
J. LOGIC PROGRAMMING 1993:12:1{199 1RETURN VALUE PLACEMENT AND TAILCALL OPTIMIZATION IN HIGH LEVELLANGUAGES �PETER A. BIGOT AND SAUMYA DEBRAY� This paper discusses the interaction between tail call optimization and theplacement of output values in functional and logic programming languages.Implementations of such languages typically rely on �xed placement poli-cies: most functional language implementations return output values inregisters, while most logic programming systems return outputs via mem-ory. Such �xed placement policies incur unnecessary overheads in manycommonly encountered situations: the former are unable to implementmany intuitively iterative computations in a truly iterative manner, whilethe latter incur a performance penalty due to additional memory refer-ences. We describe an approach that determines, based on a low-level costmodel for an implementation together with an estimated execution pro�lefor a program, whether or not the output of a procedure should be returnedin registers or in memory. This can be seen as realizing a restricted formof inter-procedural register allocation, and avoids the disadvantages asso-ciated with the �xed register and �xed memory output placement policies.Experimental results indicate that it provides good performance improve-ments compared to existing approaches. �� This work was supported in part by the National Science Foundation under grant numberCCR-9123520. The �rst author was also supported by graduate fellowships from the U.S. O�ceof Naval Research and AT&T Bell Laboratories. A preliminary version of this paper appeared inProc. Eleventh International Conference on Logic Programming, Santa Margherita Ligure, Italy,June 1994.Address correspondence to Saumya K. Debray, Department of Computer Science, Universityof Arizona, Tucson, AZ 85721, USA. E-mail: debray@cs.arizona.eduTHE JOURNAL OF LOGIC PROGRAMMINGc
Elsevier Science Publishing Co., Inc., 1993655 Avenue of the Americas, New York, NY 10010 0743-1066/93/$3.50



21. INTRODUCTIONPrograms in functional and logic programming languages tend to be procedure callintensive. Because of this, implementations of such languages must handle the dataand control transfers at procedure calls and returns e�ciently in order to get goodperformance. The data transfer overhead is usually reduced by placing the argu-ments to procedures|and, in many systems, the values returned by procedures|inregisters. A very important component of techniques that reduce the control trans-fer overhead is tail call optimization. This paper examines the interaction betweenthe data passing optimization of placing arguments and return values in registersand the control passing optimization of tail call optimization.Implementations of functional languages typically adopt �xed register usage con-ventions for passing arguments to functions and returning values from them. Acommon approach is to use a �xed mapping from the position of a value in anargument sequence to the register in which that value is passed: the �rst argumentto a function is passed in register 1, the second argument in register 2, etc.; the�rst return value is returned in register 1, the second return value in register 2,and so on (see, for example, [3, 8, 11]; the S-1 Common Lisp compiler uses thisapproach for numerical return values [6]). A similar situation arises in systems suchas Standard ML of New Jersey [1] that use continuation passing style, and whichpass arguments to \known" functions in registers: since functions in continuationpassing style do not actually return any values to their caller, but pass them insteadas arguments to a continuation, the placement of these \return values" is deter-mined by the scheme used for passing arguments into a function. The advantageof such �xed schemes is uniformity and simplicity. They have two disadvantages:�rst, as we will show in Section 2, an a priori commitment to pass return values inregisters may force a program to incur unnecessary space and time overheads; andsecond, a �xed positional mapping of values to registers can require additional reg-ister shu�ing to move a value into the appropriate register. The second problem,namely, register shu�ing, can be addressed to some extent by techniques such asregister targeting [1, 2, 11], but these do not address the additional space overheadsthat can be incurred by such schemes.It is interesting to contrast such register-return models, commonly used in func-tional programming systems, with implementations of logic programming languagessuch as Prolog. Prolog procedures do not, in general, have any notion of input andoutput arguments, and a particular argument to a procedure can be an input ar-gument in one invocation and an output argument in another. Because of this, itis simplest to pass all arguments to a procedure in registers, with each unboundvariable|usually corresponding to an output argument|passed by reference, as apointer to the cell occupied by that variable. An output value is returned by bind-ing it to a variable, i.e., by writing to the corresponding memory location. Thisworks well in some cases, but incurs unnecessary overheads in others because of theadditional memory references incurred in initializing the output locations, writingvalues to them, and then reading these values back at the point of use.At �rst glance, the placement of return values would seem to be a rather smalland, presumably, unimportant aspect of an implementation of a programming lan-guage. It turns out that because of interactions between return value placementand tail call optimization, placement decisions can have a surprisingly large impacton execution speed. Moreover, no single �xed placement scheme is good for all



3programs: many commonly encountered programs do better with register place-ments, and many others run faster with memory placements. What is desirableis a method whereby a compiler can determine, for each procedure in a program,which placement scheme is best for it. This paper discusses an algorithm thataccomplishes this, by taking into account execution frequency estimates and therelative costs of various low level operations to evaluate the costs and bene�ts ofvarious alternatives, and choosing placements for the di�erent output argumentsfor di�erent procedures in a program in a way that attempts to minimize the over-all execution time of the program. The assumptions made by our algorithm arefairly weak, and are applicable to a reasonably wide variety of languages and sys-tems. The most fundamental assumption we make is that tail call optimization isimplemented. In other words, when the last action performed by a procedure pis a call to another procedure q|a situation that is referred to as a tail call|anyenvironment allocated for p is no longer needed and can therefore be reclaimed,once the arguments to the call to q have been computed into the appropriate lo-cations. This allows the call to q to be implemented as a simple jump, therebyavoiding unnecessary state saving and a procedure call and return. We assume alsothat input arguments to a procedure call are passed in registers; the mapping thatdetermines which parameter gets passed in which register need not be the same forall functions. This assumption is satis�ed by most modern implementations of highlevel languages. Experimental results indicate that our algorithm generally makesthe right decisions, choosing register placements for procedures that bene�t fromhaving their outputs returned in registers, and memory placements for proceduresfor which this is better.2. OUTPUT VALUE PLACEMENT AND TAIL CALL OPTIMIZATIONConsider the following Scheme function to count the length of a list:(define (length x)(if (null? x) 0 (+ 1 (length (cdr x)))))Suppose the recursive call to length returns its value in a register. The next actionthat has to be taken, upon return from this call, is to increment the value returned,and, since it is already available in a register, this can be done by a simple registerincrement operation. If, on the other hand, the returned value had been placedin memory, it would be necessary to incur several memory operations|which areconsiderably more expensive|to achieve the same e�ect. In this case, therefore,the natural place to put the return value is in a register.As this simple example illustrates, there are, in many cases, signi�cant perfor-mance advantages to returning output values in registers rather than in memory.However, the situation is complicated by the interaction of this optimization withtail call optimization. The problem is that if a tail call returns a value to its callerin a register r, but the caller wants that value in a di�erent location x, then itis necessary to insert move or load instructions after the tail call to reconcile thereturn locations of caller and callee, and this inserted code precludes tail call opti-mization. This can be seen in the context of procedures that recursively constructdata structures, which are common in functional and logic programming languages.



4In many implementations, such structures are allocated on the heap. In these cases,if the recursive calls that construct the \rest" of the structure return their valuesin registers, additional code is necessary to store the values into memory, renderingtail call optimization inapplicable and increasing the memory requirements of pro-grams. To see this, consider the following Scheme function to double each elementof a list:(define (ldbl x)(if (null? x) () (cons (* 2 (car x)) (ldbl (cdr x)))))This function creates and returns a list, which naturally resides on the heap; thus,the longer the input list, the more space it will need to create its output. However,the computation performed by this function is, intuitively, iterative in nature|itsimply traverses a list, performing some computation on each element|and onemight expect that such a computation would use only the amount of storage neces-sary for the data structures it creates. In other words, given a list of length n, onewould hope that this computation would be carried out using O(1) space for en-vironments. Unfortunately, in most implementations this computation will requireO(n) storage for environments. For example, assuming that primitive arithmeticoperations, as well as the list operations car and cdr, are performed in-line, apossible execution sequence might be as follows:1. allocate an environment;2. evaluate the expression (* 2 (car x));3. save this value|call it z|in the environment;4. recursively evaluate (ldbl (cdr x));5. load z from the environment into a register;6. allocate a cons cell on the heap and set its head to z and its tail to the valuereturned by the recursive call;7. load the address of this cons cell into the appropriate register and returnThis requires the allocation of an environment at each level of recursion, which isexpensive in both time and space.Super�cially, the reason this function is not executed in an iterative manneris that it is not syntactically tail recursive. However, this explanation is overlysimplistic. The de�nition of the ldbl function, read declaratively, states that thevalue of (ldbl x), where x is a nonempty list with head y and tail z, is a list whosehead is 2y and whose tail is (ldbl z). If an implementation insists on returningvalues|in this example, in particular, the value of the recursive call|in registers,then it has no option but to insert an assignment after the recursive call to writethe value returned by this call from a register into the memory location at thetail of the cons cell, and this, of course, precludes tail call optimization. However,the declarative reading of the function does not demand any particular temporalordering between the creation of the cons cell and the recursive call in the bodyof the function. Thus, suppose we were to implement the function to take, as anadditional (compiler-introduced) argument, a memory address addr into which its



5output should be stored. The computation could then proceed as follows:1. compute the value of (* 2 (car x));2. allocate a cons cell on the heap and store the value so computed into thehead of this cell;3. store a NULL value into the tail of this cons cell (to help the garbage col-lector);4. assign the address of this cons cell into the location given by addr;5. set addr to the address of the tail of this cons cell;6. make the recursive call, which can now be done with a simple jump instruction1In fact, the Prolog version of this function given below would, under most implemen-tations, realize this behavior almost exactly|the computation would be iterativeand use O(1) space other than space used for data structures created on the heap.The mode declaration `:- mode ldbl(in, out)' accompanying the de�nition ofthe procedure speci�es that the �rst argument of the procedure ldbl is an inputargument and the second argument is an output argument.:- mode ldbl(in, out).ldbl([], []).ldbl([H1|L1], [H2|L2]) :- H2 is 2*H1, ldbl(L1, L2).Apart from the additional memory requirements discussed above, the register-return model can also incur a secondary cost in the form of additional runtimechecks. In the ldbl function above, for example, if garbage collection is initiatedvia explicit tests on the heap and/or stack pointers, the register-return version willrequire at least two over
ow checks at each level of recursion: one, before the recur-sive call, to determine whether there is enough space to allocate an environment;and another, after the recursive call, to verify that there is enough space to allocatea cons cell. These checks cannot be coalesced: for example, we cannot use a singlecheck before the recursive call to determine whether there is enough space for anenvironment and a cons cell, because even if enough space is available before therecursive call is made, in general it cannot be guaranteed that the space for thecons cell will still be available when control returns from the recursive call. In gen-eral, this situation occurs whenever di�erent memory allocations are separated by afunction call. In the memory-return model, however, if the points at which memoryallocations occur can be moved so that di�erent allocations are not separated byfunction calls, the over
ow checks for the di�erent allocations can be coalesced intoa single test|this is true of the memory-return version of the ldbl function above,independent of whether or not an environment is allocated.A similar problem arises if we have procedures with multiple return values.Again, if output arguments are returned in registers, then it is impossible to avoiddeoptimizing some tail calls in some cases, regardless of what approach is taken foroutput register assignment and code generation. This is illustrated by the followingexample. Consider a Prolog procedure de�ned by the clauses:- mode p(out, out), q(out, out).1If other functions rely on the convention that return values are passed in registers, it wouldbe necessary, after the execution of the memory-return function has �nished, to load the valuecomputed into a register, but this is easily done using a wrapper function and not too expensive.



6p(X,Y) :- q(X,Y).p(X,Y) :- q(Y,X).As indicated by the \:- mode . . . " declaration, both the arguments of each of theprocedures p and q are output values. The �rst clause de�nes X, the �rst outputvalue of p, to be the �rst output value of q; and Y, the second output value of p,to be the second output value of q. In the second clause, the order of outputs isreversed: the �rst output value of p is the second output value of q, and the secondoutput of p is the �rst output of q.It is not di�cult to see that if either p or q returns either of its outputs in regis-ters, at least one of the clauses de�ning p will have to give up tail call optimization.However, if both p and q return their outputs in memory, tail call optimization canbe retained by permuting the addresses of the output locations in the second clausebefore making the tail call.As illustrated by the ldbl() function discussed earlier, a procedure call thatis not syntactically a tail call may nevertheless, in some circumstances, be imple-mented as a tail call: this can be done if the only action taken by the caller afterreturning from that call is to store the returned value into memory, after possiblyallocating memory for this purpose. In that case, we can instead allocate the mem-ory beforehand if necessary, then pass a memory address into the call and have thecallee store the return value into the corresponding location. In general, this can bedone even if a call returns more than one output value, as long as the only actionof the caller after returning from the call is to possibly allocate memory, then storeeach return value into memory. Based on this, we classify a call in the body of aprocedure as a potential tail-call if (i) it occurs syntactically as a tail call; or (ii)the only actions taken by the caller, after control returns from that call, are to storeits return values into memory.3. OUTPUT VALUE PLACEMENT POLICIESMost implementations of functional and logic programming languages use a \ho-mogeneous" output placement policy: output values are always placed in one classof locations|i.e., always in registers, or always in memory.2 This obviates the needto make complicated decisions about the \best" location for a return value, therebysimplifying compilation. Several homogeneous policies are plausible.3.1. Fixed Register ReturnsThe simplest way to assign registers to output values is to adopt a �xed mappingfrom outputs to registers. For example, we may use a convention similar to thatused for the input arguments, with the �rst return value being placed in register1, the second in register 2, and so on. The simplicity of this approach makes itthe method of choice in many functional language implementations [3, 6, 8, 11].2In reality, implementations have only a bounded number of registers available to them. Be-cause of this, a system that would otherwise pass a value in a register may be forced, due toan inadequate number of available registers, to pass it in memory. We consider such placementdecisions|which would change if we could somehow increase the number of available registers|tobe homogeneous.



7It also has the merit that, in the absence of recursive data structure constructionand multiple return values, a call that appears syntactically in a tail call positioncan be guaranteed to be implementable as a tail call (as illustrated in Example3.2, this is not true of schemes such as register targeting [1, 2, 11], which relax the�xed positional association between return values and registers in order to reducethe shu�ing of data between registers). Unfortunately, it su�ers from two disad-vantages. First, and most serious, is the fact, illustrated in Section 2, that it maypreclude the use of tail call optimization under some circumstances|speci�cally,in computations involving the creation of data structures, even if the computationsare intuitively iterative in nature, and in computations involving multiple returnvalues. The second disadvantage is that because of the �xed mapping from theposition of an output value to the register it is returned in, additional register shuf-
ing may be necessary to move it to the register that it needs to be in. Both ofthese problems are illustrated by the following example.Example 3.1. Consider the following implementation of the quicksort algorithm inProlog::- mode qsort(in, out).qsort([], Sorted) :- Sorted = [].qsort([H|L], Sorted) :-partition(H, L, Big, Small),qsort(Small, SmallS),qsort(Big, BigS),append(SmallS, [H|BigS], Sorted).:- mode partition(in, in, out, out).partition(X, [Y|L], Big, Small) :-Y >= X,Big = [Y|Bs],partition(X, L, Bs, Small).partition(X, [Y|L], Big, Small) :-Y < X,Small = [Y|Sms],partition(X, L, Big, Sms).partition(_, [], Big, Small) :-Big = [], Small = [].:- mode append(in, in, out).append([], L, Lout) :- Lout = L.append([H|L1], L2, Lout) :- Lout = [H|L3], append(L1, L2, L3).Suppose that we use the �xed register placement policy described above for out-put values. Consider the �rst clause for the procedure partition: the recursivecall in the body will return the value of Bs in register 1 and Sms in register 2.After control returns from the recursive call, however, it will be necessary to takethe value of Bs and create the cons pair [Y|Bs]: this will result in a loss of tailcall optimization for this clause. A similar consideration, applied to the valueof Sms, will preclude tail call optimization in the other recursive clause for thisprocedure. Similarly, the procedure append will not be tail recursive because of



8the need to create the cons pair [H|L3] after the recursive call returns the valueof L3 in register 1.In the recursive clause for the procedure qsort, the call to partitionwill returnthe value of Big in register 1 and that of Small in register 2. However, ourparameter passing convention demands that the value of Small, which is the�rst argument of the the next call, qsort(Small, SmallS), be in register 1.This requires additional data movement between registers that might have beenavoided with a more 
exible output placement policy.3.2. Flexible Register ReturnsThe discussion of �xed register return policies identi�ed two problems: �rst, �xedregister returns are unable to realize some intuitively iterative computations in atruly iterative way; and second, they sometimes incur additional register shu�ingto move a value from the register it was returned in to that where it is needed.The second of these problems can be avoided using 
exible register return policies,where the positional association between values and registers is relaxed. This canbe accomplished, for example, using register targeting techniques [1, 2, 11] or inter-procedural register allocation [15]. However, 
exible register returns exacerbatethe problem with tail call deoptimization due to mismatches in return registerchoices. In particular, unlike the �xed register return case, tail call optimizationcan be blocked even in the absence of multiple return values and data structuresconstructed on the heap. This is illustrated by the following example.Example 3.2. Consider a function f that returns a value returned to it by anotherfunction g:(define (f x) (g (h x)) )Suppose that, in our desire to avoid register moves, we decide to place f's outputin register 2 based on an examination of its call sites. Similarly, suppose that,based on g's call sites (this one, and others), we decide to place g's output inregister 3. This decision forces f to give up tail call optimization, since additionalcode must now be inserted in f to move g's return value from register 3 to register2.What this means, in practice, is that when deciding register assignments in 
ex-ible register return policies, it is not enough simply to inspect the various call sitesfor a function to see which position the return value is used in: it is necessary alsoto take into account the possibility of tail call deoptimizations due to mismatcheddecisions, and the costs of such deoptimizations (possibly weighted by expectedexecution frequency). Moreover, 
exible register return schemes do not addressthe �rst problem discussed above, namely, the inability to implement intuitivelyiterative computations that involve computations of components of data structuresin a truly iterative manner.3.3. Memory ReturnsUnlike functional language systems, implementations of logic programming lan-guages have typically returned output values in memory. A commonly used policy,



9originating in the Warren Abstract Machine [21], is to pass the ith argument inregister i: if the ith argument happens to be a variable (which typically corre-sponds to an output argument), the value passed is a pointer to the location of thevariable (which may be either on the stack or on the heap). In e�ect, this policypasses output arguments by reference. The policy is motivated by the fact that, ingeneral, Prolog procedures do not have any notion of input and output arguments,and a particular argument to a procedure can be an input argument in one invo-cation and an output argument in another. Returning outputs in memory allowsa simple and uniform treatment of communication between procedure activationsunder these circumstances.The main advantage of a memory return policy, apart from simplicity, is that itnever prevents tail call optimizations, since one memory location is as good as anyother. Because of this, there is no need to insert code to move a value to a preferredlocation, as in Example 3.2. Thus, both the partition and append procedures inExample 3.1 can be implemented with tail call optimization under this policy.The biggest disadvantage of a homogeneous memory return policy is its cost. Foreach assignment of a return value into memory, we must do two memory writes,one to initialize the location (to allow garbage collection and, in logic program-ming languages, to allow general-purpose uni�cation routines to work correctly),and one for the eventual assignment; a memory read at the use point; and possiblyother operations such as tagging and untagging of pointers. Furthermore, in logicprogramming languages there will typically be an additional memory read for deref-erencing pointer chains that could arise as a result of uni�cation. This disadvantageis exempli�ed by the following example.Example 3.3. Consider the following Prolog procedure to compute the factorial ofa given number::- mode fact(in, out).fact(0, 1).fact(N, F) :- N > 0, N1 is N-1, fact(N1, F1), F is N*F1.At each level of recursion, the variable F1, which corresponds to the outputargument of the recursive call, is allocated a slot in the stack frame: this hasto be initialized as an unbound variable, which costs a memory write. Whenthe recursive call returns after assigning its return value into F1|this costsanother memory write|the value of F1 is retrieved from memory|costing atleast a memory read|and used to compute the expression N*F1, and the resultstored back into memory. This sequence of events is repeated all the way upthe chain of recursion. This leads to two sources of overhead: a space overheadbecause environments on the stack must allocate space for the output variablesof procedures, and a time overhead because of the increased memory tra�c. Itis not di�cult to see that the repeated loads and stores of the output argumentin the example above are not necessary: it can be computed into a register ateach level of recursion and returned in that register.In dynamically typed languages such as Prolog and Scheme, values in memorytypically require associated type descriptors, or \tags." Many implementations ofsuch languages implement tagged 
oating point values as boxed objects: the valuesthemselves are allocated on the heap, and a pointer to the value is passed around.



10Input: 1. A set of candidate procedures, with input and output argumentsdetermined via mode analysis (if necessary), and execution frequencyestimates for each potential tail call;2. for each procedure p in the program, a set of registers that is pre-served by p;3. values for the cost parameters of Table 1.Output: A placement decision for each return value of each candidate proce-dure.Method:0. Initialize all placement costs to 0.1. [ Pass 1: Local Cost Computation ]For each candidate procedure p do:(a) for each return value v of p, add in the costs for each placementfor v based on how v will be used;(b) for each return value v of p, add in the costs for each placementfor v based on the points at which v is de�ned.2. [ Pass 2: Assigning Output Placements ]For each candidate procedure in decreasing order of execution fre-quency do:(a) Update the cost vector of p to account for tail call deoptimiza-tions;(b) Use the updated cost estimates to choose a placement for eachreturn value of p.Figure 1. Overview of Placement AlgorithmAnother disadvantage of memory returns is that a value that could have beenreturned in unboxed form using register returns (e.g., a 
oating point value that isreturned in a 
oating point register) may require boxing if it is returned in memory.This incurs both space and time overheads: apart from the fact that memoryoperations are generally more expensive than operations on registers, creating aboxed value may also require additional tests to determine whether or not there isenough space available on the heap.4. A HETEROGENEOUS OUTPUT PLACEMENT ALGORITHMAs the discussion of the previous section suggests, an output placement policy aimedat generating e�cient code should have the following characteristics: it should beheterogeneous, so that it can avoid the expensive memory reference behavior of ho-mogeneous memory return policies, and yet be able to realize intuitively iterativecomputations involving data structure components in a truly iterative fashion; itshould be 
exible in register assignment, so that values are placed in registers where



11they will be needed next; and it should take into account the expected frequency ofexecution of various procedures, so that rarely executed code is not optimized at theexpense of frequently executed code. This section describes an algorithm we havedeveloped that has these characteristics and that has been incorporated into a com-piler that we have implemented for Janus, a committed-choice logic programminglanguage [10]. The compiler uses inter-procedural data
ow analyses [9] to deter-mine the input and output arguments of each procedure, and identify proceduresand variables that must use the default output placement policy (e.g., procedureswhose execution can suspend and subsequently be resumed, and variables that maybe used as logical variables, i.e., \used" before they are de�ned). The details ofthese analyses are orthogonal to this paper and are not discussed here. A proce-dure that meets the criteria for heterogeneous output placement will be referredto as a candidate procedure. Our output placement algorithm also assumes thatrelative execution frequencies for each call site in the program have been obtainedseparately.The algorithm has two passes. The �rst pass assigns costs to various output lo-cations based on the amount of work that would have to be done if those locationswere chosen without assuming anything about placements in other procedures. Thesecond pass processes procedures in decreasing order of execution frequency (ob-tained either using heuristics based on program structure [5, 20] or using executionpro�les generated from \training runs" of the program) and does a greedy bottom-up assignment of output locations. A high-level overview of the method appears inFigure 1. The costs incurred by di�erent placements are determined by consideringthe features of the various contexts in which values are de�ned and used.4.1. Pass 1: Determining Output Location CostsThe �rst pass estimates the costs associated with each potential return locationfor each output value of a procedure without assuming anything about the out-put placements of other procedures. It associates a vector of cost information,indexed by potential placement (memory and registers), with each output of a par-ticular procedure. The costs are incremental, in the sense that they characterizethe additional expense of choosing a particular placement over the best case; anddistributed, in the sense that they associate the components of a cost induced bychoosing a particular location with the program point at which the cost is paid.Costs associated with a particular program point are weighted by the estimatedfrequency with which control reaches that point. The estimation of the costs ofdi�erent placements involves looking at two sets of program points separately: thepoints in a procedure de�nition where an output value is de�ned, and the pointswhere the returned value is used. For this, we need to know what registers mightbe a�ected by a procedure call:De�nition 4.1. Given a register r, a procedure p is said to be r-preserving if thecontents of r will be preserved across any call to p.A register r may be preserved by a procedure p either if r is not modi�ed byp, or if r is saved by p before it is de�ned, and restored subsequently. Our cur-rent implementation uses caller-saved registers uniformly, and as an approximation



12to register-preservation we assume that each non-primitive procedure de�nes allregisters. However, it is not di�cult to see how this heuristic might be improved.An output value in a procedure is de�ned either by a primitive operation, or bya call to another user-de�ned procedure. Within this, we distinguish two types ofde�nition point: one is a de�nition of a variable local to a procedure, and the otheris a de�nition of a variable which is an output parameter of the procedure in whichthe de�nition appears. The later case is more complex, because if the de�nitionpoint itself is a procedure call, we must take into account the multiple steps thatseparate the declaration and initialization of the variable from its base de�nitionpoint.If an output value is computed into a register r at a point in a procedure p,and there is a subsequent call to a procedure q that is not r-preserving, then thecontents of r have to be saved across the call to q and subsequently restored. If qhappens to be a tail call, the restoration may prevent tail call optimization. It isimportant to point out that the costs associated with deoptimizing a tail call areincurred only once for each tail call that is so deoptimized, regardless of how manydi�erent reasons might have contributed to the decision to deoptimize it. As anexample, consider the following Scheme program fragment:(define (p x) (cons x (q x)))The value returned by (p x) is a cons pair whose head is the value of x and whosetail is the value returned by (q x). It is not di�cult to see that if either p or qplaces its return value in a register, it will not be possible to implement the callfrom p to q as a tail call. Now consider the situation where both p and q placetheir return values in registers. In this case, there are two independent reasons forthe loss of tail call optimization in p: �rst, because p places its return value in aregister; and second, because q places its return value in a register. A naive costcomputation might examine q, consider the fact that a register placement for itsreturn value precludes tail call optimization, and count the cost incurred thereby;then examine p, consider the fact that a register placement for its return value wouldpreclude tail call optimization, and count the cost so incurred. This would counttwice the cost incurred for losing a single opportunity for tail call optimization inthe function p, even though in reality this cost is paid only once. To avoid distortingour cost estimates with such miscalculations, we need to keep track of two kindsof information. First, in order to know when to add in the costs associated withgiving up tail call optimization, we need to know which placements of a returnvalue will preclude tail call optimization. This is managed by maintaining, for eachpotential output placement for each output value in a tail call, a 
ag that indicateswhether choosing that location for that value will prevent a tail call optimizationfor that call. Second, we need to know when the costs associated with a tail calldeoptimization have been taken into account already and therefore need not beaccounted for again: this is managed using a 
ag associated with each potentialtail call that indicates whether it has already been deoptimized.In summary, our algorithm maintains the following data structures:1. for each procedure p, a cost vector Costp(v; l) that gives, for each returnvalue v for p and each return location l, the cost of placing v in l;2. for each potential tail call C, a 
ag C:tc deopt (v; l) that indicates, for each



13Parameter Descriptionrmove Cost of moving a value from one register to anotherrstore Cost of Storing a value from a register into memoryrload Cost of loading a value from memory into a registerinitmem Cost of initializing a memory locationcall ta Cost of a call and return plus environment allocationcall tn Cost of a call and return, with no environment allocationTable 1. Parameters to cost modelreturn value v for p and each return location l, whether returning v in loca-tion l would cause a loss of tail call optimization for C; and3. for each potential tail call C, a 
ag C:tc optimizable that indicates whetherthe costs associated with a loss of tail call optimization for C have beenaccounted for.4.1.1. Cost Considerations at Use Point For simplicity of exposition, we assumethat a strict primitive operation can compute its result into any of an appropriateset of registers (e.g., a 
oating point operation may compute its result into any
oating point register), and that the cost of the operation does not depend onthe particular register it computes its result into. This assumption is satis�ed bymost modern architectures, and it is not di�cult to extend our approach to coversituations where it is not.The costs of preparing for and using a returned value depend on the contextsof the de�nition and use in a procedure body. Consider a value v that is returnedfrom a call to q in the body of a procedure p: i.e., the de�nition point for v is aprocedure call. There are two distinct and orthogonal kinds of \uses" we have toconsider. First, v may be used in an expression or another procedure call at a laterpoint within the body of p. In this case, the costs of di�erent placements for vwhen returned from q will depend on the context in which v is used. Second, v maybe returned by p to its caller. While returning the value is a \use" of v, in thatp may be required to move the returned value to another location for the return,it is better interpreted as a multi-step de�nition of the output from p. The cost,within p, of each placement location for v when returned from q depends on wherep is expected to return the value; i.e., on parent call-sites to p. This informationis not available without a global analysis similar to the one we are describing inthis paper. Therefore, if v is not used, in the former sense, in the portion of pfollowing its de�ning call to q, the material in this section does not apply; someof the associated costs for the latter sense will be captured in the de�nition-pointconsiderations in the next section.If there are multiple uses of v in the body of p, the cost computation considersthe �rst use. This means that if there are multiple uses of v, the costs associatedwith uses after the �rst are not taken into account (this may happen, for example,if the later uses require loads from memory into a register).The actions of the �rst phase of Pass 1, which considers the costs of di�erentplacements for the return values of a procedure based on how those values will beused, are shown in Figure 1, with various low-level cost parameters as describedin Table 1. First, if a return value is to be placed in memory and the parameter



14begin /* Compute costs for procedure q based on uses of q's return values */for each call site C for q dofor each return value v of q doCostq(v;memory) := Costq(v;memory) + freq(C)� rload;if v is not an output of the procedure p in which C occurs thenCostq(v;memory) := Costq(v;memory) + freq(C)� initmem;�for each register r doif there is a call to a procedure s between C and a subsequent use of vsuch that s is not r-preserving thenCostq(v; r) := Costq(v; r) + freq(C)� (rstore + rload);�if v must be passed in register r0 as an argument to a call and r 6= r0 thenCostq(v; r) := Costq(v; r) + freq(C)� rmove;�odododend Figure 1. Pass 1 of Placement Algorithm: Use Point Considerationsis a local variable (will not be returned from p), then the caller needs to initialize,with cost initmem, the corresponding memory slot|this is necessary, for example,so that the garbage collector does not become confused.3 If the parameter werereturned from p, this is a chained de�nition, and the cost of initializing memorywill be accounted for at the topmost call site. In either case, the value must beloaded into a register for the following use point, adding an additional rload to thecost of placing v in memory.For each register that v may be returned in, the cost of using the register dependson the context of the succeeding use of v in p, and what happens between thede�nition and use points. There are two major cases:1. If the register is not preserved by all intervening calls, the cost of using it isthat of preserving the value across the destructive calls, and loading it againat the use point; i.e. rstore + rload.2. If the register is preserved, there are again two cases:(a) If the use is in a procedure call and the register is not the one in whichthe call expects the corresponding parameter, we must move the valueto the proper register at the use call site, incurring cost rmove.(b) Otherwise (the use is in the right register, or is an expression which isaccepting of any register), no additional cost is incurred.All these costs, for both registers and memory, are scaled by the frequency withwhich the clause is executed.3Such initialization may not be necessary if the uninitialized memory cells can be recognizedas such, e.g., by using a special tag on pointers to such cells [4]. It is straightforward to modifyour algorithm to account for this.



15begin /* Compute costs for procedure p based on de�nitions of p's return values */for each return value v of p do(i) Compute the cost of communicating return locations to de�nition points :if there is a procedure call between the entry to p and any de�nition pointfor v which is not r preserving for the register r in which the memorypointer for v would be passed thenCostp(v;memory) := Costp(v;memory) + freq(p)� (rstore + rload);�(ii) Compute the cost of placing the return value in the return location :if the de�nition for v is through a primitive action thenCostp(v;memory) := Costp(v;memory) + freq(p)� rstore;�for each register r doif there is a call to a procedure q between a de�nition point of v andthe return from p such that q is not r-preserving thenCostp(v; r) := Costp(v; r) + freq(p)� (rstore + rload);�ododend Figure 2. Pass 1 of Placement Algorithm: De�nition Point Considerations4.1.2. Cost Considerations at De�nition Point The actions of the second phaseof Pass 1, which considers the costs of di�erent placements for the return valuesof a procedure based on where those values are de�ned, are shown in Figure 2.There are two distinct costs we need to consider at the point where a return valueis de�ned: �rst, that of communicating the location where the return value is to beplaced; and second, that of actually placing the return value into this location.First, consider the cost of communicating the return location to the de�nitionpoint. If a return value v of a procedure p is to be returned in memory, one of theinputs to p must be a pointer to the memory location where it should be returned.Given our assumption that arguments are passed in registers, this pointer will bepassed in some register r. If there is any procedure call that is not r-preservingbetween the entry to p and the point(s) where v is de�ned, this pointer must besaved across such calls, then loaded into a register at v's de�nition point to permitan indirect store. In this case, therefore, a memory return costs an additionalrstore+ rload. Otherwise, if v is to be returned in a register, or it is to be returnedin memory but there is no need to save and restore the address of the correspondingmemory location, this cost is 0.Next, consider the cost of placing the return value into the location where itis to be returned. If the value v is de�ned by a primitive operation, we have thefollowing cases:1. v is returned in memory. In this case the cost is that of storing a value intomemory, i.e. rstore.44Depending on the language, additional costs may be incurred for this case: for example, inlogic programming languages it is necessary to deal with the possibility of pointer chains createdvia uni�cation, which requires an additional dereference operation.



162. v is returned in a register r. We have the following sub-cases:(a) If there is a procedure call that is not r-preserving between the pointat which v is de�ned and the point(s) at which control returns from p,the value of v must be saved across the procedure call and reloaded,potentially deoptimizing a tail call. Since the costs associated speci�-cally with tail call deoptimization are accounted for elsewhere, this caseincurs cost rstore + rload.(b) If there is no such call, the local cost of using r is 0.If the value of v is computed and returned by a call to some other procedure q,memory returns incur no cost within the body of p. However, the cost of registerreturns depend on where q returns the value. Since this information isn't availableyet, we do nothing in this case, adding in what costs we can in the �nal pass wheresome of the callee return locations will have already been assigned.4.2. Pass 2: Choosing Output LocationsAt the end of the �rst pass, we have determined output placement costs that areindependent of particular output value placements of di�erent procedures. Wenext visit each procedure in turn, and assign to each of its outputs the locationthat yields the smallest incremental cost to the program as a whole.As noted previously, �xing the locations for the return values of one procedurecan a�ect the optimal choice for another (e.g., in tail calls). One way to avoid thedi�culties that arise from this would be to use an iterative approach, going back toreconsider previous decisions when an assignment that might a�ect them is made.It is not obvious that such iteration will reach a �xpoint. We have opted insteadfor a greedy approach that processes procedures, and potential tail calls within aprocedure body, in order of decreasing execution frequency. For each procedure, we�rst determine, for each of its return values, which placements of that value wouldcause a loss of tail call optimization in a potential tail call in its body. After this,we factor in the additional costs associated with any such possible loss of tail calloptimization. Finally, we examine the cost vectors and choose the placements forits return values.As mentioned in Section 4.1, each potential tail call in a procedure is associatedwith a collection of 
ags|one 
ag for each possible placement of each output valueof that procedure|whose purpose is to indicate whether or not that particularplacement will prevent tail call optimization at that call site. Initially, these 
agsare optimistically set to indicate that tail call optimization is possible. In pass 2,we �rst set these 
ags for each procedure by examining each potential tail call inits body. Assume that we are processing a procedure p, and consider a potentialtail call C in its body to a procedure q. For each output value v of p, we have thefollowing cases:1. v is de�ned at a program point preceding C. If v is returned in a registerr and q is r-preserving, then this placement of v does not cause a loss oftail call optimization for this call. However, if q is not r-preserving, it isnecessary to load the value of v into a register after control returns from thecall, and this precludes tail call optimization.



17
beginfor each procedure p, in decreasing order of execution frequency, do1. Update the cost vector for p to account for tail call deoptimizations :for each potential tail call C in p, in decreasing order of frequency, do(i) Compute C:tc deopt(v; l) for each return value v and return location l;(ii) Estimate costs associated with tail call deoptimization :if C:tc optimizable thenfor each return value v and return location l doif C:tc deopt(v; l) thenCostp(v; l) := Costp(v; l) + freq(C)� tcdeopt cost(C);�for each potential tail call D to p from a procedure r whosereturn value placements have already been determined doif placing v in l causes D to lose tail call optimization thenCostp(v; l) := Costp(v; l) + freq(D)� tcdeopt cost(D);�odod�od2. Choose return value placements for p :while there are return values of p with unassigned placements dolet v be an unassigned return value of p, and l a location, such thatCostp(v; l) � Costp(v; l0) for every return location l0, andCostp(v; l) � minl0 Costp(w; l0) for every unassigned return value w of p;assign return location l to return value v;for each potential tail call D to p doif placing v in l causes D to lose tail call optimization thenD:tc optimizable := FALSE;�odododend Figure 3. Pass 2 of the Placement Algorithm



18For an output value de�ned before the potential tail call, therefore, for eachregister r such that q is not r-preserving, the 
ag C:tc deopt(v; r), corre-sponding to a placement of v in register r, is tagged as preventing tail calloptimization.2. v is de�ned by q. We have two sub-cases:(a) The output placements for q have been determined already. Suppose qreturns the value v in location lq . For each placement lp in which p couldreturn v, if lp 6= lq it will be necessary to add code to move the value of vfrom lq to lp after control returns from q, and this will preclude tail calloptimization. Therefore, for each return location lp that does not matchthe location lq in which v is returned by q, the 
ag C:tc deopt(v; lp) isset to indicate that tail call optimization is prevented.(b) q has not yet had its output placements determined. In this case we haveno way of telling which locations will eventually cause loss of tail calloptimization, so the 
ags are left unmodi�ed, i.e., indicate that tail calloptimizationmay still be possible. When we subsequently process q, anyplacement of q's outputs that would cause a loss of tail call optimizationhere (in p) will be noted, and the corresponding cost accounted for inthe cost vector of q.Once the 
ags indicating placements that cause loss of tail call optimization havebeen set, we compute, for each output value, the cost associated with di�erentpossible placements for it. Initially, this cost is set to the cost computed for thatplacement in the �rst pass. After this, the costs associated with tail call deop-timization are factored in. In general, the cost associated with a loss of tail calloptimization can depend on whether this causes an environment to be allocated. Ifthe caller would have allocated an environment anyhow, the additional cost associ-ated with a loss of tail call optimization is that of a procedure call and return, andis given by call tn; otherwise, there is also a cost associated with the allocation of anenvironment, with total cost call ta. As a �rst approximation, our implementationcurrently takes these values to be system-dependent constants; however, it is notdi�cult to see how this could be extended to make �ner evaluations, e.g., by takinginto account the number of environment locations that have to be initialized whenan environment is allocated, or the number of values that have to be saved in theenvironment as a result of a loss of tail call optimization. To this end, we expressthe cost associated with a loss of tail call optimization at a potential tail call C astcdeopt cost(C):tcdeopt cost(C) = 8<: call ta if tail call deoptimization of C causesan environment to be allocatedcall tn otherwiseTail call deoptimization costs for various return value placements are counted asfollows: for each potential tail call C for which the 
ag C:tc optimizable is true,1. each placement that prevents tail call optimization gets an additional costof tcdeopt cost(C), weighted by the execution frequency of C; and2. for each potential tail call D from a procedure whose placements have beendecided already, each placement that would force a loss of tail call optimiza-



19tion for D incurs, in the cost vector of C, the cost tcdeopt cost(D), weightedby the execution frequency of D.Finally, once the cost vector of di�erent output placements for each potential tailcall in a procedure has been computed, we are in a position to choose placementsfor the output arguments of that procedure. In general, a procedure may have morethan one return value, each with a choice of return locations. The assignments forthese values can interfere with each other. For example, suppose a procedure hastwo return values, x and y: it may happen that an assignment of a particular registerto x incurs a small savings, but prevents the use of that register for y, therebyincurring a much higher cost for the next best choice for y. To lessen the e�ectsof such interference, we look for the output value whose minimum cost location isthe most expensive amongst all minimum cost output placements: assigning anyother output's location will certainly not decrease this output's minimumcost, andmay well increase it if the assignment prevents the corresponding location frombeing chosen when this output is �nally assigned.5 This assignment is then set.Any potential tail call D that is forced to give up tail call optimization because ofthis placement decision has the 
ag D:tc optimizable set to false, so that the costsassociated with losing tail call optimization are not charged multiple times. Thesearch and assignment is repeated until all outputs have an assigned location. Theactions for this phase are summarized in Figure 3.4.3. Interactions with Garbage CollectionThe system in whose context our ideas have been implemented, and for which wepresent performance numbers (see Section 6), is a logic programming system; ourresults suggests that these ideas can improve the performance of implementationsof logic programming languages. At the low implementation level addressed by thispaper, similar aspects of di�erent languages|e.g., tail calls|are often implementedin essentially similar ways, and for this reason it is possible that these ideas may alsobe useful for functional language implementations.6 Because of the way lazy dataconstructors work, lazy recursive data construction functions already share manyof the advantages that memory returns, as described in this paper, give. For strictfunctional languages, the optimization described in this paper can, in principle,adversely a�ect garbage collection. Strict, mostly pure functional languages suchas Standard ML have the property that pointers are almost always from youngerobjects to older objects, and implementations may take advantage of this in severalways, e.g., by doing generational garbage collection. However, our transformationwould cause this property to be violated frequently, and this could o�set some orall of the savings resulting from our optimization, especially when the garbage col-lector employs a write barrier. Fortunately, this turns out not to be a problem inpractice, since the issue can be addressed using a technique developed by Cheng andOkasaki [7], who maintain a list of pointers into data structures that have survived5In the case of ties between di�erent placements, our implementation chooses memory overregisters of the same cost, because memory will less often destroy a tail call opportunity. However,in an implementation where the default output value placement is in registers, one could just aswell consider choosing the default register placement in the case of ties.6We are indebted to an anonymous referee for these observations about functional languageimplementations.



20one of more garbage collections, and process this list during every collection. Theyobserve that only writes through such pointers can cause inter-generational refer-ences, and the number of such pointers (typically only one or two per collection) isusually very small compared to the total number of writes, making this approachfaster than using write barriers even when the cost per surviving pointer is higherthan the cost of a write barrier per write. Using an implementation based on TIL[16], an optimizing compiler for Standard ML, Cheng and Okasaki show that usingan approach similar to that proposed here can lead to signi�cant improvements inrunning time, both when garbage collection time is included in the measurements,and when it is not; they also show that in many cases, such an approach leads toimprovements in the total time required for garbage collection. A similar interac-tion with generational garbage collection also arises in lazy functional languagesbecause of the way closures are updated with values once they get evaluated; tech-niques proposed to address this problem for lazy languages may be applicable toour optimization as well (see, for example, [14]).4.4. ComplexityAssuming that p is an upper bound on the number of output arguments of anyprocedure in the program, the complexity of the �rst pass is O(p(S +C)) and thatof the second pass is O((1 + p2)(S + C)), where S is the number of call sites inthe program and C is the number of potential tail calls. Hence, the algorithm isessentially linear in the size of the program.5. TRANSFORMING THE PROGRAMSIf we resort to a heterogeneous return placement policy, procedure call interfacescan no longer rely on a simple uniform placement policy. Additional work may beneeded, e.g., to pass the address of a memory location where a return value is to beplaced instead of relying on a default policy where values are returned in registers,or to retrieve a return value from a register instead of relying on a default policyof having return values placed in memory. This may a�ect tail calls as well, asdiscussed earlier. Thus, once placements have been determined for all of the returnvalues of each procedure in a program, we have to transform the code to deal consis-tently with di�erent return placements. This section examines the transformationsnecessary for the two most commonly encountered default return placement poli-cies: register returns, employed in most functional language implementations; andmemory returns, employed in most logic programming systems.5.1. Default Register ReturnsIf values are returned in registers by default, functions that are to return somevalues in memory need to be changed to take additional arguments that pointto the locations where these values are to be placed, and calls to such functionshave to be modi�ed to supply pointers to appropriate memory locations. It maybe possible, in addition, to take advantage of tail call optimization by reorderingcomputations in some situations. In situations where this happens, a function that



21would have needed to allocate an environment before the transformation may, aftertransformation, no longer need to do so (see Example 5.1 below).First, for each function that returns at least one value in memory, we �x anordering among the memory-placed return values of the function. For each functionf , the transformation then proceeds as follows:1. If f returns k values in memory, add k new formal parameters z1; : : : ; zkthat are pointers to values of the appropriate type. The order of these newformals is determined by the ordering previously determined for the memoryreturn values of f .2. At each return point in the body of f , insert code such that the ith memoryreturn value is assigned into the location pointed to by zi.3. For each call C in the body of f , where the called function g returns mvalues in memory, where m > 0, do:(a) If C is followed by an operation S that is a non-strict data constructionoperation, such that any value that is used by S and de�ned by C isreturned by the callee g in memory, reorder the computations so thatS precedes C. For each �eld of S that is de�ned by C, insert codeimmediately after S to initialize that �eld appropriately. Repeat thisstep if there are multiple such operations.(b) If, as a result of this reordering step, there are no more computationsfollowing C, mark C as tail recursive.(c) De�ne m addresses addr1; : : : ; addrm as follows:(i) If the ith value that C returns in memory happens to be the jthvalue f returns in memory, then addr i � zj. In other words, wepass the pointer to the return location, which was passed to f asthe parameter zj, into g.(ii) If the ith value returned by C in memory is used as a �eld in a datastructure whose construction was moved before C in the previousstep, then addr i is the address of that �eld.(iii) Otherwise, addr i is the address of a new variable wi that is intro-duced to hold the ith memory return value of g.Pass these addresses addr1; : : : ; addrm as additional arguments to C, inthe order determined by the ordering that has been determined for g'smemory return values.(d) For each value that is returned in memory by C, modify any subsequentreferences to that value as necessary to refer to the appropriate memorylocation.4. If one or more calls in the body of f became tail calls as a result of thistransformation, it is possible that f no longer needs to allocate an environ-ment. Examine the transformed de�nition of f to determine whether this isso, and update the appropriate information if necessary.Example 5.1. Consider the function ldbl discussed in Section 2. Assume that ithas been transformed into an appropriate internal representation, such as anabstract syntax tree, that might be rendered as in Figure 1(a). Suppose we have



22proc ldbl(x) :-local u, v;if (null? x)return nilelseu := 2 * (car x);v := (ldbl (cdr x) );return cons(u, v);fiend(a) Before transforma-tion
proc ldbl(x, z)local u;if (null? x)@z := nilelseu := 2 * (car x);@z := cons(u, v);return ldbl((cdr x), &v);fiend(b) After transforma-tionFigure 1. Example transformation for default register returnsdecided that ldbl should return its result in memory. After the transformationdescribed above, we get the program of Figure 1(b). The transformed version istail recursive, and can be executed without allocating an environment.5.2. Default Memory ReturnsIn the case where the default policy is to place return values in memory, proceduresthat return some values in registers have to be modi�ed to load these values intoregisters before returning. This may compromise tail call optimization in somecases, and possibly require the allocation of an environment. Finally, if a procedurethat returns some of its output values in registers, there is no need to pass it pointersto the memory locations where those values would have to be placed.Each procedure p in the program is transformed as follows:1. For each return value v of p that is returned in a register r, insert additionalcode to ensure that v is returned in r:(a) For each v-de�ning tail call C in the body of p, suppose that the calledprocedure places v in location s (which may be a register or memory).If r 6= s, add code after C to move v from s to r.If tail call optimization becomes blocked as a result of this code inser-tion, mark C as not amenable to tail call optimization.(b) For each return point D in the body of p that is not a tail call, insertcode to move v into register r (if code can be generated to place v in rdirectly, this move can be optimized away later).2. For each call C in the body of p:(a) For each return value v of C that is returned in a register, any sub-sequent use of v should refer to the appropriate register rather thanmemory.(b) If a value returned in a register needs to be preserved across a procedurecall, insert code to save its value before any such call and restore it beforeany use.



23proc fact(N, F) :-local N1, F1;if (N = 0)@F := 1;return;elseif (N > 0)N1 := N-1;call fact(N1, &F1);@F := N*F1;return;fifiend(b) Before transformation
proc fact(N) :-local N1, F1;if (N = 0)r1 := 1;return;elseif (N > 0)N1 := N-1;call fact(N1);r1 := N*r1;return;fifiend(b) After transformationFigure 2. Example transformation for default memory returns(c) If the called procedure passes some of its return values in registers,there is no need to pass, as arguments to the call, pointers to memorylocations corresponding to such return values.3. For each return value of p that is returned in a register, delete the corre-sponding formal parameter that is a pointer to the memory location wherethat value should be assigned.Example 5.2. Consider the factorial program of Example 3.3, whose abstract syntaxtree might be as shown in Figure 2(a). Suppose that we decide to place thereturn value F of this procedure in register r1. After transformation, we get thede�nition of Figure 2(b).It is not di�cult, during subsequent processing, to notice that this proceduredoes not need to allocate any memory for either of the local variables N1 and F1.6. EXPERIMENTAL RESULTSTo test the e�cacy of our algorithm, we tested it on a number of benchmark pro-grams, broadly classi�ed into three groups: simple loops, which perform simple iter-ative computations and where the choice of output placement does not make a sig-ni�cant di�erence to performance; scalar computations, where the preferred outputplacements are in registers; and list computations, where the preferred placementsare in memory. The benchmarks were small to medium sized programs, to make itpossible to isolate the e�ects of di�erent output placements and allow them to becompared in a reasonable way. The system used for these experiments was jc, a se-quential implementation of a committed-choice logic programming language whereprocedure bodies are executed from left to right as in Prolog. The jc compiler trans-lates Janus programs to C and then uses a C compiler (the performance numbers in



24Program Execution time (�sec) SpeedupsMem Reg Het Reg/Mem Het/Mem Het/Regbessel 11031 11119 11236 1.008 1.019 1.010muldiv 12489 12466 12487 0.998 1.000 1.002nand 4613 4612 4612 1.000 1.000 1.000pi 11960 12144 12151 1.016 1.016 1.000sum 1692 1693 1692 1.015 1.000 1.000Geometric Mean: 1.007 1.007 1.002Key :Mem: memory returns only;Reg: register returns only;Het: heterogeneous memory+register returnsTable 1. Performance Results: Simple Loopsthis paper correspond to gcc 2.6.3 invoked with -O2 -fomit-frame-pointer) tocompile the resulting program to executable code (the current system uses heuris-tics based on the structure of the program to estimate execution frequencies [20]: adetailed discussion of the heuristics used appears in [5]; in principle, this informa-tion could also be obtained using pro�le information obtained from \training runs"of the programs, but we have not implemented this yet). An early version of thesystem is described in [10], and a prototype of the system as well as the code forthe benchmarks is available by anonymous FTP from ftp.cs.arizona.edu.The programs were run on a 40 MHz Sun SPARC IPC, with 32Mbytes of physicalmemory and 64 Kbytes of combined instruction and data cache, running Solaris2.3. Execution times were obtained using the gettimeofday(2) system call to obtainmicrosecond-resolution measurements of execution time, with the testing being theonly active process. For each benchmark program, a single \run" consisted ofexecuting a test query one hundred times for each output placement policy and,in each case, taking the shortest measured query execution time. Queries weredesigned to be large enough to exercise the programs, yet small enough to ableto execute in a single timeslice with no system interruptions; taking the minimummeasurement avoids bias when one or more query runs nonetheless happened tobe interrupted. A single experiment consisted of a single run of each benchmarkprogram, with the di�erent benchmarks executed in random order within eachexperiment so as to avoid systemic bias from disk and memory cache e�ects. Ninesuch experiments were performed, and for each benchmark the median executiontime for each execution policy was taken.The performance results for the various classes of benchmarks are as follows:Simple Loops: These are simple computations where a value is computed itera-tively and returned at the end of the loop. The benchmarks used were the following:{ bessel computes the Bessel function J75(3), and evaluates both integer (forfactorial) and 
oating point (for exponentiation) expressions;{ muldiv exercises integer multiplication and division, doing 5000 of each;



25Program Execution time (�sec) SpeedupsMem Reg Het Reg/Mem Het/Mem Het/Regaquad 28190 20368 20358 0.722 0.722 0.999binomial 5747 5543 5538 0.964 0.964 0.999chebyshev 8894 11422 8894 1.284 1.000 0.779�b 11073 4453 4483 0.402 0.405 1.007log 15745 16582 16595 1.053 1.053 1.001mandelbrot 24249 23752 23758 0.979 0.978 1.000mcint 16642 15977 15977 0.960 0.960 1.000tak 13457 5344 5343 0.397 0.397 1.000zeta 18116 18808 18864 1.038 1.041 1.003Geometric Mean: 0.808 0.786 0.973Key :Mem: memory returns only;Reg: register returns only;Het: heterogeneous memory+register returnsTable 2. Performance Results: Scalar Computations{ nand is an electrical circuit design program, taken from [17];{ pi computes the value of � to a precision of 10�3 using the expansion �4 =1� 13 + 15 � 17 + � � �;{ sum adds the integers from 1 to 10,000|it is essentially similar to a tail-recursive factorial computation, except that it can perform a much greaternumber of iterations before incurring an arithmetic over
ow.Since most of the computation in these programs is performed in loop bodies, withoutput values returned only at the end, one would expect that in this case thereshould not be a signi�cant di�erence between memory placements and registerplacements. The benchmark results, given in Table 1, verify that this is indeed thecase: the di�erences between the various placement policies is less than 1% on theaverage.Scalar Computations: These are computations of scalar values. The programsare more complex than for the simple loops considered above, and some involveextensive 
oating point computations. Because of this, the preferred locationsfor the placement of return values are registers. The benchmarks used were thefollowing:{ aquad performs a trapezoidal numerical integration R 10 exdx using adaptivequadrature;{ binomial computes the binomial expansionP30i=0 xiy30�i at x = 2:0; y = 1:0;{ chebyshev computes the Chebyshev polynomial of degree 10000 at 1.0;{ �b computes the Fibonacci value F (16);{ log computes loge(1:999) using the expansion loge(1+x) =Pi�0(�1)i+1xi=i;



26Program Execution time (�sec) SpeedupsMem Reg Het Reg/Mem Het/Mem Het/Regbsort 16422 32708 16512 1.992 1.005 0.505disj 29643 30369 30375 1.025 1.025 1.000�t 30119 42053 31401 1.396 1.043 0.747hanoi 15302 15441 15429 1.009 1.008 0.999lr1gen 22446 24844 22238 1.107 0.991 0.895matmult 29873 32876 30198 1.100 1.011 0.918nrev 6985 21582 7059 3.128 1.011 0.327pascal 9122 15255 9065 1.672 0.994 0.594prime 10714 17171 10716 1.603 1.000 0.624qsort 11347 26631 11255 2.347 0.992 0.428queen 6563 8195 6563 1.249 1.000 0.801Geometric Mean: 1.499 1.007 0.649Key :Mem: memory returns only;Reg: register returns only;Het: heterogeneous memory+register returnsTable 3. Performance Results: Structure Computations{ mandelbrot computes the Mandelbrot set on a 17�17 grid on an area of thecomplex plane from (�1:5;�1:5) to (1:5; 1:5);{ mcint uses Monte Carlo integration to estimate the mass of a body of irreg-ular shape, adapted from [13];{ tak, from the Gabriel benchmarks, is a heavily recursive program involvinginteger addition and subtraction;{ zeta computes the Euler-Riemann zeta function, de�ned by the series zeta(x) =1 + 2�x + 3�x + � � � (where x is real-valued), at x = 2:0;In this case, a homogeneous memory placement policy is, as expected, considerablyslower than a register placement policy. It turns out, as shown in Table 2, thatreturning outputs in memory is, on the average, about 20% slower than returningoutputs in registers.Structure Computations: These programs involve a signi�cant amount of recursivedata structure computation. The benchmarks used were the following:{ bsort is a bubble sort program on a list of 100 integers;{ disj converts a propositional formula to disjunctive normal form;{ �t is an iterative one-dimensional fast Fourier transform, adapted from [13].The program computes the fast Fourier transformation and its inverse on avector of size 64;{ hanoi is the Towers of Hanoi program: the numbers given are for hanoi (10);



27Program Execution Time (�secs) Relative performanceJ gcc:2 cc:2 cc:4 J/gcc:2 J/cc:2 J/cc:4aquad 20569 16604 28883 26433 1.238 0.712 1.119bessel 12364 12644 20635 20123 0.978 0.599 0.614binomial 5720 5075 8894 6098 1.127 0.643 0.938chebyshev 8500 7207 18067 18065 1.179 0.470 0.470�b 4711 4727 4598 4584 0.997 1.025 1.028log 17198 17487 35029 35029 0.984 0.491 0.491mandelbrot 23942 19403 78423 46195 1.234 0.305 0.518muldiv 12705 10605 11688 11669 1.193 1.087 1.089pi 12144 11998 22528 22520 1.012 0.529 0.529sum 1694 1606 1606 406 1.055 1.055 4.172tak 5340 4384 4085 4070 1.218 1.298 1.303zeta 18864 18029 38962 38792 1.046 0.484 0.486Geometric Mean : 1.100 0.665 0.838Key : J : jc -O; gcc:2 : gcc -O2; cc:2 : cc -O2; cc:4 : cc -O4Table 4. The speed of jc compared to optimized C{ lr1gen is the core of an LR(1) parser generator;{ matmult is an integer matrix multiplication program;{ nrev is an O(n2) naive reverse program on an input list of length 100;{ pascal is a benchmark, by E. Tick, to compute Pascal's triangle;{ prime computes prime numbers up to 200 using the Sieve of Eratosthenes;{ qsort is a quicksort program (see Example 3.1), executed on a list of length100;{ queen is the n-queens program: the numbers given are for 6 queens.The data structures manipulated, in most cases, were lists: the only exceptions werethe disj program, which used nested arrays, and �t, which implemented updatablearrays using binary trees. For these programs, the loss in tail call optimizationresulting from a homogeneous register return policy leads to a signi�cant loss ofperformance. Because of this, as shown in Table 3, returning values in registersturns out to be about 50% slower than a homogeneous memory return policy.Table 4 compares the execution speed of our system with optimized C code,written in a \natural" C style wherever possible (i.e., using iteration instead of re-cursion, and with destructive update.) It can be seen that the baseline performanceof our system|with the default homogeneous memory placement policy|is reason-ably good: it is, on the average, only about 20% slower than C code compiled withgcc -O2. It is easy to take a poorly engineered system with a lot of ine�cienciesand get huge performance improvements by eliminating some of these ine�ciencies.The point of these numbers, when evaluating the e�cacy of our optimizations, isthat we were careful to begin with a system with good performance so as to avoiddrawing overly optimistic conclusions.



28It is clear from these results that homogeneous output placement policies|i.e., where return values are returned in either always in registers, or always inmemory|perform well on some programs but poorly on others. For example, forscalar computations the homogeneous memory placement policy commonly used inlogic programming systems is considerably slower than a policy where outputs arealways returned in registers. Much the opposite is true for list computations: thehomogeneous return policy commonly used in implementations of functional lan-guages is very often much slower than a homogeneous memory return policy. Thissupports our claim that for best performance, it is necessary to use a heterogeneousoutput placement policy that is able to choose between registers and memory in a
exible manner depending on their relative costs and bene�ts.Further, for either group of benchmarks, it can be seen that our algorithm gen-erally chooses the output placement method one intuitively expects. In particular,even though our algorithmmay occasionally choose to give up tail call optimizationin favor of a cheap placement for the output values of a procedure, no program hassigni�cantly worse performance using our algorithm than with the best placement.Overall, for scalar computations we �nd that on the average, the code generatedusing our algorithm for output placement is about 22% faster than that result-ing from a homogeneous memory placement, and very slightly faster than thatobtained using a homogeneous register placement policy (Table 2 shows it to beabout 2.6% faster for this class of programs, but this is due almost entirely to asingle benchmark: if the chebyshev program is ignored, the two policies produceessentially identical performance). This performance improvement is due primar-ily to two reasons: �rst, a reduction in the number of memory references due toplacing values in registers; and second, the ability to maintain values in unboxedform in registers in situations where writing them to memory would have requiredboxing them. For list computations, the code produced using our algorithm is,on the average, about 35% faster than that resulting from a homogeneous registerplacement, and almost identical in performance to code obtained using a uniformmemory placement. The performance gain in this case is due almost entirely tothe fact that memory placements allow the use of tail call optimizations in somesituations where register placements would not.7. RELATED WORKThe work most closely related to this is the output placement algorithm describedby Van Roy [18] and used in the Aquarius Prolog compiler, and the \destinationpassing style" described by Larus [12].Van Roy's scheme is heterogeneous, i.e., can choose between register and memoryplacements. When register returns are chosen, it uses a �xed positional mappingto determine which register an output value should be returned in. It also doesnot take into account relative execution frequencies, and does not consider relativecosts of losing a tail call optimization versus storing values into memory. For thesereasons, the output placements obtained using Van Roy's algorithm are generallynot as good as those obtained using our algorithm.Larus's destination passing style is very similar to our approach to turning po-tential tail calls that are followed by a set of memory assignments into proper tailcalls by passing addresses of memory locations into the call. However, it is moti-vated by very di�erent considerations, namely, increasing the amount of parallelism



29in Lisp programs by removing certain kinds of dependencies. Because of this, thecost/bene�t criteria relevant to Larus's work are very di�erent from ours: whereaswe are concerned with the savings in time (and, indirectly, space) accruing from tailcall optimization in a sequential context, and the costs associated with returningvalues in memory, Larus is concerned primarily with the amount of parallelism thatcan be extracted from programs. Because of this, Larus's transformation is de�nedsolely with respect to tail recursive functions, rather than tail calls in general: thetransformation discussed in Section 5.1 can be seen as a straightforward general-ization of that de�ned by Larus. Another direct consequence of this di�erence inmotivation is that Larus's work does not rely on a cost model to evaluate tradeo�sand determine whether or not destination passing style is desirable in a particularcontext, nor does it empirically investigate the e�ects, on sequential performance, ofreturning values in registers or in memory. An idea similar to destination passingstyle, though motivated by di�erent concerns|namely, the elimination of inter-mediate lists in applicative programs|and somewhat more restricted in scope, isdescribed by Wadler, who refers to it as tail recursion modulo cons [19].8. CONCLUSIONSMost implementations of functional and logic programming languages take a �xedapproach to how values computed by procedures are returned: return values areusually placed either always in registers, or always in memory. Neither of thesechoices is uniformly desirable: they are good in some situations, and not so goodin others. The reason is that register placements can be accessed without anymemory operations, but can sometimes compromise tail call optimization; on theother hand, memory placements do not interfere with tail call optimization, butare more expensive in terms of memory accesses.This paper gives an algorithm for return value placement that attempts to attainthe best of both worlds. It uses cost estimates for various placement alternatives,weighted by execution frequency estimates, to determine a \good" output locationassignment for each procedure in a program. Our experiments indicate that itusually makes the right decisions: in situations where outputs are best returned inregisters, it chooses register returns, while in situations where memory returns arebetter, it typically chooses memory placements. Overall, this results in signi�cantspeed improvements compared to traditional �xed output placement schemes.REFERENCES1. A. W. Appel, Compiling with Continuations, Cambridge University Press, 1992.2. A. W. Appel and Z. Shao, \Callee-save Registers in Continuation-passing Style",Lisp and Symbolic Computation (5) 191{221, 1992.3. J. M. Ashley and R. K. Dybvig, \An E�cient Implementation of Multiple ReturnValues in Scheme", Proc. ACM Conference on Lisp and Functional Programming,1994, pp. 140{149.4. J. Beer, \The Occur-Check Problem Revisited", J. Logic Programming vol. 5 no.3, Sept. 1988, pp. 243{261.



305. P. A. Bigot, D. Gudeman, and S. K. Debray, \Output Value Placement in ModedLogic Programs", Technical Report 94-03, Department of Computer Science, TheUniversity of Arizona, Tucson, Jan. 1994.6. R. A. Brooks, R. P. Gabriel, and G. L. Steele, Jr., \S-1 Common Lisp Implemen-tation", Proc. ACM Symp. on Lisp and Functional Programming, Pittsburgh, PA,Aug. 1982, pp. 108{113.7. P. Cheng and C. Okasaki, \Destination-Passing Style and Generational GarbageCollection", unpublished manuscript, School of Computer Science, Carnegie MellonUniversity, Pittsburgh, Nov. 1996.8. W. D. Clinger and L. T. Hansen, \Lambda, the Ultimate Label, or A SimpleOptimizing Compiler for Scheme", Proc. ACM Conference on Lisp and FunctionalProgramming, 1994, pp. 128{139.9. S. K. Debray, D. Gudeman and P. A. Bigot, \Detection and Optimization ofSuspension-free Logic Programs", Journal of Logic Programming (Special Issueon High Performance Implementations), vol. 29 nos. 1{3, Nov. 1996, pp. 171{194.10. D. Gudeman, K. De Bosschere, and S.K. Debray, \jc: An E�cient and PortableSequential Implementation of Janus", Proc. Joint International Conference andSymposium on Logic Programming, Washington DC, Nov. 1992, pp. 399{413. MITPress.11. D. Krantz, ORBIT: An Optimizing Compiler for Scheme, Ph.D. Dissertation, YaleUniversity, 1988. (Also available as Technical Report YALEU/DCS/RR-632, Dept.of Computer Science, Yale University, Feb. 1988.)12. J. R. Larus, Restructuring Symbolic Programs for Concurrent Execution on Multi-processors, Ph.D. Dissertation, University of California, Berkeley, 1989. Also avail-able as Technical Report UCB/CSD 89/502, Computer Science Division (EECS),University of California, Berkeley, May 1989.13. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, NumericalRecipes in C, Cambridge University Press, 1992.14. N. R�ojemo, \Generational Garbage Collection for Lazy Functional Languages withTemporary Space Leaks", Proc. International Workshop on Memory Management,1995. Springer Verlag.15. P. A. Steenkiste and J. L. Hennessy, \A Simple Interprocedural Register AllocationAlgorithm and its E�ectiveness for Lisp", ACM Transactions on ProgrammingLanguages and Systems, vol. 11 no. 1, Jan. 1989, pp. 1{32.16. D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee, \TIL: Atype-directed optimizing compiler for ML", Proc. SIGPLAN '96 Conference onProgramming Language Design and Implementation. ACM, New York, pp. 181{192.17. E. Tick, Parallel Logic Programming, MIT Press, 1991.18. P. Van Roy. Can Logic Programming Execute as Fast as Imperative Programming?PhD thesis, University of California at Berkeley, 1990.19. P. Wadler, \Listlessness is Better than Laziness: Lazy evaluation and garbagecollection at compile-time", Proc. ACM Symposium on Lisp and Functional Pro-gramming, 1984, pp. 45{52.



3120. D. W. Wall, \Predicting Program Behavior Using Real or Estimated Pro�les",Proc. SIGPLAN '91 Conference on Programming Language Design and Implemen-tation, Toronto, Canada, June 1991, pp. 59{70.21. D. H. D. Warren, \An Abstract Prolog Instruction Set", Technical Note 309, SRIInternational, Menlo Park, CA, Oct. 1983.


