Automatic Simplification of Obfuscated JavaScript
Code: A Semantics-Based Approach

Gen Lu Saumya Debray
Department of Computer Science
The University of Arizona
Tucson, AZ 85721, USA
Email: {genl u, debray}@s. ari zona. edu

Abstract—JavaScript is a scripting language that is com- behavioral analysis techniques for obfuscated JavaSgppt
mon_ly L}SGd to create sophisticated interactive client-side web cally require considerable manual intervention, e.g., talify
applications. However, JavaScript code can also be used t0{hecode in specific ways or to monitor its execution within

exploit vulnerabilities in the web browser and its extensions, deb 61-I81. Th h b t K
and in recent years it has become a major mechanism for web- & debugger [6]-{8]. There has been some recent work on

based malware delivery. In order to avoid detection, attackers automated behavioral analyses of obfuscated JavaScaipinth
often take advantage of the dynamic nature of JavaScript to many cases has a “deobfuscator” component [4], [5], [9]},[10

create highly obfuscated code. This paper describes a semantics-as well as standalone JavaScript deobfuscation tools [[14]}—
based approach for automatic deobfuscation of JavaScript code These deobfuscators all rely on some simple and intuitive

Experiments using a prototype implementation indicate that - .
our approach is able to penetrate multiple layers of complex assumptions about the obfuscation and the structure of the

obfuscations and extract the core logic of the computation, which Obfuscated code. Although these assumptions seem pleusibl
makes it easier to understand the behavior of the code. it is not difficult to construct obfuscations that violateeth

. . , . and thereby defeat the corresponding deobfuscators. $his i
Keywords-web security; deobfuscation; dynamic analysis; pro- justrated in Section IV.
gram slicing
This paper proposes a different approach to analyze ob-
I. INTRODUCTION fuscated JavaScript code. We collect bytecogie g)gecution
traces from the target program and use dynamic slicing and
Recent years have seen a dramatic increase in web-basethantics-preserving code transformations to autontigtica
malware delivery. This is typically done via a process, knowsimplify the trace, then reconstruct deobfuscated JaygiScr
as drive-by-downloadingthat exploits vulnerabilities in web code from simplified trace. The code so obtainedlserva-
browsers and/or their extensions, and can be deliveredghro tionally equivalentto the original program for the execution
a variety of web-based mechanisms [1]. Drive-by-downloag@th considered, but has obfuscations simplified awayetyer
often rely on JavaScript, a scripting language widely usesposing the core logic of the computation performed by
for generating dynamic web content. Attackers often talthe original code. The resulting code can then be examined
advantage of the dynamic nature of JavaScript to creatmnually or fed to other analysis tools for further procegsi
highly obfuscated code to avoid detection [2]. The growin@ur approach differs from existing approaches in that it @sak
prevalence of malicious JavaScript code is exemplified ley tho assumptions about the structure of the obfuscation a@sl us
Gumblar worm, which uses dynamically generated and heavdgmantics-based techniques to reveal the behavior of the co
obfuscated JavaScript to avoid detection and identifinatiad
which at one point was considered to be the fastest-growip
threat on the Internet [3].

In previous work [15], we have described a semantics-
Hsed approach to deobfuscating “core” JavaScript, i.@e co
that runs on a standalone JavaScript engine. This does not

Identifying malicious JavaScript code is not easy, howevetccount for interactions between the executing JavaSooihe
The mere presence of obfuscated JavaScript does notaittl the host browser, which provides the Document Object
itself, signal the presence of malicious content, sinceigmen Model (DOM) for manipulating HTML documents and the
web pages also to use code obfuscation to protect intellewility to interact with external websites. This paper, lonc
tual property [4], [5]. Moreover, attackers often use servetrast, focuses on the more challenging task of deobfusgatin
side scripting to deliver randomly obfuscated code whefavaScript code in the full context of the browser's exasuti
each instance is syntactically different from the nesdér¢er- environment. This is much more complex than the “core”
side polymorphisin For these reasons, static signature-bas@evaScript considered in [15], and admits many more options
heuristics (e.g., “eval(’ and ‘unescape(’ within 15 bytes of for obfuscation, but is able to handle the full range of bébrav
each othet [3]) have limited success when dealing withof real JavaScript malware. We evalute our approach using
obfuscated JavaScript. Traditional anti-virus tools {r@icess a prototype implemention and test it againest both syntheti
web pages typically rely on such syntactic heuristics and peograms and real malware code. The results show that our ap-
tend to produce a high misidentification rate [2], [4], [5]. proach can penetrate multiple layers of complex obfusaatio

A better solution would be to use semantics-based tecMe of which cannot be handled by existing techniques, and
niques that focus on code behavior. Unfortunately, curreftract the core logic of the underlying computation.



1 <div id="x">Hell oWrld</div>
Il. BACKGROUND 2 <script>
3 a = docunent; b = "1d";

. . . . . 4 var c = a[f X')[iT+H N+ erH + TM ] ;
This section provides an overview of the JavaScript laB- function M%]( ! ]
guage and the host environment of web browser and describes var gfj gg; " Ely;%bg
some widely used real-world code obfuscation techniques. g return q+p; '
9
10 </script>

A. JavaScript Basics

. ) Fig. 1. Example of obfuscated JavaScript code

The term “JavaScript,” commonly used to refer to a script-
ing language used for client-side programming of dynam'@ JavaScript Obfuscation Techniques
websites, consists of the core programming language tegeth’

with the hos;enviroment, namely, the Document Object Model The dynamic nature of Javascript code makes possible a
(DOM) provided by web browser. variety of obfuscation techniques. What's particularly leha
The core JavaScript language provides a set of data typ@Rging is the combination of the ability to execute a string
(e.g. Boolean, String, Object), a collection of built-in objects using code unfolding, as described above, and the factliat t
and functions (e.gRegExp, Math, Date), and a prototype- String being “executed” may be obfuscated in a wide variéty o
based inheritance mechanism, among other things. Like ma&gtys. Howard discusses several such techniques in mori¢ deta
scripting languages, JavaScript is highly dynamic in reaturf2]. For example, the characters in the string can be encoded
It is dynamically typed, which means that a variable caif various ways, e.g., using %-encodirgas %61, b as%62,
take on values of different types at different points in a .), Unicode & as\ u0061, b as\ u0062, ...), Base-64, etc.
program. Properties of (associative-array based) objemts The string can be kept in encrypted, compressed, or permuted
be added/deleted on the fly, and code can be generated ffofm. It can be constructed at runtime by concatenatingrothe
strings at runtime using the built-ieval function. strings together. Besides, in addition to the traditiortdt“no-

The Document Object Model (DOM) is an API that ab;ation_" (obj.property) for quect access, one can use a “bracket
qtatlon" (©Obj[“property”]) instead. In the latter case, moreover,

stracts HTML documents as a structural representation : . .

objects and provides a mechanism for manipulating this S Use of a string as an array index makes appllcable all of
straction, thereby enabling JavaScript code to modify a string obfuscation techniques mentioned earlier.

interact with the content of web pages dynamically. For The host environment of web browser also provides various
example,write method of thedocument object can be used options for obfuscation. One approach is to split code into
to dynamically write HTML expressions or JavaScript codgeveral parts, either in the same file or even into multipéssfil

to a document. In contrast to the built-in objects defined Bfored among web servers. This technique is frequently seen
core JavaScript, objects defined in the DOM specification amdth web-based malware. Another approach takes advantage
called “host objects”, and are provided as a part of the ha@t DOM interaction. For example, data can be stored in
environment by the web browser. the HTML file, outside the<script> block, then retrieved
using document.getElementByld() at runtime. And, of course,
document.write() is @ more powerful weapon thamal(), which

can be used in combination of those obfuscation techgniues

At the implementation level, JavaScript typically uses afientioned above, to generate script, document elements sto
expression-stack-based byte-code interpreter; modepteim ing data and pointers to external documents, all at runtime.
mentations of these interpreters usually come with JIT dbmp Figure 1 presents an example of JavaScript code obfuscated
ers. For example, Mozilla’s popular FireFox web browseisusesing some of the techniques discussed above. Line 3 of
an open source JavaScript interpreter, SpiderMonkeytearit this code snippet uses bracket notation to reference object
in C/C++ [16]. This is a single dispatching function thatpste property, using the stringgétElementByld’ (obtained as the
through the bytecode one instruction at a time. concatenation of the stringget, ‘Elem’, ‘ent’

ent’, ‘By’, and
As discussed in previous sections, client-side JavaScrifft) @nd ‘innerHTML’ (obtained as the concatenation of the
programs have the ability to generate code at runtime, usi nn’, “erH’, and ‘TML’) as array indices instead
various mechanisms provided by both the interpreter al

B. JavaScript Runtime

ings 1,
R using the more straightforward dot-notation to obtaie th
browser. Further, dynamic code generation can be muloresponding property values. Furthermore, it uses th#1DO
layered, e.g., a string that ésal-ed may itself contain calls to Methoddocument.getElementByld() to retrieve data, namely,
eval, and such embedded calls doal can be stacked severalthe string HeIIoWo.rId.’ For simplicity of exposition, this che
layers deep. We refer to such dynamic code generatingdes USES @ Very straightforward obfuscation of the array index

unfolding and for each piece of code generated by runtinfd/ings, namely, concatenation of a few smaller strings; th
unfolding, we call it acode contextFunctions that are definedc0de could, however, just as easily have used arbitrariliemo

in JavaScript (using the keyworduhction’) are callednon- complex obfuscations to construct these strings. The tsisrip
native functionsand functions provided by the interpreter ofduivalent tozar ¢ = document.getElementByld(x).innerHTML.
browser (e.g. built-in functions and methods of host olsject'N€ value finally assigned to variahiés a string’Helloworld’

are callechative functionsUnlike non-native functions, native Which is retrived from the HTML<div>> element with ID’x.
functions do not generate a bytecode trace when executed. Those obfuscation techniques can be combined in arbitrary



ways with multi-layered code unfolding, which makes iapplied at the byte-code level. One of the advantages ofydoin
difficult to determine the intent of a JavaScript programmdro analysis at byte-code level is that the JavaScript comgides

a static examination of the program text. To make it mongart of the job for us: many obfuscation techniques used to
challenging, the payload can be scattered in multiple codenfuse human analysts or automated script parsers can be
contexts at different levels, with each piece using variousvealed or removed after compilation. Examples of suchkgri
obfuscation techniques and hidden in the garbage code whase discussed in [8], [19].

only purpose is to confuse deobfuscators. We will show in System overviewOur approach to deobfuscating JavaScript
Section IV this trick can defeat existing JavaScript desbfu ode consists of the following steps, as shown in Figure 2:
cators, which assume the unobfuscated, complete payload Is

revealed in one of the (typ|ca||y the |a3t) unfolded \]a\/q‘ﬁcr 1) Use an instrumented web browser to obtain an execution
code contexts. trace for the JavaScript code under analysis.
2) Construct a dynamic control flow graph from collected
trace to determine the structure of the executed code.
Use our deobfuscation slicing algorithm to identdg-
mantically relevant instructionsi.e., instructions that
affect the externally-observable behavior of the program.
As previously discussed, externally-observable behavior
is carried out by native functions.

4) Decompile the dynamic control flow graph to an abstract
Ill. SEMANTICS-BASED DEOBFUSCATION syntax tree (AST) and label all the nodes constructed

from resulting set of relevant instructions.

95 Use semantics-preserving transformations to eliminate
goto statements. Finally, generate deobfuscated source
code by traversing the AST and printing only labeled
(relevant) syntax tree nodes.

There are also tools available for reducing the size of &crip
[17], [18], usually by removing unnecessary whitespaces an )
comments, and renaming symbols. This technique is calleg
code compression or minification, although it makes code
difficult to read, the behavior is still apparent. Therefore
don’t consider code minification as obfuscation.

In this section, we describe the concept of semantics-bas
deobfuscation and the architecture of our prototype system
more detail. In particular, we discuss how we collect execu-
tion information of JavaScript programs at runtime, and how
we use dynamic slicing technique to identify “semantically

relevant” code from obfuscated script. Our current implementation seperates trace collectiomfro
the remaining steps: the generated trace is written out to a
A. Overview file, which is then read by the trace analyzer. This is purely

for convenience, since it is conceptually straightforwaod
Semantics-based approachDeobfuscation refers to thebuild the analysis facilities directly into the web browser

process of simplifying a program to remove obfuscation co@®ur current implementation writes out the abstract syntax
and produce a simpler and functionally equivalent programee obtained at the end of the above process in the form
In general, we cannot expect deobfuscation to produce theJavaScript source code, but one can also imagine directly
original source code for the program, either because th&souapplying other malware analysis tools to the syntax tresfits
code is unavailable, or due to code transformations applied
during obfuscation. All we can require, then, is that thecpss B. Trace Collection
of deobfuscation must be semantics-preserving: i.e., ttiat
code resulting from deobfuscation bguivalento the original
program. For the analysis of potentially-malicious code,
reasonable notion of equivalence is that abservational

We use an instrumented Mozilla FireFox web browser to
ollect the program’s execution trace. FireFox first coewpil
avaScript source code to bytecode and then executes @ usin
equivalencewhere two programs are considered equivalent'ﬁS embeded SpiderMonkey interpreter. Since obfusca.tlops
they behave—i.e., interact with their execution environtaen commonly used by ma[war_e take advantage of the built-in

{antmnallty of JavaScript interpreter as well as documen

in the same way. Since a program’s runtime interactions wi . . .
the external environment occur through system calls, tHgIated operations provided by the browser (see Secti@l), -

means that two programs are observationally equivalehef t our instrumentation covers both the interpreter and DOM.
execute identical sequences of system calls (togethertinith ~ Each byte-code instruction instance generated by ouinstr
argument vectors to these calls). mented web browser includes instruction’s address, opcode
rﬂpemonic, length (in bytes), and operands, together with
any additional information about the instruction that may b
relevant. In particular, we print the following informatip
which is used for subsequent steps of the deobfuscation:

This notion of equivalence suggests a simple approach
deobfuscation: identify code that directly or indirectljeats
the values of the arguments to system calls; these ingtnscti
are “semantically relevant”. Any remaining instructiongich
are by definition semantically irrelevant, may be discarded — function calls the reference to the callee (function object)
For the JavaScript code considered in this paper, the actual and the number of arguments being passed, together with
system calls are typically made from built-in browser roas a flag indicating whether the callee is a native function;
that appear as native functions. Our implementation tbegef — global variables, array elements, and object property
uses native functions as a proxy for system calls: this isdpu accesseswvhich property of which object is being defined
but potentially conservative since not all native functidead or used.
to system calls. Then, to identify instructions that affdst — function referencesthe reference to the function object
values of native function arguments, we use dynamic slicing in which this intruction belongs to.
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Fig. 2. Semantics-based JavaScript deobfuscation: Systemiew

— document.write flags a flag indicating current instruction used to obfuscate JavaScript code, are essentially opaque i
is a call todocument.write() function; the static control flow graph: their runtime behavior—whish i

— document elementshe reference to the document elewhat we are really interested in—cannot be easily determined
ment that is created or accessed by functions such femm an inspection of the static control flow graph. For this

getElementByld(); reason, we opt instead for a dynamic control flow graph,
— unfolded codestring passed to code generating operavhich is obtained from an execution trace of the program.
tions (i.e.eval(), document.write(), etc.) However, while the dynamic control flow graph gives us more

As discussed in Section 11-B. the execution of a non_mjm\}nformation about the runtime behavior of constructs sugh a
. ! . .e(?/al(), it does so at the cost of reduced code coverage.
function generates a bytecode trace while a call to a native ] ) )
function does not. However, the call to the non-native fiorct ~ The algorithm for constructing a dynamic CFG from an
can not be determined merely by the existence of byteco@¥ecution trace is adapted from the algorithm for static CFG
trace. There are native functions take other functions &@nstruction, found in standard compiler texts [20], mexdifi
arguments, i.e. callbacks. These callback functions amkid 0 deal with dynamic execution traces, plus the standard
implicitly by the native function and generate bytecodedra dominator analysis to identify the loops. A more detailed
makes it similar to the execution of a non-native functioneO discussion of issues about recovering the CFG from dynamic
such example istringreplace(), it takes a callback function €xecution trace, such as handling different instances ef th
as argument, the callback will be invoked after the mat&®me instruction and the lack of information about functjon

has been performed. The callback result (return value) wil€ given in our previous paper [15].

be used as the replacement string. Therefore, a flag is usedne particular challenge for JavaScript dynamic CFG con-

to distinguish calls to native and non-native functionsg arstruction is how to deal with code generated dynamically.

for each instruction instance in the trace, we use the fanctiin order to distinguish code used for generating other code

reference to indicate in which function this instructiodm®s, at runtime, from code used for other computation, we treat

in order to associate the execution and definition of caldbaqynamicany unfolded code similar to the way we handle non-

functions. native functions: a seperate CFG is constructed for eadae pie
The references to document elements andumentwrite  Of dynamically unfolded code, as the function body; and the

flags are used to handle obfuscations involving DOM optnfolding instruction (e.geval()) is treated as a call to the

erations, which is opaque to JavaScript interpreter, but fghction. This turns out to be conceptually simple and also

crucial for the purpose of deobfuscating JavaScript in wégflects the way in which theval() construct is handled in the

pages: HTML document elements can be created and modifigiflerlying implementation.

dynamically, and are often used for storing data by obfestat

JavaScript programs (e.g., see Figure 1). Unéikal(), which D. Semantic-Based Deobfuscation

is directly translated to aneVal” bytecode instruction, a . .

call to document.write() is indistinguishable from other native GIVen the execution trace and control flow graph, the next

function calls. Thedocument.write flag is used by our deob- StEP IS {0 identify the instructions that are semanticaligvant

fuscation slicing algorithm to establish the connectiotwaen [© the program’s externally observable behavior. For ths,

HTML document and JavaScript code use a variation on a program analysis technique known as
’ dynamic slicing.
C. Control Flow Graph Construction In general, dynamic slicing is the problem of identifying,

for a given execution of a progran®, which instructions

In principle, obtaining the static control flow graph (CFGJor statements) inP actually affect the value of a given
for a JavaScript program is possible. JavaScript source idvariable at a given point i. Intuitively, this involves tracing
compiled into bytecode before execution, and it is strdaght dependencies between uses and definitions of variableis-the
ward to decompile this bytecode to an abstract syntax tree.due is somewhat more complicated in stack-based interprete
practice, the control flow graph so obtained may not be vebgcause the instructions that use the expression stadatiypi
useful if the intent is to simplify obfuscations away. Thagen do not have their operands represented explicitly. Dynamic
for this is that dynamic constructs such el(), commonly slicing in such situations has been investigated by Wang and



Input: A dynamic tracel’; an instruction instancénstr € T'; a

dynamic control flow graplt;

Output: A slice S;

is simply part of the obfuscation process and is not directly
relevant for the purpose of understanding the functiopalit
of the program. When slicing, therefore, we do not follow

18:=0; d .
2 currFrame := lastFrame := NULL: dependencies through any code unfolding statements.
3 LiveSet :=(); A different approach is used to handle object property ac-

4 stack := a new empty stack;
5 [ := instruction instance at the last position in T,
6 while true do

cesses using bracket notation. This access mechanisnfig use
in situations where different executions of the same pidce o

7 inSlice :=false bracket-notation code access different object properées,
8 Uses := locations of data used ty when iterating over a list of properties in a loop. In such
9 Defs := locations of data defined by situations, the code used to construct the various strisgd u
10 | if I'is property access by bracket notationall instances  for the bracket-notation access is relevant to understandi
" O‘f thUeS(é(;rr:e:sBc;r;glr_1gf(;gzgirgﬁtgntﬁgcsisiﬁ;h:rgﬁmgngmB the behavior of the program, and should be included in the
1 end slice. On the other hand, if every instance of the bracket-

e . notation code accesses the same property, then this access
13 inSlice :=1 is instr; . : o .
i if 7 is areturn instructionthen mechanism provides no additional benefit c_ompared to the
15 | push a new frame on stack; more common dot-notation access; arguably, it makes the cod
16 else if I is an interpreted function calhen a little harder to understand (especially if the string baised
17 | lastFrame := pop(stack); for the bracket-notation access is constructed dynargcall
1 | else _ , and so is obfuscatory. For this reason, given an instruction
19 | lastFrame := NULL; . . .
20 end instancel in the trace that uses a bracket-notation access, we
2 currFrame := top frame on stack; check whether all the instances 6fin the trace access the
22 | if Iis an interpreted function calh I is noteval A I is same property name: if so, the dependency froni to the

not code-unfoldinglocument.write then code that constructsis not followed; instead, the constructed
23 | inSlice := inSliceV lastFrame is not empty; names is used in decompilation stage. Otherwise, if different
24 | else if] is a control transfer instructiorthen instances of use different property names the dependency
% for each instruction/ in currFrame s.t.J is from I to the code that constructsis treated normally and

control-dependent o do . . .

% inSlice = true: the string construction code is included.

2 ‘ remove.J from currFrame; The key to any dynamic slicing based technique is to
2| en de”d accurately capture the data and control flow of the target
o o _ program, which is especially challenging for slicing Jau®®
3‘1’ :_”i\?é'g‘ét:_:_'rliisvlécseé ('-B’gfi?m Defs # 0); code in web pages: DOM enables the interaction between
22 if inSIice-;hen ’ JavaScript code and the host HTML document, but the
13 add into S: document related information is opaque to the JavaScript
34 add I into currFrame; interpreter. For example, a program can store data in a HTML

35 LiveSet := LiveSetJ Uses; element and retrieve it later, similar to the usage of védemb

% end (e.g., see Figure 1). Furthermore, JavaScript program can
37 if I is not the first instruction instance in then also perform code unfolding at runtime using DOM methods

38 ‘I I = previous instruction instance in T; (e.g. document.write()), either directly or from an external

jg e\sebreak- source. Therefore, to precisely slice JavaScript progitim,

" end ' important to keep track of the connection between the byte-
42 end code used by interpreter and DOM operations. To this end,

Algorithm 1: Deobfuscation-Slicing algorithm

our slicing algorithm considers extra information prodde
by instrumented DOM, as discussed in Section IlI-B. More
specifically, the reference to the document element is gulint

Roychoudhury in the context of slicing Java byte-code 8acg; the point where it is accessed by DOM methods, which

[21]. We adapt their algorithm in two ways, both having to dscovers the data dependence hidden in the native functions
with the dynamic features of JavaScript used extensively fo

obfuscation. The first is that while Wang and Roychoudhury /" @dditon, we  treatdocument.write() specially. docu-

use a static control flow graph, we use the dynamic contf@entwrite) method writes a string of text to the HTML
flow graph discussed in Section I1l-C. The reason for this focument, which could be used both for basic document
that in our case a static control flow graph does not adewatg?anlpulanon and code unfolding. Those two cases are hadndle
capture the execution behavior of exactly those dynamie cogifferently, depends on whether new code is introduced and
unfolding constructs, such asal() anddocument.write(), that €x€cuted. If JavaScript code is dynamically generated and
we need to handle when dealing with obfuscated JavaScriptecuted by calling this method, then our slicing algorithm
The second is in the treatment of dynamic constructs durifgndles the call exactly the same way aml(): cut the
slicing, such as code-unfolding and the bracket notaticfiePendence betweencument.write() and the code generated.
Consider a statememtal(s): in the context of deobfuscation, Otherwise, we consider it a regular native function call i
we have to determine the behavior of the code obtained frdfntS€d for output purpose.

the strings; the actual construction of the string however, We refer to this algorithm as deobfuscation-slicing. The



pseudocode is shown in Algorithm 1. Lings-5 are initializa- The resulting setR contains instructions semantically
tion. The algorithm traverses the execution trace backsyard relevant to the observable behavior of the script.
processing each instruction in order from the last insioncio

the first. Lines8 —9 extracts from the trace the set of memorg. pecompilation

locations on the stack that are read and/or written by the

instruction, and similarly for properties and DOM elements The slicing step described above identifies instructiortén
Lines 10 — 12 cut the dependency for property access usirffynamic trace that directly or indirectly affect argumetotga-
bracket notation, as discussed above. If we encountetuen  tive function calls, which includes functions that invokestem
instruction, this instruction must be in a callee functiand calls. Instead of recomputing a control flow graph consiugri
since the trace is being traversed backwards we push a r@wy those relevant instructions, we adopt a simpler apgroa
frame on the stack (line 14); analogously, when we encountefor decompilation: transform theriginal control flow graph to
call to an interpreted function (native functions are natéd), the higher-level representation such as an abstract syrgax
we pop the stack because the call instruction is in the callgST), and label those AST nodes constructed from relevant
(line 16). The underlying implementation handles dynamigstrucions. This way, we avoid the complexity of handling
code generation viaval() anddocument.write() like a function protential problems caused by slicing, for example, basic
call; line 22 of our algorithm ignores code unfolding, a®locks might be scattered and the branching target insruct
discussed above. The handling of callback functions reguirmight not in the slice.

extra pr_oces_sing, the details of which are omitted due teespa A program in the byte-code representation of SpiderMonkey
constraints; interested readers are referred to the fulli®® c3n not be directly converted into valid JavaScript sounzkeg

of the paper, which is available online [22]. due to the existence of those low level branch instructions,
e.g. ifne, goto, etc. Therefore, as the first step, we uggo
Input: A dynamic tracel’; a dynamic control flow grapli; statement to represent those branch operations in ASTe Sinc
Output: All relevant instructionsk; the CFG has already been processed using loop analysis
1 R:=0; and function indentification, we need to construct an abstra
2 U =10 syntax tree for each function. The basic blocks of the CFG are

=0
3 for 7 := length of Tto 1 do traversed in depth first order on the corresponding domimanc

4 instr = i-th instruction instance in T; - - ] .

. if instr is a code unfolding instructiothen tree,goto ngde is cr_eated in twp cases: at the end of basic block
6 | U := U U Deobfuscation-Slicing(, instr, G); that doesn’t end with a brach instruction, or whenever adiran

7 end instruction is encountered. In addition to storing infotima

8 end of target block ingoto nodes, we also keep track of a list of

9 for 7 :=length of Tto 1 do

tr = ith instruction instance in T- precedinggoto nodes in each target node. Once every basic
10| st = v INSTUCION nstance i A, block has been translated to an AST node, loop structures

11 if instr is a native function call\ instr ¢ U then AR .

1 | R = R U Deobfuscation-Slicing(, instr, G); are constructed by creating infinitghile loop node which,

13 end initially, contains only the nodes of corresponding naltioap

14 end obtained from section 11I-C. Once we have an extened AST

Algorithm 2: Semantics-based deobfuscation algorithm.with goto nodes, additional code transformation is applied to
generate valid JavaScript soure code. Basic block node and

loop node in AST will be refered aslock node
Deobfuscation-slicing solves only half of the puzzle; wi st P

have to determine which instructions affect program’s lvehaF Code Transformation

ior, i.e. on which instructions to apply deobfuscatiorcisiy. - :

Our approach of semantics-based deobfuscation consists Qhtroducinggoto statments during decompilation allows us

two basic steps, both steps rely on the deobfuscatiomglicky apply a straightforward algorithm to construct AST, but

algorithm. The pseudocode is shown in Algorithm 2: JavaScript source code generated directly from this AST is

1) identify all instructions relevant to code unfolding (lindnvalid. To recover valid code, we need to transform the
3-8). First, the algorithm traverses the execution tracg<iended AST to eliminatgoto statements, without changing
in order from the last instruction instance to the firsth€ l0gic of the program.
for each instance of dynamic code unfolding instructions Joelsson proposed goto removal algorithm for decompi-
in trace (e.g.eval() and call todocument.write()), the lation of Java byte-code with irreducible CFGs, the aldwnit
deobfuscation-slicing algorithm is applied on it to idénti traverses the AST over and over and applies a set of trans-
instruction instances relevant to code unfolding, whicformations whenever possible [23]. We adapt this algorithm
include native function calls contribute to dynamic cod® handle JavaScript and the instruction set used by the
generation. After this step, sét contains all the instruc- SpiderMonkey JavaScript engine [16]. The basic idea is to
tions in traceT that are relevant to code unfolding. transform the program so that eagtto is either replaced by

2) identify all instructions relevant to observable behaviosome other construct, or thgoto and its target are brought
(line 9-14).The algorithm traverses the trace backwards|oser together in a semantics-preserving transformafibe
applying the deobfuscation-slicing algorithm on eactransformation stops when none of the rules above can be
call to the native function which is irrelevant to codeapplied to the AST. The resulting syntax tree is traverses on
unfolding (those not in sdf as identified in the first step). last time, for each node labeled by the decompiler described



function fib(i){
var k;var x = 1;var f1 = "fib(";

var s4 = "eval('k=t1+t2;');"; var f2 = ")";var s1 = "i-";

var s3 = "t1=f(t1-1);eval(s4);";  vars2="x";

var s2 = "t2=f(t2);eval(str3);"; if(i<2)

var s1 = "if(n<2){k=1;}\ eval("k="+eval("s"+
elseft2=t2-2;eval(s2);}"; (x*2).toString()));

eval(s1); else

return k; eval("k="+f1+s1+x.toString()+

function f(n){

var t1=n;var t2=n;var k; var str='<script>";

document[“wr”+“ite”](str+"</script>");

(a)

var cl=[168,183,176,165,182,171, ... ... ,106,187,107,125];

for(ii=0;ii<cl.length;ii++)str+= String.fromCharCode(cl[ii]-66);

eval(function(p,a,c,k,e,d){e=function(c){return
c};if(1".replace(/"/,String)){while(c--){d[c]=K[c]||c}k=[function(e){return

} f2+"+"+f1+s1+(x*2).toString()+f2);  g[e]}];e=function(){return\\w-+};c=1};while(c--){if(k[c]){p=p.replace(new
varx =3; return k; RegExp(\b+e(c)+\b', ') K[c)}ireturn p}(17 8(9)f ... ... 8(14);16(12): ,
vary = f(x); 1 10,21, ‘var|[||t2] ... ... |return|else".split('["),0,{}))
alert(y); vary = fib(3);
alert(y); (b)
(@ P, ®P,

Fig. 4. Fragments of obfuscated versions of the progfam

Fig. 3. The test program®; and P»
function f (arg0) {
. . . . ar local_var0,local_var1,local_var2;
in section IlI-E, corresponding source code has been ptinte,. = - -

. . = . local_var0 = arg0;
out. Again, the detailed description of our transformatioles ¢4/ vart = argo;

can be found in [15] . if(arg0<2)
local_var2 = 1;
G. Attacking our Algorithm else {

local_var1 = local var1-2;
Intuitively, there are two ways by which an attacker might local_vart = f(local_var1);
attempt to evade our approach to deobfuscation. The firstlocal var0 = f(local_var0-1);
is to hide relevant instructions, by adding fake dependency'°®3-var2=

function fib (arg0) {
var local_var0,local_vart;
local_vari=1;
if(arg0<2)
local_varO=local_vart;
else
local_varO=
fib(arg0-1)+fib(arg0-2);
return local_var0;

between them and strings to be unfolded. Our approach local_var0+local var;
is immune to this technique, because an unfolded stsing ety local_var2; vary;
depends on some code doesn’'t automatically exclude y=ib(3);
from the resulting slice; if the real workload depends«gn varxy; alert(y);
thenv would be added to slice regardless of the connection=3:

with code unfolding operation. In other words, only code’ =x);

which is solely used for obfuscation would be eliminated®®"®”

}

The second evasion technique is to disguise the obfuscation () (b)
code as relevant by adding extra irrelevant native function
calls and creating dependencies between the obfuscatim co Fig. 5. Deobfuscator outputs for prograrf and P,

and those irrelevant calls. Our semantics-based appraath c

not automically simplify away this kind of disguised obfusJavaScript deobfuscators, which assume that the entiféfyeo
cation because, in general, the additional native funatedls payload is contained in one of the unfolded JavaScript code
potentially change the observable behavior of the programantexts. Finally, we tested our prototype using a sample of
One approach to mitigating such attacks is to select, eittastual malicious code obtained from the Internet by usirg th
manually or automatically, a (possibly proper) subset & tihwget command to retrieve the contents of a URL extracted
native function calls in the program that are used as thesbakbm a spam email sent to one of the authors.

for the slicing process described above. A detailed disonss Figure 3 shows two version of Fibonacci number compu-

of this issue is beyond the scope of this paper. tation programs. The first ond? is shown in Figure 3(a),
this program is hand-obfuscated to incorporate multipktece
IV. EXPERIMENTAL EVALUATION levels of dynamic code generation usiagl for each level of

We evaluated the efficacy of our ideas using a prototygigurs'on- The second prograf, as shown in Figure 3(b), is
implementation based on Mozilla’s open source FireFox wé>0 hand-obfuscated, in which we added dependency between
browser, which uses SpiderMonkey as its JavaScript engih@d! Workload and the value used byal (local variablex in
We tested this prototype on three synthetic programs as wisction fib). Three versions of each of these programs are

as an actual JavaScript malware sample obtained from HfEd—the program as-is as well as two obfuscated versions—
Internet. First, we used two versions of the familiar Fibzgia ©N€ USiNg an obfuscator we wrote ourselves that uses many of

program: this was chosen, first because it contains a vafi€ oPfuscation techniques described in Section II-Cuuiiclg

ety of language constructs, including conditionals, reiver DOM operation; and an online obfuscator [24]. Figures 4
function calls, and arithmetic; and second because it idlsmg'0Ws the fragments of obfuscated programs corresponding
and familiar, which makes it easy to assess the quality & £1; the obfuscated code faP, are very similar and not
deobfuscation. Our third synthetic test case is a very simpi"OWn separately due to space constraints.

program that obfuscated so as to distribute its “payloadrov The output of our deobfuscator for these programs is shown
multiple code contexts. This poses a problem for most exjstiin Figure 5. Figure 5(a) shows the deobfuscated code for



var cl=[167,184,163, ...... ,191,107,107];var ii=0; var str=";";

for(ii=0;ii<cl.length;ii++) str+=String.fromCharCode(cl[ii]-66);
ii=0; eval(str); lalert(b);
(@)

eval(function(p,a,c,k,e,d){e=function(c){return c.toString(36)};
if(I".replace(/*/,String)){while(c--){d[c.toString(a)]=k[c]||
c.toString(a)}k=[function(e){return d[e]}];e=function()
{return\\w+"};c=1};while(c--){if(k[c]){p=p.replace(new RegExp(\\b'+e(c)
+\\b','g"),k[c])}}return p}(‘h f(6){0 8=6;0 4=6;0 7;0 9="5(\'7=8+4;\);";0 c="8=f(8-
1);5(9);";0 a="4=f(4);5(c);";0 b="e(6<2){7=1}\\g{4=4-2;5(a)}";5(b);d 7}0
i=f(3);',19,19,'var||||t2|eval|n|k|t1|s4|s2|s1|s3|return]if||else|function|
y'.split(''),0,{}));eval(function(p,a,c,k,e,d){e=function(c){return
c.toString(36)};if(!".replace(/"/,String)){while(c--){d[c.toString(a)]=k[c]||
c.toString(a)}k=[function(e){return d[e]}];e=function(){return'\\w+'};c=1};
while(c--){if(k[c]){p=p.replace(new RegExp(\\b'+e(c)+"\\b','g"),k[c])}}return p}
('e b(i){0 5;0 3=1;0 6="b(";0 a=")";0 9="i-";0
d="3"f(i<2)7("5="+7("c"+(3*2).8()));g 7("5="+6+9+3.8()+a+"+"+6+9+(3*2).8()
+a);h 5}0 j=b(4);',20,20,'var|||x||k|f1|eval|toString|s1|f2|fib|s|s2|functionliflelse|
return||z'.split('|"),0.{}));

(b)

function f(n){var t1=n;var t2=n;var k;var s4="eval('k=t1+t2;');";var s3="t1=f(t1-
1);eval(s4);"; var s2="t2=f(t2);eval(s3);";var s1="if(n<2){k=1}\else{t2=t2-
2;eval(s2)}";eval(s1);return k}var y=f(3);

()

function fib(i){var k;var x=1;var f1="fib(";var f2=")";var s1="i-";var s2="x";
if(i<2) eval("k="+eval("s"+(x*2).toString()));else eval("k="+f1+s1 +x.toStriqg()
+2+"+"+f1+s1+(x*2).toString()+f2);return k}var z=fib(4);

(@

Fig. 6. Unfolded code contexts from obfuscated version oypamsPs. the

function f0 (a0, al, a2, a3, a4, ab) {
b=0;

}

function f4 (a0, at, a2, a3, a4, a5) {
++b;

}
f0(0,0,0,0,0,0)
4(0,0,0,0,0,0)
alert(b);

Fig. 7. Deobfuscator outputs for programs

| aKKs="nCha’ ; jJt="";n9gs="37G51G67GL05G102G11407GL09GL

...6 lines deleted...
7GL05GL02G114@7GL09GL01G37G51G69" ; ngs=docunent ; n9gs=
n9gs["split"] ("G );for(i=0;i<n9gs.|ength;i++)
jJt+=String[’fro +l aKKs+' r Code’] (n9gs[i]);
ngs["w'+"rite"] (unescape(jJt));

Fig. 8. Source code for malware samgte

b=0; ++b; alert(b);

This code is manually obfuscated by hiding each statement
into obfuscated variants o, and P, in four steps. First,
we remove the calls to native functiciert() in P, and P,
in Figure 3. Next, the modified®, and P, are obfuscated
using the online obfuscator [24]. Then we insert first two
statements of; into these two obfuscated programs, as if a
part of the obfuscation process, and concatenate thenmhtget
Last, we apply one more level of obfuscation to the code

original code ofPs is highlighted. Some smaller code contexts are omittedfrom last step and attach the third statemenPgfo its end.

Figure 6 shows the unfolded code contexts of obfusc&teals

all three versions of”; (the original code, shown in Figure described above. Figure 6(a) is the topmost level obfuscati
3(a), as well as the two obfuscated versions shown in Figusgitementlert(b) of Ps resides in this context. Figure 6(b) is
4). Figure 5(b) shows the deobfuscated code for all thr@ge context unfolded by theval() in Figure 6(a). This context
versions of P,. For each ofP; and P, the deobfuscator consists of obfuscated Fibonacci number programs, and the
outputs are the same for all of the three versions. It can Bgst two statements oP; are hidden in these two obfuscation
seen that the recovered code is very close to the origindl, &rocesses consecutively. Figure 6(c) and (d) present tiie lo
expresses the same functionality. The results obtaine@ sh¢f Fibonacci number computation, from, and P,, both

that the technique we have described is effective in siyiplif ynfolded by context of Figure 6(b). Some of the smaller code
away obfuscation code and extracing the underlying logigntexts generated are not shown here.

of obfuscated JavaScript code, which means it can handl
server-side polymorphism regardless of syntactical iifiee
of obfuscations. This holds even when the code is he

ily obfuscated with multiple different kinds of obfuscai®

including runtime decryption of strings and multiple level
of dynamic code generation and execution uséngl() and

document.write(), In particular, from simplified code of

(Figure 5(b)), we could see that our approach handles th

code intented to be “hidden” bgval correctly.

eAlthough P; is extremely simple, identifying its original

4 gic from unfolded contexts in Figure 6 is still challengin

e original code is scattered among different code cositaixt
different obfuscation levels, hidden in garbage code; arnsl i
easy to misidentifyP; as Fibonacci computation. Therefore,
as we can see, deobfuscators adopt the simple “context-

olding” technique is very ineffective against the olufaion
which does'’t satisfy its assumption. In comparison, Figure
7 presents the output of our deobfuscator, in which most

All obfuscations shown in Figure 3 and 4 are typicaf the obfuscation and garbage code are removed, recovered
techniques widely used in the wild, they also satisfy thepde is very close to the origindl, and expresses the same
assumption made by current deobfuscators: the unobfukcatg@nctionality. The extra code (functidn andf4) is introduced
complete payload is revealed in one of the unfolded JavpScihecause of the control dependency, which can be simplified
code contexts, i.e. if the deobfuscator simply examinesyeveyway by further analysis, e.g. in this case, since none of the
string passed to code unfolding operations suckva) and arguments is relevant, the invocation of the functions can b
document.write(), the unobfuscated payload can be directlyimply replaced by their body. We leave this for future work.

identified in one of them. Our next test prograf, is pur-
posely constructed to violate this assumption. For ilatste
purpose, we make the original logic &% very simple, which

consists of only three statements:

Finally, we evaluated our prototype system using a
JavaScript malware sample?,, which we collected from
the Internet as described earlier. The complete code cntex
and deobfuscation output aP, is not presented here, due



TABLE |

document.write RUNNING TIME OF THE DEOBFUSCATOR FOR TEST PROGRAMS
(“<iframe>...") eval()
Fcontext 1 context 2 context 3
- - - Test Length of trace | Total time | Avg. time
program || (instructions) (us) (ns/instr.)
Fig. 9. Execution flow of malware sample; Py obfl 6166 221949 35.9
P obf2 582 40514 69.6
local var0 < 0: P> obfl 5755 155537 27.0
\A?Eﬁe_zllzzal:va’ro < navigator.plugins.length) { P, obf2 587 50209 85.5
local_var1= navigator.plugins[local_var0].name; Ps 25330 3793117 149.7
if (local_var1.indexOf("Adobe Reader") I= -1) Py 12225 1125874 92.1

document.write("<iframe src="./f3256c¢.pdf' width="1" height="1"

frameborder=0></iframe>"); - . .
local var0++: continue: Firefox [12]. The disadvantage of such approaches is tlegt th

} show all the code that is executed and do not separate out the
code that pertains to the actual logic of the program from the

Fig. 10. A fragment of deobfuscator output for malware saniple code whose only purpose is to deal with obfuscation.

to the space constraint; Figure 8 shows the initial obfus- Recently a few authors have begun looking at automatic
cated JavaScript, while Figure 9 shows its high-level dyinamanalyss of obfuscateq and/or malicious JayaScnpt codeaC
structure. Context 1 resides in the web page opened by wib@l [9] and Curtsingeret al. [4] describe the use of
browser; it is a small piece of obfuscated JavaScript coee ($n@chine leaming techniques based on a variety of dynamic
Figure 8) that invokegocument.write() method to dynamically €xecution features to classify Javascript code as maBowu
insert a hidden iFrame, and cause the load of an external vR§§IgN. Such techniques typically do not focus on automatic
page. This newly loaded web page contains more obfuscafi&pbfuscation, relying instead on the heuristics based on
code, which consists context 2 in Figure 9. Similarly, cante behavioral characteristics. Since obfuscation can alfoured

2 causes one more level of code unfolding usévgl() and N benign code and real!y is simply an |nd|§:at|ve of a'deswe
generates context 3. context 3 is the intended payloadeitop© Protect the code against casual inspection, classifiets t

a PDF file that exploits a vulnerability in Adobe Reader, thi€ly on obfuscation-oriented features are not reliablecaiors
action is also conducted using a dynamically created hiddeh malicious intent. Our automatic deobfuscation approach
iFrame. Figure 10 shows a fragment from the output of oA Potentially increase the accuracy of such techniques by
deobfuscator. The full recovered code is very close to haf§P0osing the actual logic of the code. Saxenal. discuss dy-
deobfuscated result and captures the essence of the rualicf2Mic symbolic execution of JavaScript code using contrai
behavior of P,. The call todocument.write() in context 3 is Solving over strings [25]. Hallaraker and Vigna describe an
part of the simplified code since it is used as a method f8PProach to detecting malicious JavaScript code by mangor
outputas discussed in Section I11-D. For complete result i€ execution of the program and comparing the execution to

P,, please refer to the full version of this paper [22]. a set of high-level policies [26]. All of t.hesg works are very
different from the approach discussed in this paper.
Performance There is a rich body of literature dealing with dynamically

Thus f h f q " il . generated (“unpacked”) code in the context of native-code
us far we have focused our efiorts on implementing sy are executables [27]-[29]. Much of this work focuses
functionality in our deobfuscation tool instead of perfamse. detecting unpacking and identifying the unpacked code.

Nevertheless, current performance seems acceptable.llFor, %contrast the work described here is not concerned with
the test programs described earlier, the average overHeacﬁ] identification and extraction of dynamically-genetlatede

trace collection is2.5us per instruction exequted. Table I|oer se but focuses instead on identifying instructions that are
presents the performance for the deobfuscation process:

Yelevant to the externally-observable behavior of the oy
traces ranging from 582 instructions to 25,330 instrucjon y

our tool takes an average of abaiffus per trace instruction.
In particular, the trace for the our malware sample Wa225
instructions long and required126s to analyze, which works
out to about92s/instruction.

VI. DIScUsSION ANDFUTURE WORK

Our approach requires instrumenting the JavaScript inter-
preter within a web browser to write out a trace of the byte
code being executed. Because this requires inserting coale i
the interpreter, our current prototype is implemented i@ th

Most current approaches to dealing with obfuscatdPntext of th.e open-source Firefox .Web brtl)wse'r. However,
JavaScript typically require a significant amount of manu8Pne of our ideas are Firefox-specific, and in principle they
intervention, e.g., to modify the JavaScript code in speciffould be adapted in a straightforward way to any browser
ways or to monitor its execution within a debugger [6]-[g]Wh0S€ source code is available.

There are also approaches, such as Caffeine Monkey [11]A potential concern with dynamic approaches, such as ours,
intended to assist with analyzing obfuscated JavaScrigé,cois that of code coverage: in theory, static analyses can imeam
by instrumenting JavaScript engine and logging the actuall of the code in a program while dynamic analyses can only
string passed teval. Similar tools include several browserexamine the code that lies on a particular execution path. In
extensions, such as the JavaScript Deobfuscator extefmionpractice, however, current static analyses for JavaSarghot

V. RELATED WORK



able to actually penetrate constructs suckvaf) and analyze [2]
the code generated at runtime; rather, they rely on syaotacti
heuristics such as the presence of redirection, calksvat),

and code/data entropy, to classify whether or not the code s
potentially malicious. Examination of the simplified Javeft
code obtained from a tool such as ours can make it easier
identify inputs that would cause the code to execute altea
execution paths. We leave this to future work. 5]

Another area of future research is the extension our ap-
proach to allow identification of attack code that does netha [6]
any other semantic significance, e.g.,code whose only gerpo
is to position heap buffers for a heap spray attack [30],.[31]
Intuitively, what is going on is that our slicing algorithrtagts L[]
with a notion of a set of “interesting” data values and idieedi  [g]
all of the other code that affects these values; the problem
is that our current notion of “interesting values,” limitéd (]
arguments to native function calls, is too narrow to capture
such attack code. We intend to explore ways to address thig
issue by broadening the notion of “interesting” data values
appropriately. [11]

Finally, there are a few minor aspects of JavaScript and [552]
DOM interactions that we have not yet had time to implement
fully within our decompiler. For example, our JavaScripl3
decompiler currently does not handle exception-handliiag ig
try-catch statements. This is straightforward implementation
work and does not present significant conceptual challenges

[16
[17
[18
The common use of JavaScript code for web-based malwéa€
delivery makes it important to be able analyze the behavi b
of JavaScript programs and, possibly, classify them asgben
or malicious. For malicious JavaScript code, it is useful t81]
have automated tools that can help identify the functioyali 2]
of the code. However, such JavaScript code is usually higﬂfy
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