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organization and access of data from secondary storageelyjjam

Database management systems (DBMSes) form a cornerstone oDBMS architecture and query optimization. That said, thesdso

modern IT infrastructure, and it is essential that they hexeel-
lent performance. Much of the work to date on optimizing DBMS
performance has emphasized ensuring efficient data acaess f

secondary storage. This paper shows that DBMSes can also ben

efit significantly from dynamic code specialization. Our a@zh
focuses on the iterative query evaluation loops typicaligdiby
such systems. Query evaluation involves extensive refeseto
the relational schema, predicate values, and join typeghndre
all invariant during query evaluation, and thus are subjedy-
namic value-based code specialization.

We introduce three distinct types of specialization, earhespond-
ing to a particular kind of invariant. We realize these téghas, in
concert termed micro-specialization via a
DBMS-independent run-time environment and apply them tigla-h
performance open-source DBMS, PostgreSQL. We show thabmic
specialization requires minimal changes to the DBMS and/zid
performance improvements simultaneously across a widgerah
queries and modifications, in terms of storage, CPU usage, an
1/O time of standard DBMS benchmarks. We also discuss an inte
grated development environment that helps DBMS develogers
ply micro-specializations to identified target code segesn

1. INTRODUCTION

Database management systems (DBMS) play a fundamentahrole
industrial IT infrastructure. Because of this, it is es&dithat these
systems have excellent performance. The current stateecdirth
in this respect combines three different approaches., Bpstial-
purpose database architectures (e.g., stream DBs, coltoresks
are used where appropriate to organize the data in a way that m
mizes access costs for specific types of applications [BB®3].
Second, traditional compiler optimizations are used tomiterthe
DBMS source code into efficient machine code. Finally, dasab
query optimization is used to execute individual queriéisiently
(e.g., proximity rank join [19], replacement selection ixtexnal
sorting [20], and range query transformation [25], in juse drack

of one conference). The general consensus in the database co
munity is that, because hard disks are significantly sloweant
CPUs, by far the most important are those approaches related

a growing awareness that architecture-conscious appeeadb-
cusing on costs such as main memory cache misses, are afsb use
for improving DBMS performance.

Separately, there is a rich body of literature in the compitem-
munity on code optimization. Early work on this topic focdse
on static analyses and optimizations [3], but more recethitye
has been a lot of work on dynamic optimization and specializa
tion, both in the context of traditional compiled languagesh as
C [6,9,10,12,13] as well as in the context of JIT compilers fo
Java [2, 15, 34]. This work generally focuses on CPU-bourtttro
database systems, conventionally considered to be |/@ehtave
not received much attention in the context of such optinonat

In this paper we show that this conventional wisdom is natelyt
correct and that significant DBMS performance improvemangs
achievable through dynamic code specialization.

The goal for JIT compilers is to optimize the byte code of thyuit
programs, without prior knowledge of their runtime behawaad
while incurring as little runtime overhead as possible. @ark is
similarly concerned with dynamic code specialization ia ton-
text of an interpreter: in our case, the interpreter is th& 8Qygine
that forms the heart of the DBMS query processor, and theognal
of the JIT compiler’s input programs are the input SQL querie
However, the details of the two situations are very differedur
dynamic specialization is aimed not at the input SQL quetes
rather at the underlying DBMS code that processes thoséeguer

Our approach takes advantage of information specific to #re p
ticular environment of a DBMS by identifying variables wkos
values—typically, schema metadata or query-specific anist—
are invarianwithin the query evaluation looprThis information is
used for fine-grained specialization that eliminates uassary op-
erations along frequently-taken execution paths, leattirfgrther
optimized code that is both smaller and faster. Often thip lis
evaluated for every tuple in the underlying relation(sgréby of-
fering the possibility of significant performance improwamts. (A
note on terminology: a tuple is also informally called a r@we-
lation is similarly called a table; and an attribute, a cafupSince
the invariants used for specialization are available ohlpatime,
such specialization cannot be carried out using staticnigakes,
but has to be deferred to runtime. This implies that the siear
tion process itself has to be extremely lightweight.

In addition to specialization based on schema metadatawey-q
specific values, we have identified another opportunity Joraanic

specialization: the values in the relations themselvesudh values
are relatively few or relatively common, specializing oclsvalues
can be very effective. Our innovation is to show how to sgeda



DBMS code based on data associated with an individual ol @i
with individual tuples.

We refer to such fine-grained low-level dynamic speciaiirags
micro-specializationto distinguish it from other, higher-level spe-
cializations effected in DBMSes. This paper describes DBMSo-
specialization,  applies this concept to a complex
high-performance DBMS, and evaluates its effectivenedscast.
Even just a few such specializations (adding 250 sources lofe
code (SLOC) and another 900 SLOC of specialized versions of
existing code, comprising 0.3% of this 380,000 SLOC DBMS) ca
improve query execution speeds by up to 33% across compéex an
lytic queries, random modifications, and bulk loading, andard
industrial benchmarks.

Our contributions are the following.

We show that dynamic specialization oriented to the pafticu
lars of an important class of software artifacts, that of DBM
Ses, can achieve truly significant performance benefits.

We identify several classes of opportunities for microesple
ization: schema information, data structures used in query
evaluation, and even individual values stored in the da&@ba

We show that the instantiation of specialized code can be
located at several points along the compile-time/run-spe-
trum.

We co-locate some of the specialized code with the data in
the DBMS and move some of the data in the tuples into that
code.

We implemented an extensive run-time environment (HIVE-
RE) and have started developing a DBMS-independent inte-
grated development environment (HIVE), which in concert
support micro-specialization across this spectrum.

We applied six instances of micro-specialization to a high-
performance DBMS and studied in detail the performance
improvements that accrue.

We first summarize the salient aspects of DBMS query evalnati
We then walk through a single micro-specialization thatrioves
the performance of even simple queries. In this case stuelgxw
amine the specific code changes, predict the performana@uep
ment, and then validate our prediction with an experimergc-S
tion 4 examines micro-specialization opportunities btpadth a
taxonomy of three general classes of invariant value, wimndhce
three types of micro-specialization. We then introduce rilme
time environment and explain what happens at runtime. G@eéti
briefly discusses the structure of the HIVE developmentrenvi
ment for introducing micro-specializations into a compRMS
and outlines how to identify specialization targets, hovdéaide
which specialization approach to apply, and how to inselis ca
to that API to effect the micro-specialization. We apply tallee
kinds of micro-specialization to PostgreSQL. We then cttara
ize, through a set of experiments on the TPC-H and the TPC-C
benchmarks, the salutary effect of micro-specializati®action 8
places micro-specialization in the broader contexts of [Bahd
compiler-based specializations.

2. BACKGROUND

Figure 1 shows, in very high level terms, the structure ofpécil
DBMS query processing algorithm. We first construct the loiade

by defining a set of relation schemas and then populatingetae r
tions specified by these schemas. The schemas specify ateta-d

[* construct database */
schemas := DefineRelationSchemas|();
rels := PopulateRelations(schemas);

[* iterate over queries */
loop forever {
query := ReadQuery();
query_plan = OptimizeQuery(query, schemas);

[* process query: iterate over tuples */
ans := Exec(query_plan, rels, schemas);

Output(ans);

Figure 1. Thirty-thousand-foot View of Database Query Pro-
cessing

about each relation, such as the name of the relation, the&uof
columns, their names, types, etc. This is followed by quesi-e
uation: a query is read in; a query plan is generated by theyque
optimizer; this plan is executed by the SQL engine; and tsevars
so obtained are output. This process is repeated. The qpéry o
mizer uses meta-data about the relations in the databaseke m
implementation-level decisions (e.g., a join operatiothi& query
may be mapped to a implementation-level operations of f@sh-
or sort-merge join) and determine an efficient executiom pta
the query operations. The query plan produced by the optimiz
is essentially a tree representation of the query whererledés
are database relations and internal nodes are operatibagjuery
evaluation engine applies the operations specified in teeyqulan

to the relations in the database, iterating over the tupléise rela-
tions and using schema meta-data to parse the tuples tcteatic
process the fields.

The query-evaluation process described above involvesited in-
terpretation of a number of data structures that are invaria
through the evaluation of each query. For example, the seflaf
tions that have to be accessed is fixed for each query, whiemsne
that the information about attribute types and offsets &mhesuch
relation, obtained from its schema and used to parse itesus
invariant through the execution of the query. However, bsea
relation schema information is not known when the DBMS code
is compiled, this information cannot be propagated intoghery
evaluation code, but must be obtained by interpreting themsa
data—an action that is repeated for each tuple that is psedes
As another example, an expression fosedector join operation

in a query is represented as a syntax tree, which has to be-eval
ated for each tuple. This syntax tree—which is fixed for a igive
guery—cannot be compiled into code when the DBMS is compiled
because it becomes known only once a query has been read in.
Since processing a query in a database of reasonable sizenmay
volve looking at many millions of tuples, these interpritiatover-
heads can accumulate into substantial overheads, in tdrbwtio
instruction counts and instruction and data cache misses.

Our work on dynamic specialization of DBMS code is aimed at
reducing this interpretive overhead as much as possible.dVe
this by identifying those portions of the DBMS'’s query ewlu
tion loop that have a high number of references to queryriant
values such as those described above, dynamically gemgpcatie
that has been specialized to the actual query-invarianiegaland
splicing in (a pointer to) this dynamically generated coa® ithe
DBMS'’s query evaluation loop. The following case study show



that such specialization can have a big impact on DBMS perfor
mance.

3. CASE STUDY

In a DBMS, there are many variables which can in fact be iawveri
(constant) within the query evaluation loop. For instaree the
schema of a relation is defined, the number of attributes sna c
stant. Moreover, the type of each attribute, the length off dixed-
length attribute, as well as the offsets of some attributesse not
preceded by a variable-length attribute) are constantthisrela-
tion. Conventionally, the relation-specific informatiangtored in
the system catalog. Each tuple in the database is physiegily
resented simply as a sequence of bytes; when queries are eval
ated, the catalog is consulted for the referenced relatiamd the
above mentioned invariants are used to “parse” the tuplddn-i
tify and extract attribute values. Although catalog logkhas been
carefully engineered to be efficient, the generic impleraion still
presents significant overhead, especially for large m@iati

Listing 1 excerpts a functiors! ot _def or m t upl e(), from the
source code of PostgreSQL [24]. This function is executedrwh
ever a tuple is fetched,; it extracts values from a storecktinb an
array of 1 ong integers. The function relies on a loop
(starting on line 4) to extract each attribute. For eachibatte, a
path in the code sequence (from line 5 to line 36) is execuied t
convert the attribute’s value within the stored bytes of tingle
into a long integer. (Bytes, shorts, and ints are cast todam
strings are cast to pointers. The catalog information faheat-
tribute is stored in a struct namedhi sat t, which is located in
the function argument namesy ot . This argument contains both
the catalog information and the actual physical tuple. Ad vari-
ables utilized in this function come directly from this angent. As
Listing 1 shows, attribute lengtfatt | en), attribute physical stor-
age alignmentdt t al i gn), and attribute offsetaf t cacheof f) all
participate in selecting a particular execution path.

Within a conventional DBMS implementation, these varialdee
used in condition checking because the values of theseblesia
depend on the specific relation being queried. Such gehepab-
vides opportunities for performance improvement. Micpeaaliz-
ation focuses on such variables: when they are constanitwtita
query evaluation loop, the corresponding code sequendescdra-
matically shortened.

We utilize theor der s relation from the TPC-H benchmark as an
example to illustrate the application of micro-specidi@a. To
specialize thal ot _def or m t upl e() function for theor der s re-
lation, we first identify the variables that are constantsc@ding
to the schema, no null values are allowed for this relatiomerg-
fore the null checking statements from lines 6 to 11 are netlad.
Instead, we can assign the eniiteul | array tof al se at the be-
ginning of the function. Since each value of thenul | array is a
byte, we can collapse the assignments with a few type castin+
stance, the eight assignments efiul 1 [ 0] toi snul | [ 7] can be
turned into a single, very efficient statemefitong+) i snul | = 0;
This function is invoked to extract the values of a storedeup
Given that the relation schema does not allow nullablelaites,
the stored tuples are guaranteed to contain no null valhés it
checked elsewhere). Hence, the above optimization is masizgipe.

As discussed earlier, some of the variables in Listing 1 anstant
for any particular relation. For the der s relation, the value of the
nat t s (humber of attributes) variable is 9. We apjpp unrolling

to avoid the condition checking and the the loop-countereiment
instructions in thef or statement. The resulting program simply
has nine assignment statements.

1void slot_deformtuple(Tupl eTabl eSlot *slot, int natts) {

2 ...

3 tp = (char *) tup + tup->t_hoff;

4 for (; attnum< natts ; attnume+) {

5 Formpg_attribute thisatt = att[attnuni;

6 if (' hasnulls && att_isnull(attnum bp)) {

7 val ues[attnunj = (Datun) O;

8 isnull[attnun] = true;

9 slow = true;

10 conti nue;

11 }

12 isnull[attnuni = false;

13 if (!slow & thisatt-> attcacheoff >= 0) {

14 of f = thisatt->attcacheoff;

15 } else if (thisatt-> attlen == -1) {

16 if (!slow & off == att_align_nonminal (off, thisatt->attalign)) {
17 thisatt->attcacheoff = off;

18 } else {

19 if (!slow & off == att_align_noninal (off, thisatt-> attalign)) {
20 thisatt->attcacheoff = off;

21 } else {

22 off = att_align_pointer(off, thisatt-> attalign, -1, tp + off);
23 slow = true;

24

25 } else {

26 off = att_align_nominal (off, thisatt-> attalign);

27 if (!'slow

28 thisatt->attcacheoff = off;

29 }

30 values[attnun] = fetchatt(thisatt, tp + off);

31 off = att_addl ength_pointer(off, thisatt-> attlen , tp + off);
32 if (thisatt->attlen <= 0)

33 slow = true;

Listing 1: Thesl ot _def orm t upl e() Function

val ues[ 0] .
val ues[ 1] Cs

val ues[8] = ...;

Now let’s focus on the type-specific attribute extracticatements.
The first attribute of theor der s relation is a four-byte integer.
Therefore, we don’t need to consult thet | en variable with a
condition statement. Instead, we directly assign an imtegkie
from the tuple with this statement.
val ues[0] = *(int=*)(data);

Note that thelat a variable is a byte array in which the physical tu-
ple is stored. Since the second attribute is also an intdgesame
statement also applies. Given that the length of the firgbate is
four bytes, we add four tdat a as the offset of the second attribute.

values[1l] = *(int*)(data + 4);

The resulting specialized code for theder s relation is presented
in Listing 2. (We will elaborate on theee_i d parameter in Sec-
tion 6.4.) Although the code looks longer that the originlagf or
loop in Listing 1 has been unrolled nine times. As a resuét,sjpe-
cialized code will execute many fewer instructions thandtock
code. Manual examination of the executable object codedfinet
thef or loop executes about 340 machine instructions (x86) for the
or der s relation in executing the following query.

SELECT o_comment FROM orders;
To execute the specialized code, we simply insert a funatadh
to the Get Col unmsToLongs() function to replace théor loop.
The specialized code has only 146 instructions, for a récluct
approximately 190 instructions.

The specializations described above then follow directyrf the
fact that the metadata describing various attributes o ¢agle,
obtained from the schema metadata, is invariant in the doolers
in Listing 1, and can be automated using techniques disduse-
where in the literature [10, 21, 23].



1void GetColumsToLongs(char bee_id, int address, charx data, intx start_att,
2 int* offset, bool+* isnull, Datum val ues) {

3 «(long*)isnull = 0;

4 isnull[8] = 0;

5 values[0] = *(intx)data;

6 values[1] = =(intx)(data + 4);

7 values[2] = (long)(address + bee_id * 32 + 1000);
8 xstart_att = 3;

9 if (end_att < 4) return;

10 =+offset = 8;

11 if (*offset !'= (((long)(*offset) + 3) & ~((long)3)))
12 if (!(*(char+)(data + *offset)))

13 ~of fset = (long)(*offset + 3) & ~(long)3;

val ues[3] = (long)(data + *offset);
«of f set += VARSI ZE_ANY(data + *offset);
~of fset = ((long)(*offset) + 3) & ~((long)3);
val ues[4] = (*(long*)(data + *offset)) & Oxffffffff;
~of fset += 4;
val ues[5] = (long)(address + bee_id *
*start_att = 6;
if (end_att < 7) return;
if (!(*(char+)(data + *offset)))
~of fset = (long)(*offset + 3) & ~(Iong)3;
val ues[6] = (long)(data + *offset);
~of fset += VARSI ZE_ANY(data + *of fset);
values[7] = *(intx)(address + bee_id * 32 + 1002);
if (!(*(char+)(data + *offset)))
~of fset = (long)(*offset + 3) & ~(Iong)3;
val ues[8] = (long)(data + *offset);
*start_att = 9;

32 + 1001);

Listing 2: TheMicro-Specialized GCL() Function

To determine the actual performance benefit, consider gtriiction
savings. This query requests a sequential scan over the s re-
lation, which has 1.5M tuples (with the scale factor set te tor
the TPC-H dataset). Given that the specialized code sav@$119
structions and the code is invoked 1.5M times (once per }uihle
total number of instructions is expected to decrease by 285
ingcal | gri nd [11] to obtain the total number of executed instruc-
tions for both a stock PostgreSQL and one with the specihtinele
shown in Listing 2, we find that stock PostgreSQL executesa to
of 3.447B instructions on this query, which implies thasthiicro-
specialization should produce an (estimated) instruatmmt re-
duction of about 8.3%. The total number of instructions altyu
executed by the specialized PostgreSQL is 3.153B, a (medsur
reduction of 8.5%, consistent with our earlier estimate. tihén
measured the total running time of the query on the stockgPeSQL
and the specialized version. The improvement in runningtim
(7.4%) is consistent with the profile analysis. Thus, by &lizing
just the genericl ot _def orm t upl e() function, on just a few
variables, we were able to achieve a 7.4% running time ingrov
ment on a simple query. This improvement suggests the fégsib
and benefits of applying micro-specialization more agdvebs

How did this improvement come about? First, the developemtie
fied sl ot _deformtuple as a candidate for
micro-specialization. Such candidates must satisfy foiieria:
each such code sequence must (i) appear in the query ewaluati
loop, (ii) constitute a significant portion of the runtime aqdiery
evaluation, (iii) reference variable(s) whose value candbter-
mined to be invariant across the query evaluation loop, &hdén-

efit significantly from micro-specialization, by removingabches
and accesses on those variables. Second, the developéiespec
code fragmentsuch as those given earlier that can be combined
into a micro-specialized function, as well as code to sttimgse
fragments together given a relation schema. (As an optiiza
this composition is actually done on the machine code vers®
avoid calling the compiler at runtime.) Then the call to thadtion

is replaced with a call to the correct micro-specializedction.

We now elaborate on this idea, identifying other kinds of nmic
specializations and evaluating their impact on the peréome of
the DBMS.

4. APPROACH

Each micro-specialization identifies one or more variallésse
value will be constant within the query evaluation loop. Hen

replaces a function or small stretch of code with multipleies,

each particular to a single value of each of those variahitethe
example given above, the variables concerned the relagamgb
scanned. Hence, we need a specialized versiGatafol unmsToLongs()
for each relation.

We first introduce terminology for the specifics of our apjioa

e The specialized code, in this case associated with a particu
lar relation is termed heg in this case, #lation bee There
will be a unique bee for every relation defined in a database.
Given that the specialized code is small, efficient, and spe-
cific to a particular task, such code resembles the character
istics of bees.

e A bee can have multipleee routineseach produced by a
particular micro-specialization at a certain place in tiRMS
source code on one or more variables that have been identi-
fied as being invariant across the query evaluation loop.

In the example given above, micro-specialization is apipdie val-

ues (attribute length, etc.) that are constant for eactioalaand

so a relation bee routine results. We term this particular roe-

tine GCL, as shorthand for the specializeet Col unmsToLongs()
routine. We specialized another PostgreSQL function named
heap_fil | _tupl e that constructs a tuple to be stored from an in-
teger array, resulting in a separate bee routine namely
Set Col unmmsFromiongs() (SCL) for each relation. So each re-
lation bee now has two bee routines.

This general approach raises two central questionsilichvalues
can micro-specialization be applied amtienduring the timeline
from relation-schema definition to query evaluation carsh@ein-
stantiated? The answers to these questions lie in the steuof
DBMS query processing, shown in Figure 1. Different kinds of
information become invariant (with respect to the innerrgyeo-
cessing loop) at different points in the query processiggrihm.
Information about individual relations become fixed ondatien
schemas are defined. This information is then invariantfeisub-
sequent iteration over queries. For each query, the prediend
constants specific to the query plan become fixed after quaty o
mization. We take advantage of this invariance structurearoy
out specialization in different ways, evincing three diffiet types
of bees.

Therelation beegslescribed above (one per relation in the database)
arise from specialization based on the relatiosethtema where

we specialize on each attribute’s length, offset, alignimand the
presence of nullable attributes, as well as on the numbet-of a
tributes in the relation.

We can also specialize on the internal data structuresdssureng
query evaluation, for which some of the values in the datecaire

are constant during the evaluation loop of a query. For eX@amp

a query that involves the predicatege <= 45’ will use a pred-
icate data structure that contains the ID of attribage, the <=’
operator, and the constas. We can apply specialization on these
variables once we know the predicate from the query. The bees
resulting from specializing such query-related data $tines are
termedquery bees

We can extend this idea even further, down to the level of-indi
vidual tuples, by specializing on the values of particulrltautes
within a tuple. The idea is that for an attribute that is knderm.,
from schema meta-data) to have only a small set of possihlesia
we can use a precomputed set of simple assignments, onecfor ea



value in the underlying domain, to replace the generic detab
code that computes length, offset, and alignment of thébate
from the relation schema to access its value. We refer teethes
tuple bees

For example, for an attribute such as “gender,” which takesre

of the two valuesM or ‘F, it suffices to use a single assignment
such asval ues[ x] = ' M’ to extract the value of this attribute
for any given tuple. This assignment occurs within a tuple be
associated with that tuple; the particular tuple bee cpmeding to

a given tuple is indicated by including in such tuples a shuatéx
termed ebeelD So we might just have two tuple bees, one for each
gender, or we might also specialize on other attributesomg &s
the beelD is sufficient in uniquely identifying all the tuflees, so
that a small number of tuple bees are generated for all tHegup
the relation.

To address the question of when specific bees are instahtisge
again consider the structure of DBMS query processing shown
Figure 1. Obviously, specialization can be performed, agesb
instantiated, only when the underlying data values becamogvk

compiled ahead of time. At query preparation time, the dated
join bee routine is selected from the set of the pre-compgibéd
evaluation routines.

Delving down into the details, there are two basic mechasifm
bee instantiation. The invariant values that don’t pgutité in con-
trol constructs can be easily converted to “holes” in theptietes
with magic nhumbers. These magic numbers are easy to identify
in the produced object code, such that at run-time, thesestazn
be filled with the correct values provided in the executiontest.
An example is the attribute ID for both the join and predida¢e
routines, which appears in assignment statements but eonimnol
constructs in the bee routine. The bee can be cloned each#ithe
different values substituted for such values, represeasechagic
numbers.

Alternatively, if an invariant appears in a control constrand if
this invariant is known to be associated with just a few valseich
branching statements and the associated branches can taeeem
from the specialized code. This is essentially aggressivistant
folding, to be done either manually or by the compiler (sedésa d

and fixed. Once this happens, moreover, there does not seem taussion of this in Section 3). An example is the specializatn

be much benefit from delaying specialization to a later paint
the query processing since, in general, later points coores to
more deeply nested loops and hence greater execution fregue
Based on these considerations, the points when individess bf
each kind are instantiated are shown in Figure 2. Relati@s be
are instantiated at relation schema definition time, oneefrh
newly-defined relation. Individual query bees are instaatl dur-

hasnul | s on line 6 of Listing 1. This invariant appears in an if
statement and so aggressive constant folding during cetigil
can eliminate several lines of code if this value is falseecsdiz-
ing on variable(s) referenced in control constructs resalmulti-
ple versions of a bee routine.

bee routines, namely

Consider two

query

ing query plan generation. Once we have a query plan, we know Eval uat ePr edi cat e() (EVP) andEval uat eJoi n() (EVJ). We

the particulars of the various data structures used in geresju-
ation, and so can generate the highly-specific code thatthese
structures. Tuple bees are instantiated during the evaiuaf tu-
ple insertions and updates, deep within the query evaluéobiap.
Interestingly, bees of all three types can also be instiuatibefore
compilation time, if the possible values for the invariaatiables
are known and if the total number of possible bees (usuaby th
product of the number of possible values for each variablsjnall.

Query Bee
Tuple Bee

Relation Bee Query Bee Tuple Bee

Query preparation

Relation Bee

Query execution,
insert, and update

DBMS compilation  Schema definition

Figure 2: When to Instantiate Various Kinds of Bees

Where bee instantiation resides along the timeline shovigare
2 affects how lightweight and efficient bee instantiatios tabe.
Note however that we are not discussing the design of a béeeou
As we will see in the next section, the code to instantiataride
vidual bees and to invoke bee routines is manually insent@dthe
DBMS before it is compiled. Here we are focusing on instdittia
of individual bees, each containing specialized code tieguirom
knowing the exact values of the variable(s) evincing thesiea-
tion. For relation bees, which are instantiated when r@tastiare
defined and before the query evaluation process beginsnbemi
tiation overhead is not critical. Hence, when instant@trrelation
bee, we can invokgcc to compile the source code, as shown in
Listing 2, to produce the executable object code for the bee.

Because ad hoc queries need to be fast, the overhead oftiastan
ing query bees needs to be minimized. Recall that query bge ma
contain the join and predicate evaluation routines. In tseoof
join, all possible combinations of the join routines, sushdéfer-

ent types of joins (left, semi, anti, etc.) can be enumeratedi

use the following query that is based on the TPC-H schema as an
example:

SELECT | _ext endedpri ce,
FROM | i neitem part
WHERE | _partkey = p_partkey

AND | _shi pdate <= date ’'1995-04-01’

p_type

This query contains a equi-join of thé nei t emand thepart re-
lations, on thd partkey andp_part key attributes, as well as
an additional predicate, dn shi pdat e. This latter predicate con-
tains three invariants in the life cycle of this query, whate the
compared constantat e ' 1995- 04- 01’ , the ID of the attribute
| _shi pdat e in thel i nei t emrelation, and the= operator on the
date data type. In the original implementation, each omkian
treated as a generic object, in that operands of differgrastycan
appear on both sides of the operator. Hence expensvie aperan
cessing is required when the operator is evaluated, whicis tout
to be inefficient. For instance, even though the value of tiedlip
cate constant is known, it is stored in a generic data stre¢that is
accessed each time through a chain of function calls to exine
value’ 1995- 04- 01’ .

Micro-specialization effectively addresses the inefficie in ac-
cessing the operands. For the predicate constant, insteadess-
ing its container data structure each time the predicatedisiated
with many functions, this value is stored in the specializede
which can be directly referenced by consequent code in teeyqu
evaluation, saving a significant amount of unnecessarsuictsbns.
For the attribute operand, the value of the attribute 1D nsilsirly
stored in the specialized code rather than being extracteeach
tuple, such that the attribute value extraction routinelzadirectly
invoked without going through a series of function calls.

PostgreSQL utilizes function pointers to perform typeesiie
predicate-operand comparison efficiently.  Since the fanct



address of the operator is known at the query planning sthge,
address can directly be injected inte@ALL instruction as a direct
call at runtime. We create a magic number, which is assatiati
the CALL instruction where the comparison function is invoked,
in the EVP routine. When the source code of tBeP routine is
compiled, this magic number is easily identified from theeabj
code. At run-time, this number will be replaced by the adsliafs
the associated comparison function. Alternatively, weldase a
mechanism similar to relocations (used by linkers to patcaries)

to effect the same goal.

A join operator shares the same mechanism to a predicat@lin-ev
ating the join condition. The only difference is that botteands
are attributes from relations. The same specializationbeaap-
plied here. First, both attribute IDs are stored in the spized
code. Second, the address of the comparison function eptae
magic number at run-time, instantiating the template begime
with the correct query-specific information.

In addition to join condition evaluation, invariants aremtified in
the join algorithms themselves. Three join algorithms anaally
adopted in DBMSes, including nested-loop join, sort-mgaje,
and hash join. A common invariant across all three kinds iofsjo
is the join type, which can be inner join, outer join, natyah,
semi join, and anti join. The difference among these typégsio$,

in terms of implementation, is that each type relies on ardist
code path to deal with various matching requirements. Tleelch
ing of thej s. j oi nt ype and the associated branches that do not
belong to a particular kind of join can be eliminated via ¢dans
folding when the kind of join is known in the query plan. Sim-
ilarly, two other such invariant variables, each allowingptdis-
tinct values, are specialized on in the same fashion. Coesely,
each join algorithm requires 20 distinct versions of thesobgode,
each corresponding to one possible combination of the sabfie
these invariants. Instead of creating 20 versions of sctode, we
compile the generic version of source code for each alguritiith

20 value combinations, when the DBMS is compiled enablirg th
compiler to eliminate the unnecessary condition checkimnd tae
associated basic blocks, resulting in highly-optimizefecbcode.
In PostgreSQL, a total 57K bytes of the specialized join irmst
are created; this amounts to about 2% of PostgreSQL's texal t
section size of 2.63MB.

It may seem that by instantiating individual bees, addilarode

is being added to the DBMS. In fact, the introduced code masa
the original code. Moreover, at run time, a significant antafn

instructions can be reduced by the specialized code, asrdhed

in the case study.

5. APPLYING MICRO-SPECIALIZATION
Micro-specialization can be applied to a DBMS in a systemati
fashion by performing the following steps in sequence, Wwhie
now discuss in some detail.

1. Identify the query evaluation loofo accurately extract
the portion of the code that represents the query evalutiom
from the rather large and complex executable code of a DBMS, w
start by constructing a static call graph of the basic blaok&le
the DBMS. We then compute strongly connected components fro
this graph. The strongly connected components provide tistie

set of basic blocks that represent just the query evaluédimm

2. ldentify the invariantsTo spot the invariants, dynamic
analysis is required. Profile tools suchcas | gri nd are invoked
along with query evaluation to produce accurate run-timenory
access traces. The traces, containing a list of triplesaénfahm

of <addr ess, opcode, operand>, are combined with the pre-
viously computed query evaluation loop basic block set dmad t
dynamic data flow graph to identify those variables whosee&l

are invariant in query evaluation.

3. Pin-point the invariants in the source cod®e then
map the invariant variables back to data structures defimebei
source code. The identified invariants are memory locati@mse-
sented in the object code as operands in instructions. \ligitie

. debug_I i ne section to trace the instruction back to the source
code to identify the actual references and decalaratiotisese in-
variants.

4. Decide which code sequence(s) should be micro-
specialized.We examine each target code sequence to be spe-
cialized, specifically to determine the exact boundry farhese-
quence. To do so, we rely on static data flow analysis to latate
code sequences over which the value is invariant. These smde
qguences can either be early in the call graph or near its $edvee
ideal specialization targets contain a relatively largebar of uses
within a short code sequence.

5. Decide when to compile and instantiate bees.
different kinds of bees, various compilation and instditraalter-
natives are appropriate. For instance, all versions ofdimeglgo-
rithms and the predicate evaluation query routine can bepidech
when the DBMS is compiled. On the other hand, a relation bee
routine can be compiled only at schema definition time. Rafat
bees are instantiated at schema definition time, whereagry qu
bee can be instantiated only after the query has been reldepbe
DBMS. The developer thus decides in what kind of bee thisiapec
ized code sequence should reside (and hence, form a beee)puti
and when, that is, at DBMS compile time or DBMS runtime, the
bee routine should be compiled. (The bee is always instedtit
runtime.)

6. The target source code is converted to snippets, to
install a bee routine Consider a relation bee routine. This rou-
tine would probably deal with all of the relation’s attribst Say

it is specialized on the types of the attributes. The acteialtion

bee routine would have to be constructed out of snippetsfame
each possible type, stitched together according to therszhén

this particular case, we extract the snippets from the $vgtate-
ment. As another example, consider the for loop over thibates

on line 4 of Listing 1. We create a snippet from the body of that
loop.

If the code sequence contains a call to another function,tlaatd
call passes one of the invariant values as a parameter, ahedl c
function is also specialized as part of this bee routine aftaing
the function invocation. (Otherwise, the bee just retaiesftinc-
tion call.)

For each attribute value incorporated into a tuple bee,¢theahat-
tribute value appears as a parameter to the tuple bee rottamee,
the tuple bees of each relation can effectively share the sauatine
code in that the tuple bees are based on the schema of tHemelat
We create a storage space designated to the tuple bee villiges.
term this spacelata section

7. Add bee invocations and supportng code to the DBMS
source. The code that was specialized is now removed from the
DBMS, replaced with a call to the corresponding bee routine.

Adding a bee may impact other portions of the DBMS (hopefully
in highly circumscribed ways). For example, an attributeed in



a tuple bee is no longer stored in the relation itself. Indheer s
relation from TPC-H, we specialize on three attributes, elgm
o_orderstatus, o_orderpriority, and o_shippriority,
which have small discrete value domains. These attributesea
moved from the schema as their values are stored in theiatstit

bee for each tuple. Code must be added to the DBMS to effext thi

change.

8. Run confirmatory experimental performance anal-
YSeS.lIt is important to verify the performance benefits of each

added bee on queries that should utilize that bee. We utiépeh-
marks to study the performance by comparing the bee-eabiidétis
and the stock version. The detailed study include runnimg tf
queries, throughput of transactions, and profile of ingioncand
cache statistics, which are discussed in Section 7.

We proposed the eight steps to address the known challemges i
plying micro-specialization based on our manual expegerfp-
plying the first routine took several months. Applying thstlavo
bee routines, that afvP andEVJ, took only a couple of days, fol-

lowing these eight steps. Hence, DBMS developers can benefi

greatly from these steps when applying micro-speciabrati

To assist developers in carrying out these steps, we ardigiil
a set of tools aimed at simplifying and automating the prec#s
micro-specialization. Currently, our toolset—which wéereto as
HIVE (Highly-Integrated de¥lopment Bvironment—allows us to
automate the first and last steps described above and |yeati&b-
mate the second step. In fact, the results of Section 7 wererge
ated using HIVE. Our future plans for extending HIVE to auéden
all eight steps are described in Section 9.

6. THEHIVE RUNTIME ENVIRONMENT
This section discusses in depth the HIVE runtime envirortrttétVE-
RE) and how the types of bees are instantiated and invokedgdur
DBMS execution.

6.1 HIVE-RE Components

HIVE-RE consists of about 6000 lines of C code, responsibte f
bee instantiation, storage, invocation, and garbageatile HIVE-
RE consists of the following central components, which afeer
without administrative intervention.

e TheBee Snippet Repositogpntains a collection of source code
snippets used in forming the actual bee routines during hee i
stantiation. This repository is created by the developeindu
the sixth step discussed earlier. TBee Assembléds responsi-
ble for stitching together the provided code snippets tmfbee
routines.

e The Bee Makermperforms two tasks. First, the formed bee rou-
tine source code is sent to the bee maker for compilation. The

compiled routines are then attached to the associated bées.

term this stefbee creation Second, at run-time, the bee maker

instantiateshe compiled bee routines with correct values.

Given that bees introduce additional code which does nag-ben
fit from locality optimization applied to DBMS at compile tan
sloppy placement of bees can degrade performance.

e TheBee Collectoperforms garbage collection on dead bees. For
instance, when 8ROP TABLE command is issued, the bees as-
sociated with the dropped relation are no longer neededb&éae
collector will remove such bees from the bee cache.

We now describe specifically how each type of bee is maniedlat
(created, for tuple bees, and instantiated) by the HIVE-RE.

6.2 Relation Bees

When the schema of a relation is defined, as the resulCBEATE
TABLE SQL statement, the code shippets that are associated with
the attributes in this relation are stitched together assthace
code of a relation-specific bee routine that performs vakise-
tion. This source code is then compiled, resulting in an akjée

tin ELF representation (on a Linux OS). The HIVE-RE extrabts t

executable function body from the object file, and inserecibrre-
sponding function address in-place, for any (non-spemd)i func-
tion(s) invoked by that bee routine.

The extracted routines are stored in a bee cache, ready douex
tion. (We discuss relation bee invocation below, as all tses
invoked similarly.)

6.3 Query Bees

When instantiating a query bee, the holes (special valadgbgibee
routine are filled with values provided from the query datacst
ture. A special case of this is PostgreSQL function poinfers
type-specific predicate-operand comparison.

6.4 TupleBees

Tuple bees are distinct in that they contain holes wheretaftibute
values have been referenced by the target code. These helies a
dicated by magic numbers (cf. lines 7, 19, and 26 of ListingA®)
ter the tuple bee code in that listing is compiled, the maginlers
are replaced with a computed offset from the current instva¢o
the beginning of the data section.

When a tuple bee is instantiated, only the data section needey
ated. The code on these lines then can compute the addréss of t
attribute value within the data section associated with lezID,
allowing the relevant attribute value to be referenced.

When a query is being evaluated, tuples are fetched fromethe r
lation. As a tuple is being fetched, its beelD, representetha
bee_i d variable in Listing 2, is associated with the address of the
tuple in the buffer. The beelD and the tuple address are tasseul

to the bee routine by the invocation statement that repleesrig-

inal targeted code from which the bee was created. The bé&eeou
locates the appropriate data section using the beelD aclisfethe
specialized attribute values. This routine also computeffsets

e The Bee Cachds an on-disk repository where all instantiated a@nd extracts the values for the non-specialized attribweehout
bees are stored. ThBee Cache Managemanipulates this ~ l00king up the catalogs. Relations with no specializedbaites
storage. When bees are created by the bee maker, the bee-cacHlave a single instantiated bee used by every tuple, in whisk ¢
manager stores the newly created bees to the bee cache. WhetN€ Single tuple bee is in reality a relation bee. Both refatind tu-

DBMS server starts, the bee-cache manager loads all the beed!€ bees perform the tuple extraction and constructiorstasknce

difference is that tuple bees store particular columnsgeith the

e The Bee Placement Optimizeontrols the residence of bees in  bees; therefore, the GCL routine for a tuple bee does nottoesd

memory, which directly affects the occupancy of the bees in tract such value(s) from the stored tuple, but rather fromstants
the CPU caches, particularly the level-1 instructitit) cache. stored in the bees.



7. EMPIRICAL EVALUATION g
We have investigated the performance impact of micro-gfieation 525
in many contexts: simple select queries such as discusstt in 20
case study, OLAP-style queries in the TPC-H benchmark, and 515
OLTP-style queries and modifications in the TPC-C benchmark §’m
[
O s
To generate the dataset in TPC-H, we utilized thB8GEN aQ,
toolkit [32]. The scale factor for data generation was sefrte, re- B BT e 617 18 19 20 21 2 Avgihvgz
sulting in the data of size 1GB. For TPC-C, we usedBerachmark-
SQL-2.3.217] toolkit. Thenumber of warehousgsarameter was Figure3: TPC-H Run Time Improvement (Warm Cache)

set to 10 when the initial dataset was created. Consequertidy

tal of 100terminalswere used (10 per warehouse, as specified in

TPC-C’s documentation) to simulate the workload. We alstedd evaluation time. Given thajueryl7andquery20took much longer

DDL clauses to identify the handful of low-cardinality &utes to finish, about one hour and two hours, respectively, wisetiea

the TPC-H relations. Other than specifying the scale faatat rest took from one to 23 secondsyg2was highly biased towards

number of warehouses, we made no changes to other parameterthese two queries. The range of the improvements is from 1.4%

used in the TPC-C and TPC-H toolkits for dataset preparation to 32.8%, withAvgl and Avg2 being 12.4% and 23.7%, respec-
tively. In this experiment, we enabled tuple bees, relabiees, and

All the experiments were performed on a machine with 8GB main query bees, involving theCL, EVP, andEVJ bee routines. Since

memory and a 2.8GHz Intél 860 CPU, which contains four cores.  the TPC-H benchmark contains complex queries without muadifi

Each core has a 64KB Level-11) cache, which consists of a  tions, theSCL routine, which constructs tuples durim®ISERT or

32KB instruction (1) and a 32KB data cache. The CPU is also con- UPDATE, is not involved at all.

figured with a 256K unified level-2.Q) cache. Our prototype im-

plementation used PostgreSQL version 8.4.2, compiledjugso As shown by this figure, botAvgland Avg2 are significant, in-

version 4.4.3 with the default build parameters (where piamza- dicating that the performance improvement achieved in & b

tion level, in particular, is-O2). enabled PostgreSQL are generally applicable, acrosargagiceries.
35

7.1 TheTPC-H Benchmark 8

We start with the TPC-H benchmark to compare the performance 2z

of the bee-enabled PostgreSQL with the stock DBMS. The TPC-H g

benchmark creates a database resembling an industrialvdaga o

house. The queries used in the benchmark are complex analyti £

queries. Such a workload, featured with intensive joinedjmate % ®

evaluations, and aggregations, involves large amountssf dO S 56 7 s vz is s 16 17 18 19 B 21 & Avgihvg

and catalog lookup. Query Number

All 22 queries specified in TPC-H were evaluated in both tbelst Figure4: TPC-H Run Time Improvement (Cold Cache)

and bee-enabled PostgreSQL. The running time was meassired a ] ) )

wall-clock time, under a warm-cache scenario. We first fomus ~ T0 ascertain the I/O improvement achieved by tuple beeshere t

the warm-cache scenario to study the CPU performance: gepi €xamined the run time of the 22 queries with a cold cache, avher

the data in memory eliminated the disk I/O requests. the disk 1/0 time becomes a major component of the overall run
time. Figure 4 presents the run time improvement with a cold

We ran each query twelve times. The highest and lowest measur cache. The improvement ranges from 0.6% to 32.8%, \ith1

ments were considered outliers and were therefore droppkd. being 12.9% andivg222.3%. A significant difference between
running time measurement for each query was taken as the av-this figure and Figure 3 is that the performanceqéfis signifi-
erage of the remaining ten runs. We ugeery1l which is the cantly improved with a cold cache. The reason is t@ahas six

fastest query among all the 22 queries in the TPC-H benchmark relation scans. Tuple bees are enabled fo iheei t em or der s,
as an example to study the impact of measurement variantetot Part, andnat i on relations. Therefore, scanning these relations,

percentage improvement. The percentage improvementittsr in pa_rtigula_r the first two benefits significa_ntly from attrtb_-value_
computed as specialization and thus the near 17.4% improvement is aetiie
with a cold cache.
[((ts —sds) — (ts + sdp)) ((ts + sds) — (ts — sdb))] N
(ts — sds) ' (ts + sds) ’ Exn

in whichts andt, are the running time of the stock PostgreSQL and 80
the bee-enabled DBMS, respectivelyt is the standard deviation E%

of the measurements. Fguery11 this range is from 1.9% to 6.6%. 5»15
Given that other queries take much longer to run, we belibaé t g1
measurment error has a less significant impact overall. g 2

1.2 3 4 5 6 7 8 9 1011 12 13 14 15 16 18 19 21 22 AvglAvg2
Figure 3 presents the percentage performance improverf@nts Query Number
each of the 22 queries with a warm cache, shown as the green
(lightly shaded) bars. We include two summary measurements
termedAvgland Avg2 shown as the blue (more darkly shaded)
bars. Avglis computed by averaging the percentage improvement 7.1.1 The Impact of Instruction Reduction
over the 22 queries, such that each queries is weightedlgqual Figure 5 plots the instruction cache referentg €ount, which

Avg2 is computed by comparing the sum of all the query is also the number of executed instructions. The reductions

Figure5: Instruction Cache Reference | mprovement



(shown as the lightly-shaded green bars in Figure 5) ranga fr
0.5% to 41%, withAvglandAvg2of 14.7% and 5.7%, respectively.
Note that when profiling witleal | gri nd, program execution usu-
ally takes around two hundred times longer to finish. We wete n
able to collect the profile data fgrl 7andq20, Therefore, we omit-
ted the profile related results for these two queries. Thusipdi-
cates that the running time improvement is highly correlatéth
the reduction of instructions executed, further emphagithat the
benefit of micro-specialization stems from the reduceduicsion
executions.

7.1.2 Bee Code Placement

Since dynamic specialization introduces new code into yetem,

it seems plausible that it would be important to place thieorare-
fully so as to avoid instruction cache conflicts with othet bode

in the system. To this end, we experimented with various code
placement algorithms to evaluate the effect of bee codespiant

on performance. As expected, placement had a significattefh
the i-cache miss rate within the bee code itself. For mostigsie
provided in the TPC-H benchmark, however, we observe theat th
11 cache miss rate is around a mere 0.3%. Therefore, eveni sig
icant improvement in the cache miss rate does not transisieai
significant improvement in overall system performance.

7.1.3 Impact of Multiple Bee Routines

Performance improvement for each query is accomplishedlby a
the bees that are invoked. Recall that in Section 3, jusstheou-
tine of a relation bee achieved 7.4% improvement. A fundaaten
question is that how much improvement can be further actibye
adding more bees? More importantly, would many bees adyerse
impact each other?

We examine the effect of enabling various bee routines. We su
marize the results in Figure 6. As shown by this figure, the-ave
age improvement with just thecL routine is 7.6% forAvgland
13.7% forAvg2 By enabling theEVP routine, the average im-
provement reaches up to 11.5%v(1) and 23.4% Avg?d. Among

all the queriesg6 shows the most significant improvement, from
15.1% to 30.6%, by enablingvP on top of GCL. This is because
g6 contains complicated predicates whereas the the querg gestn
one relation. Finally, we enable all three bee routineshadigh
the overall improvement is slightly increased, we found théew
queries, such ag2 and g5 were improvement significantly. Not
surprisingly, both queries have complicated join conditévalu-
ations. A key observation is that by adding more bee routines
the improvement achieved by the already enabled routinastis
compromised. (Note that the running time of queries suchdas

Note that both Figure 3 and Figure 6 show difference among the
performance improvements. For instang&, q9, q16, andgl8all
experience relatively lower improvements. The reasonasttiese
queries all have complex aggregation computation as wedubs
query evaluation that have not yet been micro-specializéu our
implementation. These queries with low improvement pardad-
gregation and perhaps sub-query evaluation as other et

for applying micro-specialization.

7.2 The TPC-C Benchmark

Since specialization relies on invariance of values, itatural to

ask how our approach does in the presence of database updates
To this end, we evaluated our system using the TPC-C beng&hmar
which focuses on throughput. This benchmark involves fiyesy

of transactions executing in parallel. The throughput issoeed

as the number oNew-Ordertransactions processed per minute
(tpmC). The other four types of transactions produce a maof

dom queries and modifications, which altogether intengiveloke

the bee routines.

We performed experiments comparing the bee-enabled
PostgreSQL with the stock DBMS. Each DBMS was run for one
hour, to reduce the variance introduced by the experimsgsiém

as well as the DBMS, e.g., the auto vacuum processes.

Performing modifications with micro-specialization waguatly
faster: the former completed 1898 transactions per minttiéew
the stock DBMS could execute 1760 transactions per minute, a
improvement of 7.3%.

The reason DBMS performance improves even in the presence of
modifications is that both modifications and queries rely loa t

sl ot _def orm t upl e function, discussed in Section 3, to extract
tuple values. Since this function is micro-specializechwiite GCL
routine, significant performance improvement is achieed/ari-

ous scenarios in the TPC-C benchmark. Moreover, since tgesu

in this workload involves predicates, tB®P routine (Section 6.3)

has also contributed to the improved throughput.

8. RELATED WORK

DBMS specialization is a common and effective approach to in
creasing performance of DBMSes. These specializatioroagpes
can be applied over a wide spectrurarchitectural: customiz-
ing the entire architecture to a subset of applicatioosiponent:
adding another version of a component customized to a phatic
kind of data or query, andser-stated:in which the user provides

andg22 shows a small decrease when all three bee routines—we most efficient SQL queries.

believe that this is due to measurement errors arising frimekc
granularity issues.) The implication is that the microepkzation

Micro-specialization is applied at a finer granularity,tthba short

approach can be applied over and over again. The more placessequence of low-level query evaluation code. Hence, ittisogr

micro-specialization is applied, the better efficiencyt thdBMS
can achieve. We term this property of incremental perfogaan
achievemenbee additivity

Most performance optimizations in DBMSes benefit a class of
queries or modifications but slow down others. For examplefi@e
indexes can make joins more efficient but slow down updates. B
routines have the nice property that they are only beneffeih

two caveats to be mentioned shortly). The reason is that dea b
routine is not used by a query, that query’s performancenaillbe
affected either way. On the other hand if the bee routine élus
by the query, especially given that the bee routine exedotése
query evaluation loop, that query’s performance could hgraved
considerably.

onal to and independent of other coarser-grained speaiializs.
Hence, it can be applied equally well to conventional DBMS ar
chitectures (e.g., PostgreSQL, IBM DB2, Oracle, and Miofos
SQLServer), to column-oriented stores such as MonetDByrgol
nDB, and C-store, to OLTP architectures such as VoltDB, and t
real-time and stream DBMSes. And it can be applied to various
modules arising from component specialization, and inwaetjon
with user-stated specializations, e.g., within the codguseces
that implement triggers. Indeed, any code within a DBMS that
executed frequently and involves variables that are iavaidver a
single time around the inner per-tuple processing loop stertial
target for micro-specialization. Finally, micro-spe@ation in-
stantiates bees at runtime, because that is when the valussch
variables are known.
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Figure6: TPC-H Run Time Improvement with Various Bee Routines Enabled (Warm Cache)

Pu et al. investigated invariant-based program spectaizap-
proaches, which significantly improved the performance ys s
tem calls, for operating systems [26]. Their approach fiteni
tifiesinterpretationtasks, which are branching statements that con-
struct program control flow based on data present in branoh co
ditions. The program is then simplified with such data cosrgd

as invariant. Rather than focusing on arbitrary data withisys-
tem, micro-specialization is applied on invariants of éhspecific
classes, namely relational schema, query, and tuple, esdtia
ated with a particular kind of bee. Various applicationtetgées are
employed for these types of invariants to minimize the ogachof
managing bees at DBMS runtime. These strategies enable-micr
specialization to be applied aggressively across many ooeigs
within a DBMSes.

Run-time program specialization, especially the apprazdem-
plate-based specialization [10], is quite similar to oue Iestan-
tiation strategy. Our insight is to combine these two teghes
in the context of the particulars of a DBMS, including the gre
ence of an oft-executed per-tuple inner loop and substapzor-
tunities for invariant values from the schema and query. Géwe
instantiation problem involves customized runtime ingtdion of
code templates, which has been studied in the context ofndigna
code specialization [9, 10].

There has been work in what is termadchitecture-conscious
optimizationg 7], such as reducing data cache misses in DBMSes
by re-organizing data page layout [4, 5] or by data partitigri18,
28], blocking, as well as clustering [28], reducing instiol cache
misses by re-structuring the code execution paths as wkbeys-
ing instructions in cache for sharing [14, 35], and minimgcache
stall latency with prefetching strategies [8]. These paitr efforts
can be classified generally as component specializatiothghaus
are orthogonal to (finer-grained) micro-specializatiohjch is it-
self an architecture-conscious optimization that hassagaal to
reduce instruction executions (and thus as a side effebt detia-
cache and instruction-cache misses).

Finally, Krikellas et al. employed an approach to producspg-
cialized code to replace the entire original generic queniua-
tion routines implemented in conventional DBMSes [16]. Phe-
posed method uses code templates to form the specializedaod
processing specific queries. The code is then compiled agd ex
cuted to evaluate the queries. The scope of the code reptamtem
is vast: the entire query evaluation code base, often teihsior
dreds of thousands of lines, must be moved into templat¢stba
then stitched together. Others have also utilized fullrgwempi-
lation [22, 27, 29]. These can be characterized as architdcpe-
cializations, reflecting their impact on the structure & DBMS.
These approaches are thus much coarser-grained
micro-specialization.

9. CONCLUSION AND FUTURE WORK

We have introduced a novel form of DBMS specialization, é&rg
ing small sequences of code, term@icro-specialization This
perspective utilizes the conceptlzgeswhich are highly optimized
code fragments obtained by dynamic code specializatioachas
variables whose values are invariant within the query atan
loop. Bees contaibee routineghat can be invoked by the DBMS;
these replace code in conventional DBMS while performirg th
same operations more efficiently. The generality of the DBMS
preserved by micro-specialization. Moreover, micro-sdemation
does not change the architecture of the DBMS nor does it add si
nificant complexity to DBMS.

We have defined three types of bees and have implemented the
DBMS-independent HIVE-RE runtime environment that supgpor
relation, query, and tuple bees. We also identified a spactii
times at which bee instantiation is possible, and showed thew
HIVE-RE could effect specialization at each of these tinizBMS
compilation, schema definition, query preparation, andyes-
ecution. We have started developing a DBMS-independeagt int
grated development environment (HIVE) that supports efficap-
plications of micro-specialization across this spectrukive ap-
plied micro-specialization to the PostgreSQL DBMS, realizsix

bee routines, that of theCL and SCL routines for relation bees,
the GCL and SCL routines for tuple bees, and ti®/P and EVJ
routines for query bees. We studied the performance of the re
sulting bee-enabled PostgreSQL, focusing on CPU perfacean
complex analytic queries, and performance of random madific
tions. The bee-enabled PostgreSQL achieves around 12%\spr
ments over the stock version, simultaneously in I/O and R, t
with the TPC-H analytic queries; and about 7% on the update-
intensive TPC-C benchmark.

We plan to further investigate the many opportunities inroyc
specialization within PostgreSQL to ascertain the fullgmoial of
this approach, for example, to identify addition types afheSince
micro-specialization is orthogonal to other DBMS spegitiion
approaches, we can apply this approach to other archies;ttor
instance, a column-oriented DBMS. We also plan to consiilgra
enhance the HIVE bee development environment. Specifjaadly
will design the necessary visualization components foeatiffe
user interaction. For instance, we plan to integrate HIVEthe
Eclipse IDE to enhance source code analysis. Eventuallyyille
incorporate the (remaining) steps into HIVE and move towana
tomation of applying micro-specialization.
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