
Verifying Program Profiles �
Patrick Moseley, Saumya Debray, Gregory Andrews

Department of Computer Science
University of Arizona
Tucson, AZ 85721.fmoseley, debray, gregg@cs.arizona.edu

ABSTRACT
Execution profiles have become increasingly important for guid-
ing code optimization. However, little has been done to develop
ways to check automatically that a profile does, in fact, reflect the
actual execution behavior of a program. This paper describes a
framework that uses program monitoring techniques in a way that
allows the automatic checking of a wide variety of profile data. We
also describe our experiences with using an instance of thisframe-
work to check edge profiles. The profile verifier uncovered profil-
ing anomalies that we had been unaware of and that would have
been very difficult to identify using existing techniques.

1. Introduction
Profiling is commonly used to measure aspects of performance.

Programmers use high-level tools, such asgprof [12], that sample
the program counter in order to estimate how much time is spent
in each function. Compilers now routinely use profile information
such as basic block and edge counts to direct a wide variety ofcode
optimizations [6, 7, 9, 10, 11, 20]. Finally, many processors contain
hardware performance counters that measure low-level events such
as cache misses and branch mispredictions.

This paper addresses an issue that occurs in profiles that aregen-
erated and used by compilers and related tools such as link-time
optimizers. These kinds of profiles typically associate runtime ex-
ecution counts with components of a program, e.g., basic blocks,
control flow edges, or paths in a control flow graph. The specific
focus of this paper is the following question: How can one tell
whether the counts generated by a profiler accurately reflectthe be-
havior of the program being profiled?

Interestingly, while there has been a great deal of researchon
testing programs (e.g., see [8, 15, 17, 21]), the question oftesting
program profilers has received relatively little attention. From our
own experience and what we have learned from others, the prevail-
ing practice in testing profilers is veryad hoc: “eyeball” the pro-
filing code, make sure the profiling and original version of a pro-
gram produce the same “regular” output, generate expected profile
counts manually for a few sample programs, and check that these
match the profiler-generated counts for the same programs. This is
hardly a satisfactory situation. First, it is time consuming and error
prone. Second, it is reasonable to compute execution countsmanu-
ally only for a small number of small programs—especially ifone
is looking at complex profiles, such as for type feedback in object-
oriented languages [14], edge-pair profiling [18], or path profiling
[4]. This means that profiling bugs that show up only on large in-
puts will not be detected. Finally, erroneous results can result from
the fact that compiler-generated profiling is intrusive: Itinserts pro-�This work was supported in part by the National Science Foundation under
grants CCR-0073394, EIA-0080123, and CCR-0113633.

filing code in the program being profiled, which alters the memory
layout of the original program and hence can alter its behavior.1

A significant reason why the testing of program profiles is more
difficult than conventional program testing is that it dealswith a
fundamentally different view of program execution. Conventional
program testing takes the denotational view that what is significant
about a computation iswhat is computed, i.e., the output produced
for a given input. Therefore conventional testing focuses on ascer-
taining that these outputs are being computed correctly. Profiles, by
contrast, capture an operational view of a computation, where the
property of interest ishow the computation is carried out. Because
of this, in order to check a program’s execution profile, it isneces-
sary to observe the actual computation of the program, not just the
end result.

An execution profile is in essence a set of assertions about the
execution of a program on some specific set of inputs, e.g., “basic
blockx is executedm times” or “program pathy is takenn times.”
We would like to be able to check, automatically and for arbitrary
programs, that these assertions are correct—i.e., that when exe-
cuted on the same set of inputs, basic blockx is, in fact, executedm times, or that program pathy is takenn times. The issue here is
not that we must have “exact” execution counts for code optimiza-
tion. In fact, several researchers have observed that approximate
profiles can be useful and effective for optimization purposes [2, 5,
13]; these profiles are generated and used deliberately, with knowl-
edge that precision is being sacrificed, an understanding ofwhere
and how much precision is lost, and some sense of how much loss
can be tolerated. Rather, the issue is how to guard against impre-
cision that isinadvertentlyintroduced as a consequence of bugs
in the profiler. This kind of imprecision is unsuspected and unpre-
dictable. Thus, it can cause, for example, heavily executedportions
of code to appear to have low execution counts, which in turn can
result in misoptimized programs, performance anomalies, and, for
researchers, faulty experimental data.

This paper presents a technique for automatically verifying many
different kinds of profile data. Our approach has two components:
a general framework and a specific checker. The general frame-
work uses a trap-based scheme, similar to that used in a debugger,
to monitor the behavior of a program at runtime. A checker fora
specific type of profile data is then built on top of the framework. A
significant advantage of our approach is that because the monitor-
ing code runs in a separate address space, the program whose pro-
file is being checked does not have to be modified. This helps avoid
profiling bugs that arise from changes to code or data addresses in
the program being profiled as a result of inserting instrumentation
code.1This in fact happens in thegcc benchmark that is part of the SPEC-95
benchmark suite. We discovered this using our profile verifier; see Section
5 for details.

a.out data.gen

profile_data.in

a.out

profiler a.instr.out
a.out.counts
data.gen

profile_data.in
a.out

execution
control

verifier

a.out.counts

profile_data.in

data.gen

diagnostics
+

output
verification

(a) Normal execution (b) Profile generation (c) Profile verification

Figure 1: Normal execution, profiling, and profile verification

We have implemented the general framework and a checker for
edge profiles in the context of the PLTO binary rewriting system
[23]. Section 2 gives more detailed background informationon
compiler-level profiling and on our approach to profile verification.
Section 3 describes our implementation of the general framework
and a checker for edge profiles generated by PLTO. Section 4 de-
scribes subtle issues that arose during the implementationand test-
ing of our framework. Section 5 describes what we learned when
we used our checker to verify profiles of the SPEC-95 benchmarks,
and it gives information on execution times. Finally, Section 6
gives concluding remarks.

2. Profiling and Profile Verification
Intuitively, profiling involves counting specific events ofinterest—

e.g., entering a basic block, or taking a particular controlflow edge.
Events are counted each time they happen during the execution of
a program, then this data is written out at the end of the program’s
execution. In order to profile a program, it is firstinstrumented,
i.e., it is rewritten to insert additionalinstrumentation codethat
records the runtime events of interest as they happen. Figure 1 il-
lustrates this. Figure 1(a) shows the normal execution of a program
a.out, which takes the inputprofile data.inand generates the output
data.gen. Figure 1(b) shows how the program is profiled. The orig-
inal binarya.out is passed through a profiler, which produces an
instrumented version. The instrumented versiona.instr.outis then
executed with the same input; it writesdata.genand the profile data
a.out.counts.

As an example, in order to obtain execution counts for each basic
block in a program (a basic block profile), we might insert code into
each basic block to increment a block-specific counter each time
that block is entered. Note that the insertion of this instrumentation
code can cause code addresses to change. More complex profiles,
e.g., value profiles [5, 19] or path profiles [4], require correspond-
ingly more complex processing, but the general idea remainsthe
same. Profilers may also employ more sophisticated profilinglogic
to reduce runtime overheads [3, 26], but again the essentialidea
does not change.

In addition to inserting instrumentation code for countingand
recording profiling events, a profiler needs to allocate memory space
for the profile counters themselves. For simple kinds of profiles,
such as basic block and edge profiles, the number of counters that
are required can be determined statically by examining the pro-
gram; therefore, the counters can be statically allocated in the data
segment of the instrumented program. For more complex profiles,
it may not be possible to determine statically how many counters
are required. In this case, the counters may have to be dynamically

allocated during execution. In either case, data addressesin the
original program might change.

While it may seem a simple proposition to insert instrumentation
code into a program, the issues that have to be addressed are not al-
ways straightforward. For example, the GNU C compilergcc2 has
facilities for basic block profiling, but if the program being instru-
mented is large—e.g., the SPEC-2000 benchmark176.gcc—the in-
strumented executable can silently generate incorrect profiles when
executed, or crash with a segmentation fault. We mention this only
to observe that even experienced software developers can some-
times have trouble with profilers, even for something as supposedly
straightforward as basic block profiling.

Profilers are often implemented by rewriting binaries (e.g., see
[16, 25]). In this case it is imperative that changes to code and data
addresses resulting from instrumenting the program be reflected
in all parts of the program. Otherwise, the instrumented program
may behave differently than the original program. Obviously, if the
behavioral differences between the two versions result in different
outputs being generated, the problem will be noticed, but wecannot
always guarantee that this will be the case. Another problemmay
arise from the fact that, in general, it is impossible to ruleout disas-
sembly errors, especially if there may be data embedded in the text
segment [24]. In such cases, e.g., if executable code is mistakenly
identified as data (or vice versa), the insertion of instrumentation
code can cause the program to crash or to produce an incorrectpro-
file. A more subtle problem can arise if the event counters aretoo
small, e.g., if 32-bit counters are inadvertently used for long run-
ning programs where execution counts are too large to fit into32
bits. This can happen, for example, if code is reused across ar-
chitectures; e.g., a C variable of typelong occupies 64 bits on a
Compaq Alpha but only 32 bits on an Intel Pentium. We have in
fact encountered all the above problems in our own work.

Some other profiling schemes avoid the problem of disassem-
bly errors—e.g., by instrumenting an interpreter or by dynamic in-
strumentation, in which the program is instrumented as it executes.
However, the other problems still remain. Moreover, like binary
rewriting, both these schemes perturb the executable: In aninstru-
mented interpreter, the code now executes out of the data segment
of the interpreter rather than its own text segment; dynamicinstru-
mentation inserts instrumentation code in the executable.

Even when all the above problems have been addressed, the act
of inserting instrumentation code into a program can affectits be-
havior, possibly in subtle and hard-to-detect ways (e.g., see Section2This refers togccversion 2.96 on Intel Pentium 3 and Pentium 4 worksta-
tions running RedHat Linux 7.3. Instrumentation for basic block profiling
is generated when the compiler is invoked asgcc –a.

5). In implementing a profile verifier, therefore, one of our goals
is to avoid perturbing the program being profiled as much as pos-
sible. One way to realize this is to have the instrumentationcode
reside in a different address space than the program being profiled,
with control being transferred from program’s address space to the
instrumentation address space, and back, each time a profileevent
occurs during the program’s execution.

This idea is strongly reminiscent of the way debuggers work
[22]. A debugger monitors and controls the program being de-
bugged. It allows the program to be single-stepped an instruction
at a time, allows breakpoints to be set, and allows the program to
be executed until a breakpoint is reached. In addition, the debugger
has access to the memory space of the program being debugged,
so it can examine and change the core image of the program. (On
Linux, this functionality is supported by theptracesystem call).

Our approach to profile verification is based on this idea. The
verifier starts the program whose profile we want to check on the
appropriate profiling inputs, and then uses the appropriatesystem
call (ptrace on Linux) to control its execution. The verifier ob-
serves the runtime behavior of a program in the same way a human
uses a debugger to debug a program: by single stepping, setting
breakpoints, running until breakpoints are reached, and examining
the memory space of the program. In the process, the verifier can
count profiling events, e.g., entry to a basic block or control flow
along an edge, as they occur and check whether the resulting counts
match those generated by the profiler. This is illustrated inFigure
1(c). The verifier controls execution of the original program a.out
on the original input fileprofile data.in. Additionally, the verifier
takes the event counts dataa.out.countsas an input and produces
diagnostics and verification output as appropriate.

In summary, the goal of our work is to observe and indepen-
dently count events in the original program—without altering that
program—in order to determine whether the counts agree withthose
of the profiled version of the program. It is also worth emphasiz-
ing what our work is not about. It is not about choosing suitable
profiling inputs; that is a task that is best left to the application
programmer. Nor is it about choosing suitable test programs, e.g.,
randomly generated programs, to observe and check profilers; that
issue is largely orthogonal to the topic of this paper. Finally, it is
not about checking the consistency of profiles, i.e., answering the
question of whether a profile “makes sense;” all we are checking is
whether the profiler computes what it purports to compute.

3. An Example: Verification of PLTO
Edge Profiles

We have built the trap-based profile verification framework sketched
above and have built a verifier for edge count profiles generated
by the PLTO binary rewriting system for Intel Pentium processors
[23]. The trap-based framework was implemented on Linux us-
ing the libDebug library from theald debugger [1]. This section
first describes the basic operation of our verifier then discusses op-
timizations we used to improve its performance.

3.1 Basic Operation
A PLTO edge count profile represents an edge as a pair of basic

blocks and a counter; each basic block is denoted by its starting
address in the program that was profiled. The verifier first reads a
program’s edge count profile, creates a control flow graph forthe
program using the edge information, and initializes edge counts in
this control flow graph with values read from the edge count profile.
The verifier then starts the program and monitors its execution. As
the program executes, the verifier has two main tasks:

1. Check the structure of the control flow graph and report any

anomalies that are detected, such as missing edges or basic
blocks. The existence of anomalies point to disassembly er-
rors in the profiler (see Figure 1(b) and [24]).

2. Decrement edge counters as control flow edges are traversed.

When the program being verified terminates, the verifier outputs all
of the edges in the control flow graph that do not have counts equal
to zero. These nonzero edge counts indicate where the profiledata
did not match the execution behavior of the program as seen bythe
verifier.

The technique used to follow and verify the control flow graph
is straightforward. The verifier starts executing the program at the
beginning of the basic block corresponding to the entry point of the
program. The verifier regains control at the end of that basicblock,
finds the start of the next basic block, decrements the appropriate
edge counter, and then repeats these actions. This iterative process
is implemented as follows:

1. The verifier records the address of the current basic blockB,
then finds the last instruction inB, as described below.

2. The verifier then sets a breakpoint at the last instructioninB.

3. The verifier returns control to the program, which executes
at native speed until it encounters the breakpoint at the end
of blockB. This returns control back to the verifier.

4. The profile verifier then executes the last instruction in ba-
sic blockB. This is accomplished using theptracesingle-
step interface, which executes a single instruction then re-
turns control to the verifier.

5. After single stepping, the program is at the start of some ba-
sic blockB0. At this point, there are three possibilities:

(a) BlockB0 exists and there is an edge in the control flow
graph fromB to B0, so the count associated with the
edgeB ! B0 is decremented. This is the expected
case.

(b) BlockB0 does not exist in the control flow graph—i.e.,
there is no block with the same starting address asB0—
so it is reported as missing and added to the control flow
graph. This may cause an existing basic block to be
split into two blocks. (In this case, a new edge is also
created; its count is initialized to the sum of the edge
counts into the block that was split.)

(c) BlockB0 exists but the edgeB ! B0 does not exist, so
that edge is reported as missing and added to the control
flow graph.

To find the last instruction in a basic blockB, the verifier starts
at the first instruction inB and repeatedly disassembles each in-
structionI until one of the following two conditions holds:

1. If I is a branch instruction, thenI is the last instruction inB.

2. If the starting address ofI is in the list of basic block starting
addresses obtained from the control flow graph being veri-
fied, thenI is the first instruction in the block afterB. (This
situation occurs when there is a fall-through edge from one
block to another in the control flow graph.) In this case, the
instruction immediately precedingI is the last instruction in
blockB.

3.2 Optimizations
The basic trap-based verifier described above turns out to be

quite slow. This is due primarily to the overhead associatedwith
using theptracesystem call. To speed up the trap-based profile ver-
ifier, we have therefore focused on reducing the number of times the
verifier has to useptraceto access the profiled program’s memory.
We are able to reduce the number of calls by caching key values, as
described below.

An especially significant source of overheads results from the
verifier’s need to disassemble the profiled program’s instructions
every time it is looking for the end of a basic block. In order to
examine memory in the program being verified,ptrace must be
called for each word of data. In the basic verifier described above,
each instruction in a basic block is disassembled each time that
basic block is executed, so the total number of calls toptrace is
roughly comparable to the total number of instructions executed by
the original program.

We can reduce this overhead dramatically by having the verifier
cache the end address of each basic block in the profiled program,
i.e., the address of the last instruction in the block. This means that
the verifier only has to disassemble a basic block once to find its
last instruction. (There is one exception to this, which occurs infre-
quently: If a basic block is split as a result of a missing basic block
in the control flow graph, the verifier has to disassemble the block
that was split one more time to identify the new last instruction.)

We can reduce the number ofptracecalls still further by having
the verifier cache some additional information about the type of the
last instruction in a block. It turns out that PLTO does not pro-
file certain types of control flow edges, e.g., function return edges.
Hence the verifier has to determine the type of the control flow
edge out of a block in order to avoid giving spurious diagnostic
messages. This, in turn, is governed by the type of the last instruc-
tion in the block. Thus, even if we know the address of the last
instruction in a block, we still have to determine the type ofthat
instruction. This requires disassembling the instructioneach time
the block is executed, which requiresptracecalls. We can avoid
these calls by caching the type of the last instruction in a block the
first time we disassemble the block.

These optimizations turn out to beveryeffective in reducing the
overheads associated withptracecalls. As three data points:

1. The verification time for the SPECfp-95 benchmark program
fppppdropped from 1 hour 51 minutes 43 seconds to 1 minute
56 seconds, an improvement of about 58 times.

2. The time for the SPECint-95 benchmarkcompressdropped
from 17 minutes 40 seconds to 2 minutes 56 seconds, an im-
provement of about 6 times.

3. The time for the SPECint-95 benchmarkgccdropped from 8
hours 56 minutes to 1 hour 53 minutes, an improvement of
about 5 times.

The different amounts of improvement for these programs canbe
explained by differences in their execution characteristics. The
fppppprogram has a well-defined hot spot consisting of a loop con-
taining a very large basic block; hence, caching the addressof the
last instruction avoids the very large overhead of repeatedly disas-
sembling this block. Thecompressprogram also has a well-defined
hot spot, but it contains much smaller basic blocks than infpppp;
hence, the disassembly overhead is less than forfpppp, so there is
less room for speedup due to caching. Thegccprogram has a much
more diffuse profile thanfppppor compress, with less well-defined
hot spots; consequently, cached information is used less frequently
than in the other two programs.

Even with the above caching optimizations, we still have to use
ptrace to disassemble the instructions in a block the first time the
block is executed. We attempted to eliminate theseptrace calls
by having the verifier use themmapsystem call to access the text
segment of the executable file, which is available on disk. However,
for reasons we do not yet understand, this gives mixed results, with
significant speedups on some processors and slight slowdowns on
others. We are currently examining this puzzle.

4. Implementation and Environmental
Issues

We encountered two kinds of issues when implementing and
testing our profile verification framework. The first resultsfrom pe-
culiarities of the Intel IA-32 (Pentium) architecture and the Linux
operating system; other processors and operating systems might
have similar peculiarities. The second kind of issue arisesfrom
subtle or nondeterministic aspects of the environment in which the
profiler and verifier execute; these issues are inherent to generating
and checking profiles.

4.1 Host Processor and Operating System
The trap-based profile checker follows edges in the control flow

graph by finding the last instruction in a basic block and single-
stepping that instruction to find the first instruction in thenext ba-
sic block. Thus we assume that after single-stepping an instruction,
the program counter contains the address of the next instruction to
be executed. We found two situations that we have to treat spe-
cially because this assumption does not hold. One results from
the Pentium architecture’s repeating string instructions; the other
results from how the Linux implementation ofptracehandles the
Pentium’s interrupt instruction.

A repeating string instruction on the Pentium is an instruction
that repeatedly executes one of the Pentium’s basic string instruc-
tions until a specified terminating condition is met; then the pro-
gram counter advances to the next instruction in the text segment.
Thus, a repeating string instruction is essentially a one instruc-
tion loop, but it is encoded as a single instruction with no explicit
control transfer. Single-stepping such an instruction results in the
program counter remaining on the instruction until the terminating
condition is met. Thus, when such an instruction is the last instruc-
tion in a basic block—a situation we have seen several times—we
cannot single step the original program to get to the first instruc-
tion in the next basic block. On the other hand, we know that the
first instruction of the next basic block will be the instruction fol-
lowing the repeating string instruction. Thus, when we see this
special case, we set a break point at the next instruction, return to
the original program, and let the processor execute the repeating
string instruction. When the breakpoint trap returns control to the
verifier, we realize that we are already at the first instruction in the
next basic block and then proceed as in the normal case.

The second problematic situation results from the Pentium’sint
(interrupt) instruction. Under Linux, the effect of usingptrace to
single-step an interrupt instruction is that the instruction following
the interrupt is skipped and the program counter ends up pointing
to the second instruction after the interrupt. Thus, whenint is
the last instruction of a basic block, the trap-based profilechecker
single-steps theint to determine the address of the second instruc-
tion of the next basic block, then looks at the previous instruction
and determines its address. This situation is rare, but of course it
still has to be detected and handled.

4.2 Execution Environment
If the execution environment of the profiler and verifier differ,

the verifier might see errors in the profile data and produce diag-

nostic messages even if the profile is correct. Here, “environment”
refers to the settings of a user’s shell variables and anything else
external to the program that can affect its execution. This can even
include such minutiae as the number of characters in the command
line used to invoke the program, because this affects the code that
reads in and parses the command line options. For example, we
found small differences in the profile of the string library function
strrchr when programs being verified were invoked with a slightly
different path to the output file compared to when their profiles
were originally generated. The lesson here is that one has tobe
careful when interpreting the output from the verifier to distinguish
genuine errors from explainable differences due to different execu-
tion environments.

A situation that is harder to deal with occurs when the execution
of the program being profiled or checked depends on some non-
deterministic aspect of its environment, such as the time ofday.
For example, the following program fragment uses the results of
the standard library functiontime()to initialize the random number
generator, and then uses the random number generator to generate
hash codes:

srand(time(NULL));
...
hash_code = (random()*index) % hash_table_sz;

If this kind of code occurs in the original program, no two exe-
cutions of the program would ever have exactly the same profiles.
Hence, a profile checker will always discover differences. How-
ever, this is not a limitation of our technique for profile verification.
Moreover, by using a profile verification framework such as that
described in this paper, such differences become explicit and hence
get noticed; Section 5 describes a real example that we discovered.

One concludes from this that the output from the profile veri-
fier must be reviewed carefully to determine which differences are
caused by real errors in the profile data and which are environmen-
tal differences that were not, or could not be, duplicated. In our
use of the profile checker for PLTO edge count profiles, the major
sources of environmental differences are the standard library ini-
tialization code, the program startup code, and the lower-level im-
plementations of standard library functions. These differences are
seen because PLTO operates on statically linked programs; hence,
the standard library code is also instrumented. In practice, it is not
clear how significant an effect environmental differences may have
on different types of profiles, but it is something that needsto be
kept in mind.

5. Results
The way we originally tested our implementation of edge pro-

filing using PLTO is, we believe, fairly representative of the pre-
vailing practice with regards to testing profilers. We examined the
instrumentation code by “eyeballing” it and checked the generated
profiles manually on modest sized test programs where it was prac-
tical to manually compute the various edge counts. The generated
profiles were then used to guide the implementation and evalua-
tion of optimizations, where the profiles were themselves subjected
to scrutiny. There was no indication, during any of this, that the
profiles were inaccurate in any way. We were surprised, therefore,
when our trap-based verifier exposed situations in which thegener-
ated profiles did not reflect the actual runtime edge counts ofpro-
grams.

The inaccuracies we discovered fall into two broad categories.
The first category involves differences in execution countsfor stan-
dard library functions, such asopenandwrite, that are used both
by the application and by the profiler to write out the profile data at
the end of the program’s execution. The effect is that the counts ob-
tained for control flow edges in these functions are slightlyhigher

than their actual values. We knew that there would be differences
for these functions; the verifier gave us quantitative output telling
us how far the counts were off.

The second type of inaccuracy results from inserting instrumen-
tation code into the program being profiled, which causes addresses
to change, thereby changing the execution behavior of the program
as well. It manifests itself in the SPECint-95 programgcc, where
several functions have edge counts that differ between the instru-
mented and uninstrumented versions of the program. While the
differences are small—around 1.5–3%—they are still significant.
Moreover, the presence of these inaccuracies was a total surprise.
It turns out that this program contains code (filecse.c, function
canon hash()) that has the form

switch (..) {
...
case SYMBOL_REF:
return (hash
+ ((HOST_WIDE_INT)SYMBOL_REF << 7)

+ ((HOST_WIDE_INT) XEXP(x, 0)
& ((1 << HASHBITS) - 1)));

}

whereXEXP(� � �) yields a pointer value. Thus, the code uses ad-
dresses to calculate hash values. Since the instrumented executable
has a different size than the original executable, heap addresses start
at a different location in the instrumented executable. Because of
this, the hash table is actually constructed slightly differently in
the instrumented code compared to the original code. This, in turn
causes the execution of code that traverses this data structure to
behave slightly differently in the two versions.

While the inaccuracies turn out to be relatively small in each of
these cases—and benign from the standpoint of code optimization—
the important point is that the profile verifier correctly identified
a situation where the instrumented executable behaves differently
than the original executable. The system implementors can then
examine the reasons for the discrepancies in execution counts and
address them as appropriate.

This example illustrates that “real” programs can and do usecode
whose behavior can change due to the presence of instrumentation
code. Indeed, it is easy to extend the idea to write similar programs
in which the instrumented version behaves very differently, with
a completely different hot spot, than the uninstrumented original.
This is shown in Figure 2. The original version of this program
incurs no collisions while inserting into the hash table, but the in-
strumented version incurs a collision at every iteration ofthe loop,
i.e.,all the values hash into the same bucket!

These discrepancies in profiling results also highlight thefact
that manual checking is not adequate for testing profilers for cor-
rectness. For example, it is completely impractical to check manu-
ally execution profiles for a program comparable in size togcc. The
problem is only magnified if we consider more complex profiles,
such as value or path profiles. A means for automatically checking
profile data is necessary in order to test profilers thoroughly.

As a side note, our profile checker also helped to track down a
non-profile-related problem in PLTO. The SPECfp-95 benchmark
programappluwas known to crash when optimized with PLTO, but
tracking down the problem was proving difficult. It turned out that
the process of verifying the profile data for this program uncovered
some discrepancies that suggested a periodic corruption ofmemory
during execution. This turned out to be a useful insight thathelped
focus our subsequent investigations into the problem and eventually
led us to identify the actual cause.

Table 1 shows the execution time overhead incurred by profile
verification relative to the time taken to profile the programs in the
SPECint-95 benchmark suite using conventional instrumentation
techniques. The “Normal” column gives the execution times for

#include <stdlib.h>
#include <stdio.h>
#define HASH_SIZE 1024
#define LOOP_COUNT 1000
#define MOD 2
struct hash_entry {

int data;
struct hash_entry *next;

};
static struct hash_entry *HashTable[HASH_SIZE];
static int collisions = 0;
int hash_value(int data) {

int x = (int) HashTable;
return ((data * ((x / 0x100) % MOD))) % HASH_SIZE;

}
void hash_insert(int data) {

int hash = hash_value(data);
struct hash_entry *entry = malloc(sizeof(struct hash_entry));
entry->data = data;
entry->next = NULL;
if (HashTable[hash] != NULL) {

struct hash_entry *temp = HashTable[hash];

collisions++;

while (temp->next != NULL) {
temp = temp->next;

}
temp->next = entry;

} else {
HashTable[hash] = entry;

}
}

int main(int argc, char *argv[]) {
int i;

for (i = 0; i < LOOP_COUNT; i++) {
hash_insert(i);

}
printf("HashTable = %p\n", HashTable);
printf("collisions = %d\n", collisions);
return 0;

}

Figure 2: A program whose behavior changes due to instrumentation

the benchmarks; the “Profile” column gives the execution times for
instrumented versions of the programs that generate profiles; the
“Verify” column gives the execution times to check the generated
profiles. All programs in the same row had the same input data
(the SPECint-2000 training input for that benchmark). Our experi-
ments were run on an unloaded 2 GHz Pentium IV workstation with
1 GB of main memory, running Redhat Linux 7.3. The programs
were compiled withgccversion 2.96 at optimization level-O3 and
statically linked, with additional flags to instruct the linker to re-
tain relocation information.3 It can be seen that verification incurs
an overhead of roughly two orders of magnitude (about600� to700�) relative to conventional profiling. While this slowdown is
large, the verifier has to be run only once to check a profile. More
importantly, our verification framework makes it possible to check
large profiles generated by large programs—which is not possible
using existing techniques—and to do so automatically.

6. Conclusions3The requirement for statically linked executables is a result of the fact
that PLTO relies on the presence of relocation information to distinguish
addresses from data. The Unix linkerld refuses to retain relocation infor-
mation for executables that are not statically linked.

While execution profiles play an increasingly important role in
guiding compiler optimizations, the question of verifyingthat the
profiles are correct—i.e., reflect the actual runtime behaviors of
programs—has not received much attention. In practice, imple-
mentors usead hoc techniques to test profilers, typically by in-
specting the profiling code and checking its behavior manually on a
few small programs where execution counts can be manually com-
puted. This paper describes a framework for automatic verifica-
tion of profiles. We illustrate our approach using a verifier for an
edge profiler we have implemented in the context of the PLTO link-
time optimizer. Using this verifier, we were able to identifyseveral
discrepancies in generated profiles that had gone undetected using
conventional testing techniques.

7. REFERENCES
[1] P. Alken.ald: an assembly language debugger.

ftp://ftp.netbsd.org/pub/NetBSD/packages/
pkgsrc/devel/ald/.

[2] M. Arnold and B. Ryder. A framework for reducing the cost
of instrumented code. InProc. ACM SIGPLAN ’01
Conference on Programming Language Design and
Implementation (PLDI-01), pages 168–179, June 2001.

Program Execution Time (secs) Slowdown
Normal (TN) Profile (TP) Verify (TV) TV =TP

compress 0.03 0.29 176 606.9
gcc 0.97 11.99 6774 565.0
go 0.47 3.64 2128 584.6
ijpeg 13.74 82.41 51310 622.6
li 0.11 1.67 1135 679.6
m88ksim 12.87 192.48 125839 653.8
perl 2.68 16.31 11427 700.6
vortex 2.23 16.61 11543 694.9

GEOMETRIC MEAN: 636.7

Table 1: Runtime overheads of profiling and verification

[3] T. Ball and J. R. Larus. Optimally profiling and tracing
programs.ACM Transactions on Programming Languages
and Systems, 16(4):1319–1360, July 1994.

[4] T. Ball and J. R. Larus. Efficient path profiling. InProc. 29th
Annual International Symposium on Microarchitecture,
pages 46–57, 1996.

[5] B. Calder, P. Feller, and A. Eustace. Value profiling and
optimization.Journal of Instruction Level Parallelism, vol. 1,
March 1999.

[6] P. P. Chang, S. A. Mahlke, and W. W. Hwu. Using profile
information to assist classic code optimizations.Software -
Practice and Experience, 21(12):1301–1321, 1991.

[7] W. Y. Chen, S. A. Mahlke, N. J. Warter, S. Anik, and W. W.
Hwu. Profile-assisted instruction scheduling.International
Journal of Parallel Programming, 22(2):151–181, April
1994.

[8] J. C. Cherniavsky. Validation through Testing. InProc. 11th
International Conference on Software Engineering, page
354, May 1989.

[9] R. Cohn and P. G. Lowney. Hot cold optimization of large
Windows/NT applications. InProc. 29th Annual
International Symposium on Microarchitecture, pages
80–89, December 1996.

[10] R. Cohn and P. G. Lowney. Design and analysis of
profile-based optimization in Compaq’s compilation tools for
Alpha.Journal of Instruction Level Parallelism, vol. 2, May
2000.

[11] S. K. Debray and W. Evans. Profile-guided code
compression. InProc. ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation
(PLDI-02), pages 95–105, June 2002.

[12] S. L. Graham, P. B. Kessler, and M. K. McKusick.gprof:
A call graph execution profiler. InProc. ACM SIGPLAN ’82
Symposium on Compiler Construction, pages 120–126, June
1982.

[13] M. Hirzel and T. Chilimbi. Bursty tracing: A framework for
low-overhead temporal profiling. InProc. Fourth Workshop
on Feedback-Directed and Dynamic Optimization
(FDDO-4), December 2001.

[14] U. Hölzle and D. Ungar. Optimizing dynamically-dispatched
calls with run-time type feedback. InProc. ACM SIGPLAN
’94 Conference on Programming Language Design and
Implementation, June 1994.

[15] W. Howden.Software Engineering and Technology:
Functional Program Testing. McGraw-Hill, 1987.

[16] J. R. Larus and T. Ball. Rewriting executable files to measure
program behavior.Software—Practice and Experience,

24(2):197–218, February 1994.
[17] J. Laski. Testing in the Program Development Cycle.

Software Engineering Journal, 4(2):95–106, March 1989.
[18] E. Mehofer and B. Scholz. A novel probabilistic data flow

framework.Lecture Notes in Computer Science, 2027, 2001.
[19] R. Muth, S. Watterson, and S. K. Debray. Code specialization

based on value profiles. InProc. 7th. International Static
Analysis Symposium (SAS 2000), pages 340–359, June 2000.

[20] K. Pettis and R. C. Hansen. Profile-guided code positioning.
In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 16–27, June
1990.

[21] A. Podgurski, C. Yang, and W. Masri. Partition Testing,
Stratified Sampling, and Cluster Analysis. InProc. ACM
SIGSOFT ’93 Symposium on the Foundations of Software
Engineering, pages 169–181, December 1993.

[22] J. B. Rosenberg.How Debuggers Work: Algorithms, Data
Structures, and Architecture. John Wiley & Sons, 1996.

[23] B. Schwarz, S. K. Debray, and G. R. Andrews. Plto: A
link-time optimizer for the Intel IA-32 architecture. InProc.
2001 Workshop on Binary Translation (WBT-2001), 2001.

[24] B. Schwarz, S. K. Debray, and G. R. Andrews. Disassembly
of executable code revisited. InProc. IEEE 2002 Working
Conference on Reverse Engineering (WCRE), October 2002.
(To appear).

[25] A. Srivastava and A. Eustace. ATOM—A system for
building customized program analysis tools. InProc. ACM
SIGPLAN’94 Conference on Programming Language Design
and Implementation (PLDI), pages 196–205, June 1994.

[26] S. Watterson and S. K. Debray. Goal-directed value profiling.
In Proc. Tenth International Conference on Compiler
Construction (CC 2001), April 2001.

