
J. LOGIC PROGRAMMING 1993:12:1{199 1A SIMPLE APPROACH TO SUPPORTINGUNTAGGED OBJECTS IN DYNAMICALLYTYPED LANGUAGES �
PETER A. BIGOT AND SAUMYA K. DEBRAY� In many modern high-level programming languages, the exact low-levelrepresentation of data objects cannot always be predicted at compile time.Implementations usually get around this problem using descriptors (\tags")and/or indirect (\boxed") representations. However, the
exibility sogained can come at the cost of signi�cant performance overheads. Theproblem is especially acute in dynamically typed languages, where both tag-ging and boxing are necessary in general. This paper discusses a straight-forward approach to using untagged and unboxed values in dynamicallytyped languages. An implementation of our algorithms allows a dynami-cally typed language to attain performance close to that of highly optimizedC code on a variety of benchmarks (including many
oating-point intensivecomputations) and dramatically reduces heap usage. �1. IntroductionIn many high level programming languages, the representation of a data object ata particular program point cannot always be predicted in a precise way at compile�A preliminary version of this paper appeared in Proceedings of the 1995 InternationalSymposium on Logic Programming. This work was supported in part by the National ScienceFoundation under grant number CCR-9123520. The �rst author was also supported by a AT&TFoundation Fellowship.Address correspondence to Saumya K. Debray, Department of Computer Science, TheUniversity of Arizona, Tucson, AZ 85721, USA. E-mail: debray@cs.arizona.eduTHE JOURNAL OF LOGIC PROGRAMMINGc
Elsevier Science Publishing Co., Inc., 1993655 Avenue of the Americas, New York, NY 10010 0743-1066/93/$3.50

2 time. In dynamically typed languages, such as Icon, Lisp, Prolog, and Scheme, thetype of a variable may not always be statically known (and, indeed, may changefrom one program point to another). In languages with data
ow synchronization,such as GHC, Strand and Id, the value of an expression may not be available ata program point because it has not yet been computed. The code generated forprograms in such languages must, therefore, be able to deal with di�erent kindsof representations that may arise at runtime. There are two di�erent but relatedissues that arise here. First, it is necessary to be able to determine how a bitpattern, encountered at runtime, is to be interpreted|e.g., as a pointer or as avalue. Second, di�erent representations or data types may have di�erent sizes: forexample, a pointer to a double-precision
oating point value may take less spacethan the value it points to.The usual way to address the �rst problem is to attach a descriptor to eachvalue, to specify how its bit pattern is to be interpreted: such descriptors areusually referred to as tags [18, 31]. The second problem is usually handled bymaking values of di�erent sizes \look the same" by manipulating pointers to themrather than the values themselves: such an indirect representation is often referredto as a boxed representation. In general, operating on values in languages suchas these may involve manipulating tags and/or a level of indirection. It may bepossible to avoid some of this extra work in clever implementations (e.g., tags can beelided in SML/NJ by relying on compiler-generated symbol table information [1]),or to encode the information in some clever way to reduce its cost (e.g., in commoninteger arithmetic operations in many Lisp systems (e.g., see [21]), and dereferenceoperations in some Prolog systems [34, 35]). In general, however, it is not possibleto avoid altogether a performance penalty for tagging/boxing of objects.The performance overhead of dealing with tags and boxes is especially seriousin dynamically typed languages, where both tagging and boxing are necessary ingeneral. Steenkiste and Hennessy's experiments with Lisp on a RISC system, on aset of non-numerical benchmarks, indicate that the programs spent about 22% oftheir time on tag handling [32]. This �gure would likely be much worse in numer-ical computations, because implementations of dynamically typed languages veryoften represent
oating point numbers as boxed values (see, for example, [4, 7, 9]).This incurs a signi�cant performance penalty, for a number of reasons. First, since
oating point values are heap-allocated, numerical computations involving boxed
oating point values fail to exploit hardware registers e�ectively, and generate alot more memory tra�c. The allocation of fresh heap cells may also result in addi-tional checks for heap over
ow. Finally, the high rate of memory usage also resultsin increased garbage collection and adversely a�ects cache and paging behavior.The tag-handling overheads for data structures such as lists|which account forthe bulk of the overall tag management costs in Steenkiste and Hennessy's study[32]|can, at least in principle, be reduced by program transformations such asdeforestation [36], which reduce the number of intermediate data structures cre-ated. However, it is not clear that analogous improvements are readily possible fornumerical computations.Curiously, the question of maintaining untagged and/or unboxed objects, par-ticularly
oating point values, has received little attention in the logic program-ming community. To the best of our knowledge, all existing systems, including

3high-performance implementations such as Aquarius Prolog and SICStus Prolog,maintain
oating point values in boxed form. Very often, authors either simplyignore the question of optimizing numerical computations, or explicitly give up onattaining good performance on such computations in logic programming languages(e.g., in discussing the Strand system, Mattson [25] states: \Concurrent logic pro-gramming languages are not well suited for the numerically intensive operationscommon in scienti�c programming. Strand shares this shortcoming. . . "). In thispaper, we consider compile-time and runtime aspects of supporting untagged andunboxed values in languages that normally require data to be tagged and possiblyboxed: in particular, we focus on numerical values. The main contribution of thiswork is its simplicity: we use a simple extension to the (intra-procedural) regis-ter allocator for intra-procedural untagging optimizations, and show how the ideaextends in a straightforward way to allow untagged objects to be passed across pro-cedure boundaries. The execution model we assume is described in Section 2.1. Thetechniques described here have been implemented as part of the jc system [19], animplementation of a logic programming language derived from Janus, available byanonymous FTP from ftp.cs.arizona.edu. The resulting performance improve-ments are quite substantial: heap usage is reduced dramatically, and speed improvesto the point where many programs involving substantial amounts of numerical com-putation attain speeds comparable to that of C code written in a \natural" C styleand optimized at the highest level possible.A Note on Terminology: To reduce tiresome repetition, we will use abuse terminol-ogy in the discussion that follows and use the term \untagged" to refer to values intheir native machine format, i.e., to values that are untagged and (where necessary)unboxed. We hope this does not cause any confusion.2. Background2.1. The Execution ModelWe assume that we have a dynamically typed language with a garbage-collectedheap area. Our assumptions about runtime structures are fairly weak, and generallyapplicable to a reasonably wide variety of languages: for example, even though werefer to \stack frames" in Section 3.3, our approach does not require that these beallocated in a separate \stack area" in memory or that they be manipulated in aLIFO fashion: it is necessary only that the garbage collector be able to identifythese objects correctly (which it must be able to do in any case), and that it beable to determine, for any such frame, the corresponding procedure (this can bedone fairly easily, with very little additional work at runtime).For simplicity, we assume that there is a �xed prede�ned set of types that maybe maintained in untagged form. Our implementation allows untagged values to bestored in stack frames, but not on the heap. The restriction is imposed to satisfy therequirements of the garbage collector: since an untagged value has no descriptorassociated with it, the garbage collector must be able to identify and deal withuntagged values (and not confuse, for example, untagged integers with pointers).

4 As discussed in Section 3.3, this is straightforward to do for values on the stackbecause of the predictable structure of stack frames. If the tagging scheme used byan implementation is rich enough to support descriptors that encode the structureof (some types of) heap-allocated objects, in particular information about elementsthat are untagged, then the problem with identi�cation of untagged values on theheap goes away. In this case, our approach can be readily extended to handleuntagged values on the heap.An important consideration in the context of logic programming languages isthat of dereferencing. In most such languages, there may be a pointer chain, whoselength can be unbounded in general, between a variable and the value it is boundto: in order to determine the value of that variable, this pointer chain must bedereferenced. This requires the ability to distinguish pointers from values that arenot pointers. This is straightforward when all values are tagged with descriptors,but becomes di�cult in the presence of untagged values. Therefore, in order tosupport untagged values, it is necessary to ensure that the compiler is (i) awareof the exact length of any pointer chain to an untagged value; and (ii) able tocommunicate this information to the garbage collector at any program point wheregarbage collection might occur. Compile-time analyses to estimate the lengths ofpointer chains have been investigated by several authors [33, 35]. In our implemen-tation, we get around this problem by disallowing pointer chains of non-zero lengthto untagged values (i.e., a value that can have pointers to it is not kept in untaggedform).Finally, in order for the compiler to decide that a value can be maintained in un-tagged form at a particular program point, it must have a certain minimumamountof information available about that value. At the very least, type information thatis precise enough to allow the compiler to use operations specialized to a particu-lar representation is necessary. For example, in general it is not enough to knowthat a value will be a number|we need to know whether it will be an integer or a
oating point value. Even this may not be enough if the implementation supportsdi�erent varieties of integers or
oating point values (e.g., �xnums, bignums, etc.),as is the case in Common Lisp and some Prologs. Moreover, depending on thelanguage, the \type" of a value may not be enough to determine its machine-levelrepresentation at a particular program point. In a concurrent logic programminglanguage, for example, knowing that a variable has type integer may not be enoughto determine whether, at a particular program point, its value can be guaranteedto have been computed, or whether it may still be unbound. However, the detailsof how information about types is collected|e.g., from programmer annotations orvia data
ow analysis|as well as any auxiliary information, e.g., a guarantee thatthe value of a variable will be available at a program point, are orthogonal to thesubject of this paper. Here we assume only that this information has been obtainedand is available for use by the compiler; the interested reader is referred to [15] fora discussion of the data
ow analysis used in our implementation for this purpose.

52.2. The Implementation ContextThe framework in which the work described here has been implemented is jc [19],a translator for a committed-choice logic programming language that, in its presentincarnation, closely resembles Strand [16]. For the purposes of this paper, it su�cesto note that it is a �rst-order dynamically typed committed choice language. Sourceprograms are read by the jc translator, analyzed and subjected to various low leveloptimizations, and �nally converted into abstract machine code. The abstractmachine code is embedded into the body of a C function and expanded through theuse of macros to C code which implements the instructions of the abstract machine.Each operation in the virtual machine has a wholly generalized version that candeal with arbitrary tagged operands. When type information is available at com-pile time, the compiler can emit specialized versions of certain operations wheretype tests on the operands have been removed. To reduce the complexity of theabstract machine, our implementation requires that the operands of the specializedversions of an operation accept operands only of the same type: for example, wehave a version of addition which expects two integer operands and one that ex-pects two
oating point operands, but we do not allow addition of an integer anda
oat except within the most general operation. Each (specialized version of an)operation has two type values associated with it: that of the operands it is expect-ing, and that of its result (in general, the type of the result of an operation maybe di�erent from that of the operands). Type information is determined for eachoccurrence of a variable based on an ad hoc analysis that examines programmer-provided annotations, the variable's origin, and the operations performed on it, andis propagated to provide type information about intermediate values. Obviously,specialization of operations to omit unnecessary type tests can be done regardless ofwhether untagged values are used outside the internals of the operations. However,in cases where both the operands and the result have an untagged representation,we can further specialize the operation and create a version that eliminates therepresentation conversion phases entirely, resulting in a direct application of theunderlying operation to the untagged operands. We wish to use these versions ofthe operations wherever possible, because they have the least overhead.Input parameters are passed to procedures in registers. The jc system providesfour kinds of general-purpose registers: tagged registers, which hold tagged values;address registers, which hold untagged pointers, e.g., into arrays or lists; integerregisters, which hold untagged integer values; and
oating point registers, whichhold untagged
oating point values. We use a cost-based model to decide whether aparticular output should be returned in memory or in (tagged or untagged) registers[5].1 To meet the analysis requirements of Section 3.1 and allow the use of untaggedregisters for parameter passing requires a combination of mode analysis, whichidenti�es the input and output arguments of a procedure; suspension analysis, whichidenti�es procedures that can be guaranteed to not suspend during execution; andtype inference. This information is available under the assumptions in Section 2.1.1The discussion in [5] considers returns in memory and tagged registers only. Since then, wehave extended our implementation, and the associated cost model, to handle untagged registerreturns as well.

6 Representation Analysis for a Program.1. Use inter-procedural representation analysis to determine the representa-tion required of input and output arguments for each procedure.2. Use intra-procedural representation analysis to determine the representa-tion(s) required of each variable in each clause of each procedure.Inter-Procedural Representation Analysis.1. [Identi�cation of Candidates for Untagged Representation] For each pro-cedure p, use information obtained from mode, type, and non-suspensionanalyses to determine which arguments can be passed in untagged form.2. [Determination of Argument Placements] Use the cost model of [5] todetermine which output arguments should be returned in registers.3. [Determination of Argument Representations] If an argument is a candi-date for untagged representation (step (1)), and will be passed in a register(input arguments are always passed in registers; the passing of output ar-guments is determined in step (2)), then it is determined to require anuntagged representation. Otherwise, it requires a tagged representation.Intra-Procedural Representation Analysis. For each clause do:1. [Initialization] Use the results of inter-procedural representation analysis todetermine the representation required of each variable that appears as aparameter in the head or as an argument in the body. Use this informationto determine the representations required for other variables that arede�ned or used by primitive operations in the clause body.2. [Propagation] For each operation op(�t) in the clause do:If �t must be explicitly untagged before the operation can be performed,then: each operand for the operation requires an untagged representationand op(�t) is specialized to operate on untagged operands.Otherwise, if explicit untagging is not necessary, then: let Nt (Nu) be theno. of operands in �t that are available in tagged (untagged) form.If Nu > Nt then each operand for the operation requires an untaggedrepresentation and op(�t) is specialized to operate on untagged operands;otherwise each operand for the operation requires a tagged representationand op(�t) is left in its generic form.3. [Determination of Representation Conversions] For each variableX, ifX re-quires a representation R but is not available in representation R in theclause, then insert the appropriate representation conversion operationjust before the �rst use of X that requires representation R; mark subse-quent occurrences of X as being available in representation R.Figure 1. Representation Analysis: Overall Algorithm

73. Representation AnalysisOur representation analysis algorithm is summarized in Figure 1. First, inter-procedural representation analysis is used to determine how input and output ar-guments for each procedure will be passed. This uses a cost model, based onthat described in [5], to determine the representation and placement of outputvalues. This �xes the representation of input and output parameters to each proce-dure, and therefore determines the representations of the corresponding variables ineach clause for these procedures. Starting with these representation choices, intra-procedural analysis is then used within each clause to determine the representationof each variable at each point within the body of the clause. This phase proceedsin tandem with the generation of abstract machine code.The decision to have inter-procedural representation analysis precede intra-procedural representation analysis may seem strange, but it is motivated by the80-20 rule (\80% of a program's execution time is spent in 20% of the code"),which suggests that the primary bene�ts of using untagged values are likely tocome from maintaining values in untagged form through the execution of loops. Inthe languages we are concerned with, loops are realized using tail recursion. Ourapproach therefore amounts to �rst deciding which values can be maintained in un-tagged form through the execution of loops, and then propagating these decisionsto other program points via intra-procedural representation analysis. It turns outthat an added bene�t of doing the analyses in this order is that the order in whichprocedures are processed does not a�ect the code generated, which helps to keepthe overall algorithm simple.What information do we need to determine which values can be maintained inunboxed form through the execution of a loop? Consider the structure of a typicaltail recursive procedure:p(�x; �y) :� q0(�x; �y1); q1(�y1; �y2); : : : ; qn(�yn; �yn+1); p(�yn+1; �y).p(�x; �y) :� r(�x; �y):During the execution of the loop body, described by the �rst clause above, theinput arguments �x are used to compute intermediate values �y1, which in turn areused to compute other intermediate values �y2, and so on. In general, values may be\threaded through" the loop body, and some or all of the intermediate values maybe returned from calls to other procedures. To get the most out of maintaininguntagged values, therefore, we need to be able to pass input values to procedures inuntagged form, and have them return their outputs in untagged form as well. Asan example, consider the following procedure, taken from a program to computeBessel functions:j1(N, X, A, Y) :-N > 0, X1 := -X*X/4, pow(N, X1, U), factsq(N, V),A1 := A + X*U/(2*V*(N+1)),N1 := N-1,j1(N1, X, A1, Y).j1(0, X, A, Y) :- Y := A + X/2.

8 The value of the variable U is computed by the procedure pow/3, while that ofV is computed by factsq/2. In order to maximize the bene�ts of the untaggingoptimization, we should pass the arguments to these procedures in untagged form,and have them return the values of their output arguments in untagged form aswell.Our aim, then, is to determine when the input arguments to a procedure can bepassed, and the output arguments returned, in untagged form. The �rst of thesetwo pieces of information, namely, the representation of input arguments, wouldintuitively seem to be computable using some form of type analysis. However, thesecond piece of information seems harder to obtain, for reasons peculiar to logicprogramming languages. Implementations of logic programming languages typicallypass all arguments into a procedure in registers, with each uninstantiated variable|usually corresponding to an output argument|passed by reference, i.e., as a pointerto the cell occupied by that variable. An output value is returned by binding anuninstantiated variable to a value, i.e., by writing to the corresponding memorylocation. Historically, most logic programming languages have been dynamicallytyped: for such languages, while it may be possible to determine, at runtime, thetype of an untagged value stored in a particular stack slot (see Section 3.3), it isvery di�cult to determine the type of an untagged word on the heap. A garbagecollector may therefore be able to deal with untagged values on the stack, butnot with untagged values on the heap.2 Moreover, it is di�cult, in general, topredict whether a variable is resident on the stack or on the heap|for example, astack-resident variable may point to a value on the heap, or be moved to the heapand become heap-resident in connection with tail call optimization. As a result,if output values are returned in the traditional way, i.e., by writing to a memorylocation, it is di�cult to predict at compile time whether the memory addresspassed to a procedure will refer to a location on the stack or on the heap, andtherefore whether it can be returned in untagged form and be guaranteed to notconfuse the garbage collector. This problem disappears, however, if an untaggedvalue is returned in a (untagged) register. We therefore restrict untagged returnvalues to those that can be returned in registers. Our algorithm for representationoptimization therefore relies, in a very fundamental way, on returning values inregisters.3.1. Inter-procedural Representation AnalysisPrevious research has indicated that returning values in registers rather than storingthem into memory can have a signi�cant impact on execution speed [5, 35]. Giventhat operations within the body of a procedure can be performed on untaggedrepresentations, this suggests that parameters should be passed and returned inuntagged form as well where it is legitimate and pro�table to do so. If the mode ofa parameter cannot be determined to be strictly input or output, it must be passedor returned in tagged form. The choice of how parameters for a procedure shouldbe passed|in registers or in memory, and in tagged or untagged form|must be2This is not true of statically typed languages, however, and several authors have proposedtagless garbage collection schemes for statically typed languages (see, for example, [1, 17]).

9made before any call to the procedure is generated, because it is necessary, for codegeneration, to know where to place inputs and where to expect outputs.The identi�cation of arguments to a procedure that are eligible to be passed inuntagged form proceeds as follows. An input argument to a procedure p can bepassed in an untagged register only if the de�nition of p takes a unique type � forthe corresponding parameter, the type � admits an untagged representation, andthe corresponding argument at each call site for p has type � . If the callee takesa unique type � for a parameter and this type admits an untagged representation,but the corresponding argument at a particular call site may have a value of adi�erent type, it is possible to preserve the use of untagged inputs by generatingadditional code at the call site to test the type of that argument and handle it asappropriate, e.g., to carry out representation conversion and pass the result in anuntagged register if this is possible, and to fail otherwise. Basically, this amountsto hoisting the type test for � from the callee to the call site, and can be thoughtof as an instance of call forwarding [13]|it converts what would be failure insidethe called procedure to failure at the call site. Alternatively, the code generatedfor the callee can have multiple entry points, corresponding to di�erent sets ofarguments that need to be untagged: this has the advantage of not duplicatingthe untagging code at multiple call sites, but can become unwieldy if the sets ofarguments that need untagging cannot be totally ordered by set inclusion. If theargument at any call site cannot be guaranteed to be de�ned, e.g., due to possiblesuspension, the parameter must be assigned a tagged register. An output argumentmay be returned in an untagged register provided that non-suspension analysis [15]has shown that the value will be de�ned (i.e., not an unbound variable) when theprocedure �nishes, and type analysis has shown that it will have a type that hasan untagged representation.These restrictions embody the necessary conditions for the use of untagged reg-isters in parameter passing. Our current implementation passes input argumentsin untagged form whenever these restrictions are satis�ed. The representation ofoutput values is determined using a low level cost model that is an extension of thatdescribed in [5]: if the cost model indicates that it is pro�table to return an outputargument in a register, and it is possible to return that argument in untagged form,then it is returned in an untagged register. While it is possible, in principle, thatin some cases it may be better to allow parameters to be passed in tagged registerseven when the above restrictions are satis�ed (e.g., when they will immediately bestored into the heap), our experimental results indicate that the simple approachof using untagged registers wherever feasible yields reasonable performance in mostcases.3.2. Intra-procedural Representation AnalysisIn any compiler for a high-level language, the register allocator has to keep trackof the location where a variable resides|in a register or in memory|in order togenerate correct code. Now suppose we want to maintain objects in untagged formin a dynamically typed language: obviously, it is necessary to extend the intra-procedural register allocator to track the availability of values in untagged form.

10 Our intra-procedural representation analysis is based on a very simple extensionto the register allocator. Recall that variables (except in certain stack slots) arealways stored in memory in tagged form. When the value of a variable is loadedinto a register for expression evaluation, the chosen register is associated with thatvariable, so that future references can use that register. The crucial extension is topermit the same variable to simultaneously be associated with other registers, someof which may be untagged. Therefore, just as tagged registers are a \cache" forvalues normally stored in memory, so too are untagged registers a cache for valuesthat would otherwise be tagged. The local register allocator serves as a cachedirectory by noting that a particular variable is available in both tagged register iand (say) integer register j.The decision as to whether a particular operation should be specialized is madeat the time the abstract machine code is generated. We examine the operandsto determine the most speci�c type which describes them, by considering typeinformation provided by the compiler, as well as any untagged registers assignedto the operand by previous operations. If the operand types admit an untaggedimplementation of the operation, we must then decide whether it should be used,by examining the availability of the operands in the corresponding untagged form.When the operation cannot work directly on the tagged operands, as with boxed
oating point representations, we automatically use the untagged version. Therationale for this is that the tagged operation will do the untag and unbox con-versions, perform the operation, and box the result, leaving neither operands norresult around in untagged registers to be used for future operations. If the un-tagged version of the operation is used, the conversion phase will be performedexplicitly on all operands that are not already loaded into registers of the appro-priate type, and the result will not be converted to tagged form immediately. Inthe best case, this means the operands and result will be around for further use inuntagged operations without additional conversion. In the worst case, the represen-tation conversions that would have been done inside the operation have been madeexplicit: since we compile to native code rather than to byte code, the amount ofwork done is the same whether the representation conversions are made explicit inthis way or performed implicitly inside the generic operation.However, when the operation can be performed directly on the tagged repre-sentation, as in the case of (small) integers, there is a tradeo�. On the one hand,explicitly converting the operands to untagged form may allow us to use the un-tagged operands or result in future operations that could bene�t from having themin untagged form. On the other hand, the extra conversion operations and possibleincrease in register pressure required to keep multiple representations live couldoutweigh the bene�ts of using untagged values. It is plausible that a detailed costmodel could be devised to determine exactly when the untagged or tagged versionis to be preferred, taking into account relative execution frequencies of di�erentbranches and the overhead of preserving tag information when the operation isperformed on the tagged representation (see, for example, [27]). However, in manycases, the overhead of preserving tag bits when the operation is performed directlyon the tagged values is small or non-existent. For example, jc, like many Lispsystems, uses the lowest 2 bits of a word for the tag, and a bit pattern of 00 forintegers. This allows addition and subtraction of tagged integers to be carried out

11with no representation conversions on the operands or the result, and multiplicationand division with only simple shifts. The performance bene�ts of avoiding theseoperations do not seem to warrant a complex analysis.Instead, we rely on a simple heuristic which seems to perform reasonably well.We note that, although such operations may be performed on the tagged or un-tagged form with roughly equal cost, if at any point the result is stored into theheap or any other memory location that is not restricted to untagged values, theresult must be stored in tagged format. As such, we have a preference for using thetagged form. We choose to use the untagged version of the operation only when thenumber of operands that are available in untagged form strictly exceeds the num-ber which are available in tagged form: in that case, the assured need to do moreconversions before the operation outweighs the possibility of having to convert theresult in the future.3 Intermediate results from previous operations are generallyavailable in only one form; availability of variable operands in a particular formis determined by seeing what registers the variable is loaded in. Since the taggedrepresentations in these cases do not require boxing, constants can be representedin either tagged or untagged form by emitting the appropriate encoding at compiletime, so do not contribute materially to the decision.3.3. Garbage Collection IssuesThe need to preserve values across procedure calls which would destroy registers,or to free registers for use in expression evaluation, requires that values be savedin the activation record of the procedure. Since we have gone to some trouble toload values in untagged form, it would be convenient to save them that way, ratherthan having to tag and untag them. This requires that untagged values be allowedto reside in the stack frame.The structure of a stack frame in jc is shown in Figure 1. The decision as towhether a stack slot assigned to a variable is tagged or untagged is made at thetime the slot is reserved: generally, at the point the value needs to be stored. Wechoose to place a value in an untagged slot only if it resides in an untagged register,and does not also reside in a tagged register. The �rst requirement guarantees thatat the storage point we have a value to save without having to convert it. Thesecond is an e�ort to preserve boxed values, so that if we later need that valuein tagged form we do not have to explicitly reconstruct the tagged form againfrom an untagged representation (boxing a value generally requires allocating heapstorage|and therefore possibly a heap over
ow check|followed by one or morewrites to memory; this is considerably more expensive that an unboxing operation,which generally involves only one or two memory reads). While it is possible tostore both the tagged and untagged representations of a particular value, this doesnot appear to be pro�table, since the extra memory operations required by the3Although it may appear that untagged values will never be introduced if this rule is used, infact untagged values arise from several sources, including primitive operations such as taking thesize of an array, conversions from values that have boxed representations, and untagged input andoutput parameters to the procedure being considered.

12
resumption addressprevious frameframe sizeownertagged valuesuntagged integersuntagged
oatsuntagged addresses

���
�

���
�
high address
low address?-stack pointer�6 Figure 1. Structure of a Stack Frame in jcstores and loads are likely to outweigh the cost of an extra untag operation whenthe value is needed again.Each stack slot has a type associated with it, which indicates whether it holdsa tagged or untagged value, and what kind of value. The type of a slot is �xedover the execution of the procedure, but the assignment of a stack slot to variablesmay be di�erent at di�erent points in a procedure|i.e., we reuse stack slots fordi�erent values of the same type where possible. However, we do not attempt tocompress the frame by reusing space of one type to hold values of a di�erent typeas storage requirements change over the lifetime of a procedure. To do so wouldcause the frame layout to change dynamically during execution, complicating thecommunication of layout information to the garbage collector. After intermediatecode generation is complete, the stack frame is rearranged so that slots of thesame type are adjacent to each other in memory and the addresses in the code areupdated to re
ect the rearrangement and note where untagged values require morespace than tagged values. When a stack frame is allocated on procedure entry, anindex denoting the procedure is stored in the frame, in the slot labelled \owner" inFigure 1: the garbage collector will use this index to retrieve the layout informationfrom a global table and use this to avoid misinterpreting the untagged values whenreclaiming heap space.4. Experimental ResultsTo determine the e�cacy of the untagged support mechanism described here, bothC and jc implementations of a set of programs were timed on a Sun SPARC IPC

13running Solaris 2.3, with gcc 2.6.3 (invoked with -O2 -fomit-frame-pointer) asthe C compiler for the C code emitted by jc, and gcc 2.6.3 (invoked with -O2-fomit-frame-pointer) and cc (CDS SPARCompilers version 2.0.1, invoked withboth -O2 and -O4) as the C compilers for the native C programs. The bench-marks used were the following: aquad performs a trapezoidal numerical integrationR 10 exdx using adaptive quadrature and a tolerance of 10�8; bessel computes theBessel function J10(2:0); binomial computes the binomial expansion P30i=0 xiy30�iat x = y = 1:0; chebyshev computes the Chebyshev polynomial of degree 10000 at1; e evaluates e = 2:71828 : : : by computing the sum of the �rst 2000 terms of theseries 1+ 11! + 12! + 13! + : : :; �t is an iterative one-dimensional fast Fourier transformprogram, adapted from [28], that computes the fast Fourier transformation andits inverse on a vector of size 64; �b computes the Fibonacci value F (16); fmat-mult multiplies two 20 � 20
oating-point matrices; log computes ln(1:999) usingthe expansion ln(1 + x) = Pi�0(�1)i+1xi=i, to a tolerance of 10�6; mandelbrotcomputes the Mandelbrot set on a 17 � 17 grid on an area of the complex planefrom (�1:5;�1:5) to (1:5; 1:5); mcint uses Monte Carlo integration to estimate themass of a body of irregular shape (adapted from [28]); muldiv exercises integermultiplication and division, doing 5000 of each; pi computes the value of � to aprecision of 10�3 using the expansion �4 = 1 � 13 + 15 � 17 + � � �; sum adds theintegers from 1 to 10,000|it is essentially similar to a tail-recursive factorial com-putation, except that it can perform a much greater number of iterations beforeincurring an arithmetic over
ow; tak, from the Gabriel benchmarks, is a heavilyrecursive program which does integer addition and subtraction: the query executedis tak(14; 12; 6;); and zeta computes the Euler-Riemann zeta function, de�ned bythe series zeta(x) = 1 + 2�x + 3�x + � � � (where x is real-valued), at x = 2:0, to atolerance of 10�3. For the discussion here, it su�ces to note that �b, muldiv, sumand tak operate solely on integer values, bessel combines integer and
oating-pointoperations, and the remainder are primarily
oating-point benchmarks. Only the�t, fmatmult, and mandelbrot programs involved compound data structures: �t im-plemented updatable arrays using binary trees, and fmatmult and mandelbrot usedtwo-dimensional arrays. The code for each benchmark was written in a style natu-ral to the language. Where feasible, iteration was used to code loops in C, while tailrecursive procedures performed the analogous operation in jc. Wherever possible,the C programs used were taken from code written by C programmers in othercontexts: for example, the C code for fmatmult was taken from the Stanford bench-mark suite by J. Hennessy, while that for mandelbrot was taken from a program byG. Wilson for a textbook. With the exception of a few benchmarks (aquad, bessel,binomial, fmatmult, mandelbrot, and zeta), where the natural implementation re-quired support functions (e.g., to compute factorials), the C versions were singlefunctions. Because jc supports only single precision
oating point calculations, theC versions were carefully coded to ensure that all constants were treated as singleprecision by the C compiler, avoiding unnecessary and costly precision adjustmentsin the C version.Tables 1 and 2 summarize the experimental results for these benchmarks: theformer shows the performance improvements due to the use of unboxed values,while the latter compares the speed of the resulting system with optimized C code.Execution times were obtained using the gettimeofday(2) system call to obtainmicrosecond-resolution measurements of execution time, with the testing being the

14 Program Execution Time (�secs) J/gcc:2 J/cc:2 J/cc:4J gcc:2 cc:2 cc:4aquad 20383 16604 28883 26433 1.228 0.706 0.771bessel 13984 27193 36718 36893 0.514 0.378 0.377binomial 5538 5075 8894 6098 1.091 0.623 0.908chebyshev 8884 7207 18067 18065 1.233 0.492 0.492e 9681 9392 10148 10154 1.031 0.954 0.953�b 4483 4727 4598 4584 0.948 0.975 0.978fmatmult 22926 8748 15533 14894 2.621 1.476 1.539log 16580 17487 35029 35029 0.948 0.473 0.473mandelbrot 24109 19403 78423 46195 1.242 0.307 0.514muldiv 12447 10605 11688 11669 1.174 1.065 1.067pi 12146 11998 22528 22520 1.012 0.529 0.529sum 1692 1606 1606 406 1.055 1.055 4.172tak 5343 4384 4085 4070 1.218 1.298 1.303zeta 18858 18029 38962 38792 1.046 0.484 0.486Harmonic Mean : 1.051 0.624 0.709Key : J : jc -O; gcc:2 : gcc -O2; cc:2 : cc -O2; cc:4 : cc -O4Table 1. The speed of jc compared to optimized Conly active process. For each benchmark program, a single \run" consisted ofexecuting a test query 100 times in a tight loop and taking the shortest measuredquery execution time: the execution times reported here are 1/100 of the timesobtained from such runs. Queries were designed to be large enough to exercisethe programs, yet small enough to able to execute in a single timeslice with nosystem interruptions; taking the minimum measurement avoids bias when one ormore query runs nonetheless happened to be interrupted. A single experimentconsisted of a single run of each benchmark program, with the di�erent benchmarksexecuted in random order within each experiment so as to avoid systemic bias fromdisk and memory cache e�ects. Nine such experiments were performed, and foreach benchmark the median execution time was taken. For a more fair comparisonwith C, garbage collection|which involves runtime tests on the heap pointer|was turned o� in jc, so the speed improvements measured do not take into accountreductions in garbage collection time due to reduced heap usage. There is a constantoverhead of 103�sec in the jc times compared with 6�sec for C compiled with gcc,due to the timing method and setup required for the benchmark call.Compared to optimized C code, the baseline performance of our system|withregister returns permitted, but no untagging optimizations|is fairly good: it is,on the average, about 57% slower than C code compiled with gcc -O2, and about23% slower than that using cc -O4.4 It is easy to take a poorly engineered systemwith a lot of ine�ciencies and get huge performance improvements by eliminating4Unless otherwise noted, all averages in this discussion refer to the harmonic mean.

15Program Memory Returns Reg+Mem. ReturnsT U U/T T U U/Taquad 48697 28187 0.579 37704 20383 0.541bessel 40428 13272 0.328 40400 13984 0.346binomial 4488 5747 1.280 4178 5538 1.326chebyshev 26823 8894 0.332 26825 8884 0.331e 12513 9655 0.772 12440 9681 0.778�t 26168 25517 0.975 26104 26638 1.020�b 11220 11073 0.987 4723 4483 0.949fmatmult 32287 22486 0.696 32857 22926 0.698log 35790 15744 0.440 35577 16580 0.466mandelbrot 81677 24438 0.299 88008 24109 0.274mcint 35374 16629 0.470 33832 15947 0.471muldiv 13870 12465 0.900 13902 12447 0.895pi 28840 11994 0.416 22764 12146 0.534sum 1692 1692 1.000 1692 1692 1.000tak 13637 13452 0.986 4760 5343 1.122zeta 40571 18097 0.446 40638 18858 0.464Harmonic Mean : 0.554 0.567(a) Execution Time (�secs)Program Memory Returns Reg+Mem. ReturnsT U U/T T U U/Taquad 30884 10255 0.3320 23332 544 0.0233bessel 689 418 0.6067 689 452 0.6560binomial 1208 249 0.2061 1026 6 0.0058chebyshev 30002 6 0.0002 30002 6 0.0002e 6005 6 0.0010 6005 6 0.0010�b 6389 6389 1.0000 5 5 1.0000�t 18669 16622 0.8904 18543 17364 0.9364fmatmult 20649 5049 0.2445 20649 5049 0.2445log 31494 12 0.0004 28866 6 0.0002mandelbrot 69533 654 0.0094 69533 654 0.0094mcint 26019 1019 0.0392 25495 17 0.0007muldiv 5 5 1.0000 5 5 1.0000pi 20007 9 0.0004 20007 6 0.0003sum 5 5 1.0000 5 5 1.0000tak 7121 7121 1.0000 5 5 1.0000zeta 34460 285 0.0083 34460 223 0.0065(b) Heap Usage (words)Key : T : tagged values; U : untagged valuesTable 2. Performance Improvements due to Untagged and Unboxed Objects

16 some of these ine�ciencies. The point of these numbers is that when evaluatingthe e�cacy of our optimizations, we were careful to begin with a system with goodperformance, so as to avoid drawing overly optimistic conclusions.The overall performance improvement obtained using untagged values is about45%. On average, the resulting programs are about 5% slower than C compiledwith gcc -O2, about 37% faster than cc -O2, and about 29% faster than cc -O4.5Moreover, jc outperforms cc on precisely those programs|namely,
oating-pointintensive computations|where one would expect a dynamically typed declarativelanguage to do considerably worse than a statically typed imperative language.Interestingly, two programs|binomial and tak|do signi�cantly worse using un-tagged values than using tagged values only. The problem arises from the e�ectsof using C as the back-end compiler for jc, and the resulting lack of control, injc, over hardware register allocation in the C compiler; a more controllable back-end would avoid such degradations.6 These observations|and the fact that thenumbers reported do not take into account performance improvements due to re-ductions in garbage collection time|imply that our execution time measurementsgive a conservative estimate of the true potential of these optimizations.A further bene�t of allowing untagged values can be seen in the decrease in heapusage. Table 2(b) separates out reductions in heap space usage due to register re-turns from those due to the use of untagged values. It can be seen that for everybenchmark that used boxed data types, there was a consistent and signi�cant re-duction in heap usage, both when outputs were returned in memory and when theywere returned in registers. In many cases, allowing output values to be returnedin untagged registers allowed the entire computation to be carried out without anyboxing operations at all, resulting in essentially trivial heap usage. (Not surpris-ingly, the use of untagged values makes no di�erence in the heap usage of integercomputations, though these programs can be seen to bene�t, in terms of heap us-age, from being able to return output values in registers.) For short queries of thesort given here, the decrease of heap space does not contribute signi�cantly to theexecution time, because the maximum heap space used still �ts easily within thedata cache. However, for longer-running programs, reducing heap usage by avoid-ing boxed temporary values can result in a signi�cant decrease in cache misses andgarbage collection overhead.The general algorithm described earlier uses a cost model to determine which5Since jc uses gcc as its back end translator, one might wonder whether this comparison withcc -O4 is \fair" or question what it proves. We claim that jc's use of gcc is purely a matter ofconvenience: we could, in principle, have achieved the same results by writing our own back endsand replicating all of gcc's technology in it. The point of this comparison, therefore, is merelyto show that careful attention to low level concerns can allow implementations of declarativelanguages to attain performance that is competitivewith the performance of imperative programswritten in an imperative style. We acknowledge, of course, that performance comparisons betweendi�erent languages are fundamentally dubious and very often have a strongly religious
avor, andcaution the reader against reading too much into these results.6While gcc version 2 provides extensions that provide some degree of user control over hardwareregister allocation, we do not use them at this time because they reserve a register for a variablefor the entire lifetime of the variable, and therefore do not give us a su�ciently �ne-grained controlover register assignment.

17Program Local(L) Args(A) Global(G) L/G A/Gaquad 44055 28187 20383 2.161 1.383bessel 30851 13272 13984 2.206 0.949binomial 4463 5747 5538 0.806 1.038chebyshev 15396 8894 8884 1.733 1.001e 11034 9655 9681 1.140 0.997�t 24897 25517 26638 0.935 0.958�b 11220 11073 4483 2.502 2.470fmatmult 28566 22486 22926 1.246 0.981log 29299 15744 16580 1.767 0.950mandelbrot 56867 24438 24109 2.359 1.014mcint 24224 16629 15947 1.519 1.043muldiv 13906 12465 12447 1.117 1.001pi 19421 11994 12146 1.600 0.988sum 1692 1692 1692 1.000 1.000tak 13636 13452 5343 2.552 2.518zeta 33692 18097 18858 1.787 0.960Harmonic Mean : 1.454 1.092(a) Execution Time (�secs)Program Local(L) Args(A) Global(G) L/G A/Gaquad 24107 10255 544 44.31 18.85bessel 30944 444 452 68.46 0.98binomial 1148 249 6 191.3 41.50chebyshev 10004 6 6 1667 1.00e 4005 6 6 667.5 1.00�t 16923 16622 17364 0.975 0.957�b 6389 6389 5 1278 1278fmatmult 12649 5049 5049 2.505 1.00log 20998 12 6 3500 2.00mandelbrot 31158 654 654 47.64 1.00mcint 8087 1019 17 475.7 59.94muldiv 5 5 5 1.00 1.00pi 15007 9 6 2501 1.50sum 5 5 5 1.00 1.00tak 7121 7121 5 1424 1424zeta 23317 285 223 104.6 1.28(b) Heap Usage (words)Table 3. Untagging Optimizations: Global vs. Local

18 Program Tagged (T) (�secs) Untagged (U) (�secs) T/Ubsort 16422 16425 1.000hanoi 15638 15478 1.010lr1gen 22473 22431 1.006nrev 7073 7072 1.000pascal 8998 9059 0.993qsort 11409 11409 1.000queen 6583 6585 1.000Harmonic Mean 1.001Table 4. The E�ect of Untagging Optimizations on Non-numerical Programsvalues may be returned in (unboxed) registers. As discussed above, this providesgood performance improvements. However, it has the disadvantage that it requiresnontrivial extensions to the compiler. It is reasonable to inquire to what extentperformance might be improved using restricted versions of our algorithm that re-quire minimal extensions to the compiler where untagged values are supported butno provision is made for returning values in registers. We next consider the twoextremes possible for such minimal extensions. The simplest, and most restricted,case uses purely local untagging: it maintains values in untagged form through thebody of a procedure if this is deemed useful, but values that are passed across pro-cedure boundaries (this includes values passed into tail calls) are passed in boxedform. At the other extreme, untagged values are allowed as input arguments toprocedures as well, though output values are returned in memory (and thereforeare represented in tagged form). The performance improvements resulting fromthese restricted versions of the untagging optimization are shown in Table 3, wherethe column marked \Local" gives the performance numbers resulting from purelylocal untagging; that marked \Args" refers to local untagging together with un-tagged arguments; and \Global" gives the performance using the general untaggingoptimization. It can be seen that for the benchmarks tested, purely local untaggingresults in an improvement of about 9% on the average compared to no untaggingat all. This is not insigni�cant, but the resulting programs are still considerablyslower|about 45% on the average|than those using the general optimization.However, when untagged arguments are allowed, performance improves consider-ably, and the resulting code is only about 9% slower than code using the generaloptimization. The reason for this is that the programs tested spend most of theirtime in simple loops, and these can be essentially fully optimized when untaggedinput arguments are allowed. We conjecture that this is true of most numericalprograms, with much of the execution time accounted for by loop computations,and that such programs can bene�t considerably even from the simple optimizationof allowing untagged local computations and input arguments.Another important consideration is the e�ect of untagging optimizations on non-numerical programs. As discussed earlier, our optimization relies greatly on beingable to maintain untagged values in registers. In an implementation that has ana priori �xed mapping from virtual machine registers to physical registers, this

19can cause some registers to be unnecessarily dedicated to untagged values, even forprograms where there is no opportunity for untagging optimizations, and this cancause a degradation in performance. The jc system avoids this problem by havingthe compiler generate untagged virtual machine registers (via C language declara-tions) only if it determines that there is some opportunity for maintaining values inuntagged form. The virtual machine registers so generated are mapped to physicalregisters based on estimated usage counts (currently this is done entirely by theC compiler), which means that even when an untagged virtual machine register isgenerated, it is allocated to a physical register only if it is used su�ciently manytimes to justify this. Experimental results for a number of small non-numericalbenchmarks are shown in Table 4. The programs used were the following: bsortuses bubble sort to sort a list of 100 integers; hanoi is the Towers of Hanoi program(adapted from an FCP program by S. Kliger): the numbers given are for hanoi (10);lr1gen is the core of an LR(1) parser generator; nrev is the naive reverse program onan input list of length 100; pascal is a benchmark, by E. Tick, to compute Pascal'striangle; qsort is a quicksort program, executed on a list of length 100; and queenis the n-queens program: the numbers given are for 6 queens. The numbers givenin Table 4 indicate that the performance of these programs, with and without theuntagging optimization, is essentially identical. This indicates that non-numericalprograms need not su�er a performance degradation due to the use of untaggedvalues. We believe that this conclusion extends also to larger programs, consistingof some components that are primarily numerical in nature and others that areprimarily non-numerical. The reason for this is that modern register allocation al-gorithms (see, e.g., [11]) base their decisions on the relative usage counts of variablesin di�erent regions of a program: a variable that is heavily used in one region of aprogram, but not in another, will be considered for placement in a register in the�rst region but not in the second. Using such algorithms, therefore, it is possibleto take advantage of untagging optimizations in those portions of a program thatcan bene�t from it, without having to su�er a performance degradation in thoseparts of a program that do not bene�t from the use of untagged values.Finally, there is the issue of the compile-time cost of implementing this optimiza-tion. We have not separately measured the time taken by the analysis algorithms,because data
ow analysis and optimization accounts for a very small part of theoverall compilation time. Because Janus programs are compiled to C code whichis then processed by a C compiler, most of the overall time for translation to theobject code is spent in I/O operations and in the C compiler (other systems thatcompile to C, e.g., KLIC [10], report similar experiences). As a result, there isno perceptible decrease in the overall compile time when data
ow analysis andoptimizations are switched o�.5. ExtensionsThe discussion thus far has not considered the question of backtracking, which isof fundamental importance in non-committed-choice logic programming languages,e.g, Prolog. In such languages, programs have to save a certain amount of stateat points that execution can backtrack to, and restore this information appropri-ately when backtracking actually takes place. The state information that is saved

20 typically consists of two parts: some machine status information, together withinformation about certain registers, kept in runtime structures commonly called\choice points"; and information about variables whose values need to be reset,maintained in an (usually separate) area called the trail. Conceptually, a choicepoint consists of one component that represents a �xed amount of machine statusinformation, and another component, of variable size, that represents informationabout the local state of a procedure, in particular its arguments. Components ofthe runtime system that are able to inspect the state of a running program, suchas garbage collectors, must then be able to identify choice points and correctlyinterpret (the variable-size component of) their structure.7 If untagged values aresupported, we must therefore be able to save untagged values when creating a choicepoint; restore untagged values when backtracking occurs; and be able to specify, forthe bene�t of the garbage collector, which components of a choice point representuntagged values.The simplest approach to handling untagged values in the presence of backtrack-ing would be to prohibit untagged arguments for any procedure that may createa choice point (this is a somewhat stronger requirement than determinacy). Thishas the virtue of simplicity, and may be acceptable in some limited contexts: forexample, this may be a reasonable option if we consider only untagged values fornumerical types, since traditional numerical programs tend to be deterministic. Aminor variation on this scheme is to allow procedures that may backtrack to takeuntagged arguments, as long as these are converted to tagged form before beingstored in a choice point. The problem with this is that we need to maintain afair amount of information about these values in order to restore the tagged valuesinto the appropriate untagged registers, and this negates the primary advantage ofallowing only tagged values in choice points, namely, simplicity.A less restrictive option is to allow untagged values to be stored in choice points.This makes it necessary to maintain information about which slots in the choicepoint correspond to untagged values, the type of each such value, and the registerfrom which the value originated. This can be done in at least two ways:1. The information can be kept in a data structure that is part of the symboltable entry for each (nondeterministic) procedure, similarly to the schemedescribed in Section 3.3 for stack frames. The disadvantage of this schemeis that this information must be interpreted during execution. This wouldmake backtracking a relatively expensive operation.2. For any given procedure, the untagged values that need to be saved andrestored at a choice point, and the register corresponding to each such value,will be known by the compiler. It can therefore generate code to save andrestore these values. This is likely to be considerably more e�cient thanhaving to interpret a data structure at runtime. This code can be generatedeither as a lightweight parameterless function that is called from each pointin a procedure where choice point manipulation occurs, or generated in-line7The garbage collector does not need to inspect the trail, since any variable recorded in thetrail is also accessible from some choice point [3].

21at each such point, depending on the relative importance of code size vs.execution speed.It is also necessary to communicate information about the structure of choicepoints to the garbage collector: this can be done, as suggested above, viathe symbol table of the procedure. In this case, since saving and restoringof untagged registers does not involve the symbol table, it is necessary onlyto store information about which slots in the choice point contain untaggedvalues, and the types of those values.Another issue of considerable importance for real applications is separate com-pilation. It is not easy to reconcile untagged values with separate compilation: asthe discussion thus far indicates, considerable cooperation and communication isneeded between two procedures if they are to pass untagged values between them-selves, and this is precisely what is absent in separate compilation. There are twoissues that have to be addressed: �rst, program analysis in the presence of sep-arately compiled code; and second, generating code to ensure that values can becommunicated correctly between the caller and callee, which reside in separatelycompiled modules. The �rst problem can be handled using techniques for composi-tional and/or incremental program analysis [8, 12]. There are two alternatives forhandling the second problem. If the di�erent modules of a program are compiledand loaded in sequence, so that the code generated for one module is availablewhile code is being generated for another module, then incremental optimization[8] using multiple entry points (see Section 3.1) can be used to avoid the overheadof passing tagged values across module boundaries where possible. An alternativewould be to generate multiple entry points for procedures that use untagged values,and use optimizations such as code hoisting and call forwarding [13] at link-time(see, e.g., [14, 29]) to redirect calls so as to avoid unnecessary tagging and untaggingwhere possible. While these techniques can be used to avoid passing untagged val-ues into a procedure, neither supports untagged return values in a straightforwardway. Given the discussion of Section 3 and the experimental results of Section 4,this can be a signi�cant limitation. Nevertheless, being able to pass untagged ar-guments across module boundaries at all would be a considerable improvement onour current implementation, which restricts inter-module calls to use only taggedvalues.6. Related WorkThe work that is probably the closest to ours is that of the Python compiler forCMU CommonLisp, which uses untagged representations for numeric objects wherepossible, including the passing of arguments and return values in function calls[23]. While our implementation does not currently allow untagged objects to beheap-allocated, CMU Common Lisp allows explicitly-typed array and structureslots (which are heap-resident) to contain untagged values, provided that all of thevalues in the array or structure can be guaranteed at compile-time to contain onlyuntagged values. The Python system also di�ers in the way it supports garbagecollection: it uses two di�erent stacks, one containing only tagged values and the

22 other containing only untagged values [24]. The speci�c algorithms used by thePython compiler for representation analysis are not, as far as we have been able todetermine, extensively documented; however, we believe that overall, due in partto linguistic aspects of Common Lisp, our algorithms are considerably simpler thanthose used by Python.The problem of generating e�cient numeric code for Lisp programs was consid-ered as far back as the MacLisp compiler [30] and the S-1 Lisp compiler [6]. Thesesystems used untagged representations for numbers in intra-procedural numericalcomputations, but used boxed (though not necessarily heap-allocated) values acrossprocedure boundaries. The representation analyses used by the S-1 Lisp compilerinvolved two passes over the intermediate representation|the �rst a top-down passto determine a \desired" representation, the second a bottom-up pass to determinea \deliverable" representation|and is considerably more complicated than thatdescribed here. An elegant algorithm for the optimal placement of representationconversion operations in a program
ow graph with execution frequency informa-tion, based on network
ow algorithms, was given by Peterson [27]: however, toour knowledge this algorithm has not been implemented. Metzemakers et al. dis-cuss the use of partial evaluation techniques at the intermediate code level for theremoval of redundant boxing/unboxing operations [26].More recently, the issue of maintaining values in untagged form has receivedconsiderable attention in the context of strongly typed polymorphic languages (see,for example, [20, 22]). However, this work relies on the underlying type system ina fundamental way, and is therefore very di�erent from ours: it involves makingboxed and unboxed representations of objects explicit at the source level using\representation types", and formulating boxing and unboxing operations as source-level transformations. The problem of garbage collection in tagless implementationsof such languages is discussed by a number of authors, including Appel [1] andGoldberg [17].7. ConclusionsMost implementations of dynamically typed languages have historically su�ered incomparison to statically typed languages because their very nature imposes over-heads even when working with consistently and uniquely typed programs. Theseoverheads are incurred in the process of converting values between the general\boxed" form, and the \unboxed" form on which the underlying hardware mustoperate. In systems where boxed values are heap-allocated, there is a furtherdegradation due to garbage collection time and the ine�cient use of the cacheas intermediate values are created, used once, and left behind.We have presented a discussion of simple heuristics which, when combined witha variety of analyses (in particular, mode, type, and non-suspension analyses) de-sired independently for other optimizations, and the extension of the local registerallocator to consider di�erent types of registers simultaneously, yield a speedup onnumerical programs, written in a dynamically typed language, of about 45% abovean already optimized compiler which did not attempt to maintain untagged values.

23The resulting programs run within 5% of the same programs written in C in anatural C style and compiled using gcc -O2, and are considerably faster than thecorresponding C code optimized using cc -O2 and cc -O4. In addition, heap use isalso reduced dramatically. The optimizations described here should be applicableto almost any implementation of a dynamically typed language.REFERENCES1. A. W. Appel, \Runtime tags aren't necessary", Lisp and Symbolic Computation2:153{162, 1989.2. A. Appel, Compiling with Continuations, Cambridge University Press, 1992.3. K. Appleby, M. Carlsson, S. Haridi and D. Sahlin, \Garbage Collection for Prologbased on WAM", Communications of the ACM vol. 31 no. 6, June 1988, pp. 719{741. ACM Press.4. R. L. Bates, D. Dyer, and J. A. G. M. Koomen, \Implementation of Interlisp onthe VAX", Proc. 1982 ACM Symp. on Lisp and Functional Programming, Aug.1982, pp. 81{87.5. P. A. Bigot, D. Gudeman, and S. K. Debray, \Output Value Placement in ModedLogic Programs", Proc. Eleventh International Conf. on Logic Programming, June1994, pp. 175{189. MIT Press.6. R. A. Brooks, R. P. Gabriel, and G. L. Steele Jr., \An Optimizing Compiler forLexically Scoped Lisp", Proc. SIGPLAN '82 Symp. on Compiler Construction,June 1982, pp. 261{275.7. R. A. Brooks, R. P. Gabriel, and G. L. Steele, Jr., \S-1 Common Lisp Implemen-tation", Proc. 1982 ACM Symp. on Lisp and Functional Programming, Aug. 1982,pp. 108{113.8. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla, \Data{
ow Analysis ofStandard Prolog Programs", Proc. European Symposium on Programming, April1996, pp. 108{124. Springer-Verlag LNCS vol. 1058.9. M. Carlsson, \The SICStus Prolog Emulator", Technical Report T91:15, SwedishInstitute of Computer Science, Sept. 1991.10. T. Chikayama, T. Fujise, and D. Sekita, \A Portable and E�cient Implementationof KL1", Proc. Int. Symp. on Programming Language Implementation and LogicProgramming, Sept. 1994, pp. 25{3911. F. C. Chow and J. L. Hennessy, \The Priority-Based Coloring Approach to RegisterAllocation", ACM Transactions on Programming Languages and Systems vol. 12no. 4, Oct. 1990, pp. 501{536.12. M. Codish, S. K. Debray, and R. Giacobazzi, \Compositional Analysis of ModularLogic Programs", Proc. Twentieth ACM Symposium on Principles of ProgrammingLanguages, Charlotte, SC, Jan. 1993, pp. 451{464.

24 13. K. De Bosschere, S. K. Debray, D. Gudeman, and S. Kannan, \Call Forwarding:A Simple Interprocedural Optimization Technique for Dynamically Typed Lan-guages", Proc. 21st. ACM Symp. on Principles of Programming Languages, Jan.1994, pp. 409{420.14. K. De Bosschere and S. K. Debray, \alto: A Link-Time Optimizer for the DEC Al-pha", Draft report, Dept. of Computer Science, The University of Arizona, Tucson,July 1996.15. S. K. Debray, D. Gudeman, and P. A. Bigot, \Detection and Optimization ofSuspension-free Logic Programs", J. Logic Programming (Special Issue on HighPerformance Implementations), to appear. (Preliminary version appeared in Proc.1994 International Symp. on Logic Programming, Nov. 1994, pp. 487{501, MITPress.)16. I. Foster and S. Taylor, \Strand: A Practical Parallel Programming Tool", Proc.1989 North American Conf. on Logic Programming, Oct. 1989, pp. 497-512. MITPress.17. B. Goldberg, \Tag-Free Garbage Collection for Strongly Typed Programming Lan-guages", Proc. SIGPLAN '91 Conference on Programming Language Design andImplementation, Toronto, Canada, June 1991, pp. 165{176.18. D. Gudeman, \Representing Type Information in Dynamically Typed Languages",Technical Report TR 93-27, Dept. of Computer Science, The University of Arizona,Oct. 1993.19. D. Gudeman, K. De Bosschere, and S.K. Debray, \jc: An E�cient and PortableSequential Implementation of Janus", Proc. Joint International Conf. and Symp.on Logic Programming, Nov. 1992, pp. 399{413.20. F. Henglein and J. J�rgensen, \Formally Optimal Boxing", Proc. 21st. ACM Symp.on Principles of Programming Languages, Jan. 1994, pp. 213{226.21. D. A. Krantz, ORBIT: An Optimizing Compiler for Scheme, Ph.D. Dissertation,Yale Unicersity, 1988.22. X. Leroy, \Unboxed objects and polymorphic typing", Proc. 19th. ACM Symp. onPrinciples of Programming Languages, Jan. 1992, pp. 177{188.23. R. A. MacLachlan, \The Python Compiler for CMU Common Lisp", Proc. ACMConf. on Lisp and Functional Programming, 1992, pp. 235{246.24. R. A. MacLachlan, personal communication, Oct. 1994.25. T. G. Mattson, \The Strand Language: Scienti�c Computing meets ConcurrentLogic Programming", Proc. Workshop on Parallel Implementation of Languagesfor Symbolic Computation, eds. A. Ciepielewski and E. Tick, July 1990. TechnicalReport CIS-TR-90-15, Dept. of Computer and Information Science, University ofOregon, Eugene, Oregon.26. T. Metzemakers, A. Miniussi, D. Sherman, and R. Strandh, \Improving Arith-metic Performance using Fine-Grain Unfolding", Proc. 6th. International Symp.on Programming Language Implementation and Logic Programming, Sept. 1994,pp. 324{339. Springer-Verlag LNCS vol. 844.

2527. J. Peterson, \Untagged Data in Tagged Environments: Choosing Optimal Repre-sentations at Compile Time", Proc. Functional Programming Languages and Com-puter Architecture, 1989.28. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, NumericalRecipes in C, Cambridge University Press, 1988.29. A. Srivastava and D. W. Wall, \A Practical System for Intermodule Code Op-timization at Link-Time", Journal of Programming Languages, pp. 1{18, March1993.30. G. L. Steele Jr., \Fast Arithmetic in MacLISP", Proc. 1977 MACSYMA Users'Conference, NASA Scienti�c and Technical Information O�ce, Washington D.C.,July 1977, pp. 215{224.31. P. A. Steenkiste, \The Implementation of Tags and Run-Time Type Checking",in Topics in Advanced Language Implementation, ed. P. Lee, pp. 3{24. MIT Press,1991.32. P. A. Steenkiste and J. Hennessy, \Lisp on a reduced-instruction-set-processor", inProc. 1986 ACM Conf. on Lisp and Functional Programming, Aug. 1986, pp. 192{201.33. A. Taylor, \Removal of Dereferencing and Trailing in Prolog Compilation", Proc.Sixth International Conference on Logic Programming, June 1989, pp. 48{60. MITPress.34. A. Taylor, \LIPS on a MIPS: Results from a Prolog Compiler for a RISC", Proc.Seventh International Conf. on Logic Programming, June 1990, pp. 174{185. MITPress.35. P. Van Roy, Can Logic Programming Execute as Fast as Imperative Programming?PhD thesis, University of California at Berkeley, 1990.36. P. Wadler, \Deforestation: Transforming programs to eliminate trees", Proc. Eu-ropean Symp. on Programming, March 1988, pp. 344{358. Springer-Verlag LNCSvol. 300.

