drawing/
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Transpose  Export

short long

cycle, |V|=10, |E|=10

bipartite, |V|=10, |E|=25

cube, |V|=8, |E|=12

symmetric, |V|=20, |E|=21

block, |V|=25, |E|=55

dodecahedron, |V|=20, |E|=30

tree, |V|=15, |E|=14

grid, |V|=25, |E|=40

spx_teaser, |V|=128, |E|=256

complete, |V|=20, |E|=190

graph random neato sfdp GD2_ST GD2_AR GD2_CAM GD2_ANR

Fig. 3. Drawings from different algorithms: neato, sfdp and (GD)2 with stress
(ST), aspect ratio (AR), crossing angle maximization (CAM) and angular resolu-
tion (ANR) optimization on a set of 10 graphs. Edge color is determined by the
discrepancy between actual and ideal edge length (here all ideal edge lengths are
1); informally, short edges are red and long edges are blue.

347

348

349

350

351

7 Conclusions and Future Work365

We introduced the graph drawing framework (GD)2 and showed how this ap-366

proach can be used to optimize different graph drawing criteria and combinations367

thereof. The framework is flexible and natural directions for future work include368

adding further drawing criteria and better ways to combine them. To compute369

the layout of large graphs, a multi-level algorithmic model might be needed.370
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Crossings

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 6.0 6.0 79.0 6.0 6.0 10.0

cycle 0.0 0.0 11.0 0.0 0.0 0.0

tree 0.0 0.0 31.0 0.0 0.0 0.0

block 23.0 16.0 297.0 23.0 16.0 25.0

compl. 3454 3571 3572 3454 3571 3572

cube 2.0 2.0 18.0 2.0 2.0 2.0

symme. 1.0 0.0 77.0 1.0 0.0 0.0

bipar. 40.0 52.0 40.0 40.0 40.0 40.0

grid 0.0 0.0 190.0 0.0 0.0 0.0

spx t. 73.0 71.0 7254.0 73.0 71.0 76.0

Ideal edge length

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 0.14 0.15 0.53 0.1 0.15 0.08

cycle 0.0 0.0 0.42 0.0 0.0 0.0

tree 0.03 0.13 0.31 0.03 0.04 0.09

block 0.31 0.43 0.5 0.25 0.33 0.31

compl. 0.42 0.41 0.45 0.41 0.41 0.41

cube 0.08 0.12 0.29 0.03 0.0 0.12

symme. 0.08 0.19 0.46 0.07 0.05 0.04

bipar. 0.31 0.26 0.44 0.16 0.13 0.1

grid 0.01 0.09 0.41 0.0 0.0 0.01

spx t. 0.4 0.32 0.45 0.3 0.2 0.32

Stress

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 21.4 17.58 111.05 17.45 17.58 17.6

cycle 0.77 0.77 30.24 0.77 0.77 0.77

tree 2.11 2.7 98.49 2.11 2.62 5.5

block 26.79 28.22 203.31 12.72 23.71 11.2

compl. 33.54 31.58 37.87 31.53 31.49 31.47

cube 2.75 2.71 11.69 2.66 2.69 2.65

symme. 9.88 5.38 180.48 9.88 3.36 3.97

bipar. 9.25 8.5 12.48 8.52 8.5 9.6

grid 6.77 7.38 221.66 6.77 6.78 6.77

spx t. 674.8 418.4 9794 227.1 235.3 227.2

Angular resolution

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 0.39 0.39 0.01 0.6 0.39 0.6

cycle 0.8 0.8 0.05 0.8 0.8 0.8

tree 0.61 0.56 0.04 0.78 0.83 0.88

block 0.05 0.01 0.0 0.36 0.02 0.29

compl. 0.0 0.01 0.0 0.0 0.01 0.0

cube 0.28 0.3 0.01 0.46 0.44 0.4

symme. 0.66 0.6 0.03 0.68 0.76 0.77

bipar. 0.01 0.03 0.01 0.02 0.04 0.11

grid 0.52 0.54 0.0 0.52 0.54 0.52

spx t. 0.02 0.0 0.0 0.03 0.0 0.0

Neighbor preservation

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 0.32 0.3 0.1 0.5 0.3 0.5

cycle 1.0 1.0 0.08 1.0 1.0 1.0

tree 1.0 1.0 0.02 1.0 1.0 1.0

block 0.57 0.93 0.12 0.83 0.93 1.0

compl. 1.0 1.0 1.0 1.0 1.0 1.0

cube 0.5 0.5 0.12 0.5 0.5 0.5

symme. 0.75 0.95 0.05 0.75 1.0 1.0

bipar. 0.47 0.47 0.43 0.47 0.47 0.43

grid 1.0 1.0 0.05 1.0 1.0 1.0

spx t. 0.36 0.44 0.03 0.49 0.46 0.53

Gabriel graph property

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 0.16 0.64 0.07 0.32 0.64 0.32

cycle 1.0 1.0 0.29 1.0 1.0 1.0

tree 1.0 1.0 0.05 1.0 1.0 1.0

block 0.16 0.03 0.04 0.57 0.14 0.59

compl. 0.0 0.01 0.02 0.04 0.01 0.07

cube 0.43 0.51 0.01 0.75 0.8 0.71

symme. 0.54 1.0 0.15 0.7 1.0 1.0

bipar. 0.08 0.11 0.25 0.48 0.64 0.74

grid 1.0 1.0 0.03 1.0 1.0 1.0

spx t. 0.04 0.0 0.02 0.06 0.08 0.08

Vertex resolution

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 0.52 0.54 0.07 0.7 0.81 0.68

cycle 0.98 0.98 0.32 0.98 0.98 0.98

tree 0.68 0.57 0.23 0.69 0.68 0.68

block 0.66 0.38 0.1 0.72 0.59 0.51

compl. 0.8 1.0 0.18 0.84 1.0 0.91

cube 0.66 0.82 0.11 0.66 0.82 0.67

symme. 0.35 0.43 0.06 0.38 0.51 0.6

bipar. 0.83 0.87 0.21 0.83 0.87 0.35

grid 0.87 0.8 0.08 0.88 0.88 0.88

spx t. 0.47 0.48 0.05 0.47 0.48 0.32

Aspect ratio

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 0.92 0.91 0.88 0.96 0.96 0.96

cycle 0.96 0.95 0.67 0.96 0.95 0.96

tree 0.73 0.67 0.88 0.86 0.76 0.88

block 0.9 0.74 0.7 0.96 0.9 0.96

compl. 0.89 0.97 0.91 0.98 0.98 0.98

cube 0.76 0.79 0.57 0.87 0.79 0.88

symme. 0.58 0.67 0.89 0.6 0.67 0.89

bipar. 0.82 0.9 0.91 0.82 0.9 0.91

grid 1.0 1.0 0.82 1.0 1.0 1.0

spx t. 0.98 0.86 0.88 0.99 0.99 0.99

Crossing angle

neato sdfp rnd (GD)2n (GD)2s (GD)2r
dodec. 0.06 0.12 0.24 0.06 0.09 0.15

cycle 0.0 0.0 0.19 0.0 0.0 0.0

tree 0.0 0.0 0.23 0.0 0.0 0.0

block 0.11 0.1 0.24 0.05 0.06 0.09

compl. 0.25 0.24 0.24 0.24 0.24 0.24

cube 0.03 0.03 0.21 0.03 0.03 0.04

symme. 0.03 0.0 0.24 0.03 0.0 0.0

bipar. 0.16 0.17 0.23 0.16 0.17 0.19

grid 0.0 0.0 0.23 0.0 0.0 0.0

spx t. 0.16 0.22 0.25 0.16 0.15 0.21

Table 2. The values of the nine criteria corresponding to the 10 graphs for the
layouts computed by neato, sfdp, random, and 3 runs of (GD)2 initialized with
neato, sfdp, and random layouts. Bold values are the best. Green cells show an
improvement, yellow cells show a tie, with respect to the initial values.

371

372

373

374



14 R. Ahmed, F. De Luca, S. Devkota, S. Kobourov, M. Li

References375

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-376

mawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine377

learning. In: 12th USENIX Symposium on Operating Systems Design and Imple-378

mentation (OSDI’16). pp. 265–283 (2016)379
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8 Appendix478

The following table summarizes the objective functions used to optimize the nine480

drawing criteria via different optimization methods.

Property Gradient Descent Subgradient Descent Stochastic Gradient Descent

Stress
∑
i<j

wij(|Xi −Xj |2 − dij)2
∑
i<j

wij(|Xi −Xj |2 − dij)2 wij(|Xi − Xj |2 − dij)2 for a
random pair of nodes i, j ∈
V

Ideal
Edge Length

√
1
|E|

∑
(i,j)∈E

(
||Xi−Xj ||−lij

lij
)2

(Eq. 2)

1
|E|

∑
(i,j)∈E

| ||Xi−Xj ||−lij
lij

| | ||Xi−Xj ||−lij
lij

| for a random

edge (i, j) ∈ E

Crossing
Angle

∑
i

cos(θi)
2 ∑

i

|cos(θi)| |cos(θi)| for a random cross-
ing i

Neighborhood
Preservation

Lovász softmax [5] be-
tween neighborhood predic-
tion (Eq.4) and adjacency
matrix Adj

Lovász hinge [5] between
neighborhood prediction
(Eq.4) and adjacency
matrix Adj

Lovász softmax or
hinge [5] on a random
node. (i.e. Jaccard loss be-
tween a random row of K in
Eq. 4 and the corresponding
row in the adjacency matrix
Adj)

Crossing
Number

Shabbeer et al. [31] Shabbeer et al. [31] Shabbeer et al. [31]

Angular
Resolution

∑
(i,j),(j,k)∈E

e−ϕijk
∑
v∈E

e−ϕijk
e−ϕijk

for random (i, j), (j, k) ∈ E

Vertex
Resolution

∑
i,j∈V,i6=j

ReLU(1− ||Xi−Xj ||
dmax·r )2

(Eq. 7)

∑
i,j∈V,i6=j

ReLU(1− ||Xi−Xj ||
dmax·r )

ReLU(1− ||Xi−Xj ||
dmax·r ) for ran-

dom i, j ∈ V, i 6= j

Gabriel
Graph

∑
(i,j)∈E,k∈V \{i,j}

ReLU(rij − |Xk − cij |) 2

(Eq. 9)

∑
(i,j)∈E,k∈V \{i,j}

ReLU(rij − |Xk − cij |)
ReLU(rij − |Xk − cij |) for
random (i, j) ∈ E and k ∈
V \ {i, j}

Aspect Ratio Eq. 5 Eq. 5 Eq. 5

Table 3. Summary of the objective functions via different optimization methods.479
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