Verifying Program Profiles

*

Patrick Moseley, Saumya Debray, Gregory Andrews

Department of Computer Science
University of Arizona
Tucson, AZ 85721.

{moseley, debray, greg}@cs.arizona.edu

ABSTRACT

Execution profiles have become increasingly important fad-g
ing code optimization. However, little has been done to bigve
ways to check automatically that a profile does, in fact, cefiee
actual execution behavior of a program. This paper describe
framework that uses program monitoring techniques in a \way t
allows the automatic checking of a wide variety of profileadatve
also describe our experiences with using an instance ofrtiise-
work to check edge profiles. The profile verifier uncoveredipro

ing anomalies that we had been unaware of and that would have

been very difficult to identify using existing techniques.

1. Introduction

Profiling is commonly used to measure aspects of performance
Programmers use high-level tools, suctgpsof [12], that sample
the program counter in order to estimate how much time istspen
in each function. Compilers now routinely use profile infation
such as basic block and edge counts to direct a wide varietyds
optimizations [6, 7, 9, 10, 11, 20]. Finally, many processmntain
hardware performance counters that measure low-levetesenh
as cache misses and branch mispredictions.

This paper addresses an issue that occurs in profiles thgeare
erated and used by compilers and related tools such asitirk-t
optimizers. These kinds of profiles typically associatetima ex-
ecution counts with components of a program, e.g., basickblo
control flow edges, or paths in a control flow graph. The specifi
focus of this paper is the following question: How can oné¢ tel
whether the counts generated by a profiler accurately refiedie-
havior of the program being profiled?

Interestingly, while there has been a great deal of reseamch
testing programs (e.g., see [8, 15, 17, 21]), the questidasting
program profilers has received relatively little attentiéimom our
own experience and what we have learned from others, thaiprev
ing practice in testing profilers is vegd hoc “eyeball” the pro-
filing code, make sure the profiling and original version ofra-p
gram produce the same “regular” output, generate expectditiep
counts manually for a few sample programs, and check thaethe
match the profiler-generated counts for the same prograhis.i§’
hardly a satisfactory situation. First, it is time consughand error
prone. Second, it is reasonable to compute execution cowantsi-
ally only for a small number of small programs—especiallgrie
is looking at complex profiles, such as for type feedback jecth
oriented languages [14], edge-pair profiling [18], or patbfiing
[4]. This means that profiling bugs that show up only on large i
puts will not be detected. Finally, erroneous results caanltérom
the fact that compiler-generated profiling is intrusivenserts pro-
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filing code in the program being profiled, which alters the mmgm
layout of the original program and hence can alter its beitavi

A significant reason why the testing of program profiles isenor
difficult than conventional program testing is that it deaith a
fundamentally different view of program execution. Cortemal
program testing takes the denotational view that what isifsognt
about a computation iwhatis computed, i.e., the output produced
for a given input. Therefore conventional testing focusesiscer-
taining that these outputs are being computed correcttfiles, by
contrast, capture an operational view of a computation revtiee
property of interest ifowthe computation is carried out. Because
of this, in order to check a program’s execution profile, inéxes-
sary to observe the actual computation of the program, sbthe
end result.

An execution profile is in essence a set of assertions abeut th
execution of a program on some specific set of inputs, e.gsitb
block z is executedn times” or “program patly is takenn times.”

We would like to be able to check, automatically and for aabit
programs, that these assertions are correct—i.e., thamn wke-
cuted on the same set of inputs, basic bledk, in fact, executed
m times, or that program pathis takenn times. The issue here is
not that we must have “exact” execution counts for code dpéim
tion. In fact, several researchers have observed that sipmate
profiles can be useful and effective for optimization pugmR, 5,
13]; these profiles are generated and used deliberatelykwiiwI-
edge that precision is being sacrificed, an understandinghefe
and how much precision is lost, and some sense of how much loss
can be tolerated. Rather, the issue is how to guard agaipseim
cision that isinadvertentlyintroduced as a consequence of bugs
in the profiler. This kind of imprecision is unsuspected angre-
dictable. Thus, it can cause, for example, heavily execpeetions

of code to appear to have low execution counts, which in tam ¢
result in misoptimized programs, performance anomalied, for
researchers, faulty experimental data.

This paper presents a technique for automatically vergfyrany
different kinds of profile data. Our approach has two comptsie
a general framework and a specific checker. The general frame
work uses a trap-based scheme, similar to that used in a gehug
to monitor the behavior of a program at runtime. A checkerafor
specific type of profile data is then built on top of the framew®
significant advantage of our approach is that because thé&anon
ing code runs in a separate address space, the program wisese p
file is being checked does not have to be modified. This helpislav
profiling bugs that arise from changes to code or data adekess
the program being profiled as a result of inserting instrusatém
code.

IThis in fact happens in thgcc benchmark that is part of the SPEC-95
benchmark suite. We discovered this using our profile verifee Section
5 for details.
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Figure 1: Normal execution, profiling, and profile verification

We have implemented the general framework and a checker for allocated during execution. In either case, data addreastee
edge profiles in the context of the PLTO binary rewriting eyst original program might change.

[23]. Section 2 gives more detailed background informaton While it may seem a simple proposition to insert instrumeoia
compiler-level profiling and on our approach to profile veation. code into a program, the issues that have to be addressedtale n
Section 3 describes our implementation of the general fnanrie ways straightforward. For example, the GNU C compije@ has
and a checker for edge profiles generated by PLTO. Section 4 de facilities for basic block profiling, but if the program beiimstru-
scribes subtle issues that arose during the implementatidrest- mented is large—e.g., the SPEC-2000 benchrad@fkgce—the in-

ing of our framework. Section 5 describes what we learnedwhe strumented executable can silently generate incorrefitggavhen
we used our checker to verify profiles of the SPEC-95 bencksnar  executed, or crash with a segmentation fault. We mentianathiy

and it gives information on execution times. Finally, Sewctb to observe that even experienced software developers ¢aa-so

gives concluding remarks. times have trouble with profilers, even for something as espgly
straightforward as basic block profiling.

2. Profi|ing and Profile Verification Profilers are often implemented by rewriting binaries (esge

[16, 25]). In this case it is imperative that changes to cottbdata
addresses resulting from instrumenting the program bectetle

in all parts of the program. Otherwise, the instrumented)m
may behave differently than the original program. Obvigpi§the
behavioral differences between the two versions resulifiardnt
outputs being generated, the problem will be noticed, butammot
always guarantee that this will be the case. Another proltem
arise from the fact that, in general, it is impossible to uédisas-
sembly errors, especially if there may be data embeddectitettt
segment [24]. In such cases, e.g., if executable code islkaisty
identified as data (or vice versa), the insertion of instnotagon
code can cause the program to crash or to produce an incpreect
file. A more subtle problem can arise if the event counters@oe
small, e.g., if 32-bit counters are inadvertently used émgl run-
ning programs where execution counts are too large to fit3@to
bits. This can happen, for example, if code is reused acness a
chitectures; e.g., a C variable of typeng occupies 64 bits on a
Compagq Alpha but only 32 bits on an Intel Pentium. We have in
fact encountered all the above problems in our own work.

Some other profiling schemes avoid the problem of disassem-
bly errors—e.g., by instrumenting an interpreter or by dyitain-
strumentation, in which the program is instrumented asdtates.
However, the other problems still remain. Moreover, likaasy
rewriting, both these schemes perturb the executable: Insaru-
mented interpreter, the code now executes out of the dataeseg
of the interpreter rather than its own text segment; dynansitu-
mentation inserts instrumentation code in the executable.

Even when all the above problems have been addressed, the act
of inserting instrumentation code into a program can afitsdbe-
havior, possibly in subtle and hard-to-detect ways (eeg ection

Intuitively, profiling involves counting specific eventsinferest—
e.g., entering a basic block, or taking a particular corftoo¥ edge.
Events are counted each time they happen during the exeaiftio
a program, then this data is written out at the end of the jarogr
execution. In order to profile a program, it is fiisstrumented
i.e., it is rewritten to insert additionahstrumentation codehat
records the runtime events of interest as they happen. éilf
lustrates this. Figure 1(a) shows the normal execution ebgram
a.out which takes the inpytrofile_data.inand generates the output
data.gen Figure 1(b) shows how the program is profiled. The orig-
inal binarya.outis passed through a profiler, which produces an
instrumented version. The instrumented versadnstr.outis then
executed with the same input; it writdata.gerand the profile data
a.out.counts

As an example, in order to obtain execution counts for easftba
block in a program (a basic block profile), we might inserteoto
each basic block to increment a block-specific counter each t
that block is entered. Note that the insertion of this insieatation
code can cause code addresses to change. More complexsprofile
e.g., value profiles [5, 19] or path profiles [4], require espond-
ingly more complex processing, but the general idea rentaias
same. Profilers may also employ more sophisticated profibigig
to reduce runtime overheads [3, 26], but again the essedé&al
does not change.

In addition to inserting instrumentation code for countiud
recording profiling events, a profiler needs to allocate nrgrapace
for the profile counters themselves. For simple kinds of [@sfi
such as basic block and edge profiles, the number of coutiztrs t
are required can be determined statically by examining tioe p
gram; therefore, the counters can be statically allocateld data

segment of the instrumented program. For more complex psofi 2This refers tayccversion 2.96 on Intel Pentium 3 and Pentium 4 worksta-

it may not be possible to determine statically how many cent  tions running RedHat Linux 7.3. Instrumentation for badick profiling
are required. In this case, the counters may have to be dgatyni is generated when the compiler is invokedyas —a.




5). In implementing a profile verifier, therefore, one of cwaly
is to avoid perturbing the program being profiled as much as po
sible. One way to realize this is to have the instrumentatiote
reside in a different address space than the program bedrfigegl;
with control being transferred from program'’s address spga¢he

anomalies that are detected, such as missing edges or basic
blocks. The existence of anomalies point to disassembly er-
rors in the profiler (see Figure 1(b) and [24]).

2. Decrement edge counters as control flow edges are traverse

instrumentation address space, and back, each time a prodite . » . "
occurs during the program’s execution. When the program being verified terminates, the verifier astgll

This idea is strongly reminiscent of the way debuggers work ©f the edges in the control flow graph that do not have countaleq
[22]. A debugger monitors and controls the program being de- t0 Zero. These nonzero edge counts indicate where the pulafte
bugged. It allows the program to be single-stepped an ictibru dld.n.ot match the execution behavior of the program as seémeby
at a time, allows breakpoints to be set, and allows the progea ~ Verifier. . .
be executed until a breakpoint is reached. In addition, ébeigger e technique used to follow and verify the control flow graph
has access to the memory space of the program being debuggedS st_ralghtforward. T_he verifier starts executing the paogmat the
s0 it can examine and change the core image of the program. (OnPeginning of the basic block corresponding to the entry ffithe
Linux, this functionality is supported by thgracesystem call). program. The verifier regains control at the end of that biaisick,

Our approach to profile verification is based on this idea. The finds the start of the next basic block, decrements the apptep
verifier starts the program whose profile we want to check en th €dge counter, and then repeats these actions. This iee@beess

appropriate profiling inputs, and then uses the appropsigstem is implemented as follows:
call (ptrace on Linux) to control its execution. The verifier ob-
serves the runtime behavior of a program in the same way amuma
uses a debugger to debug a program: by single steppingigetti
breakpoints, running until breakpoints are reached, aathéxng

the memory space of the program. In the process, the verdier ¢
count profiling events, e.g., entry to a basic block or cdrftoo
along an edge, as they occur and check whether the resuttimgsc
match those generated by the profiler. This is illustratefigure
1(c). The verifier controls execution of the original pragra.out

on the original input fileprofile_data.in Additionally, the verifier
takes the event counts dataut.countsas an input and produces
diagnostics and verification output as appropriate.

In summary, the goal of our work is to observe and indepen-
dently count events in the original program—without ahligrthat
program—in order to determine whether the counts agreethdtte
of the profiled version of the program. It is also worth emjiiras
ing what our work is not about. It is not about choosing su@ab
profiling inputs; that is a task that is best left to the apgiion
programmer. Nor is it about choosing suitable test progras,
randomly generated programs, to observe and check profitets
issue is largely orthogonal to the topic of this paper. Hynal is
not about checking the consistency of profiles, i.e., ansgehe
question of whether a profile “makes sense;” all we are clngcis
whether the profiler computes what it purports to compute.

3. An Example: Verification of PLTO
Edge Profiles

We have built the trap-based profile verification framewdtshed
above and have built a verifier for edge count profiles geadrat
by the PLTO binary rewriting system for Intel Pentium praz@s
[23]. The trap-based framework was implemented on Linux us-
ing thelibDebuglibrary from theald debugger [1]. This section
first describes the basic operation of our verifier then dises op-
timizations we used to improve its performance.

3.1 Basic Operation

A PLTO edge count profile represents an edge as a pair of basic

blocks and a counter; each basic block is denoted by itsrsjart
address in the program that was profiled. The verifier firsigea
program’s edge count profile, creates a control flow grapttfer
program using the edge information, and initializes edgentoin
this control flow graph with values read from the edge couofiler.
The verifier then starts the program and monitors its execuths
the program executes, the verifier has two main tasks:

1. Check the structure of the control flow graph and report any

1. The verifier records the address of the current basic kithck
then finds the last instruction iR, as described below.

2. The verifier then sets a breakpoint at the last instrudtion
B.

3. The verifier returns control to the program, which exesute
at native speed until it encounters the breakpoint at the end
of block B. This returns control back to the verifier.

4. The profile verifier then executes the last instructionan b
sic block B. This is accomplished using thmrace single-
step interface, which executes a single instruction then re
turns control to the verifier.

5. After single stepping, the program is at the start of soae b
sic block B. At this point, there are three possibilities:

(a) Block B’ exists and there is an edge in the control flow
graph fromB to B’, so the count associated with the
edgeB — B’ is decremented. This is the expected
case.

(b) Block B’ does not exist in the control flow graph—i.e.,
there is no block with the same starting addresBas-
soitis reported as missing and added to the control flow
graph. This may cause an existing basic block to be
split into two blocks. (In this case, a new edge is also
created; its count is initialized to the sum of the edge
counts into the block that was split.)

(c) Block B’ exists but the edgB — B’ does not exist, so
that edge is reported as missing and added to the control
flow graph.

To find the last instruction in a basic blodk, the verifier starts
at the first instruction inB and repeatedly disassembles each in-
struction? until one of the following two conditions holds:

1. If I is a branch instruction, thehis the last instruction iiB.

2. Ifthe starting address dfis in the list of basic block starting
addresses obtained from the control flow graph being veri-
fied, thenT is the first instruction in the block aftdB. (This
situation occurs when there is a fall-through edge from one
block to another in the control flow graph.) In this case, the
instruction immediately precedingis the last instruction in
block B.



3.2 Optimizations

Even with the above caching optimizations, we still havege u

The basic trap_based verifier described above turns out to beptraceto disassemble the instructions in a block the first time the

quite slow. This is due primarily to the overhead associatit
using theptracesystem call. To speed up the trap-based profile ver-
ifier, we have therefore focused on reducing the number @&ithe
verifier has to usptraceto access the profiled program’s memory.
We are able to reduce the number of calls by caching key viadses
described below.

An especially significant source of overheads results frben t
verifier's need to disassemble the profiled program’s insions
every time it is looking for the end of a basic block. In order t
examine memory in the program being verifigrdrace must be
called for each word of data. In the basic verifier descrilleal/a,
each instruction in a basic block is disassembled each tivae t
basic block is executed, so the total number of callpttace is
roughly comparable to the total number of instructions aseat by
the original program.

We can reduce this overhead dramatically by having the eerifi
cache the end address of each basic block in the profiledgrogr
i.e., the address of the last instruction in the block. Thesns that
the verifier only has to disassemble a basic block once to find i
last instruction. (There is one exception to this, whichursdnfre-
quently: If a basic block is split as a result of a missing bésbck
in the control flow graph, the verifier has to disassemble thekb
that was split one more time to identify the new last insiarc)

We can reduce the number jpfracecalls still further by having
the verifier cache some additional information about the tyfthe
last instruction in a block. It turns out that PLTO does nai-pr
file certain types of control flow edges, e.g., function retedges.
Hence the verifier has to determine the type of the control flow
edge out of a block in order to avoid giving spurious diagicost
messages. This, in turn, is governed by the type of the lastic
tion in the block. Thus, even if we know the address of the last
instruction in a block, we still have to determine the typettudt
instruction. This requires disassembling the instrucgach time
the block is executed, which requirptrace calls. We can avoid
these calls by caching the type of the last instruction iroalbthe
first time we disassemble the block.

These optimizations turn out to lvery effective in reducing the
overheads associated wittracecalls. As three data points:

1. The verification time for the SPECfp-95 benchmark program

block is executed. We attempted to eliminate thpsace calls
by having the verifier use thmmapsystem call to access the text
segment of the executable file, which is available on diskvéler,
for reasons we do not yet understand, this gives mixed sgswilth
significant speedups on some processors and slight slovedomn
others. We are currently examining this puzzle.

4. Implementation and Environmental

Issues

We encountered two kinds of issues when implementing and
testing our profile verification framework. The first resdittsm pe-
culiarities of the Intel 1A-32 (Pentium) architecture arne tLinux
operating system; other processors and operating systegig m
have similar peculiarities. The second kind of issue arfea®
subtle or nondeterministic aspects of the environment iickvthe
profiler and verifier execute; these issues are inherentrtergéng
and checking profiles.

4.1 Host Processor and Operating System

The trap-based profile checker follows edges in the contwul fl
graph by finding the last instruction in a basic block and lging
stepping that instruction to find the first instruction in thext ba-
sic block. Thus we assume that after single-stepping aruictsin,
the program counter contains the address of the next iristnuo
be executed. We found two situations that we have to treat spe
cially because this assumption does not hold. One resulis fr
the Pentium architecture’s repeating string instructighse other
results from how the Linux implementation pfrace handles the
Pentium’s interrupt instruction.

A repeating string instruction on the Pentium is an instaurct
that repeatedly executes one of the Pentium'’s basic simistguic-
tions until a specified terminating condition is met; thea tito-
gram counter advances to the next instruction in the texnseg
Thus, a repeating string instruction is essentially a orstriic-
tion loop, but it is encoded as a single instruction with npliext
control transfer. Single-stepping such an instructiomltgsn the
program counter remaining on the instruction until the ieating
condition is met. Thus, when such an instruction is the fesftuc-
tion in a basic block—a situation we have seen several tinves—

fppppdropped from 1 hour 51 minutes 43 seconds to 1 minute ¢annot single step the original program to get to the firdriis

56 seconds, an improvement of about 58 times.

2. The time for the SPECint-95 benchmarémpressiropped

from 17 minutes 40 seconds to 2 minutes 56 seconds, an im-

provement of about 6 times.

3. The time for the SPECint-95 benchmaycdropped from 8
hours 56 minutes to 1 hour 53 minutes, an improvement of
about 5 times.

The different amounts of improvement for these programsbean
explained by differences in their execution charactessti The

fppppprogram has a well-defined hot spot consisting of a loop con-

taining a very large basic block; hence, caching the addretse
last instruction avoids the very large overhead of repdaididas-
sembling this block. Theompresprogram also has a well-defined
hot spot, but it contains much smaller basic blocks thafpppp
hence, the disassembly overhead is less thafpfgpp so there is
less room for speedup due to caching. Gheprogram has a much
more diffuse profile thafppppor compresswith less well-defined
hot spots; consequently, cached information is used legsiéntly
than in the other two programs.

tion in the next basic block. On the other hand, we know that th
first instruction of the next basic block will be the instiiact fol-
lowing the repeating string instruction. Thus, when we dgg t
special case, we set a break point at the next instructitumréo
the original program, and let the processor execute theatiege
string instruction. When the breakpoint trap returns aartt the
verifier, we realize that we are already at the first instorctn the
next basic block and then proceed as in the normal case.

The second problematic situation results from the Pensumt
(interrupt) instruction. Under Linux, the effect of usiptraceto
single-step an interrupt instruction is that the instruetiollowing
the interrupt is skipped and the program counter ends ugipgin
to the second instruction after the interrupt. Thus, what is
the last instruction of a basic block, the trap-based profilecker
single-steps thent to determine the address of the second instruc-
tion of the next basic block, then looks at the previous urtton
and determines its address. This situation is rare, but wfseoit
still has to be detected and handled.

4.2 Execution Environment

If the execution environment of the profiler and verifier €liff
the verifier might see errors in the profile data and produeg-di



nostic messages even if the profile is correct. Here, “enuient”
refers to the settings of a user’s shell variables and amgthise
external to the program that can affect its execution. Taiseven
include such minutiae as the number of characters in the @mdm
line used to invoke the program, because this affects the twat

than their actual values. We knew that there would be diffees
for these functions; the verifier gave us quantitative outplling
us how far the counts were off.

The second type of inaccuracy results from inserting imsénmn-
tation code into the program being profiled, which causesesses

reads in and parses the command line options. For example, weto change, thereby changing the execution behavior of thgram

found small differences in the profile of the string libraon€tion
strrchr when programs being verified were invoked with a slightly
different path to the output file compared to when their pesfil
were originally generated. The lesson here is that one has to
careful when interpreting the output from the verifier tdtidiguish
genuine errors from explainable differences due to diffeexecu-
tion environments.

A situation that is harder to deal with occurs when the exenut

of the program being profiled or checked depends on some non-

deterministic aspect of its environment, such as the timdagf
For example, the following program fragment uses the resufit
the standard library functiotime()to initialize the random number
generator, and then uses the random number generator tagene
hash codes:

srand( tinme(NULL) );

hééh_code = (random() *i ndex) % hash_t abl e_sz;

If this kind of code occurs in the original program, no two €xe
cutions of the program would ever have exactly the same psofil
Hence, a profile checker will always discover differencesowH
ever, this is not a limitation of our technique for profile fieation.
Moreover, by using a profile verification framework such eat th
described in this paper, such differences become expiiditence
get noticed; Section 5 describes a real example that we\dised.

One concludes from this that the output from the profile veri-
fier must be reviewed carefully to determine which differenare
caused by real errors in the profile data and which are envieor
tal differences that were not, or could not be, duplicateu.our
use of the profile checker for PLTO edge count profiles, theomaj
sources of environmental differences are the standardrjilini-
tialization code, the program startup code, and the loeegHim-
plementations of standard library functions. These diffiees are
seen because PLTO operates on statically linked prograenseh
the standard library code is also instrumented. In pracitii® not
clear how significant an effect environmental differencesy mmave
on different types of profiles, but it is something that netxlbe
kept in mind.

5. Results

The way we originally tested our implementation of edge pro-
filing using PLTO is, we believe, fairly representative oé thre-
vailing practice with regards to testing profilers. We exaadi the
instrumentation code by “eyeballing” it and checked theagated
profiles manually on modest sized test programs where it v&s p
tical to manually compute the various edge counts. The gésr
profiles were then used to guide the implementation and avalu
tion of optimizations, where the profiles were themselvégeated
to scrutiny. There was no indication, during any of this,t tte
profiles were inaccurate in any way. We were surprised, foere
when our trap-based verifier exposed situations in whictyémer-
ated profiles did not reflect the actual runtime edge counfs@f
grams.

The inaccuracies we discovered fall into two broad categori
The first category involves differences in execution cotmtstan-
dard library functions, such agpenandwrite, that are used both
by the application and by the profiler to write out the profiteadat
the end of the program’s execution. The effect is that thetsoob-
tained for control flow edges in these functions are slightgher

as well. It manifests itself in the SPECint-95 progrgot, where
several functions have edge counts that differ betweenntsteur
mented and uninstrumented versions of the program. Whde th
differences are small—around 1.5-3%—they are still sigaift.
Moreover, the presence of these inaccuracies was a tofaiseir

It turns out that this program contains code (fikee. c, function
canon_hash() ) that has the form

switch (..) {

case SYMBOL_REF:
return (hash
+ ((HOST_W DE_I NT) SYMBOL_REF << 7)
+ ((HOST_WDE_I NT) XEXP(x, 0)
& ((1 << HASHBITS) - 1)));
}
whereXEXP( - - -) yields a pointer value. Thus, the code uses ad-
dresses to calculate hash values. Since the instrumergedtakle
has a different size than the original executable, heapeadds start
at a different location in the instrumented executable. dBee of
this, the hash table is actually constructed slightly défely in
the instrumented code compared to the original code. Tisirn
causes the execution of code that traverses this datastutct
behave slightly differently in the two versions.

While the inaccuracies turn out to be relatively small inteat
these cases—and benign from the standpoint of code optionza
the important point is that the profile verifier correctly ndiéed
a situation where the instrumented executable behavesetifly
than the original executable. The system implementors lcan t
examine the reasons for the discrepancies in executiornt<ama
address them as appropriate.

This example illustrates that “real” programs can and daoske
whose behavior can change due to the presence of instrutioenta
code. Indeed, it is easy to extend the idea to write similag@ams
in which the instrumented version behaves very differentligh
a completely different hot spot, than the uninstrumentegircal.
This is shown in Figure 2. The original version of this pragra
incurs no collisions while inserting into the hash tablet, the in-
strumented version incurs a collision at every iteratiothefloop,
i.e.,all the values hash into the same bucket!

These discrepancies in profiling results also highlight feres
that manual checking is not adequate for testing profilersdo-
rectness. For example, it is completely impractical to kheanu-
ally execution profiles for a program comparable in sizgdo The
problem is only magnified if we consider more complex profiles
such as value or path profiles. A means for automaticallykihgc
profile data is necessary in order to test profilers thorgughl

As a side note, our profile checker also helped to track down a
non-profile-related problem in PLTO. The SPECfp-95 benatma
programappluwas known to crash when optimized with PLTO, but
tracking down the problem was proving difficult. It turned that
the process of verifying the profile data for this programaweced
some discrepancies that suggested a periodic corruptioefory
during execution. This turned out to be a useful insight kiedped
focus our subsequent investigations into the problem aeuditasally
led us to identify the actual cause.

Table 1 shows the execution time overhead incurred by profile
verification relative to the time taken to profile the progsamthe
SPECIint-95 benchmark suite using conventional instruatimt
techniques. The “Normal” column gives the execution timas f



#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#define HASH_ SI ZE 1024
#def i ne LOOP_COUNT 1000
#define MOD 2
struct hash_entry {
int data;
struct hash_entry *next;

b
static struct hash_entry *HashTabl e[ HASH_SI ZE |;
static int collisions = 0;
int hash_value( int data ) {
int x = (int) HashTabl e;
return ((data * ((x / 0x100 ) % MOD)) )
void hash_insert( int data ) {
int hash = hash_val ue( data );
struct hash_entry *entry =
entry->data = data;
entry->next = NULL;
if ( HashTabl e[ hash] != NULL ) {
struct hash_entry *tenp = HashTabl e[ hash];

col l'i si ons++;

while ( tenmp->next !'= NULL ) {
tenp = tenp->next;
}
tenp->next = entry;
} else {
HashTabl e[ hash] = entry;
}
}
int main( int argc, char *argv[] ) {
int i;
for (1 =0; i < LOOP_COUNT; i++ ) {
hash_insert( i );
}
printf( "HashTable = %\n", HashTable );
printf( "collisions = %\n", collisions );
return O;
}

% HASH_SI ZE;

mal | oc( sizeof (struct hash_entry) );

Figure 2: A program whose behavior changes due to instrumenttion

the benchmarks; the “Profile” column gives the executioretifior
instrumented versions of the programs that generate mpfie
“Verify” column gives the execution times to check the gexted

While execution profiles play an increasingly importaneroi
guiding compiler optimizations, the question of verifyititat the
profiles are correct—i.e., reflect the actual runtime bedravof

profiles. All programs in the same row had the same input data programs—has not received much attention. In practicelemp

(the SPECIint-2000 training input for that benchmark). Oyresi-
ments were run on an unloaded 2 GHz Pentium IV workstatioh wit
1 GB of main memory, running Redhat Linux 7.3. The programs
were compiled witlgccversion 2.96 at optimization levelO3 and
statically linked, with additional flags to instruct the kar to re-
tain relocation informatior. It can be seen that verification incurs
an overhead of roughly two orders of magnitude (ak&itx to
700x) relative to conventional profiling. While this slowdown is
large, the verifier has to be run only once to check a profileréMo
importantly, our verification framework makes it possildecheck
large profiles generated by large programs—which is notipless
using existing techniques—and to do so automatically.

6. Conclusions

3The requirement for statically linked executables is altesuthe fact
that PLTOrelies on the presence of relocation information to distisiy

addresses from dalt)? The Unix linked r_efulfe to rgtain relocation infor-
mation for executables that are not statically linked.

mentors usead hoctechniques to test profilers, typically by in-
specting the profiling code and checking its behavior mayoala
few small programs where execution counts can be manuatty co
puted. This paper describes a framework for automatic verifi
tion of profiles. We illustrate our approach using a verifiar dn
edge profiler we have implemented in the context of the PLR3 i
time optimizer. Using this verifier, we were able to idensfveral
discrepancies in generated profiles that had gone undétesieg
conventional testing techniques.
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