J. LOGIC PROGRAMMING 1993:12:1-199

A SIMPLE APPROACH TO SUPPORTING
UNTAGGED OBJECTS IN DYNAMICALLY
TYPED LANGUAGES *

PETER A. BIGOT AND SAUMYA K. DEBRAY

In many modern high-level programming languages, the exact low-level
representation of data objects cannot always be predicted at compile time.
Implementations usually get around this problem using descriptors (“tags”)
and/or indirect (“boxed”) representations. However, the flexibility so
gained can come at the cost of significant performance overheads. The
problem is especially acute in dynamically typed languages, where both tag-
ging and boxing are necessary in general. This paper discusses a straight-
forward approach to using untagged and unboxed values in dynamically
typed languages. An implementation of our algorithms allows a dynami-
cally typed language to attain performance close to that of highly optimized
C code on a variety of benchmarks (including many floating-point intensive
computations) and dramatically reduces heap usage. <

1. Introduction

In many high level programming languages, the representation of a data object at
a particular program point cannot always be predicted in a precise way at compile

*A preliminary version of this paper appeared in Proceedings of the 1995 International
Symposium on Logic Programming. This work was supported in part by the National Science
Foundation under grant number CCR-9123520. The first author was also supported by a AT&T
Foundation Fellowship.

Address correspondence to Saumya K. Debray, Department of Computer Science, The
University of Arizona, Tucson, AZ 85721, USA. E-mail: debray@cs.arizona.edu

THE JOURNAL OF LOGIC PROGRAMMING

©Elsevier Science Publishing Co., Inc., 1993
655 Avenue of the Americas, New York, NY 10010 0743-1066/93/$3.50

time. In dynamically typed languages, such as Icon, Lisp, Prolog, and Scheme, the
type of a variable may not always be statically known (and, indeed, may change
from one program point to another). In languages with dataflow synchronization,
such as GHC, Strand and Id, the value of an expression may not be available at
a program point because it has not yet been computed. The code generated for
programs in such languages must, therefore, be able to deal with different kinds
of representations that may arise at runtime. There are two different but related
issues that arise here. First, it is necessary to be able to determine how a bit
pattern, encountered at runtime, is to be interpreted—e.g., as a pointer or as a
value. Second, different representations or data types may have different sizes: for
example, a pointer to a double-precision floating point value may take less space
than the value 1t points to.

The usual way to address the first problem is to attach a descriptor to each
value, to specify how its bit pattern i1s to be interpreted: such descriptors are
usually referred to as tags [18, 31]. The second problem is usually handled by
making values of different sizes “look the same” by manipulating pointers to them
rather than the values themselves: such an indirect representation is often referred
to as a bored representation. In general, operating on values in languages such
as these may involve manipulating tags and/or a level of indirection. It may be
possible to avoid some of this extra work in clever implementations (e.g., tags can be
elided in SML/NJ by relying on compiler-generated symbol table information [1]),
or to encode the information in some clever way to reduce its cost (e.g., in common
integer arithmetic operations in many Lisp systems (e.g., see [21]), and dereference
operations in some Prolog systems [34, 35]). In general, however, it is not possible
to avoid altogether a performance penalty for tagging/boxing of objects.

The performance overhead of dealing with tags and boxes is especially serious
in dynamically typed languages, where both tagging and boxing are necessary in
general. Steenkiste and Hennessy’s experiments with Lisp on a RISC system, on a
set of non-numerical benchmarks, indicate that the programs spent about 22% of
their time on tag handling [32]. This figure would likely be much worse in numer-
ical computations, because implementations of dynamically typed languages very
often represent floating point numbers as boxed values (see, for example, [4, 7, 9]).
This incurs a significant performance penalty, for a number of reasons. First, since
floating point values are heap-allocated, numerical computations involving boxed
floating point values fail to exploit hardware registers effectively, and generate a
lot more memory traffic. The allocation of fresh heap cells may also result in addi-
tional checks for heap overflow. Finally, the high rate of memory usage also results
in increased garbage collection and adversely affects cache and paging behavior.
The tag-handling overheads for data structures such as lists—which account for
the bulk of the overall tag management costs in Steenkiste and Hennessy’s study
[32]—can, at least in principle, be reduced by program transformations such as
deforestation [36], which reduce the number of intermediate data structures cre-
ated. However, 1t is not clear that analogous improvements are readily possible for
numerical computations.

Curiously, the question of maintaining untagged and/or unboxed objects, par-
ticularly floating point values, has received little attention in the logic program-
ming community. To the best of our knowledge, all existing systems, including

high-performance implementations such as Aquarius Prolog and SICStus Prolog,
maintain floating point values in boxed form. Very often, authors either simply
ignore the question of optimizing numerical computations, or explicitly give up on
attaining good performance on such computations in logic programming languages
(e.g., in discussing the Strand system, Mattson [25] states: “Concurrent logic pro-
gramming languages are not well suited for the numerically intensive operations
common in scientific programming. Strand shares this shortcoming...”). In this
paper, we consider compile-time and runtime aspects of supporting untagged and
unboxed values in languages that normally require data to be tagged and possibly
boxed: in particular, we focus on numerical values. The main contribution of this
work is its simplicity: we use a simple extension to the (intra-procedural) regis-
ter allocator for intra-procedural untagging optimizations, and show how the idea
extends in a straightforward way to allow untagged objects to be passed across pro-
cedure boundaries. The execution model we assume is described in Section 2.1. The
techniques described here have been implemented as part of the jc system [19], an
implementation of a logic programming language derived from Janus, available by
anonymous FTP from ftp.cs.arizona.edu. The resulting performance improve-
ments are quite substantial: heap usage is reduced dramatically, and speed improves
to the point where many programs involving substantial amounts of numerical com-
putation attain speeds comparable to that of C code written in a “natural” C style
and optimized at the highest level possible.

A Note on Terminology: To reduce tiresome repetition, we will use abuse terminol-
ogqy in the discussion that follows and use the term “untagged” to refer to values in
their native machine format, i.e., to values that are untagged and (where necessary)
unbozed. We hope this does not cause any confusion.

2. Background

2.1. The Ezxecution Model

We assume that we have a dynamically typed language with a garbage-collected
heap area. Our assumptions about runtime structures are fairly weak, and generally
applicable to a reasonably wide variety of languages: for example, even though we
refer to “stack frames” in Section 3.3, our approach does not require that these be
allocated in a separate “stack area” in memory or that they be manipulated in a
LIFO fashion: it is necessary only that the garbage collector be able to identify
these objects correctly (which it must be able to do in any case), and that it be
able to determine, for any such frame, the corresponding procedure (this can be
done fairly easily, with very little additional work at runtime).

For simplicity, we assume that there is a fixed predefined set of types that may
be maintained in untagged form. Our implementation allows untagged values to be
stored in stack frames, but not on the heap. The restriction is imposed to satisfy the
requirements of the garbage collector: since an untagged value has no descriptor
associated with it, the garbage collector must be able to identify and deal with
untagged values (and not confuse, for example, untagged integers with pointers).

As discussed in Section 3.3, this is straightforward to do for values on the stack
because of the predictable structure of stack frames. If the tagging scheme used by
an implementation is rich enough to support descriptors that encode the structure
of (some types of) heap-allocated objects, in particular information about elements
that are untagged, then the problem with identification of untagged values on the
heap goes away. In this case, our approach can be readily extended to handle
untagged values on the heap.

An important consideration in the context of logic programming languages is
that of dereferencing. In most such languages, there may be a pointer chain, whose
length can be unbounded in general, between a variable and the value it is bound
to: in order to determine the value of that variable, this pointer chain must be
dereferenced. This requires the ability to distinguish pointers from values that are
not pointers. This is straightforward when all values are tagged with descriptors,
but becomes difficult in the presence of untagged values. Therefore, in order to
support untagged values, it is necessary to ensure that the compiler is (7) aware
of the exact length of any pointer chain to an untagged value; and (i) able to
communicate this information to the garbage collector at any program point where
garbage collection might occur. Compile-time analyses to estimate the lengths of
pointer chains have been investigated by several authors [33, 35]. In our implemen-
tation, we get around this problem by disallowing pointer chains of non-zero length
to untagged values (i.e., a value that can have pointers to it is not kept in untagged
form).

Finally, in order for the compiler to decide that a value can be maintained in un-
tagged form at a particular program point, it must have a certain minimum amount
of information available about that value. At the very least, type information that
is precise enough to allow the compiler to use operations specialized to a particu-
lar representation is necessary. For example, in general it is not enough to know
that a value will be a number—we need to know whether it will be an integer or a
floating point value. Even this may not be enough if the implementation supports
different varieties of integers or floating point values (e.g., fixnums, bignums, etc.),
as 18 the case in Common Lisp and some Prologs. Moreover, depending on the
language, the “type” of a value may not be enough to determine its machine-level
representation at a particular program point. In a concurrent logic programming
language, for example, knowing that a variable has type integer may not be enough
to determine whether, at a particular program point, its value can be guaranteed
to have been computed, or whether 1t may still be unbound. However, the details
of how information about types is collected—e.g., from programmer annotations or
via dataflow analysis—as well as any auxiliary information, e.g., a guarantee that
the value of a variable will be available at a program point, are orthogonal to the
subject of this paper. Here we assume only that this information has been obtained
and is available for use by the compiler; the interested reader is referred to [15] for
a discussion of the dataflow analysis used in our implementation for this purpose.

2.2. The Implementation Context

The framework in which the work described here has been implemented is je [19],
a translator for a committed-choice logic programming language that, in its present
incarnation, closely resembles Strand [16]. For the purposes of this paper, it suffices
to note that it is a first-order dynamically typed committed choice language. Source
programs are read by the jc translator, analyzed and subjected to various low level
optimizations, and finally converted into abstract machine code. The abstract
machine code is embedded into the body of a C function and expanded through the
use of macros to C code which implements the instructions of the abstract machine.

Each operation in the virtual machine has a wholly generalized version that can
deal with arbitrary tagged operands. When type information is available at com-
pile time, the compiler can emit specialized versions of certain operations where
type tests on the operands have been removed. To reduce the complexity of the
abstract machine, our implementation requires that the operands of the specialized
versions of an operation accept operands only of the same type: for example, we
have a version of addition which expects two integer operands and one that ex-
pects two floating point operands, but we do not allow addition of an integer and
a float except within the most general operation. Each (specialized version of an)
operation has two type values associated with 1t: that of the operands it is expect-
ing, and that of its result (in general, the type of the result of an operation may
be different from that of the operands). Type information is determined for each
occurrence of a variable based on an ad hoc analysis that examines programmer-
provided annotations, the variable’s origin, and the operations performed on it, and
is propagated to provide type information about intermediate values. Obviously,
specialization of operations to omit unnecessary type tests can be done regardless of
whether untagged values are used outside the internals of the operations. However,
in cases where both the operands and the result have an untagged representation,
we can further specialize the operation and create a version that eliminates the
representation conversion phases entirely, resulting in a direct application of the
underlying operation to the untagged operands. We wish to use these versions of
the operations wherever possible, because they have the least overhead.

Input parameters are passed to procedures in registers. The jc system provides
four kinds of general-purpose registers: tagged registers, which hold tagged values;
address registers, which hold untagged pointers, e.g., into arrays or lists; wnteger
registers, which hold untagged integer values; and floating point registers, which
hold untagged floating point values. We use a cost-based model to decide whether a
particular output should be returned in memory or in (tagged or untagged) registers
[5].1 To meet the analysis requirements of Section 3.1 and allow the use of untagged
registers for parameter passing requires a combination of mode analysis, which
identifies the input and output arguments of a procedure; suspension analysis, which
identifies procedures that can be guaranteed to not suspend during execution; and
type inference. This information is available under the assumptions in Section 2.1.

1The discussion in [5] considers returns in memory and tagged registers only. Since then, we
have extended our implementation, and the associated cost model, to handle untagged register
returns as well.

Representation Analysis for a Program.

1. Use inter-procedural representation analysis to determine the representa-
tion required of input and output arguments for each procedure.

2. Use intra-procedural representation analysis to determine the representa-
tion(s) required of each variable in each clause of each procedure.

Inter-Procedural Representation Analysis.

1. [Identification of Candidates for Untagged Representation] For each pro-
cedure p, use information obtained from mode, type, and non-suspension
analyses to determine which arguments can be passed in untagged form.

2. [Determination of Argument Placements] Use the cost model of [5] to
determine which output arguments should be returned in registers.

3. [Determination of Argument Representations] If an argument is a candi-
date for untagged representation (step (1)), and will be passed in a register
(input arguments are always passed in registers; the passing of output ar-
guments is determined in step (2)), then it is determined to require an
untagged representation. Otherwise, it requires a tagged representation.

Intra-Procedural Representation Analysis. For each clause do:

1. [Initialization] Use the results of inter-procedural representation analysis to
determine the representation required of each variable that appears as a
parameter in the head or as an argument in the body. Use this information
to determine the representations required for other variables that are
defined or used by primitive operations in the clause body.

2. [Propagation] For each operation op(f) in the clause do:

If ¢+ must be explicitly untagged before the operation can be performed,
then: each operand for the operation requires an untagged representation
and op(?) is specialized to operate on untagged operands.

Otherwise, if explicit untagging is not necessary, then: let N; (N,) be the
no. of operands in ¢ that are available in tagged (untagged) form.

If Ny, > Ny then each operand for the operation requires an untagged
representation and op(t) is specialized to operate on untagged operands;
otherwise each operand for the operation requires a tagged representation

and op(?) is left in its generic form.

3. [Determination of Representation Conversions] For each variable X, if X re-
quires a representation R but is not available in representation R in the
clause, then insert the appropriate representation conversion operation
just before the first use of X that requires representation R; mark subse-
quent occurrences of X as being available in representation R.

Figure 1. Representation Analysis: Overall Algorithm

3. Representation Analysis

Our representation analysis algorithm i1s summarized in Figure 1. First, inter-
procedural representation analysis is used to determine how input and output ar-
guments for each procedure will be passed. This uses a cost model, based on
that described in [5], to determine the representation and placement of output
values. This fixes the representation of input and output parameters to each proce-
dure, and therefore determines the representations of the corresponding variables in
each clause for these procedures. Starting with these representation choices, intra-
procedural analysis is then used within each clause to determine the representation
of each variable at each point within the body of the clause. This phase proceeds
in tandem with the generation of abstract machine code.

The decision to have inter-procedural representation analysis precede intra-
procedural representation analysis may seem strange, but it is motivated by the
80-20 rule (“80% of a program’s execution time is spent in 20% of the code”),
which suggests that the primary benefits of using untagged values are likely to
come from maintaining values in untagged form through the execution of loops. In
the languages we are concerned with, loops are realized using tail recursion. Our
approach therefore amounts to first deciding which values can be maintained in un-
tagged form through the execution of loops, and then propagating these decisions
to other program points via intra-procedural representation analysis. It turns out
that an added benefit of doing the analyses in this order is that the order in which
procedures are processed does not affect the code generated, which helps to keep
the overall algorithm simple.

What information do we need to determine which values can be maintained in
unboxed form through the execution of a loop? Consider the structure of a typical
tail recursive procedure:

N qo(jagl)a Q1(g1ag2)a e qu(gnagn-l—l)a p(gn-l—lag)'

During the execution of the loop body, described by the first clause above, the
input arguments & are used to compute intermediate values y;, which in turn are
used to compute other intermediate values y», and so on. In general, values may be
“threaded through” the loop body, and some or all of the intermediate values may
be returned from calls to other procedures. To get the most out of maintaining
untagged values, therefore, we need to be able to pass input values to procedures in
untagged form, and have them return their outputs in untagged form as well. As
an example, consider the following procedure, taken from a program to compute
Bessel functions:

1IN, X, A, Y) :-

N > 0, X1 := -X*X/4, pow(N, X1, U), factsq(N, V),
A1 := A + X*U/(2%V*(N+1)),
Ni := N-1,

j1(N1, X, A1, Y).
j1(0, X, A, Y) - Y := A + X/2.

The value of the variable U is computed by the procedure pow/3, while that of
V is computed by factsq/2. In order to maximize the benefits of the untagging
optimization, we should pass the arguments to these procedures in untagged form,
and have them return the values of their output arguments in untagged form as
well.

Our aim, then, is to determine when the input arguments to a procedure can be
passed, and the output arguments returned, in untagged form. The first of these
two pieces of information, namely, the representation of input arguments, would
intuitively seem to be computable using some form of type analysis. However, the
second piece of information seems harder to obtain, for reasons peculiar to logic
programming languages. Implementations of logic programming languages typically
pass all arguments into a procedure in registers, with each uninstantiated variable—
usually corresponding to an output argument—passed by reference, i.e., as a pointer
to the cell occupied by that variable. An output value is returned by binding an
uninstantiated variable to a value, i.e.; by writing to the corresponding memory
location. Historically, most logic programming languages have been dynamically
typed: for such languages, while it may be possible to determine, at runtime, the
type of an untagged value stored in a particular stack slot (see Section 3.3), it is
very difficult to determine the type of an untagged word on the heap. A garbage
collector may therefore be able to deal with untagged values on the stack, but
not with untagged values on the heap.? Moreover, it is difficult, in general, to
predict whether a variable is resident on the stack or on the heap—for example, a
stack-resident variable may point to a value on the heap, or be moved to the heap
and become heap-resident in connection with tail call optimization. As a result,
if output values are returned in the traditional way, i.e., by writing to a memory
location, it is difficult to predict at compile time whether the memory address
passed to a procedure will refer to a location on the stack or on the heap, and
therefore whether it can be returned in untagged form and be guaranteed to not
confuse the garbage collector. This problem disappears, however, if an untagged
value is returned in a (untagged) register. We therefore restrict untagged return
values to those that can be returned in registers. Our algorithm for representation
optimization therefore relies, in a very fundamental way, on returning values in
registers.

3.1. Inter-procedural Representation Analysis

Previous research has indicated that returning values in registers rather than storing
them into memory can have a significant impact on execution speed [5, 35]. Given
that operations within the body of a procedure can be performed on untagged
representations, this suggests that parameters should be passed and returned in
untagged form as well where it is legitimate and profitable to do so. If the mode of
a parameter cannot be determined to be strictly input or output, 1t must be passed
or returned in tagged form. The choice of how parameters for a procedure should
be passed—in registers or in memory, and in tagged or untagged form—must be

2This is not true of statically typed languages, however, and several authors have proposed
tagless garbage collection schemes for statically typed languages (see, for example, [1, 17]).

made before any call to the procedure is generated, because it is necessary, for code
generation, to know where to place inputs and where to expect outputs.

The identification of arguments to a procedure that are eligible to be passed in
untagged form proceeds as follows. An input argument to a procedure p can be
passed in an untagged register only if the definition of p takes a unique type 7 for
the corresponding parameter, the type 7 admits an untagged representation, and
the corresponding argument at each call site for p has type 7. If the callee takes
a unique type 7 for a parameter and this type admits an untagged representation,
but the corresponding argument at a particular call site may have a value of a
different type, it is possible to preserve the use of untagged inputs by generating
additional code at the call site to test the type of that argument and handle it as
appropriate, e.g., to carry out representation conversion and pass the result in an
untagged register if this is possible, and to fail otherwise. Basically, this amounts
to hoisting the type test for 7 from the callee to the call site, and can be thought
of as an instance of call forwarding [13]—it converts what would be failure inside
the called procedure to failure at the call site. Alternatively, the code generated
for the callee can have multiple entry points, corresponding to different sets of
arguments that need to be untagged: this has the advantage of not duplicating
the untagging code at multiple call sites, but can become unwieldy if the sets of
arguments that need untagging cannot be totally ordered by set inclusion. If the
argument at any call site cannot be guaranteed to be defined, e.g., due to possible
suspension, the parameter must be assigned a tagged register. An output argument
may be returned in an untagged register provided that non-suspension analysis [15]
has shown that the value will be defined (i.e., not an unbound variable) when the
procedure finishes, and type analysis has shown that it will have a type that has
an untagged representation.

These restrictions embody the necessary conditions for the use of untagged reg-
isters in parameter passing. Our current implementation passes input arguments
in untagged form whenever these restrictions are satisfied. The representation of
output values is determined using a low level cost model that is an extension of that
described in [5]: if the cost model indicates that it is profitable to return an output
argument in a register, and it is possible to return that argument in untagged form,
then it is returned in an untagged register. While 1t is possible, in principle, that
in some cases 1t may be better to allow parameters to be passed in tagged registers
even when the above restrictions are satisfied (e.g., when they will immediately be
stored into the heap), our experimental results indicate that the simple approach
of using untagged registers wherever feasible yields reasonable performance in most
cases.

3.2. Intra-procedural Representation Analysis

In any compiler for a high-level language, the register allocator has to keep track
of the location where a variable resides—in a register or in memory—in order to
generate correct code. Now suppose we want to maintain objects in untagged form
in a dynamically typed language: obviously, it is necessary to extend the intra-
procedural register allocator to track the availability of values in untagged form.

10

Our intra-procedural representation analysis is based on a very simple extension
to the register allocator. Recall that variables (except in certain stack slots) are
always stored in memory in tagged form. When the value of a variable is loaded
into a register for expression evaluation, the chosen register is associated with that
variable, so that future references can use that register. The crucial extension is to
permit the same variable to simultaneously be associated with other registers, some
of which may be untagged. Therefore, just as tagged registers are a “cache” for
values normally stored in memory, so too are untagged registers a cache for values
that would otherwise be tagged. The local register allocator serves as a cache
directory by noting that a particular variable is available in both tagged register ¢
and (say) integer register j.

The decision as to whether a particular operation should be specialized 1s made
at the time the abstract machine code is generated. We examine the operands
to determine the most specific type which describes them, by considering type
information provided by the compiler, as well as any untagged registers assigned
to the operand by previous operations. If the operand types admit an untagged
implementation of the operation, we must then decide whether it should be used,
by examining the availability of the operands in the corresponding untagged form.

When the operation cannot work directly on the tagged operands, as with boxed
floating point representations, we automatically use the untagged version. The
rationale for this is that the tagged operation will do the untag and unbox con-
versions, perform the operation, and box the result, leaving neither operands nor
result around in untagged registers to be used for future operations. If the un-
tagged version of the operation is used, the conversion phase will be performed
explicitly on all operands that are not already loaded into registers of the appro-
priate type, and the result will not be converted to tagged form immediately. In
the best case, this means the operands and result will be around for further use in
untagged operations without additional conversion. In the worst case, the represen-
tation conversions that would have been done inside the operation have been made
explicit: since we compile to native code rather than to byte code, the amount of
work done is the same whether the representation conversions are made explicit in
this way or performed implicitly inside the generic operation.

However, when the operation can be performed directly on the tagged repre-
sentation, as in the case of (small) integers, there is a tradeoff. On the one hand,
explicitly converting the operands to untagged form may allow us to use the un-
tagged operands or result in future operations that could benefit from having them
in untagged form. On the other hand, the extra conversion operations and possible
increase in register pressure required to keep multiple representations live could
outweigh the benefits of using untagged values. It is plausible that a detailed cost
model could be devised to determine exactly when the untagged or tagged version
is to be preferred, taking into account relative execution frequencies of different
branches and the overhead of preserving tag information when the operation is
performed on the tagged representation (see, for example, [27]). However, in many
cases, the overhead of preserving tag bits when the operation is performed directly
on the tagged values is small or non-existent. For example, jc, like many Lisp
systems, uses the lowest 2 bits of a word for the tag, and a bit pattern of 00 for
integers. This allows addition and subtraction of tagged integers to be carried out

11

with no representation conversions on the operands or the result, and multiplication
and division with only simple shifts. The performance benefits of avoiding these
operations do not seem to warrant a complex analysis.

Instead, we rely on a simple heuristic which seems to perform reasonably well.
We note that, although such operations may be performed on the tagged or un-
tagged form with roughly equal cost, if at any point the result is stored into the
heap or any other memory location that is not restricted to untagged values, the
result must be stored in tagged format. As such, we have a preference for using the
tagged form. We choose to use the untagged version of the operation only when the
number of operands that are available in untagged form strictly exceeds the num-
ber which are available in tagged form: in that case, the assured need to do more
conversions before the operation outweighs the possibility of having to convert the
result in the future.® Intermediate results from previous operations are generally
available in only one form; availability of variable operands in a particular form
is determined by seeing what registers the variable is loaded in. Since the tagged
representations in these cases do not require boxing, constants can be represented
in either tagged or untagged form by emitting the appropriate encoding at compile
time, so do not contribute materially to the decision.

3.3. Garbage Collection Issues

The need to preserve values across procedure calls which would destroy registers,
or to free registers for use in expression evaluation, requires that values be saved
in the activation record of the procedure. Since we have gone to some trouble to
load values in untagged form, it would be convenient to save them that way, rather
than having to tag and untag them. This requires that untagged values be allowed
to reside in the stack frame.

The structure of a stack frame in jc is shown in Figure 1. The decision as to
whether a stack slot assigned to a variable is tagged or untagged is made at the
time the slot is reserved: generally, at the point the value needs to be stored. We
choose to place a value in an untagged slot only if 1t resides in an untagged register,
and does not also reside in a tagged register. The first requirement guarantees that
at the storage point we have a value to save without having to convert it. The
second 1s an effort to preserve boxed values, so that if we later need that value
in tagged form we do not have to explicitly reconstruct the tagged form again
from an untagged representation (boxing a value generally requires allocating heap
storage—and therefore possibly a heap overflow check—followed by one or more
writes to memory; this is considerably more expensive that an unboxing operation,
which generally involves only one or two memory reads). While it is possible to
store both the tagged and untagged representations of a particular value, this does
not appear to be profitable, since the extra memory operations required by the

3 Although it may appear that untagged values will never be introduced if this rule is used, in
fact untagged values arise from several sources, including primitive operations such as taking the
size of an array, conversions from values that have boxed representations, and untagged input and
output parameters to the procedure being considered.

12

low address

€8

untagged addresses A

2
1

0
™1
«

untagged floats A

untagged integers

0
™1
L. |

«

———

0
™1
«

tagged values A

l owner
- previous frame

resumption address

stack pointer —»- frame size high address

Figure 1. Structure of a Stack Frame in jc

stores and loads are likely to outweigh the cost of an extra untag operation when
the value 1s needed again.

Each stack slot has a type associated with it, which indicates whether it holds
a tagged or untagged value, and what kind of value. The type of a slot is fixed
over the execution of the procedure, but the assignment of a stack slot to variables
may be different at different points in a procedure—i.e., we reuse stack slots for
different values of the same type where possible. However, we do not attempt to
compress the frame by reusing space of one type to hold values of a different type
as storage requirements change over the lifetime of a procedure. To do so would
cause the frame layout to change dynamically during execution, complicating the
communication of layout information to the garbage collector. After intermediate
code generation is complete, the stack frame is rearranged so that slots of the
same type are adjacent to each other in memory and the addresses in the code are
updated to reflect the rearrangement and note where untagged values require more
space than tagged values. When a stack frame is allocated on procedure entry, an
index denoting the procedure is stored in the frame, in the slot labelled “owner” in
Figure 1: the garbage collector will use this index to retrieve the layout information
from a global table and use this to avoid misinterpreting the untagged values when
reclaiming heap space.

4. Experimental Results

To determine the efficacy of the untagged support mechanism described here, both
C and jc implementations of a set of programs were timed on a Sun SPARC IPC

13

running Solaris 2.3, with gecc 2.6.3 (invoked with -02 -fomit-frame-pointer) as
the C compiler for the C code emitted by jec, and gee 2.6.3 (invoked with -02
-fomit-frame-pointer) and cc (CDS SPARCompilers version 2.0.1, invoked with
both -02 and -04) as the C compilers for the native C programs. The bench-
marks used were the following: aquad performs a trapezoidal numerical integration
fol e”dz using adaptive quadrature and a tolerance of 1078; bessel computes the
Bessel function J1(2.0); binomial computes the binomial expansion Z?io xiy30-1
at © = y = 1.0; chebyshev computes the Chebyshev polynomial of degree 10000 at
1; e evaluates e = 2.71828 ... by computing the sum of the first 2000 terms of the
series 1+ % + % + % +...; fft 1s an 1terative one-dimensional fast Fourier transform
program, adapted from [28], that computes the fast Fourier transformation and
its inverse on a vector of size 64; fib computes the Fibonacci value F(16); fmat-
mult multiplies two 20 x 20 floating-point matrices; log computes In(1.999) using
the expansion In(1 + 2) = Y_,5,(=1)"T'2'/i, to a tolerance of 10~% mandelbrot
computes the Mandelbrot set on a 17 x 17 grid on an area of the complex plane
from (—1.5,—1.5) to (1.5, 1.5); mcint uses Monte Carlo integration to estimate the
mass of a body of irregular shape (adapted from [28]); muldiv exercises integer
multiplication and division, doing 5000 of each; p: computes the value of 7 to a
precision of 1072 using the expansion T=1- % + % — % + -+ sum adds the
integers from 1 to 10,000—it is essentially similar to a tail-recursive factorial com-
putation, except that it can perform a much greater number of iterations before
incurring an arithmetic overflow; tak, from the Gabriel benchmarks, is a heavily
recursive program which does integer addition and subtraction: the query executed
is tak(14,12,6,.); and zeta computes the Euler-Riemann zeta function, defined by
the series zeta(x) = 14277 +37% + .- (where # is real-valued), at © = 2.0, to a
tolerance of 1073. For the discussion here, it suffices to note that fib, muldiv, sum
and tak operate solely on integer values, bessel combines integer and floating-point
operations, and the remainder are primarily floating-point benchmarks. Only the
fft, fmatmult, and mandelbrot programs involved compound data structures: fff im-
plemented updatable arrays using binary trees, and fmatmult and mandelbrot used
two-dimensional arrays. The code for each benchmark was written in a style natu-
ral to the language. Where feasible, iteration was used to code loops in C, while tail
recursive procedures performed the analogous operation in jc. Wherever possible,
the C programs used were taken from code written by C programmers in other
contexts: for example, the C code for fmatmult was taken from the Stanford bench-
mark suite by J. Hennessy, while that for mandelbrot was taken from a program by
G. Wilson for a textbook. With the exception of a few benchmarks (aquad, bessel,
binomial, fmatmult, mandelbrot, and zeta), where the natural implementation re-
quired support functions (e.g., to compute factorials), the C versions were single
functions. Because jc supports only single precision floating point calculations, the
C versions were carefully coded to ensure that all constants were treated as single
precision by the C compiler, avoiding unnecessary and costly precision adjustments
in the C version.

Tables 1 and 2 summarize the experimental results for these benchmarks: the
former shows the performance improvements due to the use of unboxed values,
while the latter compares the speed of the resulting system with optimized C code.
Execution times were obtained using the gettimeofday(2) system call to obtain
microsecond-resolution measurements of execution time, with the testing being the

14

Program Execution Time (ysecs) J/gee:2 | J/ce:2 | J/ccid
J | gee:2 | cc:2 | cc:4
aquad 20383 | 16604 | 28883 | 26433 | 1.228 0.706 0.771
bessel 13984 | 27193 | 36718 | 36893 | 0.514 0.378 0.377
binomial 5538 5075 8894 | 6098 | 1.091 0.623 0.908
chebyshev 8884 7207 | 18067 | 18065 | 1.233 0.492 0.492
e 9681 9392 | 10148 | 10154 | 1.031 0.954 0.953
fib 4483 4727 4598 | 4584 | 0.948 0.975 0.978
Sfmatmult 22926 8748 15533 | 14894 2.621 1.476 1.539
log 16580 | 17487 | 35029 | 35029 | 0.948 0.473 0.473
mandelbrot | 24109 19403 78423 | 46195 1.242 0.307 0.514
muldiv 12447 10605 11688 | 11669 1.174 1.065 1.067
pi 12146 11998 22528 | 22520 1.012 0.529 0.529
sum 1692 1606 1606 406 | 1.055 1.055 4.172
tak 5343 4384 4085 | 4070 | 1.218 1.298 1.303
zeta 18858 | 18029 | 38962 | 38792 | 1.046 0.484 0.486
| Harmonic Mean : | 1.051 | 0.624 | 0.709 |

Key : J:jc -0; gcc:2:gcc -02; «cc:2:cc -02; cc:4:cc -04

Table 1. The speed of jc compared to optimized C

only active process. For each benchmark program, a single “run” consisted of
executing a test query 100 times in a tight loop and taking the shortest measured
query execution time: the execution times reported here are 1/100 of the times
obtained from such runs. Queries were designed to be large enough to exercise
the programs, yet small enough to able to execute in a single timeslice with no
system interruptions; taking the minimum measurement avoids bias when one or
more query runs nonetheless happened to be interrupted. A single experiment
consisted of a single run of each benchmark program, with the different benchmarks
executed in random order within each experiment so as to avoid systemic bias from
disk and memory cache effects. Nine such experiments were performed, and for
each benchmark the median execution time was taken. For a more fair comparison
with C, garbage collection—which involves runtime tests on the heap pointer—
was turned off in jc, so the speed improvements measured do not take into account
reductions in garbage collection time due to reduced heap usage. There is a constant
overhead of 103usec in the jc times compared with 6usec for C compiled with gec,
due to the timing method and setup required for the benchmark call.

Compared to optimized C code, the baseline performance of our system—with
register returns permitted, but no untagging optimizations—is fairly good: it is,
on the average, about 57% slower than C code compiled with gcc -02, and about
23% slower than that using cc -04.* It is easy to take a poorly engineered system
with a lot of inefficiencies and get huge performance improvements by eliminating

4Unless otherwise noted, all averages in this discussion refer to the harmonic mean.

15

Program Memory Returns Reg+Mem. Returns

T] U | Uu/T T] U | Uu/T
aquad 48697 28187 0.579 37704 20383 0.541
bessel 40428 13272 0.328 40400 13984 0.346
binomial 4488 5747 1.280 4178 5538 1.326
chebyshev 26823 8894 0.332 26825 8884 0.331
e 12513 9655 0.772 12440 9681 0.778
It 26168 25517 0.975 26104 26638 1.020
fib 11220 11073 0.987 4723 4483 0.949
Sfmatmult 32287 22486 0.696 32857 22926 0.698
log 35790 15744 0.440 35577 16580 0.466
mandelbrot | 81677 24438 0.299 88008 24109 0.274
mecint 35374 16629 0.470 33832 15947 0.471
muldiv 13870 12465 0.900 13902 12447 0.895
pi 28840 11994 0.416 22764 12146 0.534
sum 1692 1692 1.000 1692 1692 1.000
tak 13637 13452 0.986 4760 5343 1.122
zeta 40571 18097 0.446 40638 18858 0.464

Harmonic Mean : | 0.554 | | 0.567 |

(a) Execution Time (psecs)

Program Memory Returns Reg+Mem. Returns

T | U | Uu/T T | U | Uu/T
aquad 30884 10255 0.3320 23332 544 0.0233
bessel 689 418 0.6067 689 452 0.6560
binomzial 1208 249 0.2061 1026 6 0.0058
chebyshev 30002 6 0.0002 30002 6 0.0002
e 6005 6 0.0010 6005 6 0.0010
fib 6389 6389 1.0000 5 5 1.0000
It 18669 16622 0.8904 18543 17364 0.9364
fmatmult 20649 5049 0.2445 20649 5049 0.2445
log 31494 12 0.0004 28866 6 0.0002
mandelbrot 69533 654 0.0094 69533 654 0.0094
meint 26019 1019 0.0392 25495 17 0.0007
muldiv 5 5 1.0000 5 5 1.0000
pi 20007 9 0.0004 20007 6 0.0003
sum 5 5 1.0000 5 5 1.0000
tak 7121 7121 1.0000 5 5 1.0000
zeta 34460 285 0.0083 34460 223 0.0065

(b) Heap Usage (words)

Key : T : tagged values;

U : untagged values

Table 2. Performance Improvements due to Untagged and Unboxed Objects

16

some of these inefficiencies. The point of these numbers 1s that when evaluating
the efficacy of our optimizations, we were careful to begin with a system with good
performance, so as to avoid drawing overly optimistic conclusions.

The overall performance improvement obtained using untagged values is about
45%. On average, the resulting programs are about 5% slower than C compiled
with gcc -02, about 37% faster than cc -02, and about 29% faster than cc -04.°
Moreover, jc outperforms cc on precisely those programs—mnamely, floating-point
intensive computations—where one would expect a dynamically typed declarative
language to do considerably worse than a statically typed imperative language.
Interestingly, two programs—binomial and tak—do significantly worse using un-
tagged values than using tagged values only. The problem arises from the effects
of using C as the back-end compiler for jc, and the resulting lack of control, in
jc, over hardware register allocation in the C compiler; a more controllable back-
end would avoid such degradations.® These observations—and the fact that the
numbers reported do not take into account performance improvements due to re-
ductions in garbage collection time—imply that our execution time measurements
give a conservative estimate of the true potential of these optimizations.

A further benefit of allowing untagged values can be seen in the decrease in heap
usage. Table 2(b) separates out reductions in heap space usage due to register re-
turns from those due to the use of untagged values. It can be seen that for every
benchmark that used boxed data types, there was a consistent and significant re-
duction in heap usage, both when outputs were returned in memory and when they
were returned in registers. In many cases, allowing output values to be returned
in untagged registers allowed the entire computation to be carried out without any
boxing operations at all, resulting in essentially trivial heap usage. (Not surpris-
ingly, the use of untagged values makes no difference in the heap usage of integer
computations, though these programs can be seen to benefit, in terms of heap us-
age, from being able to return output values in registers.) For short queries of the
sort given here, the decrease of heap space does not contribute significantly to the
execution time, because the maximum heap space used still fits easily within the
data cache. However, for longer-running programs, reducing heap usage by avoid-
ing boxed temporary values can result in a significant decrease in cache misses and
garbage collection overhead.

The general algorithm described earlier uses a cost model to determine which

5Since jc uses gcc as its back end translator, one might wonder whether this comparison with
cc -04 is “fair” or question what it proves. We claim that jc’s use of gcc is purely a matter of
convenience: we could, in principle, have achieved the same results by writing our own back ends
and replicating all of gcc’s technology in it. The point of this comparison, therefore, is merely
to show that careful attention to low level concerns can allow implementations of declarative
languages to attain performance that is competitive with the performance of imperative programs
written in an imperative style. We acknowledge, of course, that performance comparisons between
different languages are fundamentally dubious and very often have a strongly religious flavor, and
caution the reader against reading too much into these results.

6While gcc version 2 provides extensions that provide some degree of user control over hardware
register allocation, we do not use them at this time because they reserve a register for a variable
for the entire lifetime of the variable, and therefore do not give us a sufficiently fine-grained control
over register assignment.

Local

Args

Global

Program (L) (A) (@) L/G A/G
aquad 44055 28187 20383 2.161 1.383
bessel 30851 13272 13984 2.206 0.949
binomial 4463 5747 5538 0.806 1.038
chebyshev 15396 8894 8884 1.733 1.001
e 11034 9655 9681 1.140 0.997
It 24897 25517 26638 0.935 0.958
fib 11220 11073 4483 2.502 2.470
fmatmault 28566 22486 22926 1.246 0.981
log 29299 15744 16580 1.767 0.950
mandelbrot | 56867 24438 24109 2.359 1.014
meint 24224 16629 15947 1.519 1.043
muldiv 13906 12465 12447 1.117 1.001
pi 19421 11994 12146 1.600 0.988
sum 1692 1692 1692 1.000 1.000
tak 13636 13452 5343 2.552 2.518
zeta 33692 18097 18858 1.787 0.960

Harmonic Mean : | 1.454 1.092

(a) Execution Time (psecs)
Local Args Global

Program (L) (A) (@) L/G A/G
aquad 24107 10255 544 44.31 18.85
bessel 30944 444 452 68.46 0.98
binomial 1148 249 6 191.3 41.50
chebyshev 10004 6 6 1667 1.00
e 4005 6 6 667.5 1.00
i 16923 16622 17364 0.975 0.957
fib 6389 6389 5 1278 1278
fmatmault 12649 5049 5049 2.505 1.00
log 20998 12 6 3500 2.00
mandelbrot 31158 654 654 47.64 1.00
meint 8087 1019 17 475.7 59.94
muldiv 5 5 5 1.00 1.00
pi 15007 9 6 2501 1.50
sum 5 5 5 1.00 1.00
tak 7121 7121 5 1424 1424
zeta 23317 285 223 104.6 1.28

Table 3. Untagging Optimizations: Global vs. Local

(b) Heap Usage (words)

17

18

Program | Tagged (T) (psecs) | Untagged (U) (psecs) | T/U

bsort 16422 16425 1.000
hanoi 15638 15478 1.010
lrigen 22473 22431 1.006
nrev 7073 7072 1.000
pascal 8998 9059 0.993
gsort 11409 11409 1.000
queen 6583 6585 1.000
| Harmonic Mean | 1.001 |

Table 4. The Effect of Untagging Optimizations on Non-numerical Programs

values may be returned in (unboxed) registers. As discussed above, this provides
good performance improvements. However, it has the disadvantage that it requires
nontrivial extensions to the compiler. It is reasonable to inquire to what extent
performance might be improved using restricted versions of our algorithm that re-
quire minimal extensions to the compiler where untagged values are supported but
no provision is made for returning values in registers. We next consider the two
extremes possible for such minimal extensions. The simplest, and most restricted,
case uses purely local untagging: it maintains values in untagged form through the
body of a procedure if this is deemed useful, but values that are passed across pro-
cedure boundaries (this includes values passed into tail calls) are passed in boxed
form. At the other extreme, untagged values are allowed as input arguments to
procedures as well, though output values are returned in memory (and therefore
are represented in tagged form). The performance improvements resulting from
these restricted versions of the untagging optimization are shown in Table 3, where
the column marked “Local” gives the performance numbers resulting from purely
local untagging; that marked “Args” refers to local untagging together with un-
tagged arguments; and “Global” gives the performance using the general untagging
optimization. It can be seen that for the benchmarks tested, purely local untagging
results in an improvement of about 9% on the average compared to no untagging
at all. This is not insignificant, but the resulting programs are still considerably
slower—about 45% on the average—than those using the general optimization.
However, when untagged arguments are allowed, performance improves consider-
ably, and the resulting code is only about 9% slower than code using the general
optimization. The reason for this is that the programs tested spend most of their
time in simple loops, and these can be essentially fully optimized when untagged
input arguments are allowed. We conjecture that this is true of most numerical
programs, with much of the execution time accounted for by loop computations,
and that such programs can benefit considerably even from the simple optimization
of allowing untagged local computations and input arguments.

Another important consideration is the effect of untagging optimizations on non-
numerical programs. As discussed earlier, our optimization relies greatly on being
able to maintain untagged values in registers. In an implementation that has an
a priort fixed mapping from virtual machine registers to physical registers, this

19

can cause some registers to be unnecessarily dedicated to untagged values, even for
programs where there is no opportunity for untagging optimizations, and this can
cause a degradation in performance. The jc system avoids this problem by having
the compiler generate untagged virtual machine registers (via C language declara-
tions) only if it determines that there is some opportunity for maintaining values in
untagged form. The virtual machine registers so generated are mapped to physical
registers based on estimated usage counts (currently this is done entirely by the
C compiler), which means that even when an untagged virtual machine register is
generated, it is allocated to a physical register only if it is used sufficiently many
times to justify this. Experimental results for a number of small non-numerical
benchmarks are shown in Table 4. The programs used were the following: bsort
uses bubble sort to sort a list of 100 integers; hanot is the Towers of Hanoi program
(adapted from an FCP program by S. Kliger): the numbers given are for hanoi(10);
Irigen is the core of an LR(1) parser generator; nrevis the naive reverse program on
an input list of length 100; pascal is a benchmark, by E. Tick, to compute Pascal’s
triangle; gsort is a quicksort program, executed on a list of length 100; and queen
is the n-queens program: the numbers given are for 6 queens. The numbers given
in Table 4 indicate that the performance of these programs, with and without the
untagging optimization, is essentially identical. This indicates that non-numerical
programs need not suffer a performance degradation due to the use of untagged
values. We believe that this conclusion extends also to larger programs, consisting
of some components that are primarily numerical in nature and others that are
primarily non-numerical. The reason for this is that modern register allocation al-
gorithms (see, e.g., [11]) base their decisions on the relative usage counts of variables
in different regions of a program: a variable that 1s heavily used in one region of a
program, but not in another, will be considered for placement in a register in the
first region but not in the second. Using such algorithms, therefore, it is possible
to take advantage of untagging optimizations in those portions of a program that
can benefit from it, without having to suffer a performance degradation in those
parts of a program that do not benefit from the use of untagged values.

Finally, there is the issue of the compile-time cost of implementing this optimiza-
tion. We have not separately measured the time taken by the analysis algorithms,
because dataflow analysis and optimization accounts for a very small part of the
overall compilation time. Because Janus programs are compiled to C code which
is then processed by a C compiler, most of the overall time for translation to the
object code is spent in I/O operations and in the C compiler (other systems that
compile to C, e.g., KLIC [10], report similar experiences). As a result, there is
no perceptible decrease in the overall compile time when dataflow analysis and
optimizations are switched off.

5. Extensions

The discussion thus far has not considered the question of backtracking, which is
of fundamental importance in non-committed-choice logic programming languages,
e.g, Prolog. In such languages, programs have to save a certain amount of state
at points that execution can backtrack to, and restore this information appropri-
ately when backtracking actually takes place. The state information that is saved

20

typically consists of two parts: some machine status information, together with
information about certain registers, kept in runtime structures commonly called
“choice points”; and information about variables whose values need to be reset,
maintained in an (usually separate) area called the trail. Conceptually, a choice
point consists of one component that represents a fixed amount of machine status
information, and another component, of variable size, that represents information
about the local state of a procedure, in particular its arguments. Components of
the runtime system that are able to inspect the state of a running program, such
as garbage collectors, must then be able to identify choice points and correctly
interpret (the variable-size component of) their structure.” If untagged values are
supported, we must therefore be able to save untagged values when creating a choice
point; restore untagged values when backtracking occurs; and be able to specify, for
the benefit of the garbage collector, which components of a choice point represent
untagged values.

The simplest approach to handling untagged values in the presence of backtrack-
ing would be to prohibit untagged arguments for any procedure that may create
a choice point (this is a somewhat stronger requirement than determinacy). This
has the virtue of simplicity, and may be acceptable in some limited contexts: for
example, this may be a reasonable option if we consider only untagged values for
numerical types, since traditional numerical programs tend to be deterministic. A
minor variation on this scheme is to allow procedures that may backtrack to take
untagged arguments, as long as these are converted to tagged form before being
stored in a choice point. The problem with this is that we need to maintain a
fair amount of information about these values in order to restore the tagged values
into the appropriate untagged registers, and this negates the primary advantage of
allowing only tagged values in choice points, namely, simplicity.

A less restrictive option is to allow untagged values to be stored in choice points.
This makes it necessary to maintain information about which slots in the choice
point correspond to untagged values, the type of each such value, and the register
from which the value originated. This can be done in at least two ways:

1. The information can be kept in a data structure that is part of the symbol
table entry for each (nondeterministic) procedure, similarly to the scheme
described in Section 3.3 for stack frames. The disadvantage of this scheme
is that this information must be interpreted during execution. This would
make backtracking a relatively expensive operation.

2. For any given procedure, the untagged values that need to be saved and
restored at a choice point, and the register corresponding to each such value,
will be known by the compiler. It can therefore generate code to save and
restore these values. This is likely to be considerably more efficient than
having to interpret a data structure at runtime. This code can be generated
either as a lightweight parameterless function that is called from each point
in a procedure where choice point manipulation occurs, or generated in-line

7The garbage collector does not need to inspect the trail, since any variable recorded in the
trail is also accessible from some choice point [3].

21

at each such point, depending on the relative importance of code size vs.
execution speed.

It is also necessary to communicate information about the structure of choice
points to the garbage collector: this can be done, as suggested above, via
the symbol table of the procedure. In this case, since saving and restoring
of untagged registers does not involve the symbol table, it is necessary only
to store information about which slots in the choice point contain untagged
values, and the types of those values.

Another issue of considerable importance for real applications is separate com-
pilation. It 1s not easy to reconcile untagged values with separate compilation: as
the discussion thus far indicates, considerable cooperation and communication is
needed between two procedures if they are to pass untagged values between them-
selves, and this 1s precisely what is absent in separate compilation. There are two
issues that have to be addressed: first, program analysis in the presence of sep-
arately compiled code; and second, generating code to ensure that values can be
communicated correctly between the caller and callee, which reside in separately
compiled modules. The first problem can be handled using techniques for composi-
tional and/or incremental program analysis [8, 12]. There are two alternatives for
handling the second problem. If the different modules of a program are compiled
and loaded in sequence, so that the code generated for one module 1s available
while code is being generated for another module, then incremental optimization
[8] using multiple entry points (see Section 3.1) can be used to avoid the overhead
of passing tagged values across module boundaries where possible. An alternative
would be to generate multiple entry points for procedures that use untagged values,
and use optimizations such as code hoisting and call forwarding [13] at link-time
(see, e.g., [14, 29]) to redirect calls so as to avoid unnecessary tagging and untagging
where possible. While these techniques can be used to avoid passing untagged val-
ues into a procedure, neither supports untagged return values in a straightforward
way. Given the discussion of Section 3 and the experimental results of Section 4,
this can be a significant limitation. Nevertheless, being able to pass untagged ar-
guments across module boundaries at all would be a considerable improvement on
our current implementation, which restricts inter-module calls to use only tagged
values.

6. Related Work

The work that is probably the closest to ours is that of the Python compiler for
CMU Common Lisp, which uses untagged representations for numeric objects where
possible, including the passing of arguments and return values in function calls
[23]. While our implementation does not currently allow untagged objects to be
heap-allocated, CMU Common Lisp allows explicitly-typed array and structure
slots (which are heap-resident) to contain untagged values, provided that all of the
values in the array or structure can be guaranteed at compile-time to contain only
untagged values. The Python system also differs in the way it supports garbage
collection: it uses two different stacks, one containing only tagged values and the

22

other containing only untagged values [24]. The specific algorithms used by the
Python compiler for representation analysis are not, as far as we have been able to
determine, extensively documented; however, we believe that overall, due in part
to linguistic aspects of Common Lisp, our algorithms are considerably simpler than
those used by Python.

The problem of generating efficient numeric code for Lisp programs was consid-
ered as far back as the MacLisp compiler [30] and the S-1 Lisp compiler [6]. These
systems used untagged representations for numbers in intra-procedural numerical
computations, but used boxed (though not necessarily heap-allocated) values across
procedure boundaries. The representation analyses used by the S-1 Lisp compiler
involved two passes over the intermediate representation—the first a top-down pass
to determine a “desired” representation, the second a bottom-up pass to determine
a “deliverable” representation—and is considerably more complicated than that
described here. An elegant algorithm for the optimal placement of representation
conversion operations in a program flow graph with execution frequency informa-
tion, based on network flow algorithms, was given by Peterson [27]: however, to
our knowledge this algorithm has not been implemented. Metzemakers et al. dis-
cuss the use of partial evaluation techniques at the intermediate code level for the
removal of redundant boxing/unboxing operations [26].

More recently, the issue of maintaining values in untagged form has received
considerable attention in the context of strongly typed polymorphic languages (see,
for example, [20, 22]). However, this work relies on the underlying type system in
a fundamental way, and is therefore very different from ours: it involves making
boxed and unboxed representations of objects explicit at the source level using
“representation types”, and formulating boxing and unboxing operations as source-
level transformations. The problem of garbage collection in tagless implementations
of such languages is discussed by a number of authors, including Appel [1] and

Goldberg [17].

7. Conclusions

Most implementations of dynamically typed languages have historically suffered in
comparison to statically typed languages because their very nature imposes over-
heads even when working with consistently and uniquely typed programs. These
overheads are incurred in the process of converting values between the general
“boxed” form, and the “unboxed” form on which the underlying hardware must
operate. In systems where boxed values are heap-allocated, there is a further
degradation due to garbage collection time and the inefficient use of the cache
as intermediate values are created, used once, and left behind.

We have presented a discussion of simple heuristics which, when combined with
a variety of analyses (in particular, mode, type, and non-suspension analyses) de-
sired independently for other optimizations, and the extension of the local register
allocator to consider different types of registers simultaneously, yield a speedup on
numerical programs, written in a dynamically typed language, of about 45% above
an already optimized compiler which did not attempt to maintain untagged values.

23

The resulting programs run within 5% of the same programs written in C in a
natural C style and compiled using gcc -02, and are considerably faster than the
corresponding C code optimized using cc -02 and cc -04. In addition, heap use is
also reduced dramatically. The optimizations described here should be applicable
to almost any implementation of a dynamically typed language.

REFERENCES

1.

10.

11.

12.

A. W. Appel, “Runtime tags aren’t necessary”, Lisp and Symbolic Computation
2:153-162, 1989.

A. Appel, Compiling with Continuations, Cambridge University Press, 1992.

K. Appleby, M. Carlsson, S. Haridi and D. Sahlin, “Garbage Collection for Prolog
based on WAM?”, Communications of the ACM vol. 31 no. 6, June 1988, pp. 719—
741. ACM Press.

R. L. Bates, D. Dyer, and J. A. G. M. Koomen, “Implementation of Interlisp on
the VAX”, Proc. 1982 ACM Symp. on Lisp and Functional Programming, Aug.
1982, pp. 81-87.

P. A. Bigot, D. Gudeman, and S. K. Debray, “Output Value Placement in Moded
Logic Programs”, Proc. Eleventh International Conf. on Logic Programming, June
1994, pp. 175-189. MIT Press.

R. A. Brooks, R. P. Gabriel, and G. L. Steele Jr., “An Optimizing Compiler for
Lexically Scoped Lisp”, Proc. SIGPLAN ’82 Symp. on Compiler Construction,
June 1982, pp. 261-275.

R. A. Brooks, R. P. Gabriel, and G. L. Steele, Jr., “S-1 Common Lisp Implemen-
tation”, Proc. 1982 ACM Symp. on Lisp and Functional Programming, Aug. 1982,
pp. 108-113.

F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla, “Data—flow Analysis of
Standard Prolog Programs”, Proc. European Symposium on Programming, April
1996, pp. 108-124. Springer-Verlag LNCS vol. 1058.

M. Carlsson, “The SICStus Prolog Emulator”, Technical Report T91:15, Swedish
Institute of Computer Science, Sept. 1991.

T. Chikayama, T. Fujise, and D. Sekita, “A Portable and Efficient Implementation
of KLL17, Proc. Int. Symp. on Programming Language Implementation and Logic
Programming, Sept. 1994, pp. 25-39

F. C. Chow and J. L.. Hennessy, “The Priority-Based Coloring Approach to Register
Allocation”, ACM Transactions on Programming Languages and Systems vol. 12
no. 4, Oct. 1990, pp. 501-536.

M. Codish, S. K. Debray, and R. Giacobazzi, “Compositional Analysis of Modular
Logic Programs”, Proc. Twentieth ACM Symposium on Principles of Programming
Languages, Charlotte, SC, Jan. 1993, pp. 451-464.

24

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

K. De Bosschere, S. K. Debray, D. Gudeman, and S. Kannan, “Call Forwarding:
A Simple Interprocedural Optimization Technique for Dynamically Typed Lan-
guages”, Proc. 21st. ACM Symp. on Principles of Programming Languages, Jan.
1994, pp. 409-420.

K. De Bosschere and S. K. Debray, “alto: A Link-Time Optimizer for the DEC Al-
pha”, Draft report, Dept. of Computer Science, The University of Arizona, Tucson,
July 1996.

S. K. Debray, D. Gudeman, and P. A. Bigot, “Detection and Optimization of
Suspension-free Logic Programs”, J. Logic Programming (Special Issue on High
Performance Implementations), to appear. (Preliminary version appeared in Proc.
1994 International Symp. on Logic Programming, Nov. 1994, pp. 487-501, MIT
Press.)

I. Foster and S. Taylor, “Strand: A Practical Parallel Programming Tool”, Proc.
1989 North American Conf. on Logic Programming, Oct. 1989, pp. 497-512. MIT
Press.

B. Goldberg, “Tag-Free Garbage Collection for Strongly Typed Programming Lan-
guages”, Proc. SIGPLAN 91 Conference on Programming Language Design and
Implementation, Toronto, Canada, June 1991, pp. 165-176.

D. Gudeman, “Representing Type Information in Dynamically Typed Languages”,
Technical Report TR 93-27, Dept. of Computer Science, The University of Arizona,
Oct. 1993.

D. Gudeman, K. De Bosschere, and S.K. Debray, “jc: An Efficient and Portable
Sequential Implementation of Janus”, Proc. Joint International Conf. and Symp.
on Logic Programming, Nov. 1992, pp. 399-413.

F. Henglein and J. Jgrgensen, “Formally Optimal Boxing”, Proc. 21st. ACM Symp.
on Principles of Programming Languages, Jan. 1994, pp. 213-226.

D. A. Krantz, ORBIT: An Optimizing Compiler for Scheme, Ph.D. Dissertation,
Yale Unicersity, 1988.

X. Leroy, “Unboxed objects and polymorphic typing”, Proc. 19th. ACM Symp. on
Principles of Programming Languages, Jan. 1992, pp. 177-188.

R. A. MacLachlan, “The Python Compiler for CMU Common Lisp”, Proc. ACM
Conf. on Lisp and Functional Programming, 1992, pp. 235-246.

R. A. MacLachlan, personal communication, Oct. 1994.

T. G. Mattson, “The Strand Language: Scientific Computing meets Concurrent
Logic Programming”, Proc. Workshop on Parallel Implementation of Languages
for Symbolic Computation, eds. A. Ciepielewski and E. Tick, July 1990. Technical
Report CIS-TR-90-15, Dept. of Computer and Information Science, University of
Oregon, Eugene, Oregon.

T. Metzemakers, A. Miniussi, D. Sherman, and R. Strandh, “Improving Arith-
metic Performance using Fine-Grain Unfolding”, Proc. 6th. International Symp.
on Programming Language Implementation and Logic Programming, Sept. 1994,
pp- 324-339. Springer-Verlag LNCS vol. 844.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

25

J. Peterson, “Untagged Data in Tagged Environments: Choosing Optimal Repre-
sentations at Compile Time”, Proc. Functional Programming Languages and Com-
puter Architecture, 1989.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in €, Cambridge University Press, 1988.

A. Srivastava and D. W. Wall, “A Practical System for Intermodule Code Op-
timization at Link-Time”, Journal of Programming Languages, pp. 1-18, March
1993.

G. L. Steele Jr., “Fast Arithmetic in MacLISP”, Proc. 1977 MACSYMA Users’
Conference, NASA Scientific and Technical Information Office, Washington D.C.,
July 1977, pp. 215-224.

P. A. Steenkiste, “The Implementation of Tags and Run-Time Type Checking”,
in Topics in Advanced Language Implementation, ed. P. Lee, pp. 3-24. MIT Press,
1991.

P. A. Steenkiste and J. Hennessy, “Lisp on a reduced-instruction-set-processor”, in
Proc. 1986 ACM Conf. on Lisp and Functional Programming, Aug. 1986, pp. 192—
201.

A. Taylor, “Removal of Dereferencing and Trailing in Prolog Compilation”, Proc.
Stath International Conference on Logic Programming, June 1989, pp. 48-60. MIT
Press.

A. Taylor, “LIPS on a MIPS: Results from a Prolog Compiler for a RISC”, Proc.
Seventh International Conf. on Logic Programming, June 1990, pp. 174-185. MIT
Press.

P. Van Roy, Can Logic Programming Frecute as Fast as Imperative Programming?
PhD thesis, University of California at Berkeley, 1990.

P. Wadler, “Deforestation: Transforming programs to eliminate trees”, Proc. Fu-
ropean Symp. on Programming, March 1988, pp. 344-358. Springer-Verlag LNCS
vol. 300.

