J. LOGIC PROGRAMMING 1993:12:1-199

RETURN VALUE PLACEMENT AND TAIL
CALL OPTIMIZATION IN HIGH LEVEL
LANGUAGES *

PETER A. BIGOT AND SAUMYA DEBRAY

This paper discusses the interaction between tail call optimization and the
placement of output values in functional and logic programming languages.
Implementations of such languages typically rely on fixed placement poli-
cies: most functional language implementations return output values in
registers, while most logic programming systems return outputs via mem-
ory. Such fixed placement policies incur unnecessary overheads in many
commonly encountered situations: the former are unable to implement
many intuitively iterative computations in a truly iterative manner, while
the latter incur a performance penalty due to additional memory refer-
ences. We describe an approach that determines, based on a low-level cost
model for an implementation together with an estimated execution profile
for a program, whether or not the output of a procedure should be returned
in registers or in memory. This can be seen as realizing a restricted form
of inter-procedural register allocation, and avoids the disadvantages asso-
ciated with the fixed register and fixed memory output placement policies.
Experimental results indicate that it provides good performance improve-
ments compared to existing approaches. <

* This work was supported in part by the National Science Foundation under grant number

CCR-9123520. The first author was also supported by graduate fellowships from the U.S. Office
of Naval Research and AT&T Bell Laboratories. A preliminary version of this paper appeared in
Proc. Eleventh International Conference on Logic Programming, Santa Margherita Ligure, Italy,
June 1994.

Address correspondence to Saumya K. Debray, Department of Computer Science, University
of Arizona, Tucson, AZ 85721, USA. E-mail: debray@cs.arizona.edu

THE JOURNAL OF LOGIC PROGRAMMING

©Elsevier Science Publishing Co., Inc., 1993
655 Avenue of the Americas, New York, NY 10010 0743-1066/93/$3.50

1. INTRODUCTION

Programs in functional and logic programming languages tend to be procedure call
intensive. Because of this, implementations of such languages must handle the data
and control transfers at procedure calls and returns efficiently in order to get good
performance. The data transfer overhead is usually reduced by placing the argu-
ments to procedures—and, in many systems, the values returned by procedures—in
registers. A very important component of techniques that reduce the control trans-
fer overhead is tail call optimization. This paper examines the interaction between
the data passing optimization of placing arguments and return values in registers
and the control passing optimization of tail call optimization.

Implementations of functional languages typically adopt fixed register usage con-
ventions for passing arguments to functions and returning values from them. A
common approach 1s to use a fixed mapping from the position of a value in an
argument sequence to the register in which that value i1s passed: the first argument
to a function is passed in register 1, the second argument in register 2, etc.; the
first return value is returned in register 1, the second return value in register 2,
and so on (see, for example, [3, 8, 11]; the S-1 Common Lisp compiler uses this
approach for numerical return values [6]). A similar situation arises in systems such
as Standard ML of New Jersey [1] that use continuation passing style, and which
pass arguments to “known” functions in registers: since functions in continuation
passing style do not actually return any values to their caller, but pass them instead
as arguments to a continuation, the placement of these “return values” is deter-
mined by the scheme used for passing arguments into a function. The advantage
of such fixed schemes is uniformity and simplicity. They have two disadvantages:
first, as we will show in Section 2, an a priori commitment to pass return values in
registers may force a program to incur unnecessary space and time overheads; and
second, a fixed positional mapping of values to registers can require additional reg-
ister shuffling to move a value into the appropriate register. The second problem,
namely, register shuffling, can be addressed to some extent by techniques such as
register targeting [1, 2, 11], but these do not address the additional space overheads
that can be incurred by such schemes.

It is interesting to contrast such register-return models, commonly used in func-
tional programming systems, with implementations of logic programming languages
such as Prolog. Prolog procedures do not, in general, have any notion of input and
output arguments, and a particular argument to a procedure can be an input ar-
gument in one invocation and an output argument in another. Because of this, it
is simplest to pass all arguments to a procedure in registers, with each unbound
variable—usually corresponding to an output argument—passed by reference, as a
pointer to the cell occupied by that variable. An output value is returned by bind-
ing it to a variable, i.e.;, by writing to the corresponding memory location. This
works well in some cases, but incurs unnecessary overheads in others because of the
additional memory references incurred in initializing the output locations, writing
values to them, and then reading these values back at the point of use.

At first glance, the placement of return values would seem to be a rather small
and, presumably, unimportant aspect of an implementation of a programming lan-
guage. It turns out that because of interactions between return value placement
and tail call optimization, placement decisions can have a surprisingly large impact
on execution speed. Moreover, no single fixed placement scheme is good for all

programs: many commonly encountered programs do better with register place-
ments, and many others run faster with memory placements. What is desirable
is a method whereby a compiler can determine, for each procedure in a program,
which placement scheme is best for it. This paper discusses an algorithm that
accomplishes this, by taking into account execution frequency estimates and the
relative costs of various low level operations to evaluate the costs and benefits of
various alternatives, and choosing placements for the different output arguments
for different procedures in a program in a way that attempts to minimize the over-
all execution time of the program. The assumptions made by our algorithm are
fairly weak, and are applicable to a reasonably wide variety of languages and sys-
tems. The most fundamental assumption we make is that tail call optimization is
implemented. In other words, when the last action performed by a procedure p
is a call to another procedure g—a situation that is referred to as a tail call—any
environment allocated for p is no longer needed and can therefore be reclaimed,
once the arguments to the call to ¢ have been computed into the appropriate lo-
cations. This allows the call to ¢ to be implemented as a simple jump, thereby
avoiding unnecessary state saving and a procedure call and return. We assume also
that input arguments to a procedure call are passed in registers; the mapping that
determines which parameter gets passed in which register need not be the same for
all functions. This assumption is satisfied by most modern implementations of high
level languages. Experimental results indicate that our algorithm generally makes
the right decisions, choosing register placements for procedures that benefit from
having their outputs returned in registers, and memory placements for procedures
for which this is better.

2. OUTPUT VALUE PLACEMENT AND TAIL CALL OPTIMIZATION
Consider the following Scheme function to count the length of a list:

(define (length x)
(if (null? x) 0 (+ 1 (length (cdr x))))
)

Suppose the recursive call to length returns its value in a register. The next action
that has to be taken, upon return from this call, is to increment the value returned,
and, since it is already available in a register, this can be done by a simple register
increment operation. If, on the other hand, the returned value had been placed
in memory, it would be necessary to incur several memory operations—which are
considerably more expensive—to achieve the same effect. In this case, therefore,
the natural place to put the return value is in a register.

As this simple example illustrates, there are, in many cases, significant perfor-
mance advantages to returning output values in registers rather than in memory.
However, the situation is complicated by the interaction of this optimization with
tail call optimization. The problem is that if a tail call returns a value to its caller
in a register 7, but the caller wants that value in a different location z, then it
1s necessary to insert move or load instructions after the tail call to reconcile the
return locations of caller and callee, and this inserted code precludes tail call opti-
mization. This can be seen in the context of procedures that recursively construct
data structures, which are common in functional and logic programming languages.

In many implementations, such structures are allocated on the heap. In these cases,
if the recursive calls that construct the “rest” of the structure return their values
in registers, additional code is necessary to store the values into memory, rendering
tail call optimization inapplicable and increasing the memory requirements of pro-
grams. To see this, consider the following Scheme function to double each element
of a list:

(define (1dbl x)
(if (null? x) () (coms (* 2 (car x)) (1dbl (cdr x))))
)

This function creates and returns a list, which naturally resides on the heap; thus,
the longer the input list, the more space it will need to create its output. However,
the computation performed by this function is, intuitively, iterative in nature—it
simply traverses a list, performing some computation on each element—and one
might expect that such a computation would use only the amount of storage neces-
sary for the data structures it creates. In other words, given a list of length n, one
would hope that this computation would be carried out using O(1) space for en-
vironments. Unfortunately, in most implementations this computation will require
O(n) storage for environments. For example, assuming that primitive arithmetic
operations, as well as the list operations car and cdr, are performed in-line, a
possible execution sequence might be as follows:

allocate an environment;

evaluate the expression (* 2 (car x));

save this value—call 1t z—in the environment;

recursively evaluate (1dbl (cdr x));

load z from the environment into a register;

allocate a cons cell on the heap and set its head to z and its tail to the value
returned by the recursive call,;

7. load the address of this cons cell into the appropriate register and return

O O W N =

This requires the allocation of an environment at each level of recursion, which is
expensive in both time and space.

Superficially, the reason this function is not executed in an iterative manner
is that 1t is not syntactically tail recursive. However, this explanation is overly
simplistic. The definition of the 1dbl function, read declaratively, states that the
value of (1dbl x), where x is a nonempty list with head y and tail z, is a list whose
head is 2y and whose tail is (1dbl z). If an implementation insists on returning
values—in this example, in particular, the value of the recursive call—in registers,
then it has no option but to insert an assignment after the recursive call to write
the value returned by this call from a register into the memory location at the
tail of the cons cell, and this, of course, precludes tail call optimization. However,
the declarative reading of the function does not demand any particular temporal
ordering between the creation of the cons cell and the recursive call in the body
of the function. Thus, suppose we were to implement the function to take, as an
additional (compiler-introduced) argument, a memory address addr into which its

output should be stored. The computation could then proceed as follows:

1. compute the value of (¥ 2 (car x));

2. allocate a cons cell on the heap and store the value so computed into the
head of this cell;

3. store a NULL value into the tail of this cons cell (to help the garbage col-
lector);

4. assign the address of this cons cell into the location given by addr;

5. set addr to the address of the tail of this cons cell;

6. make the recursive call, which can now be done with a simple jump instruction'

In fact, the Prolog version of this function given below would, under most implemen-
tations, realize this behavior almost exactly—the computation would be iterative
and use O(1) space other than space used for data structures created on the heap.
The mode declaration ‘:- mode 1dbl(in, out)’ accompanying the definition of
the procedure specifies that the first argument of the procedure 1dbl is an input
argument and the second argument is an output argument.

:— mode 1dbl(in, out).
1ldb1l([1, [1).
1dbl([H1|L1], [H2|L2]) :- H2 is 2%H1, 1dbl(L1, L2).

Apart from the additional memory requirements discussed above, the register-
return model can also incur a secondary cost in the form of additional runtime
checks. In the 1dbl function above, for example, if garbage collection is initiated
via explicit tests on the heap and/or stack pointers, the register-return version will
require at least two overflow checks at each level of recursion: one, before the recur-
sive call, to determine whether there is enough space to allocate an environment;
and another, after the recursive call, to verify that there is enough space to allocate
a cons cell. These checks cannot be coalesced: for example, we cannot use a single
check before the recursive call to determine whether there is enough space for an
environment and a cons cell, because even if enough space is available before the
recursive call is made, in general it cannot be guaranteed that the space for the
cons cell will still be available when control returns from the recursive call. In gen-
eral, this situation occurs whenever different memory allocations are separated by a
function call. In the memory-return model, however, if the points at which memory
allocations occur can be moved so that different allocations are not separated by
function calls, the overflow checks for the different allocations can be coalesced into
a single test—this is true of the memory-return version of the 1dbl function above,
independent of whether or not an environment is allocated.

A similar problem arises if we have procedures with multiple return values.
Again, if output arguments are returned in registers, then 1t is impossible to avoid
deoptimizing some tail calls in some cases, regardless of what approach is taken for
output register assignment and code generation. This is illustrated by the following
example. Consider a Prolog procedure defined by the clauses

:- mode p(out, out), q(out, out).

LIf other functions rely on the convention that return values are passed in registers, it would
be necessary, after the execution of the memory-return function has finished, to load the value
computed into a register, but this is easily done using a wrapper function and not too expensive.

p(X,Y) :- q(X,Y).
p(X,Y) :- q(¥,X).

As indicated by the “:- mode ...” declaration, both the arguments of each of the
procedures p and q are output values. The first clause defines X, the first output
value of p, to be the first output value of q; and Y, the second output value of p,
to be the second output value of q. In the second clause, the order of outputs is
reversed: the first output value of p is the second output value of q, and the second
output of p is the first output of q.

It is not difficult to see that if either p or q returns either of its outputs in regis-
ters, at least one of the clauses defining p will have to give up tail call optimization.
However, if both p and q return their outputs in memory, tail call optimization can
be retained by permuting the addresses of the output locations in the second clause
before making the tail call.

As 1llustrated by the 1dbl() function discussed earlier, a procedure call that
1s not syntactically a tail call may nevertheless, in some circumstances, be imple-
mented as a tail call: this can be done if the only action taken by the caller after
returning from that call is to store the returned value into memory, after possibly
allocating memory for this purpose. In that case, we can instead allocate the mem-
ory beforehand if necessary, then pass a memory address into the call and have the
callee store the return value into the corresponding location. In general, this can be
done even if a call returns more than one output value, as long as the only action
of the caller after returning from the call i1s to possibly allocate memory, then store
each return value into memory. Based on this, we classify a call in the body of a
procedure as a potential tail-call if (i) it occurs syntactically as a tail call; or (i7)
the only actions taken by the caller, after control returns from that call, are to store
its return values into memory.

3. OUTPUT VALUE PLACEMENT POLICIES

Most implementations of functional and logic programming languages use a “ho-
mogeneous” output placement policy: output values are always placed in one class
of locations—i.e., always in registers, or always in memory.? This obviates the need
to make complicated decisions about the “best” location for a return value, thereby
simplifying compilation. Several homogeneous policies are plausible.

3.1. Fized Register Returns

The simplest way to assign registers to output values i1s to adopt a fixed mapping
from outputs to registers. For example, we may use a convention similar to that
used for the input arguments, with the first return value being placed in register
1, the second in register 2, and so on. The simplicity of this approach makes it
the method of choice in many functional language implementations [3, 6, 8, 11].

2In reality, implementations have only a bounded number of registers available to them. Be-
cause of this, a system that would otherwise pass a value in a register may be forced, due to
an inadequate number of available registers, to pass it in memory. We consider such placement
decisions—which would change if we could somehow increase the number of available registers—to
be homogeneous.

It also has the merit that, in the absence of recursive data structure construction
and multiple return values, a call that appears syntactically in a tail call position
can be guaranteed to be implementable as a tail call (as illustrated in Example
3.2, this is not true of schemes such as register targeting [1, 2, 11], which relax the
fixed positional association between return values and registers in order to reduce
the shuffling of data between registers). Unfortunately, it suffers from two disad-
vantages. First, and most serious, 1s the fact, illustrated in Section 2, that it may
preclude the use of tail call optimization under some circumstances—specifically,
in computations involving the creation of data structures, even if the computations
are intuitively iterative in nature, and in computations involving multiple return
values. The second disadvantage i1s that because of the fixed mapping from the
position of an output value to the register it is returned in, additional register shuf-
fling may be necessary to move it to the register that it needs to be in. Both of
these problems are illustrated by the following example.

Ezample 3.1. Consider the following implementation of the quicksort algorithm in
Prolog:

:- mode gsort(in, out).
gsort([1, Sorted) :- Sorted = [J.
gsort([HIL], Sorted) :-
partition(H, L, Big, Small),
gsort(Small, SmallS),
gsort(Big, BigS),
append(SmallS, [H|BigS], Sorted).

:- mode partition(in, in, out, out).
partition(X, [Y|L], Big, Small) :-

Y >= X,

Big = [V|Bs],

partition(X, L, Bs, Small).
partition(X, [Y|L], Big, Small) :-

Y < X,

Small = [Y|Sms],

partition(X, L, Big, Sms).
partition(_, [], Big, Small) :-

Big = [1, Small = [].

:- mode append(in, in, out).
append([1, L, Lout) :- Lout = L.
append([H|L1], L2, Lout) :- Lout = [HI|L3], append(L1, L2, L3).

Suppose that we use the fixed register placement policy described above for out-
put values. Consider the first clause for the procedure partition: the recursive
call in the body will return the value of Bs in register 1 and Sms in register 2.
After control returns from the recursive call, however, it will be necessary to take
the value of Bs and create the cons pair [Y|Bs]: this will result in a loss of tail
call optimization for this clause. A similar consideration, applied to the value
of Sms, will preclude tail call optimization in the other recursive clause for this
procedure. Similarly, the procedure append will not be tail recursive because of

the need to create the cons pair [H|L3] after the recursive call returns the value
of L3 in register 1.

In the recursive clause for the procedure gqsort, the call to partition will return
the value of Big in register 1 and that of Small in register 2. However, our
parameter passing convention demands that the value of Small, which is the
first argument of the the next call, gsort(Small, SmallS), be in register 1.
This requires additional data movement between registers that might have been
avoided with a more flexible output placement policy. g

3.2. Flexible Register Returns

The discussion of fixed register return policies identified two problems: first, fixed
register returns are unable to realize some intuitively iterative computations in a
truly iterative way; and second, they sometimes incur additional register shuffling
to move a value from the register it was returned in to that where it is needed.
The second of these problems can be avoided using flexible register return policies,
where the positional association between values and registers is relaxed. This can
be accomplished, for example, using register targeting techniques [1, 2, 11] or inter-
procedural register allocation [15]. However, flexible register returns exacerbate
the problem with tail call deoptimization due to mismatches in return register
choices. In particular, unlike the fixed register return case, tail call optimization
can be blocked even in the absence of multiple return values and data structures
constructed on the heap. This is illustrated by the following example.

Ezrample 3.2. Consider a function £ that returns a value returned to it by another
function g:

(define (f x) (g (h x)))

Suppose that, in our desire to avoid register moves, we decide to place £’s output
in register 2 based on an examination of its call sites. Similarly, suppose that,
based on g’s call sites (this one, and others), we decide to place g’s output in
register 3. This decision forces £ to give up tail call optimization, since additional
code must now be inserted in £ to move g’s return value from register 3 to register
2. m
What this means, in practice, is that when deciding register assignments in flex-
ible register return policies, it is not enough simply to inspect the various call sites
for a function to see which position the return value is used in: it is necessary also
to take into account the possibility of tail call deoptimizations due to mismatched
decisions, and the costs of such deoptimizations (possibly weighted by expected
execution frequency). Moreover, flexible register return schemes do not address
the first problem discussed above, namely, the inability to implement intuitively
iterative computations that involve computations of components of data structures
in a truly iterative manner.

3.3. Memory Returns

Unlike functional language systems, implementations of logic programming lan-
guages have typically returned output values in memory. A commonly used policy,

originating in the Warren Abstract Machine [21], is to pass the ith argument in
register ¢: if the ith argument happens to be a variable (which typically corre-
sponds to an output argument), the value passed is a pointer to the location of the
variable (which may be either on the stack or on the heap). In effect, this policy
passes output arguments by reference. The policy is motivated by the fact that, in
general, Prolog procedures do not have any notion of input and output arguments,
and a particular argument to a procedure can be an input argument in one invo-
cation and an output argument in another. Returning outputs in memory allows
a simple and uniform treatment of communication between procedure activations
under these circumstances.

The main advantage of a memory return policy, apart from simplicity, is that it
never prevents tail call optimizations, since one memory location is as good as any
other. Because of this, there is no need to insert code to move a value to a preferred
location, as in Example 3.2. Thus, both the partition and append procedures in
Example 3.1 can be implemented with tail call optimization under this policy.

The biggest disadvantage of a homogeneous memory return policy is its cost. For
each assignment of a return value into memory, we must do two memory writes,
one to initialize the location (to allow garbage collection and, in logic program-
ming languages, to allow general-purpose unification routines to work correctly),
and one for the eventual assignment; a memory read at the use point; and possibly
other operations such as tagging and untagging of pointers. Furthermore, in logic
programming languages there will typically be an additional memory read for deref-
erencing pointer chains that could arise as a result of unification. This disadvantage
1s exemplified by the following example.

Ezrample 3.3. Consider the following Prolog procedure to compute the factorial of
a given number:

:— mode fact(in, out).
fact(0, 1).
fact(N, F) :- N > 0, N1 is N-1, fact(N1i, F1), F is N*F1.

At each level of recursion, the variable F1, which corresponds to the output
argument of the recursive call, 1s allocated a slot in the stack frame: this has
to be initialized as an unbound variable, which costs a memory write. When
the recursive call returns after assigning its return value into F1—this costs
another memory write—the value of F1 is retrieved from memory—costing at
least a memory read—and used to compute the expression N*F1, and the result
stored back into memory. This sequence of events is repeated all the way up
the chain of recursion. This leads to two sources of overhead: a space overhead
because environments on the stack must allocate space for the output variables
of procedures, and a time overhead because of the increased memory traffic. It
is not difficult to see that the repeated loads and stores of the output argument
in the example above are not necessary: it can be computed into a register at
each level of recursion and returned in that register. g

In dynamically typed languages such as Prolog and Scheme, values in memory
typically require associated type descriptors, or “tags.” Many implementations of
such languages implement tagged floating point values as boxed objects: the values
themselves are allocated on the heap, and a pointer to the value is passed around.

10

Input:

1. A set of candidate procedures, with input and output arguments
determined via mode analysis (if necessary), and execution frequency
estimates for each potential tail call;

2. for each procedure p in the program, a set of registers that is pre-
served by p;

3. values for the cost parameters of Table 1.

Output: A placement decision for each return value of each candidate proce-
dure.

Method:

0. Initialize all placement costs to 0.
1. [Pass 1: Local Cost Computation |
For each candidate procedure p do:
(a) for each return value v of p, add in the costs for each placement
for v based on how v will be used;
(b) for each return value v of p, add in the costs for each placement
for v based on the points at which v is defined.
2. [Pass 2: Assigning Output Placements]
For each candidate procedure in decreasing order of execution fre-
quency do:
(a) Update the cost vector of p to account for tail call deoptimiza-
tions;
(b) Use the updated cost estimates to choose a placement for each
return value of p.

Figure 1. Overview of Placement Algorithm

Another disadvantage of memory returns is that a value that could have been
returned in unboxed form using register returns (e.g., a floating point value that is
returned in a floating point register) may require boxing if it is returned in memory.
This incurs both space and time overheads: apart from the fact that memory
operations are generally more expensive than operations on registers, creating a
boxed value may also require additional tests to determine whether or not there is
enough space available on the heap.

4. A HETEROGENEOUS OUTPUT PLACEMENT ALGORITHM

As the discussion of the previous section suggests, an output placement policy aimed
at generating efficient code should have the following characteristics: it should be
heterogeneous, so that it can avoid the expensive memory reference behavior of ho-
mogeneous memory return policies, and yet be able to realize intuitively iterative
computations involving data structure components in a truly iterative fashion; it
should be flexible in register assignment, so that values are placed in registers where

11

they will be needed next; and it should take into account the expected frequency of
execution of various procedures, so that rarely executed code is not optimized at the
expense of frequently executed code. This section describes an algorithm we have
developed that has these characteristics and that has been incorporated into a com-
piler that we have implemented for Janus, a committed-choice logic programming
language [10]. The compiler uses inter-procedural dataflow analyses [9] to deter-
mine the input and output arguments of each procedure, and identify procedures
and variables that must use the default output placement policy (e.g., procedures
whose execution can suspend and subsequently be resumed, and variables that may
be used as logical variables, i.e., “used” before they are defined). The details of
these analyses are orthogonal to this paper and are not discussed here. A proce-
dure that meets the criteria for heterogeneous output placement will be referred
to as a candidate procedure. Qur output placement algorithm also assumes that
relative execution frequencies for each call site in the program have been obtained
separately.

The algorithm has two passes. The first pass assigns costs to various output lo-
cations based on the amount of work that would have to be done if those locations
were chosen without assuming anything about placements in other procedures. The
second pass processes procedures in decreasing order of execution frequency (ob-
tained either using heuristics based on program structure [5, 20] or using execution
profiles generated from “training runs” of the program) and does a greedy bottom-
up assignment of output locations. A high-level overview of the method appears in
Figure 1. The costs incurred by different placements are determined by considering
the features of the various contexts in which values are defined and used.

4.1. Pass 1: Determining Output Location Costs

The first pass estimates the costs associated with each potential return location
for each output value of a procedure without assuming anything about the out-
put placements of other procedures. It associates a vector of cost information,
indexed by potential placement (memory and registers), with each output of a par-
ticular procedure. The costs are incremental, in the sense that they characterize
the additional expense of choosing a particular placement over the best case; and
distributed, in the sense that they associate the components of a cost induced by
choosing a particular location with the program point at which the cost is paid.
Costs associated with a particular program point are weighted by the estimated
frequency with which control reaches that point. The estimation of the costs of
different placements involves looking at two sets of program points separately: the
points in a procedure definition where an output value i1s defined, and the points
where the returned value is used. For this, we need to know what registers might
be affected by a procedure call:

Definition 4.1. Given a register r, a procedure p is said to be r-preserving if the
contents of » will be preserved across any call to p. 1

A register r may be preserved by a procedure p either if r is not modified by
p, or if r is saved by p before it is defined, and restored subsequently. Our cur-
rent implementation uses caller-saved registers uniformly, and as an approximation

12

to register-preservation we assume that each non-primitive procedure defines all
registers. However, it 1s not difficult to see how this heuristic might be improved.

An output value in a procedure is defined either by a primitive operation, or by
a call to another user-defined procedure. Within this, we distinguish two types of
definition point: one 1s a definition of a variable local to a procedure, and the other
is a definition of a variable which is an output parameter of the procedure in which
the definition appears. The later case 1s more complex, because if the definition
point itself is a procedure call, we must take into account the multiple steps that
separate the declaration and initialization of the variable from its base definition
point.

If an output value 1s computed into a register r at a point in a procedure p,
and there i1s a subsequent call to a procedure ¢ that is not r-preserving, then the
contents of r have to be saved across the call to ¢ and subsequently restored. If ¢
happens to be a tail call, the restoration may prevent tail call optimization. It is
important to point out that the costs associated with deoptimizing a tail call are
incurred only once for each tail call that is so deoptimized, regardless of how many
different reasons might have contributed to the decision to deoptimize it. As an
example, consider the following Scheme program fragment:

(define (p x) (cons x (q x)))

The value returned by (p x) is a cons pair whose head is the value of x and whose
tail is the value returned by (q x). It is not difficult to see that if either p or q
places its return value in a register, it will not be possible to implement the call
from p to q as a tail call. Now consider the situation where both p and q place
their return values in registers. In this case, there are two independent reasons for
the loss of tail call optimization in p: first, because p places its return value in a
register; and second, because q places its return value in a register. A naive cost
computation might examine q, consider the fact that a register placement for its
return value precludes tail call optimization, and count the cost incurred thereby;
then examine p, consider the fact that a register placement for its return value would
preclude tail call optimization, and count the cost so incurred. This would count
twice the cost incurred for losing a single opportunity for tail call optimization in
the function p, even though in reality this cost is paid only once. To avoid distorting
our cost estimates with such miscalculations, we need to keep track of two kinds
of information. First, in order to know when to add in the costs associated with
giving up tail call optimization, we need to know which placements of a return
value will preclude tail call optimization. This is managed by maintaining, for each
potential output placement for each output value in a tail call, a flag that indicates
whether choosing that location for that value will prevent a tail call optimization
for that call. Second, we need to know when the costs associated with a tail call
deoptimization have been taken into account already and therefore need not be
accounted for again: this is managed using a flag associated with each potential
tail call that indicates whether it has already been deoptimized.
In summary, our algorithm maintains the following data structures:

1. for each procedure p, a cost vector Cost,(v,{) that gives, for each return
value v for p and each return location [, the cost of placing v in [;

2. for each potential tail call C, a flag C.te_deopt(v,!) that indicates, for each

13

Parameter Description

rmove Cost of moving a value from one register to another
rstore Cost of Storing a value from a register into memory

rload Cost of loading a value from memory into a register
initmem Cost of initializing a memory location

call_ta Cost of a call and return plus environment allocation
call_tn Cost of a call and return, with no environment allocation

Table 1. Parameters to cost model

return value v for p and each return location !, whether returning v in loca-
tion { would cause a loss of tail call optimization for C'; and

3. for each potential tail call C', a flag C.tc_optimizable that indicates whether
the costs associated with a loss of tail call optimization for C' have been
accounted for.

4.1.1. Cost Considerations at Use Point For simplicity of exposition, we assume
that a strict primitive operation can compute its result into any of an appropriate
set of registers (e.g., a floating point operation may compute its result into any
floating point register), and that the cost of the operation does not depend on
the particular register it computes its result into. This assumption is satisfied by
most modern architectures, and it is not difficult to extend our approach to cover
situations where it is not.

The costs of preparing for and using a returned value depend on the contexts
of the definition and use in a procedure body. Consider a value v that is returned
from a call to ¢ in the body of a procedure p: i.e., the definition point for v is a
procedure call. There are two distinct and orthogonal kinds of “uses” we have to
consider. First, v may be used in an expression or another procedure call at a later
point within the body of p. In this case, the costs of different placements for v
when returned from ¢ will depend on the context in which v is used. Second, v may
be returned by p to its caller. While returning the value is a “use” of v, in that
p may be required to move the returned value to another location for the return,
it 1s better interpreted as a multi-step definition of the output from p. The cost,
within p, of each placement location for v when returned from ¢ depends on where
p is expected to return the value; i.e., on parent call-sites to p. This information
i1s not available without a global analysis similar to the one we are describing in
this paper. Therefore, if v is not used, in the former sense, in the portion of p
following its defining call to ¢, the material in this section does not apply; some
of the associated costs for the latter sense will be captured in the definition-point
considerations in the next section.

If there are multiple uses of v in the body of p, the cost computation considers
the first use. This means that if there are multiple uses of v, the costs associated
with uses after the first are not taken into account (this may happen, for example,
if the later uses require loads from memory into a register).

The actions of the first phase of Pass 1, which considers the costs of different
placements for the return values of a procedure based on how those values will be
used, are shown in Figure 1, with various low-level cost parameters as described
in Table 1. First, if a return value i1s to be placed in memory and the parameter

14

begin /* Compute costs for procedure g based on uses of ¢’s return values */
for each call site C for ¢ do
for each return value v of ¢ do
Costy(v, memory) := Costy(v, memory) + freq(C) x rload,
if v is not an output of the procedure p in which C occurs then
Costq(v, memory) := Costy(v, memory) + freq(C) x initmem;
fi
for each register r do
if there is a call to a procedure s between C and a subsequent use of v
such that s is not r-preserving then
Costq(v,r) := Costy(v,r) + freq(C) X (rstore + rload);
fi
if v must be passed in register r’ as an argument to a call and r # r’ then
Costy(v,r) := Costy(v,r) + freq(C) X rmove;
fi
od
od
od
end

Figure 1. Pass 1 of Placement Algorithm: Use Point Considerations

is a local variable (will not be returned from p), then the caller needs to initialize,
with cost initmem, the corresponding memory slot—this is necessary, for example,
so that the garbage collector does not become confused.® If the parameter were
returned from p, this is a chained definition, and the cost of initializing memory
will be accounted for at the topmost call site. In either case, the value must be
loaded into a register for the following use point, adding an additional rload to the
cost of placing v in memory.

For each register that v may be returned in, the cost of using the register depends
on the context of the succeeding use of v in p, and what happens between the
definition and use points. There are two major cases:

1. If the register is not preserved by all intervening calls, the cost of using it is
that of preserving the value across the destructive calls; and loading it again
at the use point; i.e. rstore + rload.

2. [If the register is preserved, there are again two cases:

(a) If the use is in a procedure call and the register is not the one in which
the call expects the corresponding parameter, we must move the value
to the proper register at the use call site, incurring cost rmove.

(b) Otherwise (the use is in the right register, or is an expression which is
accepting of any register), no additional cost is incurred.

All these costs, for both registers and memory, are scaled by the frequency with
which the clause is executed.

3Such initialization may not be necessary if the uninitialized memory cells can be recognized
as such, e.g., by using a special tag on pointers to such cells [4]. It is straightforward to modify
our algorithm to account for this.

15

begin /* Compute costs for procedure p based on definitions of p’s return values */
for each return value v of p do
(¢) Compute the cost of communicating return locations to definition points :

if there is a procedure call between the entry to p and any definition point
for v which is not r preserving for the register r in which the memory
pointer for v would be passed then
Costyp(v, memory) := Costyp(v, memory) + freq(p) X (rstore + rload);

fi

(i¢) Compute the cost of placing the return value in the return location :

if the definition for v is through a primitive action then
Costyp(v, memory) := Costy(v, memory) + freq(p) X rstore;

fi

for each register r do
if there is a call to a procedure g between a definition point of v and

the return from p such that q is not r-preserving then
Costyp(v,r) := Costyp(v,r) + freq(p) x (rstore + rload);

fi

od

od
end

Figure 2. Pass 1 of Placement Algorithm: Definition Point Considerations

4.1.2. Cost Considerations at Definition Point The actions of the second phase
of Pass 1, which considers the costs of different placements for the return values
of a procedure based on where those values are defined, are shown in Figure 2.
There are two distinct costs we need to consider at the point where a return value
is defined: first, that of communicating the location where the return value is to be
placed; and second, that of actually placing the return value into this location.

First, consider the cost of communicating the return location to the definition
point. If a return value v of a procedure p is to be returned in memory, one of the
inputs to p must be a pointer to the memory location where it should be returned.
Given our assumption that arguments are passed in registers, this pointer will be
passed in some register r. If there is any procedure call that is not r-preserving
between the entry to p and the point(s) where v is defined, this pointer must be
saved across such calls, then loaded into a register at v’s definition point to permit
an indirect store. In this case, therefore, a memory return costs an additional
rstore + rload. Otherwise, if v is to be returned in a register, or it is to be returned
in memory but there is no need to save and restore the address of the corresponding
memory location, this cost is 0.

Next, consider the cost of placing the return value into the location where it
is to be returned. If the value v is defined by a primitive operation, we have the
following cases:

1. wvis returned in memory. In this case the cost is that of storing a value into
memory, i.e. rstore.?

4Depending on the language, additional costs may be incurred for this case: for example, in
logic programming languages it is necessary to deal with the possibility of pointer chains created
via unification, which requires an additional dereference operation.

16

2. wvis returned in a register r. We have the following sub-cases:

(a) If there is a procedure call that is not r-preserving between the point
at which v is defined and the point(s) at which control returns from p,
the value of v must be saved across the procedure call and reloaded,
potentially deoptimizing a tail call. Since the costs associated specifi-
cally with tail call deoptimization are accounted for elsewhere, this case
incurs cost rstore + rload.

(b) TIf there is no such call, the local cost of using r is 0.

If the value of v is computed and returned by a call to some other procedure g,
memory returns incur no cost within the body of p. However, the cost of register
returns depend on where ¢ returns the value. Since this information isn’t available
yet, we do nothing in this case, adding in what costs we can in the final pass where
some of the callee return locations will have already been assigned.

4.2. Pass 2: Choosing Output Locations

At the end of the first pass, we have determined output placement costs that are
independent of particular output value placements of different procedures. We
next visit each procedure in turn, and assign to each of its outputs the location
that yields the smallest incremental cost to the program as a whole.

As noted previously, fixing the locations for the return values of one procedure
can affect the optimal choice for another (e.g., in tail calls). One way to avoid the
difficulties that arise from this would be to use an iterative approach, going back to
reconsider previous decisions when an assignment that might affect them i1s made.
It is not obvious that such iteration will reach a fixpoint. We have opted instead
for a greedy approach that processes procedures, and potential tail calls within a
procedure body, in order of decreasing execution frequency. For each procedure, we
first determine, for each of its return values, which placements of that value would
cause a loss of tail call optimization in a potential tail call in its body. After this,
we factor in the additional costs associated with any such possible loss of tail call
optimization. Finally, we examine the cost vectors and choose the placements for
its return values.

As mentioned in Section 4.1, each potential tail call in a procedure is associated
with a collection of flags—one flag for each possible placement of each output value
of that procedure—whose purpose is to indicate whether or not that particular
placement will prevent tail call optimization at that call site. Initially, these flags
are optimistically set to indicate that tail call optimization is possible. In pass 2,
we first set these flags for each procedure by examining each potential tail call in
its body. Assume that we are processing a procedure p, and consider a potential
tail call €' in its body to a procedure ¢q. For each output value v of p, we have the
following cases:

1. w is defined at a program point preceding C'. If v is returned in a register
r and ¢ is r-preserving, then this placement of v does not cause a loss of
tail call optimization for this call. However, if ¢ is not r-preserving, it is
necessary to load the value of v into a register after control returns from the
call, and this precludes tail call optimization.

17

begin
for each procedure p, in decreasing order of execution frequency, do
1. Update the cost vector for p to account for tail call deoptimizations :
for each potential tail call C' in p, in decreasing order of frequency, do
(¢) Compute C.tc_deopt(v,l) for each return value v and return location I;
(12) Estimate costs associated with tail call deoptimization :
if C.tc_optimizable then
for each return value v and return location { do
if C.tc_deopt(v,l) then
Costyp(v,1) := Costyp(v,1) + freq(C) x tedeopt cost(C);

for each potential tail call I) to p from a procedure r whose
return value placements have already been determined do
if placing v in I causes D to lose tail call optimization then
Costyp(v,1) := Costp(v,1) + freq(D) x tedeopt_cost(D);
fi
od
od
fi
od
2. Choose return value placements for p :
while there are return values of p with unassigned placements do
let v be an unassigned return value of p, and [a location, such that
Costp(v,1) < Costy(v,1') for every return location I’, and
Costp(v,1) > miny Costy(w,l') for every unassigned return value w of p;
assign return location [to return value v;
for each potential tail call D to p do
if placing v in ! causes D to lose tail call optimization then
D.tc_optimizable := FALSE;
fi
od
od
od
end

Figure 3. Pass 2 of the Placement Algorithm

18

For an output value defined before the potential tail call, therefore, for each
register r such that ¢ is not r-preserving, the flag C.tc_deopt(v,r), corre-
sponding to a placement of v in register r, is tagged as preventing tail call
optimization.

2. v is defined by q. We have two sub-cases:

(a) The output placements for ¢ have been determined already. Suppose ¢
returns the value v in location [,. For each placement [, in which p could
return v, if I, # I it will be necessary to add code to move the value of v
from [, to I, after control returns from ¢, and this will preclude tail call
optimization. Therefore, for each return location I, that does not match
the location {; in which v is returned by ¢, the flag C.tc_deopt(v,1,) is
set to indicate that tail call optimization is prevented.

(b) ¢ hasnot yet had its output placements determined. In this case we have
no way of telling which locations will eventually cause loss of tail call
optimization, so the flags are left unmodified, i.e., indicate that tail call
optimization may still be possible. When we subsequently process ¢, any
placement of ¢’s outputs that would cause a loss of tail call optimization
here (in p) will be noted, and the corresponding cost accounted for in
the cost vector of q.

Once the flags indicating placements that cause loss of tail call optimization have
been set, we compute, for each output value, the cost associated with different
possible placements for it. Initially, this cost is set to the cost computed for that
placement in the first pass. After this, the costs associated with tail call deop-
timization are factored in. In general, the cost associated with a loss of tail call
optimization can depend on whether this causes an environment to be allocated. If
the caller would have allocated an environment anyhow, the additional cost associ-
ated with a loss of tail call optimization is that of a procedure call and return, and
is given by call_tn; otherwise, there is also a cost associated with the allocation of an
environment, with total cost call_ta. As a first approximation, our implementation
currently takes these values to be system-dependent constants; however, it is not
difficult to see how this could be extended to make finer evaluations, e.g., by taking
into account the number of environment locations that have to be initialized when
an environment is allocated, or the number of values that have to be saved in the
environment as a result of a loss of tail call optimization. To this end, we express
the cost associated with a loss of tail call optimization at a potential tail call C' as
tedeopt _cost(C):

call_ta if tail call deoptimization of C' causes
tedeopt _cost(C') = an environment to be allocated
call_tn otherwise

Tail call deoptimization costs for various return value placements are counted as
follows: for each potential tail call C' for which the flag C.tc_optimizable is true,

1. each placement that prevents tail call optimization gets an additional cost
of tedeopt_cost(C'), weighted by the execution frequency of C'; and

2. for each potential tail call D from a procedure whose placements have been
decided already, each placement that would force a loss of tail call optimiza-

19

tion for D incurs, in the cost vector of C, the cost tedeopt_cost(D), weighted
by the execution frequency of D.

Finally, once the cost vector of different output placements for each potential tail
call in a procedure has been computed, we are in a position to choose placements
for the output arguments of that procedure. In general, a procedure may have more
than one return value, each with a choice of return locations. The assignments for
these values can interfere with each other. For example, suppose a procedure has
two return values, z and y: it may happen that an assignment of a particular register
to x incurs a small savings, but prevents the use of that register for y, thereby
incurring a much higher cost for the next best choice for y. To lessen the effects
of such interference, we look for the output value whose minimum cost location is
the most expensive amongst all minimum cost output placements: assigning any
other output’s location will certainly not decrease this output’s minimum cost, and
may well increase it if the assignment prevents the corresponding location from
being chosen when this output is finally assigned.> This assignment is then set.
Any potential tail call D that is forced to give up tail call optimization because of
this placement decision has the flag D.tc_optimizable set to false, so that the costs
associated with losing tail call optimization are not charged multiple times. The
search and assignment is repeated until all outputs have an assigned location. The
actions for this phase are summarized in Figure 3.

4.3. Interactions with Garbage Collection

The system in whose context our ideas have been implemented, and for which we
present performance numbers (see Section 6), is a logic programming system; our
results suggests that these ideas can improve the performance of implementations
of logic programming languages. At the low implementation level addressed by this
paper, similar aspects of different languages—e.g., tail calls—are often implemented
in essentially similar ways, and for this reason it is possible that these ideas may also
be useful for functional langnage implementations.® Because of the way lazy data
constructors work, lazy recursive data construction functions already share many
of the advantages that memory returns, as described in this paper, give. For strict
functional languages, the optimization described in this paper can, in principle,
adversely affect garbage collection. Strict, mostly pure functional languages such
as Standard ML have the property that pointers are almost always from younger
objects to older objects, and implementations may take advantage of this in several
ways, e.g., by doing generational garbage collection. However, our transformation
would cause this property to be violated frequently, and this could offset some or
all of the savings resulting from our optimization, especially when the garbage col-
lector employs a write barrier. Fortunately, this turns out not to be a problem in
practice, since the issue can be addressed using a technique developed by Cheng and
Okasaki [7], who maintain a list of pointers into data structures that have survived

5In the case of ties between different placements, our implementation chooses memory over
registers of the same cost, because memory will less often destroy a tail call opportunity. However,
in an implementation where the default output value placement is in registers, one could just as
well consider choosing the default register placement in the case of ties.

8We are indebted to an anonymous referee for these observations about functional language
implementations.

20

one of more garbage collections, and process this list during every collection. They
observe that only writes through such pointers can cause inter-generational refer-
ences, and the number of such pointers (typically only one or two per collection) is
usually very small compared to the total number of writes, making this approach
faster than using write barriers even when the cost per surviving pointer is higher
than the cost of a write barrier per write. Using an implementation based on TIL
[16], an optimizing compiler for Standard ML, Cheng and Okasaki show that using
an approach similar to that proposed here can lead to significant improvements in
running time, both when garbage collection time is included in the measurements,
and when it is not; they also show that in many cases, such an approach leads to
improvements in the total time required for garbage collection. A similar interac-
tion with generational garbage collection also arises in lazy functional languages
because of the way closures are updated with values once they get evaluated; tech-
niques proposed to address this problem for lazy languages may be applicable to
our optimization as well (see, for example, [14]).

4.4. Complexity

Assuming that p 1s an upper bound on the number of output arguments of any
procedure in the program, the complexity of the first pass is O(p(S + C)) and that
of the second pass is O((1 + p*)(S + C)), where S is the number of call sites in
the program and C'is the number of potential tail calls. Hence, the algorithm is
essentially linear in the size of the program.

5. TRANSFORMING THE PROGRAMS

If we resort to a heterogeneous return placement policy, procedure call interfaces
can no longer rely on a simple uniform placement policy. Additional work may be
needed, e.g., to pass the address of a memory location where a return value is to be
placed instead of relying on a default policy where values are returned in registers,
or to retrieve a return value from a register instead of relying on a default policy
of having return values placed in memory. This may affect tail calls as well, as
discussed earlier. Thus, once placements have been determined for all of the return
values of each procedure in a program, we have to transform the code to deal consis-
tently with different return placements. This section examines the transformations
necessary for the two most commonly encountered default return placement poli-
cies: register returns, employed in most functional language implementations; and
memory returns, employed in most logic programming systems.

5.1. Default Register Returns

If values are returned in registers by default, functions that are to return some
values in memory need to be changed to take additional arguments that point
to the locations where these values are to be placed, and calls to such functions
have to be modified to supply pointers to appropriate memory locations. It may
be possible, in addition, to take advantage of tail call optimization by reordering
computations in some situations. In situations where this happens, a function that

21

would have needed to allocate an environment before the transformation may, after
transformation, no longer need to do so (see Example 5.1 below).

First, for each function that returns at least one value in memory, we fix an
ordering among the memory-placed return values of the function. For each function
f, the transformation then proceeds as follows:

1. If f returns k values in memory, add k new formal parameters z1,..., zx
that are pointers to values of the appropriate type. The order of these new
formals is determined by the ordering previously determined for the memory
return values of f.

2. At each return point in the body of f, insert code such that the ¢*» memory
return value is assigned into the location pointed to by z;.

3. For each call C' in the body of f, where the called function ¢ returns m
values in memory, where m > 0, do:

(a) If Cis followed by an operation S that is a non-strict data construction
operation, such that any value that is used by S and defined by C is
returned by the callee ¢ in memory, reorder the computations so that
S precedes C. For each field of S that is defined by C'| insert code
immediately after S to initialize that field appropriately. Repeat this
step if there are multiple such operations.

(b) TIf, as a result of this reordering step, there are no more computations
following C'; mark C' as tail recursive.

(c) Define m addresses addry, ..., addry,, as follows:

(i) If the #* value that C returns in memory happens to be the j**
value f returns in memory, then addr; = z;. In other words, we
pass the pointer to the return location, which was passed to f as
the parameter z;, into g.

(i) If the 7" value returned by C' in memory is used as a field in a data
structure whose construction was moved before C' in the previous
step, then addr; is the address of that field.

(#4i) Otherwise, addr; is the address of a new variable w; that is intro-
duced to hold the i** memory return value of g.

Pass these addresses addry, ..., addr,, as additional arguments to C, in
the order determined by the ordering that has been determined for ¢’s
memory return values.

(d) For each value that is returned in memory by €', modify any subsequent
references to that value as necessary to refer to the appropriate memory
location.

4. If one or more calls in the body of f became tail calls as a result of this
transformation, it 1s possible that f no longer needs to allocate an environ-
ment. Examine the transformed definition of f to determine whether this is
so, and update the appropriate information if necessary.

Ezxample 5.1. Consider the function 1dbl discussed in Section 2. Assume that it
has been transformed into an appropriate internal representation, such as an
abstract syntax tree, that might be rendered as in Figure 1(a). Suppose we have

proc 1ldbl(x) :-
local u, v;

if (null? x)
return nil

else
u =2 * (car x);
v := (1dbl (cdr x));
return cons(u, v);
fi
end

(a) Before transforma-
tion

22

proc 1ldbl(x, z)
local u;

if (null? x)

@z := nil

else
u =2 * (car x);
0z := cons(u, v);

return 1dbl((cdr x), &v);
fi
end

(b) After transforma-
tion

Figure 1. Example transformation for default register returns

decided that 1dbl should return its result in memory. After the transformation
described above, we get the program of Figure 1(b). The transformed version is
tail recursive, and can be executed without allocating an environment. g

5.2. Default Memory Returns

In the case where the default policy is to place return values in memory, procedures
that return some values in registers have to be modified to load these values into
registers before returning. This may compromise tail call optimization in some
cases, and possibly require the allocation of an environment. Finally, if a procedure
that returns some of its output values in registers, there is no need to pass it pointers
to the memory locations where those values would have to be placed.

Each procedure p in the program is transformed as follows:

1. For each return value v of p that is returned in a register », insert additional
code to ensure that v is returned in 7:

(a)

(b)

For each v-defining tail call C'in the body of p, suppose that the called
procedure places v in location s (which may be a register or memory).
If » # s, add code after C' to move v from s to r.

If tail call optimization becomes blocked as a result of this code inser-
tion, mark C' as not amenable to tail call optimization.

For each return point D in the body of p that is not a tail call, insert
code to move v into register r (if code can be generated to place v in r
directly, this move can be optimized away later).

2. For each call C in the body of p:

(a)

(b)

For each return value v of C' that is returned in a register, any sub-
sequent use of v should refer to the appropriate register rather than
memory.
If a value returned in a register needs to be preserved across a procedure
call, insert code to save its value before any such call and restore it before
any use.

23

proc fact(N, F) :- proc fact(N) :-
local N1, F1; local N1, F1;
if (N = 0) if (N = 0)
QF := 1; rli := 1;
return; return;
else else
if (N > 0) if (N > 0)
N1 := N-1; N1 := N-1;
call fact(N1, &F1); call fact(N1);
QF := N*F1; rl := N*ri;
return; return;
fi fi
fi fi
end end
(b) Before transformation (b) After transformation

Figure 2. Example transformation for default memory returns

(c) TIf the called procedure passes some of its return values in registers,
there is no need to pass, as arguments to the call, pointers to memory
locations corresponding to such return values.

3. For each return value of p that i1s returned in a register, delete the corre-
sponding formal parameter that is a pointer to the memory location where
that value should be assigned.

Ezxample 5.2. Consider the factorial program of Example 3.3, whose abstract syntax
tree might be as shown in Figure 2(a). Suppose that we decide to place the
return value F of this procedure in register ri. After transformation, we get the
definition of Figure 2(b).

It is not difficult, during subsequent processing, to notice that this procedure
does not need to allocate any memory for either of the local variables N1 and F1.

6. EXPERIMENTAL RESULTS

To test the efficacy of our algorithm, we tested it on a number of benchmark pro-
grams, broadly classified into three groups: simple loops, which perform simple iter-
ative computations and where the choice of output placement does not make a sig-
nificant difference to performance; scalar computations, where the preferred output
placements are in registers; and list computations, where the preferred placements
are in memory. The benchmarks were small to medium sized programs, to make it
possible to isolate the effects of different output placements and allow them to be
compared in a reasonable way. The system used for these experiments was jc, a se-
quential implementation of a committed-choice logic programming language where
procedure bodies are executed from left to right as in Prolog. The jc compiler trans-
lates Janus programs to C and then uses a C compiler (the performance numbers in

24

Program | Execution time (psec) Speedups
Mem | Reg | Het | Reg/Mem | Het/Mem | Het/Reg

bessel 11031 | 11119 | 11236 1.008 1.019 1.010
muldiv 12489 | 12466 | 12487 0.998 1.000 1.002
nand 4613 | 4612 | 4612 1.000 1.000 1.000
pi 11960 | 12144 | 12151 1.016 1.016 1.000
sum 1692 | 1693 | 1692 1.015 1.000 1.000

| Geometric Mean: | 1.007 | 1.007 | 1.002 |

Key

Mem: memory returns only;

Reg: register returns only;

Het: heterogeneous memory+register returns

Table 1. Performance Results: Simple Loops

this paper correspond to gce 2.6.3 invoked with -02 -fomit-frame-pointer) to
compile the resulting program to executable code (the current system uses heuris-
tics based on the structure of the program to estimate execution frequencies [20]: a
detailed discussion of the heuristics used appears in [5]; in principle, this informa-
tion could also be obtained using profile information obtained from “training runs”
of the programs, but we have not implemented this yet). An early version of the
system is described in [10], and a prototype of the system as well as the code for
the benchmarks is available by anonymous FTP from ftp.cs.arizona.edu.

The programs were run on a 40 MHz Sun SPARC IPC, with 32 Mbytes of physical
memory and 64 Kbytes of combined instruction and data cache, running Solaris
2.3. Execution times were obtained using the gettimeofday(2) system call to obtain
microsecond-resolution measurements of execution time, with the testing being the
only active process. For each benchmark program, a single “run” consisted of
executing a test query one hundred times for each output placement policy and,
in each case, taking the shortest measured query execution time. Queries were
designed to be large enough to exercise the programs, yet small enough to able
to execute in a single timeslice with no system interruptions; taking the minimum
measurement avoids bias when one or more query runs nonetheless happened to
be interrupted. A single experiment consisted of a single run of each benchmark
program, with the different benchmarks executed in random order within each
experiment so as to avoid systemic bias from disk and memory cache effects. Nine
such experiments were performed, and for each benchmark the median execution
time for each execution policy was taken.

The performance results for the various classes of benchmarks are as follows:

Simple Loops: These are simple computations where a value is computed itera-
tively and returned at the end of the loop. The benchmarks used were the following:

— bessel computes the Bessel function J75(3), and evaluates both integer (for
factorial) and floating point (for exponentiation) expressions;

— muldiv exercises integer multiplication and division, doing 5000 of each;

25

Program Execution time (usec) Speedups
Mem | Reg | Het | Reg/Mem | Het/Mem | Het/Reg

aquad 28190 | 20368 | 20358 0.722 0.722 0.999
binomial 5747 | 5543 | 5538 0.964 0.964 0.999
chebyshev 8894 | 11422 | 8894 1.284 1.000 0.779
fib 11073 | 4453 | 4483 0.402 0.405 1.007
log 15745 | 16582 | 16595 1.053 1.053 1.001
mandelbrot | 24249 | 23752 | 23758 0.979 0.978 1.000
meint 16642 | 15977 | 15977 0.960 0.960 1.000
tak 13457 | 5344 | 5343 0.397 0.397 1.000
zeta 18116 | 18808 | 18864 1.038 1.041 1.003

| Geometric Mean: | 0.808 | 0.786 | 0.973 |

Key

Mem: memory returns only;

Reg: register returns only;

Het: heterogeneous memory+register returns

Table 2. Performance Results: Scalar Computations

— nand is an electrical circuit design program, taken from [17];

— pi computes the value of 7 to a precision of 1073 using the expansion T =
1—Llgpl_14...
3T 57 ;

— sum adds the integers from 1 to 10,000—it is essentially similar to a tail-
recursive factorial computation, except that it can perform a much greater
number of iterations before incurring an arithmetic overflow.

Since most of the computation in these programs is performed in loop bodies, with
output values returned only at the end, one would expect that in this case there
should not be a significant difference between memory placements and register
placements. The benchmark results, given in Table 1, verify that this is indeed the
case: the differences between the various placement policies is less than 1% on the
average.

Scalar Computations: These are computations of scalar values. The programs
are more complex than for the simple loops considered above, and some involve
extensive floating point computations. Because of this, the preferred locations
for the placement of return values are registers. The benchmarks used were the
following:

— aquad performs a trapezoidal numerical integration fol e”dx using adaptive
quadrature;

— binomial computes the binomial expansion Z?io iy at x = 2.0, y = 1.0;
— chebyshev computes the Chebyshev polynomial of degree 10000 at 1.0;
— fib computes the Fibonacci value F(16);

~ logcomputes log, (1.999) using the expansion log, (1+z) = > ;5o (=1)" 12’ /i;

Program | Execution time (psec) Speedups
Mem | Reg | Het | Reg/Mem | Het/Mem | Het/Reg
bsort 16422 | 32708 | 16512 1.992 1.005 0.505
disj 29643 | 30369 | 30375 1.025 1.025 1.000
il 30119 | 42053 | 31401 1.396 1.043 0.747
hano1 15302 | 15441 | 15429 1.009 1.008 0.999
lrigen 22446 | 24844 | 22238 1.107 0.991 0.895
matmult | 29873 | 32876 | 30198 1.100 1.011 0.918
nrev 6985 | 21582 7059 3.128 1.011 0.327
pascal 09122 | 15255 | 9065 1.672 0.994 0.594
prime 10714 | 17171 | 10716 1.603 1.000 0.624
gsort 11347 | 26631 | 11255 2.347 0.992 0.428
queen 6563 | 8195 | 6563 1.249 1.000 0.801
| Geometric Mean: 1.499 1.007 0.649

Key :

Mem:
Reg:
Het:

Table 3. Performance Results: Structure Computations

memory returns only;
register returns only;
heterogeneous memory+register returns

26

In this case, a homogeneous memory placement policy is, as expected, considerably

mandelbrot computes the Mandelbrot set on a 17 x 17 grid on an area of the

complex plane from (—1.5,—1.5) to (1.5, 1.5);

mecint uses Monte Carlo integration to estimate the mass of a body of irreg-
ular shape, adapted from [13];

tak, from the Gabriel benchmarks, is a heavily recursive program involving

integer addition and subtraction;

zeta computes the Euler-Riemann zeta function, defined by the series zeta(x)

1427°

+ 3774+ ...

(where x is real-valued), at © = 2.0;

slower than a register placement policy. It turns out, as shown in Table 2, that
returning outputs in memory is, on the average, about 20% slower than returning
outputs in registers.

Structure Computations:

These programs involve a significant amount of recursive
data structure computation. The benchmarks used were the following:

bsort is a bubble sort program on a list of 100 integers;

disj converts a propositional formula to disjunctive normal form;

fft is an iterative one-dimensional fast Fourier transform, adapted from [13].

The program computes the fast Fourier transformation and its inverse on a

vector of size 64;

hanoi is the Towers of Hanoi program: the numbers given are for hanoi(10);

27

Program Execution Time (ysecs) Relative performance

J | gec2| cc2| ccd | J/gec2 | J/cc:2 [J/ccd
aquad 20569 | 16604 | 28883 | 26433 1.238 0.712 1.119
bessel 12364 | 12644 | 20635 | 20123 0.978 0.599 0.614
binomial 5720 | 5075 | 8894 | 6098 1.127 0.643 0.938
chebyshev 8500 | 7207 | 18067 | 18065 1.179 0.470 0.470
fib 4711 | 4727 | 4598 | 4584 0.997 1.025 1.028
log 17198 | 17487 | 35029 | 35029 0.984 0.491 0.491
mandelbrot | 23942 | 19403 | 78423 | 46195 1.234 0.305 0.518
muldiv 12705 | 10605 | 11688 | 11669 1.193 1.087 1.089
pi 12144 | 11998 | 22528 | 22520 1.012 0.529 0.529
sum 1694 | 1606 | 1606 406 1.055 1.055 4.172
tak 5340 | 4384 | 4085 | 4070 1.218 1.298 1.303
zeta 18864 | 18029 | 38962 | 38792 1.046 0.484 0.486

| Geometric Mean : | 1.100 | 0.665 | 0.838 |

Key : J:jc -0; gcc:2:gcc -02; «cc:2:cc -02; cc:4:cc -04

Table 4. The speed of jc compared to optimized C

— lIrlgen is the core of an LR(1) parser generator;

— matmult is an integer matrix multiplication program;

~ nrevis an O(n?) naive reverse program on an input list of length 100;

— pascal 1s a benchmark, by E. Tick, to compute Pascal’s triangle;

— prime computes prime numbers up to 200 using the Sieve of Eratosthenes;

— gsort is a quicksort program (see Example 3.1), executed on a list of length

100;
— queen is the n-queens program: the numbers given are for 6 queens.

The data structures manipulated, in most cases, were lists: the only exceptions were
the disj program, which used nested arrays, and fft, which implemented updatable
arrays using binary trees. For these programs, the loss in tail call optimization
resulting from a homogeneous register return policy leads to a significant loss of
performance. Because of this, as shown in Table 3, returning values in registers
turns out to be about 50% slower than a homogeneous memory return policy.

Table 4 compares the execution speed of our system with optimized C code,
written in a “natural” C style wherever possible (i.e., using iteration instead of re-
cursion, and with destructive update.) Tt can be seen that the baseline performance
of our system—with the default homogeneous memory placement policy—is reason-
ably good: it is, on the average, only about 20% slower than C code compiled with
gce —02. It is easy to take a poorly engineered system with a lot of inefficiencies
and get huge performance improvements by eliminating some of these inefficiencies.
The point of these numbers, when evaluating the efficacy of our optimizations, is
that we were careful to begin with a system with good performance so as to avoid
drawing overly optimistic conclusions.

28

It 1s clear from these results that homogeneous output placement policies—
i.e., where return values are returned in either always in registers, or always in
memory—perform well on some programs but poorly on others. For example, for
scalar computations the homogeneous memory placement policy commonly used in
logic programming systems is considerably slower than a policy where outputs are
always returned in registers. Much the opposite 1s true for list computations: the
homogeneous return policy commonly used in implementations of functional lan-
guages 1s very often much slower than a homogeneous memory return policy. This
supports our claim that for best performance, it is necessary to use a heterogeneous
output placement policy that is able to choose between registers and memory in a
flexible manner depending on their relative costs and benefits.

Further, for either group of benchmarks, it can be seen that our algorithm gen-
erally chooses the output placement method one intuitively expects. In particular,
even though our algorithm may occasionally choose to give up tail call optimization
in favor of a cheap placement for the output values of a procedure, no program has
significantly worse performance using our algorithm than with the best placement.
Overall, for scalar computations we find that on the average, the code generated
using our algorithm for output placement is about 22% faster than that result-
ing from a homogeneous memory placement, and very slightly faster than that
obtained using a homogeneous register placement policy (Table 2 shows it to be
about 2.6% faster for this class of programs, but this is due almost entirely to a
single benchmark: if the chebyshev program is ignored, the two policies produce
essentially identical performance). This performance improvement is due primar-
ily to two reasons: first, a reduction in the number of memory references due to
placing values in registers; and second, the ability to maintain values in unboxed
form in registers in situations where writing them to memory would have required
boxing them. For list computations, the code produced using our algorithm is,
on the average, about 35% faster than that resulting from a homogeneous register
placement, and almost identical in performance to code obtained using a uniform
memory placement. The performance gain in this case is due almost entirely to
the fact that memory placements allow the use of tail call optimizations in some
situations where register placements would not.

7. RELATED WORK

The work most closely related to this is the output placement algorithm described
by Van Roy [18] and used in the Aquarius Prolog compiler, and the “destination
passing style” described by Larus [12].

Van Roy’s scheme is heterogeneous, i.e., can choose between register and memory
placements. When register returns are chosen, it uses a fixed positional mapping
to determine which register an output value should be returned in. It also does
not take into account relative execution frequencies, and does not consider relative
costs of losing a tail call optimization versus storing values into memory. For these
reasons, the output placements obtained using Van Roy’s algorithm are generally
not as good as those obtained using our algorithm.

Larus’s destination passing style is very similar to our approach to turning po-
tential tail calls that are followed by a set of memory assignments into proper tail
calls by passing addresses of memory locations into the call. However, it is moti-
vated by very different considerations, namely, increasing the amount of parallelism

29

in Lisp programs by removing certain kinds of dependencies. Because of this, the
cost/benefit criteria relevant to Larus’s work are very different from ours: whereas
we are concerned with the savings in time (and, indirectly, space) accruing from tail
call optimization in a sequential context, and the costs associated with returning
values in memory, Larus is concerned primarily with the amount of parallelism that
can be extracted from programs. Because of this, Larus’s transformation 1s defined
solely with respect to tail recursive functions, rather than tail calls in general: the
transformation discussed in Section 5.1 can be seen as a straightforward general-
ization of that defined by Larus. Another direct consequence of this difference in
motivation is that Larus’s work does not rely on a cost model to evaluate tradeoffs
and determine whether or not destination passing style is desirable in a particular
context, nor does it empirically investigate the effects, on sequential performance, of
returning values in registers or in memory. An idea similar to destination passing
style, though motivated by different concerns—mnamely, the elimination of inter-
mediate lists in applicative programs—and somewhat more restricted in scope, is
described by Wadler, who refers to it as tail recursion modulo cons [19].

8. CONCLUSIONS

Most implementations of functional and logic programming languages take a fixed
approach to how values computed by procedures are returned: return values are
usually placed either always in registers, or always in memory. Neither of these
choices is uniformly desirable: they are good in some situations, and not so good
in others. The reason is that register placements can be accessed without any
memory operations, but can sometimes compromise tail call optimization; on the
other hand, memory placements do not interfere with tail call optimization, but
are more expensive in terms of memory accesses.

This paper gives an algorithm for return value placement that attempts to attain
the best of both worlds. It uses cost estimates for various placement alternatives,
weighted by execution frequency estimates, to determine a “good” output location
assignment for each procedure in a program. Our experiments indicate that it
usually makes the right decisions: in situations where outputs are best returned in
registers, it chooses register returns, while in situations where memory returns are
better, it typically chooses memory placements. Overall, this results in significant
speed improvements compared to traditional fixed output placement schemes.

REFERENCES
1. A. W. Appel, Compiling with Continuations, Cambridge University Press, 1992.

2. A. W. Appel and Z. Shao, “Callee-save Registers in Continuation-passing Style”,
Lisp and Symbolic Computation (5) 191-221, 1992.

3. J. M. Ashley and R. K. Dybvig, “An Efficient Implementation of Multiple Return
Values in Scheme”, Proc. ACM Conference on Lisp and Functional Programming,
1994, pp. 140-149.

4. J. Beer, “The Occur-Check Problem Revisited”, J. Logic Programming vol. 5 no.
3, Sept. 1988, pp. 243-261.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

30

P. A. Bigot, D. Gudeman, and S. K. Debray, “Output Value Placement in Moded
Logic Programs”, Technical Report 94-03, Department of Computer Science, The
University of Arizona, Tucson, Jan. 1994.

R. A. Brooks, R. P. Gabriel, and G. L. Steele, Jr., “S-1 Common Lisp Implemen-
tation”, Proc. ACM Symp. on Lisp and Functional Programming, Pittsburgh, PA,
Aug. 1982, pp. 108-113.

P. Cheng and C. Okasaki, “Destination-Passing Style and Generational Garbage
Collection”, unpublished manuscript, School of Computer Science, Carnegie Mellon
University, Pittsburgh, Nov. 1996.

W. D. Clinger and L. T. Hansen, “L.ambda, the Ultimate Label, or A Simple
Optimizing Compiler for Scheme”, Proc. ACM Conference on Lisp and Functional
Programming, 1994, pp. 128-139.

S. K. Debray, D. Gudeman and P. A. Bigot, “Detection and Optimization of
Suspension-free Logic Programs”, Journal of Logic Programming (Special Issue
on High Performance Implementations), vol. 29 nos. 1-3, Nov. 1996, pp. 171-194.

D. Gudeman, K. De Bosschere, and S.K. Debray, “jc: An Efficient and Portable
Sequential Implementation of Janus”, Proc. Joint International Conference and
Symposium on Logic Programming, Washington DC, Nov. 1992, pp. 399-413. MIT
Press.

D. Krantz, ORBIT: An Optimizing Compiler for Scheme, Ph.D. Dissertation, Yale
University, 1988. (Also available as Technical Report YALEU/DCS/RR-632, Dept.
of Computer Science, Yale University, Feb. 1988.)

J. R. Larus, Restructuring Symbolic Programs for Concurrent Execution on Multi-
processors, Ph.D. Dissertation, University of California, Berkeley, 1989. Also avail-
able as Technical Report UCB/CSD 89/502, Computer Science Division (EECS),
University of California, Berkeley, May 1989.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in €, Cambridge University Press, 1992.

N. Rgjemo, “Generational Garbage Collection for Lazy Functional Languages with
Temporary Space Leaks”, Proc. International Workshop on Memory Management,
1995. Springer Verlag.

P. A. Steenkiste and J. L.. Hennessy, “A Simple Interprocedural Register Allocation
Algorithm and its Effectiveness for Lisp”, ACM Transactions on Programming
Languages and Systems, vol. 11 no. 1, Jan. 1989, pp. 1-32.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee, “TIL: A
type-directed optimizing compiler for ML”, Proc. SIGPLAN 96 Conference on
Programming Language Design and Implementation. ACM, New York, pp. 181—
192.

E. Tick, Parallel Logic Programming, MIT Press, 1991.

P. Van Roy. Can Logic Programming Ezecute as Fast as Imperative Programming?
PhD thesis, University of California at Berkeley, 1990.

P. Wadler, “Listlessness is Better than Laziness: Lazy evaluation and garbage
collection at compile-time”, Proc. ACM Symposium on Lisp and Functional Pro-
grammaing, 1984, pp. 45-52.

31

20. D. W. Wall, “Predicting Program Behavior Using Real or Estimated Profiles”,
Proc. SIGPLAN °91 Conference on Programming Language Design and Implemen-
tation, Toronto, Canada, June 1991, pp. 59-70.

21. D. H. D. Warren, “An Abstract Prolog Instruction Set”, Technical Note 309, SRI
International, Menlo Park, CA, Oct. 1983.

