
On the Complexity of Flow-Sensitive Data
ow Analyses �Robert Muth Saumya DebrayDepartment of Computer S
ien
eUniversity of ArizonaTu
son, AZ 85721, U.S.A.fmuth, debrayg�
s.arizona.eduAbstra
tThis paper attempts to address the question of why
er-tain data
ow analysis problems
an be solved eÆ
iently, butnot others. We fo
us on
ow-sensitive analyses, and give asimple and general result that shows that analyses that re-quire the use of relational attributes for pre
ision must bePSPACE-hard in general. We then show that if the lan-guage
onstru
ts are slightly strengthened to allow a
ompu-tation to maintain a very limited summary of what happensalong an exe
ution path, inter-pro
edural analyses be
omeEXPTIME-hard. We dis
uss appli
ations of our results to avariety of analyses dis
ussed in the literature. Our work elu-
idates the reasons behind the
omplexity results given by anumber of authors, improves on a number of su
h
omplex-ity results, and exposes
on
eptual
ommonalities underly-ing su
h results that are not readily apparent otherwise.1 Introdu
tionProgram analysis involves keeping tra
k of properties of vari-ables at di�erent program points. In general, the proper-ties of di�erent variables may depend on ea
h other. Whentra
king su
h properties, we may
hoose to keep tra
k ofdependen
ies between the properties of di�erent variables(leading to analysis information of the form \[x = a andy = b℄; or [x =
 and y = d℄"), or we may
hoose to ignoresu
h dependen
ies (leading to information of the form \[x =a or x =
℄; and [y = b or y = d℄"). Jones and Mu
hni
k referto the former kind of analyses as relational-attribute analy-ses, and the latter kind as independent-attribute analyses [5℄.The tradeo� between these methods is that independent-attribute analyses are usually more eÆ
ient but less pre
isethan relational-attribute analyses.When addressing a program analysis problem, it is usefulto
onsider the
omputational
omplexity of obtaining a pre-� This work was supported in part by the National S
ien
e Foun-dation under grants CDA-9500991, CCR-9711166, and ASC-9720738.
To appear in the 27th ACM Symposium on Prin
iplesof Programming Languages, January 2000.

ise (upto symboli
 exe
ution) solution to the problem.1 Ifa pre
ise solution
an be obtained \eÆ
iently," i.e., in poly-nomial time, it makes sense to try and �nd an algorithmthat obtains su
h a solution. If, on the other hand, the exis-ten
e of eÆ
ient algorithms to
ompute pre
ise solutions isunlikely, it makes sense to sa
ri�
e pre
ision for eÆ
ien
y.Questions about the
omputational
omplexity of variousprogram analyses have been addressed by a number of au-thors (see Se
tion 5). The
urrent state of knowledge result-ing from these works is, by and large, a set of isolated fa
tsabout the
omplexities of various analyses. What is miss-ing are insights into the underlying reasons for these results.For example, Landi's results on the
omplexity of pointer-indu
ed alias analysis [7, 10℄ tell us that single-level pointersare, in some sense, easy to handle, but multi-level pointersare not: however, they don't explain exa
tly why multi-levelpointers are hard to deal with. The situation is further mud-dled by the results of Pande et al., who show that the pre
ise
onstru
tion of inter-pro
edural def-use
hains be
omes dif-�
ult in the presen
e of single-level pointers [14℄. In otherwords, single-level pointers
ompli
ate some analyses butnot others, but we don't have any insights into why su
hpointers are benign in some situations but problemati
 inothers. Moreover, these results are typi
ally obtained usingredu
tions from problems with known
omplexity: di�erentproblem
hoi
es by di�erent authors, and di�eren
es in thedetails of the redu
tions for di�erent analysis problems, of-ten make it diÆ
ult to see whether there are any underlying
on
eptual
ommonalities between di�erent su
h
omplexityarguments.The main
ontribution of this paper is to elu
idate thefundamental reasons why
ertain program analyses
an be
arried out eÆ
iently (i.e., in polynomial time), while othersare diÆ
ult. We give a simple and general result that is ap-pli
able to a wide variety of intra- and inter-pro
edural
ow-sensitive analyses. This is able to explain, for example, whysingle-level pointers
an be handled eÆ
iently in the
ontextof pointer-indu
ed alias analysis [7, 10℄ but not for def-use
hains [14℄. With very little
on
eptual and notational ef-1The determination of whether some (nontrivial) property will a
-tually hold at a parti
ular program point at runtime is, of
ourse,unde
idable. A standard assumption in the data
ow analysis litera-ture is that all \realizable" paths in a program|by whi
h we mean allpaths subje
t to the
onstraint that pro
edure
alls are mat
hed up
orre
tly with returns|are exe
utable, or, equivalently, that eitherbran
h of any
onditional
an always be exe
uted. This assumption,whi
h Barth referred to as pre
ision \upto symboli
 exe
ution" [1℄, is
ommonly used to sidestep the problem of unde
idability, and \pre-
ision" of program analyses is typi
ally de�ned with respe
t to thisassumption.

fort, a number of
omplexity results given in the literature[7, 10, 11, 12, 14℄ fall out dire
tly as
orollaries of this re-sult. Moreover, for several of these analyses, we are ableto improve signi�
antly on the known
omplexity results re-ported in the literature [11, 12, 14℄. For example, we showthat the following analyses are EXPTIME-
omplete: inter-pro
edural pointer alias analysis in the presen
e of two-levelpointers (previous best result: PSPACE-hardness [7℄), inter-pro
edural rea
hing de�nitions in the presen
e of single-levelpointers (previous best result: NP-hardness [14℄), and inter-pro
edural liveness analysis and available expressions in thepresen
e of referen
e parameters (previous best result: NP-hardness [12℄). In the pro
ess, our work exposes
on
eptual
ommonalities underlying a variety of program analyses.To maintain
ontinuity, the proofs of most of the resultsare given in the Appendix.2 PreliminariesFrom the perspe
tive of program analysis, we may be inter-ested in two di�erent kinds of information about programvariables. We may want to know something about a par-ti
ular variable at a parti
ular program point, e.g., in the
ontext of
onstant propagation; or we may want to knowsomething about the relationships among some set of vari-ables, e.g., whether or not two variables
an be guaranteedto have di�erent values at a parti
ular program point (use-ful for reasoning about pointers). We refer to the problemof determining the former kind of information as the sin-gle value problem, and that of determining the latter kind ofinformation as the simultaneous value problem. For the pur-poses of this paper, we fo
us on rather restri
ted
lasses ofsu
h problems, under the assumption, standard in data
owanalysis, that all paths in the program being analyzed areexe
utable:De�nition 2.1 Suppose we are given a program P and aninitial assignment Einit of values for the variables of P . Letx; x1; : : : ; xn be variables in P ,
;
1; : : : ;
n be values, andlet p be a program point in P .A single value problem for P is a problem of the form: \isthere an exe
ution path from the entry node of P to p, withinitial variable assignment Einit , su
h that \x =
" holdswhen
ontrol rea
hes p?"A simultaneous value problem for P is a problem of theform: \is there an exe
ution path from the entry node of Pto p, with initial variable assignment Einit , su
h that \x1 =
1 ^ x2 =
2 ^ � � � ^ xk =
k" holds when
ontrol rea
hes p?"In parti
ular, simultaneous value problems where all of the
onstants
1; : : : ;
k are either 0 or 1 are referred to as binarysimultaneous value problems.It seems intuitively obvious that solving a simultane-ous value problem will require a relational-attribute anal-ysis; we will show, however, that while an independent-attribute analysis is often adequate for a single value prob-lem, there are some situations where it is ne
essary to resortto relational-attribute analyses even for single value prob-lems.

3 Intra-pro
edural and Non-re
ursive Inter-pro
eduralAnalyses3.1 Intra-pro
edural AnalysisIn this se
tion we
onsider a simple language Base wherevariables are all integer-valued, and a program
onsists ofa single pro
edure
ontaining (labelled) statements that
an be assignments,
onditionals, or un
onditional jumps.2Sin
e our primary interest is in data
ow analyses, we makethe standard assumption that all paths in the program areexe
utable, i.e., that either bran
h of a
onditional may beexe
uted at runtime, and omit the a
tual expression beingtested in a
onditional, representing it by `-' instead. Tokeep the dis
ussion simple and fo
used, we restri
t our atten-tion to expressions that are variables or
onstants (assumingthat an analysis is able to do arithmeti
 adds an indepen-dent sour
e of
omplexity that
an obs
ure the essen
e ofour results):Prog ::= StmtStmt ::= Var = Expr;j if (-) Stmt1 ...else if (-) Stmt i ...else Stmtnj Label: Stmtj goto Label;j fStmt1; ...; Stmtn;gExpr ::= Const j VarConst ::= 0 j 1The simplest analyses are those where there is no need tokeep tra
k of relationships between variables:Theorem 3.1 The single value problem for programs inBase
an be solved in polynomial time, provided that prim-itive operations of the analysis
an be
arried out in polyno-mial time.We next
onsider the
omplexity of simultaneous valueproblems for Base. In this
ontext, we mention the follow-ing result: this is not the
entral result of this paper, butis of some histori
al interest be
ause its proof, given in Ap-pendix 6, is essentially isomorphi
 to similar NP-hardnessresults for a
y
li
 programs given by a number of authors[5, 7, 10, 11, 12, 14℄. Appli
ations of this theorem in
lude(intra-pro
edural) type inferen
e problems where the typeof a variable depends on the types of other variables (see,e.g., [5, 15℄). Theorem 3.4 and Corollary 4.2 give strongerresults for more general
lasses of programs.Theorem 3.2 The (binary) simultaneous value problem fora
y
li
 programs in Base is NP-
omplete.The main result of this se
tion is for simultaneous valueproblems for all programs in Base. We show that this
lassof problems is PSPACE-
omplete: the idea is that givenan arbitary polynomial-spa
e-bounded Turing ma
hine, we
an
onstru
t a simultaneous value problem over a programin Base that
an be used to determine whether or not theTuring ma
hine a

epts its input. Suppose we are given asingle tape deterministi
 polynomial-spa
e-bounded Turingma
hine M = (Q;�;�; Æ; q0; F), where � is the input alpha-bet; � = f0; 1; : : : ; nsg is the tape alphabet, with 0 being2We
hoose this syntax for simpli
ity: with a small amount of
odedupli
ation, it is straightforward to express our programs in a subsetof C
onsisting of assignments,
onditionals, andwhile loops togetherwith break and
ontinue statements.2

the blank symbol; Æ 2 Q � � �! Q � � � fL;Rg is thetransition fun
tion; q0 2 Q is the initial state; and F = fq1gis the set of �nal states, su
h that M halts on all inputsx after using at most jxjk
ells of the tape. For simpli
itywe assume that M erases its tape before halting and thatthe tape is
y
li
, i.e., after the last
ell the tape \wrapsaround" to the �rst
ell: these are not serious restri
tions,and it is not diÆ
ult to see how a Turing ma
hine that doesnot satisfy these assumptions
an be transformed into onethat does. The use of a
y
li
 tape allows us to simulate themovement of the tape head to the left (respe
tively, right)by rotating the tape to the right (respe
tively, left), so thatthe tape
ell being s
anned by the head is always
ell 0:this simpli�es the simulation of the Turing ma
hine, sin
ewe don't have to keep tra
k of the position of the tape head.We
onstru
t a program PM;x that emulates M on an inputx. This program
ontains three sets of (boolean) variables:1. Q0; : : : ; Qnq , where nq = jQj � 1: These variables repre-sent the
urrent state of M : intuitively, Qi = 1 denotesthat M is in state i.2. T0;0; : : : ; Tnt;ns, where nt = jxjk � 1; ns = j�j � 1:These variables represent the
ontents of M 's tape: in-tuitively, Ti;j = 1 denotes that
ell i of M 's tape
on-tains symbol j.3. X0; : : : ; Xns: these variables are temporaries for
opyingthe tape
ontents while we \rotate" the tape.A
on�guration whereM is in state qk, the tape
ontents ares0s1 : : : snt, and where M 's tape head is s
anning the mthtape square, is des
ribed by the following variable settings:Qi = � 1 if i = k0 otherwiseXi = 0; for all iTi;j = � 1 if s(i�m) mod (nt+1) = j0 otherwiseThe
ode
orresponding to M 's move when it is state qiand s
anning a
ell
ontaining a symbol sj , i.e., Æ(qi; sj), isrepresented by MOV i;j , and is de�ned as follows:Æ(qi; sj) = (qk; sm; L) Æ(qi; sj) = (qk; sm;R)Qi = Qk; Qi = Qk;Qk = 1; Qk = 1;T0;j = T0;m; T0;j = T0;m;T0;m = 1; T0;m = 1;goto
opy left; goto
opy right;The �rst two lines of this
ode update the state variable,the next two lines update the
ontents of the tape
ell beings
anned, and the last line
orresponds to the rotation of thetape, simulating the movement of the tape head.The program PM;x that emulatesM on input x is shownin Figure 1. After initializing the Ti;j variables appropriatelyfor the input x, the program goes into a loop, repeatedlyguessing the
urrent state and the symbol under the tapehead, then updating the state and tape
ell, and �nally ro-tating the tape appropriately in order to simulate the move-ment of the tape head. A wrong guess leads to a state wheremultiple Qi variables, or multiple Ti;j variables, are set to 1.On
e su
h an \illegal" state is entered, the stru
ture of theprogram ensures that the number of variables set to 1 does

not de
rease, whi
h means that subsequent states remain il-legal. This allows us to use a simultaneous value problem toidentify legal states in PM;x, i.e., those that
orrespond tovalid
on�gurations of M , and then
e to determine whetherM a

epts its input. For notational
onvenien
e, we intro-du
e the following abbreviations:UnambiguousFinalState �(Q0 = 0 ^ Q1 = 1 ^ Q2 = 0 ^ � � � ^ Qnq = 0)TempsClear � (X0 = 0 ^ � � � ^ Xns = 0)TapeClear �((T0;0 = 1 ^ T1;0 = 1 ^ � � � ^ Tnt;0 = 1)^(T0;1 = 0 ^ T1;1 = 0 ^ � � � ^ Tnt;1 = 0) ^ � � � ^(T0;ns = 0 ^ T1;ns = 0 ^ � � � ^ Tnt;ns = 0)).Intuitively, UnambiguousFinalState is true if and only if theonly state variable that is 1 is Q1,
orresponding to the �nalstate of M ; TempsClear is true if and only if the variablesXi are all 0; and TapeClear is true if and only if the
ontentsof the variables Ti;j
orrespond to all the tape
ells of M
ontaining a blank. The proofs of the following Lemmas aregiven in Appendix 6.Lemma 3.3 A given polynomial-spa
e-bounded Turing ma-
hine M a

epts its input x if and only if A

eptingCon�gmay hold at the end of the program, whereA

eptingCon�g �UnambiguousFinalState ^ TempsClear ^ TapeClear .It is easy to show that the program PM;x
an be generatedusing O(log(jM j+ jxj)) spa
e (Lemma .1).Theorem 3.4 The (binary) simultaneous value problem forprograms in Base is PSPACE-
omplete.Proof: (sket
h) PSPACE-hardness follows dire
tly fromLemmas 3.3 and .1. To show that the simultaneous valueproblem is in PSPACE, we show that a given su
h a prob-lem for a program P , we
an
onstru
t a nondeterministi
multi-tape polynomial-spa
e-bounded Turing ma
hine MPto solve the problem. Details are given in Appendix 6.In the
ontext of program analysis, this is representative ofthe simplest kind of simultaneous value problem, where wehave two distin
t properties (here represented by \equal to0" and \equal to 1") of a language with a minimally interest-ing set of
ontrol
onstru
ts. The (hardness) result thereforeextends dire
tly to more
omplex analysis problems. Unlikethe PSPACE-hardness result given by Jones and Mu
hni
kfor relational-attribute analyses [5℄, our result does not re-quire interpreted
onditionals. In other words, our result
omplies with the standard assumption of data
ow analy-sis, namely, that all paths in a program are exe
utable. Assu
h, it is appli
able to a wider variety of data
ow analyses.3.2 Inter-pro
edural Analysis of Non-re
ursive ProgramsSuppose we extend the language Base with pro
edureswhere parameters are passed by value: let the resulting lan-guage be Base+Pro
. For non-re
ursive programs in thislanguage, the
omplexity of simultaneous value problemsdoes not
hange:Theorem 3.5 Inter-pro
edural simultaneous values prob-lems for non-re
ursive programs in Base+Pro
 isPSPACE-
omplete.3

/* Program PM;x to emulate a given polynomial spa
e-bounded Turing Ma
hine Mon input x *//* int Q0, ..., Qnq;int T0;0, ..., Tnt;ns;int X0, ..., Xns; */f T0;0 = � � �; ...; Tnt;ns = � � �; /* initialize Ti;j based on input string x */Q0 = 1; Q1 = 0; ...Qnq = 0; /* initial state */Start: /* emulation loop */X0 = 0; ...; Xns = 0; /*
lear temps */Dispat
h: /* transitions based on
urrent state and tape symbol */if (-)f /* Q0 == 1? */if (-) f /* T0;0 == 1? */ MOV 0;0; g...else if (-) f /* T0;i == 1? */ MOV 0;i; g...else if (-) f /* T0;ns == 1? */ MOV 0;ns; ggelse if (-) goto Done; /* Q1 == 1? : q1 = final state */else if (-)f /* Q2 == 1? */...g...else if (-)f /* Qnq == 1? */if (-) f /* T0;0 == 1? */ MOV nq;0; g...else if (-) f /* T0;i == 1? */ MOV nq;i; g...else if (-) f /* T0;ns == 1? */ MOV nq;ns; gg/*
opy tape left or right */
opy right:X0 = T0;0; ...; Xns = T0;ns;T0;0 = T1;0; ...; T0;ns = T1;ns;...Tnt;0 = X0; ...; Tnt;ns = Xns;goto Start;
opy left:X0 = Tnt;0; ...; Xns = Tnt;ns;Tnt;0 = Tnt�1;0; ...; Tnt;ns = Tnt�1;ns;...T0;0 = X0; ...; T0;ns = Xns;goto Start;Done:X0 = 0; ...Xns = 0;End:g Figure 1: The program PM;x to emulate Turing ma
hine M on input x
4

3.3 Appli
ations to the Complexity of Data
ow AnalysesThis se
tion dis
usses appli
ations of the results of the pre-vious se
tion to various program analyses dis
ussed in theliterature.3.3.1 Intra-pro
edural Pointer Alias AnalysisWe �rst add single-level pointers to the Base language,yielding the language Base+1ptr. This language
ontainstwo
lasses of variables: base variables, whi
h range overintegers, and pointers to base variables, whi
h range overaddresses (whi
h are assumed to be disjoint from the set ofintegers). The new operations in this language,
ompared toBase, are: taking the address of a (base) variable v, denotedby &v, and dereferen
ing a pointer p, denoted by *p.It is not hard to see that the simultaneous value prob-lem in this
ase is still in PSPACE, sin
e we
an
onstru
ta polynomial-spa
e-bounded Turing ma
hine to solve thisproblem in a manner similar to that in the proof of The-orem 3.4. By
ontrast to the language Base, where thesingle value problem is in P, the
omplexity of the singlevalue problem for Base+1ptr depends on whether we are
on
erned with base variables or pointers. For a single-valueproblem for a base variable, an independent-attribute anal-ysis is not suÆ
ient. This is illustrated by the followingprogram fragment:a = 0;if (-){ p = &a; x = 0; }else{ p = &b; x = 1; }*p = x;Suppose we are interested in the single-value problem ofwhether a = 1 may hold immediately after the assignment*p = x. An independen- attribute analysis would infer thatimmediately after the
onditional, p
an point to either a orb, and therefore that after the assignment `*p = x' the valueof a may or may not be 1. A relational-attribute analysis,on the other hand, would be able to infer that the value ofa
annot be 1 after the indire
t assignment. In other words,for a pre
ise analysis we need relational attributes, i.e., theability to solve simultaneous value problems.Theorem 3.6 The single-value problem for pointer vari-ables in Base+1ptr
an be solved in polynomial time. Thesingle-value problem for base variables in Base+1ptr isPSPACE-
omplete.The key idea behind the PSPACE-hardness proof is to showhow pointers
an be used to redu
e a simultaneous-valueproblem in Base to a single-value problem in Base+1ptr.Given a program P in Base, we generate a program P 0 inBase+1ptr su
h that ea
h variable X in P
orresponds toa pair of pointer variables X, X in P 0. P 0 also
ontains apair of global variables Zero and One that are initialized to0 and 1 respe
tively: a value of 0 in P simulated using thepointer value &Zero in P 0, while a value of 1 is simulatedby &One. For ea
h variable X in P , the variable X in P 0spe
i�es what the value of X is, while X spe
i�es what it isnot (re
all that a variable in a program in Base
an onlytake on the values 0 and 1). Then, given a simultaneousvalue problem `X1 =
1^� � �^Xn =
n' for P , we generate anadditional series of indire
t assignments `*xi = 0' appendedto the end of P 0, where xi � X if
i � 0, and xi � X if
i � 1.

The original simultaneous value problem in P is true if andonly if all of these indire
t assignments in P 0 write to thevariable Zero. Thus, by
he
king whether the single-valueproblem `One = 1' is satis�ed in P 0 we
an solve the originalsimultaneous-value problem in P . The details of the proofare given in Appendix 6.As an example appli
ation of this, the following result isimmediate:Corollary 3.7 Pre
ise intra-pro
edural
onstant propaga-tion in Base+1ptr is PSPACE-
omplete.Next, we
onsider multi-level pointers. The simplest
ase in-volving multi-level pointers is when we have two-level point-ers, i.e., pointers to pointers. In this
ase we have three
lasses of variables: base variables; pointers to base vari-ables, or 1-pointers; and pointers to 1-pointers (i.e., point-ers to pointers to base variables), or 2-pointers. We
all thislanguage Base+2ptr.The role of 2-pointers with respe
t to 1-pointers in thelanguage Base+2ptr is exa
tly analogous to that of point-ers to base variables in the language Base+1ptr. In par-ti
ular, to determine the possible aliases of 1-pointers, weneed to determine the values that
an be assigned to themthrough 2-pointers. By dire
t analogy with Theorem 3.6,therefore, we have the following result:Theorem 3.8 The single-value problem for 2-pointers inBase+2ptr is solvable in polynomial time. The single-valueproblem for 1-pointers in Base+2ptr is PSPACE-
omplete.Landi's dissertation shows that intra-pro
edural pointeralias analysis is PSPACE-
omplete if at least four levels ofindire
tion are permitted [7℄; his proof
an be adapted torequire only two levels of indire
tion [9℄. Landi's
on
lusionis that the diÆ
ulty with pointer alias analysis is
aused bymultiple levels of indire
tion. This is obviously a valid
on-
lusion, but does not get to the heart of the matter: whatis the fundamental di�eren
e between single-level and multi-level pointers that
auses the analysis of multi-level pointersto be
ome so diÆ
ult? The answer, as we have shown above,is that alias analysis in the presen
e of at most one level of in-dire
tion
an be
arried out using an independent-attributeanalysis, while the presen
e of even two levels of indire
tionrequires a relational-attribute analysis.A similar line of reasoning
an be used to derive a re
entresult by Chatterjee et al. [3℄, namely, that intra-pro
edural
on
rete type inferen
e for Java programs with single-leveltypes and ex
eptions without subtyping, and without dy-nami
 dispat
h, is PSPACE-hard.3.3.2 Intra-pro
edural Rea
hing De�nitions with Single-Level PointersConsider the problem of
omputing intra-pro
edural rea
h-ing de�nitions in the language Base+1ptr, i.e., in the pres-en
e of single-level pointers. The following example illus-trates that an independent-attribute analysis is not enoughfor a pre
ise solution to this problem, and that a relational-attribute analysis is ne
essary:int a, b, *p, *q;...D: a = 0;if (-) { p = &a; q = &b; } else { q = &a; p = &b; }*p = 1;*q = 1;L:5

We want to know whether the de�nition labelled D
an rea
h the program point labelled L. An independent-attribute analysis would infer that p
an point to either a orb after the
onditional, and therefore that the assignment*p = 1 might not kill the de�nition D. A similar reason-ing would apply to q and the indire
t assignment *q = 1.Su
h an analysis would therefore
on
lude that de�nition D
ould rea
h L. A relational-attribute analysis, by
ontrast,would determine that one of p or q would point to a, sothat one of the assignments *p = 1 or *q = 1 would de�-nitely kill the de�nition D|i.e., de�nition D does not rea
hL. Thus, the independent-attribute analysis is not pre
ise,and a relational-attribute analysis is ne
essary. The follow-ing theorem dis
usses the
omplexity of pre
ise analyses; itsproof uses a redu
tion very similar to that for Theorem 3.6.Theorem 3.9 The determination of pre
ise solutions forthe following intra-pro
edural analysis problems for basevariables in programs in Base+1ptr is PSPACE-
omplete:(a) rea
hing de�nitions; (b) live variables; and (
) availableexpressions.Theorem 3.9 improves on a result due to Pande, Landiand Ryder, who show that the problem of
omputing inter-pro
edural def-use
hains in the presen
e of single-levelpointers is NP-hard [14℄.4 Inter-pro
edural Analysis of Re
ursive ProgramsTo study the
omplexity of inter-pro
edural analyses in thepresen
e of re
ursion, we add a very limited enhan
ementto the
ontrol
ow
onstru
ts of the language Base+Pro
(i.e., the base language together with pro
edures). Ea
h pro-gram now has a distinguished global variable NoErr whosevalue is initially 1. We add a statement Error-if-Zero(�) thatbehaves as follows: when Error-if-Zero(x) is exe
uted, NoErris set to 0 if x has the value 0, otherwise it is not modi�ed.In a general programming
ontext, su
h a
onstru
t
ould beused to determine, for example, whether system
alls su
has mallo
() have exe
uted without errors during exe
ution;in the
ontext of this paper we use it in a mu
h more lim-ited way, though with a very similar overall goal, namely,to determine whether anything \goes wrong" in an exe
u-tion path. We refer to the language obtained by adding thisfa
ility to Base+Pro
 as Base+Pro
+Err.We show that the single-value problem for arbitrary pro-grams in Base+Pro
+Err is
omplete for deterministi
exponential time. Our proof relies on a result of Chandraet al. [2℄, who show that APSPACE = EXPTIME, whereAPSPACE is the
lass of languages a

epted by polynomial-spa
e-bounded alternating Turing ma
hines, and EXPTIME= [
�0DTIME[2n
 ℄ is deterministi
 exponential time.De�nition 4.1 An (single-tape) alternating Turing ma-
hine M is a 6-tuple (Q;�;�; Æ; q0; �), where Q is a �niteset of states; � is the input alphabet; � is the tape alpha-bet; Æ : Q��! P(Q���fL;Rg) is the transition fun
tion;q0 2 Q is the initial state; and � : Q! fa

ept; reje
t; 8; 9gis a labelling fun
tion on states.33There is a more general formulation of alternating Turing ma-
hines where states
an also be labelled as \negating" states, whi
hare labelled by :. However, this adds nothing to their power (Theo-rem 2.5 of Chandra et al. [2℄), so for simpli
ity we restri
t ourselvesto alternating Turing ma
hines without negating states.

To simplify the dis
ussion that follows, we additionally as-sume that a state q that is existential (i.e., �(q) = 9) oruniversal (i.e., �(q) = 8) has exa
tly two su

essor states forany given tape symbol; it is not hard to see how any ATM
an be transformed to satisfy this restri
tion: if a state qhas a single su

essor for some tape symbol we add a se
ondsu

essor that is either an a

epting state if q is universal,or a reje
ting state if q is existential; if q has more than2 su

essors for some tape symbol, we use a \binary treeof transitions" instead. As before, we assume that the tape\wraps around," so that the
ell being s
anned is always
ell0. Thus, a
on�guration of an ATM is of the form qx whereq is a state and x the tape
ontents.The notion of a

eptan
e for alternating Turing ma
hinesis a generalization of that for ordinary nondeterministi
 Tur-ing ma
hines: the main di�eren
e is that ea
h su

essor of auniversal state is required to lead to a

eptan
e. To de�nethis more formally, we use the notion of
omputation treesdue to Ladner et al. [6℄. A
omputation tree for an ATMMis a �nite, nonempty labelled tree with the following prop-erties: ea
h node of the tree is labelled with a
on�gurationof M ; if p is an internal node of a tree with label qu and qis an existential state, then p has exa
tly one
hild labelledq0u0 su
h that qu ` q0u0; and if p is an internal node of a treewith label qu and q is a universal state with su

essors q0and q00, su
h that qu ` q0u0 and qu ` q00u00, then p has two
hildren labelled q0u0 and q00u00. An a

epting
omputationtree is one where all the leaf nodes are a

epting
on�gura-tions, i.e., of the form qu where q is an a

epting state. AnATM M with start state q0 a

epts an input x if it has ana

epting
omputation tree whose root is labelled q0x.Let M = (Q;�;�; Æ; q0; �) be a p(n)-spa
e-boundedATM, where p(n) is some polynomial, and let x be an inputfor M . Let nt = p(jxj) � 1 and ns = j�j � 1. We gen-erate a program PM;x in Base+Pro
+Err that simulatesthe behavior of M on input x. There is a fun
tion fq()for ea
h state q of M . Ea
h su
h fun
tion has a tuple ofparameters T0;0 , . . . , Tnt;ns that represents the
ontentsof M 's tape in a way that is
on
eptually similar to the
onstru
tion des
ribed in Se
tion 3.1, the main di�eren
ebeing that these variable are now lo
als rather than glob-als. State transitions in M are simulated by fun
tion
allsin PM;x: moves to the su

essors of an existential state aresimulated using an if-then
onstru
t, while moves to thesu

essors of a universal state are simulated by a sequen
eof fun
tion
alls. The
ru
ial point in the
onstru
tion isthat the Error-if-Zero(�)
onstru
t is used to keep tra
k ofwhether anything \goes wrong" along an exe
ution path: itsets the global variable NoErr, whi
h is initialized to 1 whenexe
ution starts, to 0 along an exe
ution path if either (i)the exe
ution path does not
orrespond to a
omputation ofM , be
ause PM;x guesses in
orre
tly on the tape
ell beings
anned by M ; or (ii) be
ause the path en
ounters a reje
t-ing state of M . On
e NoErr has been set to 0 the stru
tureof the program ensures that it
annot be reset to 1. Thus,at the end of the exe
ution path, the value of NoErr
an beused to determine whether that path
orresponds to a valida

epting
omputation of M .The
ode ne
essary to simulate M 's a
tions when itmakes a transition from state qi to state qk upon s
an-ning a tape
ell
ontaining symbol sj is represented byTRANSITION(qi; sj ; qk) and is de�ned as follows:6

Æ(qi; sj) = (qk; sm;L) Æ(qi; sj) = (qk; sm;R)T0;0 = X0;0; T0;0 = X0;0;... ...Tnt;ns = Xnt;ns; Tnt;ns = Xnt;ns;Error-if-Zero(T0;j) ; Error-if-Zero(T0;j) ;T0;j = 0; T0;j = 0;T0;m = 1; T0;m = 1;COPY LEFT; COPY RIGHT;fqk (T0;0 ; : : : ; Tnt;ns); fqk (T0;0 ; : : : ; Tnt;ns);The �rst three lines of this
ode, whi
h assign to Ti;j , restorethe
ontents of the tape; the fourth line uses Error-if-Zero()to verify the that the symbol on the s
anned tape
ell is1; the next two lines update the tape. After this the tapeis rotated to simulate the movement of the tape head, withCOPY LEFT and COPY RIGHT
orresponding to the
odefragments labelled
opy left and
opy right respe
tivelyin Figure 1. Finally, a fun
tion
all is used to simulate the
omputation from the state to whi
h
ontrol is transferred.Corresponding to ea
h state q 2 Q there is a fun
tion fqin PM;x that is de�ned as follows:1. qi is an a

epting state. The fun
tion fqi is de�ned asfqi(T0;0 , ..., Tnt;ns) f /* do nothing */ g2. qi is a reje
ting state. The fun
tion fqi is de�ned asfqi(T0;0 , ..., Tnt;ns) f Error-if-Zero(0) ; g3. qi is a universal state. Let the su

essors of qi on tapesymbol sj be qj0 and qj00 (re
all our assumption that qihas exa
tly two su

essors on any given tape symbol).The fun
tion fqi is de�ned asfqi(T0;0 , ..., Tnt;ns)f lo
al X0;0 = T0;0, ..., Xnt;ns = Tnt;ns;if (-) f /* moves on sj */TRANSITION(qi; sj ; q0j);TRANSITION(qi; sj ; q00j);g...else f /* moves on sk */TRANSITION(qi; sk; q0k);TRANSITION(qi; sk; q00k);gg4. qi is an existential state. Let the su

essors of qi ontape symbol sj be qj0 and qj00 . The fun
tion fqi isde�ned asfqi(T0;0 , ..., Tnt;ns)f lo
al X0;0 = T0;0, ..., Xnt;ns = Tnt;ns;if (-) f /* moves on sj */if (-)TRANSITION(qi; sj ; s0j)elseTRANSITION(qi; sj ; q00j)g...else if (-) f /* moves on sk */if (-)TRANSITION(qi; sk; q0k);elseTRANSITION(qi; sk; q00k) g;gg

The entry point of the program PM;x is the fun
tion main(),de�ned asmain()fStart:lo
al T0;0 , ..., Tnt;ns ;INIT TAPE; /* initialize Ti;j based on x */fq0 (T0;0 ; : : : ; Tnt;ns);End:gThe dynami
 analog of the
all (multi-)graph of PM;x is thevalid
all tree, whi
h is a �nite tree where ea
h vertex is la-belled with a pro
edure name and a tuple of arguments. Avertex (f; �u) in su
h a tree has
hildren (f1; �u1); : : : ; (fk; �uk)if there is an exe
ution path in PM;x, starting with the
all f(�u) with the value of NoErr = 1, that exe
utes thepro
edure
alls f1(�u1); : : : ; fk(�uk) in f 's body and returnswith the value of NoErr still at 1 (the
onditions on thevalue of NoErr ensure that nothing has gone wrong alongthe
orresponding exe
ution path). The following resultsestablish the
onne
tion between the behaviors of the al-ternating Turing ma
hine M and the program PM;x. Here,Ti;j � u denotes that the values of the tuple of variables(T0;0; : : : ; Tnt;ns) in PM;x
orre
tly re
e
t the tape
ontentsu in M . The proofs are given in Appendix 6.Theorem 4.1 PM;x has a valid
all tree with root (fq ; Ti;j)if and only if M has an a

epting
omputation tree with rootqu, where Ti;j � u.From this, it is straightforward to show that M a

epts xif and only if PM;x has an exe
ution path at the end ofwhi
h we have NoErr = 1. It is easy to show, moreover, thatPM;x
an be generated using O(log jM j+log jxj) spa
e. Thefollowing result is then immediate:Corollary 4.2 The inter-pro
edural single-value problemfor Base+Pro
+Err is EXPTIME-hard.It is interesting and instru
tive to
ompare this result withTheorem 3.4. For the intra-pro
edural
ase
onsidered inTheorem 3.4, we
an use ordinary assignments to programvariables to keep tra
k of whether or not an exe
ution pathin the program
orresponds to a valid a

epting
ompu-tation of the Turing ma
hine being simulated. We don'tknow whether the same te
hnique works in the
ase of inter-pro
edural analysis of re
ursive programs: spe
i�
ally, whensimulating an alternating Turing ma
hine, the handling ofuniversal states seems problemati
. Instead, we use a lan-guage me
hanism|the Error-if-Zero(�)
onstru
t|that al-lows us to a

umulate a highly
onstrained summary of anexe
ution path into a variable. This allows us to deter-mine, from the value of this variable, whether or not any-thing went wrong at any point in an exe
ution path. Noti
ethat even though Corollary 4.2 gives a
omplexity result forsingle-value problems in Base+Pro
+Err, the availabilityof the Error-if-Zero(�)
onstru
t in fa
t allows us to in
re-mentally a

umulate (in a limited way) the values of a num-ber of variables along an exe
ution path. In fa
t, while the(intra-pro
edural) single-value problem for Base is solvablein polynomial time, adding the Error-if-Zero(�)
onstru
tmakes it PSPACE-hard (this
an be used to simplify theproof of the 1-pointer
ase in Theorem 3.8).7

4.1 Appli
ations to the Complexity of Inter-pro
eduralData
ow Analysis4.1.1 Inter-pro
edural Pointer Alias AnalysesThe following theorem gives the
omplexity of single-valueproblems for arbitrary programs in Base+Pro
+1ptr.The proof, whi
h is given in Appendix 6, relies on using anindire
t assignment through a pointer to set a global vari-able to 0 if anything \goes wrong" along an exe
ution path,and thereby simulate the Error-if-Zero(�)
onstru
t.Theorem 4.3 The inter-pro
edural single-value problemfor base variables in Base+Pro
+1ptr is EXPTIME-
omplete.Corollary 4.4 The
omplexity of pre
ise inter-pro
eduralpointer alias analysis in the presen
e of 2-level pointers isEXPTIME-
omplete.Corollary 4.5 The determination of pre
ise solutions forthe following inter-pro
edural analysis problems for basevariables in Base+Pro
+1ptr is EXPTIME-
omplete:(a) rea
hing de�nitions; (b) live variables; and (
) availableexpressions.4.1.2 Inter-pro
edural Analysis of Pro
edures with Refer-en
e FormalsConsider extending the language Base along another di-re
tion: instead of allowing expli
it pointers, as in Se
tion3.3.1, we allow (non-re
ursive) fun
tions with referen
e for-mal parameters. It does not
ome as a surprise that anindependent-attribute analysis is inadequate for solving thesingle value problem in this
ase. To see this,
onsider thefollowing program:var a, b, x: integer;main(){ a = 0;if (...) { x = 0; q(a,x); }else { x = 1; q(b,x); }}pro
 q(u: ref integer; v: integer){ u = v;}We want to know whether or not a = 1
an hold immedi-ately after the
onditional in main(). We need a relational-attribute analysis of q's arguments in order to determinethat q's �rst argument, u,
annot be a referen
e to a if itsse
ond argument v has the value 1. Thus, an independent-attribute analysis is inadequate for this single value problem.We have the following results, whose proofs are given inAppendix 6:Theorem 4.6 The single value problem for Base extendedwith pro
edures with referen
e parameters is PSPACE-
omplete for non-re
ursive programs and EXPTIME-
omplete for arbitrary programs.Corollary 4.7 Pre
ise inter-pro
edural liveness analysisand available expressions analysis for Base extended withpro
edures with referen
e parameters are both PSPACE-
omplete for non-re
ursive programs, and EXPTIME-
omplete for arbitrary programs.

This result
orre
ts a minor
aw in Myers' original proofof the diÆ
ulty of su
h analysis problems [12℄. Myers
on-sidered inter-pro
edural analyses in the presen
e of refer-en
e parameters, and
laimed to show NP-
ompleteness forliveness analysis and
o-NP-
ompleteness for available ex-pressions; in fa
t, he proved only hardness results. Ourresults establish that membership in NP holds for a
y
li
non-re
ursive programs (Theorem 3.2), but stronger results
an be given for general programs.4.1.3 Inter-pro
edural Control Flow Analysis of Programswith Fun
tion PointersIn this se
tion we
onsider extending Base in another dire
-tion, by adding C-style fun
tion pointers. These di�er fromgeneral-purpose pointers in that (i) the obje
ts pointed atare fun
tions, rather than data; and (ii) the obje
t obtainedby dereferen
ing a fun
tion pointer
annot be modi�ed bythe program. The primary purpose of fun
tion pointers,therefore, is to a�e
t
ontrol
ow. The
orresponding analy-sis problem is therefore a
ontrol
ow analysis problem. Thefollowing result, whose proof follows the lines of those forTheorem 3.8 and Corollary 4.4, improves on an NP-hardnessresult by Zhang and Ryder [18℄:Theorem 4.8 Pre
ise
ontrol
ow analysis in the presen
eof fun
tion pointers is PSPACE-
omplete for non-re
ursiveprograms and EXPTIME-
omplete for arbitrary programs.5 Summary and Related WorkThe
ontributions of this paper
an be summarized as fol-lows:1. New Results : To the best of our knowledge, the fol-lowing are are new results: Corollary 3.7, Theorem3.9(b,
), Corollary 4.4, and Corollary 4.5.2. Improvements to Existing Results : Theorem 3.9and Corollary 4.5 improve on a result by Pande et al.[14℄. Corollary 4.4 improves on a result by Landi [7, 10℄.Theorem 4.6 and Corollary 4.7 improve on a result byMyers [12℄.3. Explanations of Existing Results : Theorems 3.6and 3.8 explain the underlying reasons for Landi's
om-plexity results for pointer alias analysis [7, 10℄. The-orems 3.8 and 3.9(a) together explain why single-levelpointers are hard to deal with when
onstru
ting intra-pro
edural def-use
hains but not when
onsideringintra-pro
edural pointer analyses. Theorem 4.8 ex-plains the diÆ
ulty of inter-pro
edural
ontrol
owanalysis in the presen
e of fun
tion pointers.The distin
tion between independent-attribute analyses andrelational-attribute analyses was �rst de�ned by Jonesand Mu
hni
k [5℄, who also examined the
omplexity ofthese approa
hes to program analysis. They showed thatindependent-attribute analyses over a �xed �nite domainhas worst
ase
omplexity that is polynomial in the sizeof the program, while relational-attribute analysis for pro-grams
onsisting of assignments, sequen
ing, and \uninter-preted"
onditionals|i.e., where we always assume that ei-ther bran
h of a
onditional may be taken, or, equivalently,8

that all paths in the program are exe
utable|but not
on-taining any loops, is NP-hard [5℄. Variations on the basi
idea of this proof have been used for NP-hardness results bya number of authors [7, 10, 11, 12, 14℄, as well as in the proofof Theorem 3.2 in this paper. Jones and Mu
hni
k also showthat when loops and \interpreted"
onditionals are added,the problem be
omes PSPACE-hard. Unfortunately, sin
emost data
ow analyses in pra
ti
e treat
onditionals as un-interpreted, the latter result is not dire
tly appli
able tothem.Nielson and Nielson
onsider, in a very general denota-tional setting, the number of iterations ne
essary to
omputethe least �xpoint of a fun
tional over a �nite latti
e, undervarious assumptions about the kinds of fun
tions
onsidered[13℄; this work is aimed at �nding the
ost of parti
ular for-mulations of data
ow analysis problems. By
ontrast, ourwork fo
uses on the inherent
omputational
omplexity for
ertain kinds of program analyses. While the number of it-erations needed to attain a �xpoint is an important fa
torin determining the amount of work done by an analysis, it isnot the only su
h fa
tor, and hen
e does not give a
ompletepi
ture of the
omplexity of an analysis. To see this, observethat if we restri
t our attention to intra-pro
edural analysesof loop-free programs, the resulting data
ow equations arenot re
ursive, so a single iteration suÆ
es to
ompute theleast �xpoint; nevertheless, relational-attribute analyses forsu
h programs are NP-
omplete (Theorem 3.2).Many resear
hers have given
omplexity results for spe-
i�
 program analysis problems (see, for example, [7, 10, 11,12, 14, 16, 17℄). With a few ex
eptions, e.g., [16, 17℄, theseresults do not generally provide insights into the underlyingreasons for the eÆ
ien
y, or la
k thereof, of the analyses.6 Con
lusionsThis paper attempts to elu
idate the fundamental reasonswhy pre
ise solutions to
ertain program analyses are
om-putationally diÆ
ult to obtain. We give simple and generalresults that relate the
omplexity of a problem to whether ornot it requires a relational-attribute analysis. The appli
a-bility of this result is illustrated using a number of analysesdis
ussed in the literature: we are able to derive the
om-plexity results originally given by the authors, and in several
ases even stronger
omplexity results, as dire
t
orollariesto the results presented here, with little
on
eptual and no-tational e�ort.A
knowledgementsDis
ussions with William Landi have been very helpful in
larifying
omplexity questions for pointer alias analysis.Referen
es[1℄ J. M. Barth, \A pra
ti
al interpro
edural data
owanalysis algorithm", Communi
ations of the ACM vol.21 no. 9, pp. 724{736, 1978.[2℄ A. K. Chandra, D. C. Kozen, and L. J. Sto
kmeyer,\Alternation", J. ACM vol. 28 no. 1, Jan. 1981,pp. 114{133.[3℄ R. Chatterjee, B. G. Ryder, and W. A. Landi, \Com-plexity of Con
rete Type-inferen
e in the Presen
e of

Ex
eptions", Pro
. European Symposium on Program-ming, 1998.[4℄ M. R. Garey and D. S. Johnson, Computers andIntra
tability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.[5℄ N. D. Jones and S. S. Mu
hni
k, \Complexity of
owanalysis, indu
tive assertion synthesis, and a languagedue to Dijkstra", In S. S Mu
hni
k and N. D Jones,eds., Program Flow Analysis: Theory and Appli
ations,
hapter 12, pp. 380{393. Prenti
e-Hall, 1981.[6℄ R. E. Ladner, R. J. Lipton, and L. J. Sto
kmeyer,\Alternating Pushdown Automata", Pro
. 19th IEEESymposium on Foundations of Computer S
ien
e, O
t.1978, pp. 92{106.[7℄ W. A. Landi, Interpro
edural Aliasing in the Presen
eof Pointers, Ph.D. Dissertation, Rutgers University,New Brunswi
k, NJ, Jan. 1992.[8℄ W. A. Landi, \Unde
idability of Stati
 Analysis", ACMLetters on Programming Languages and Systems vol. 1no. 2, De
. 1992, pp. 323{337.[9℄ W. Landi, personal
ommuni
ation, June 1998.[10℄ W. Landi and B. G. Ryder, \Pointer-indu
ed Aliasing:A Problem Classi�
ation", Pro
. 18th ACM Symposiumon Prin
iples of Programming Languages, Jan. 1991,pp. 93{103.[11℄ J. R. Larus, Restru
turing Symboli
 Programs for Con-
urrent Exe
ution on Multipro
essors, Ph.D. Disserta-tion, University of California, Berkeley, 1989.[12℄ E. W. Myers, \A Pre
ise Inter-Pro
edural Data FlowAlgorithm", Pro
. 8th ACM Symposium on Prin
iplesof Programming Languages, Jan. 1981, pp. 219{230.[13℄ H. R. Nielson and F. Nielson, \Bounded Fixed Point It-eration", Pro
. Nineteenth ACM Symposium on Prin
i-ples of Programming Languages, Jan. 1992, pp. 71{82.[14℄ H. D. Pande, W. A. Landi, and B. G. Ryder, \Interpro-
edural Def-Use Asso
iations for C Systems with SingleLevel Pointers", IEEE Transa
tions on Software Engi-neering vol. 20 no. 5, May 1994, pp. 385{403.[15℄ H. D. Pande and B. G. Ryder, \Stati
 Type Determi-nation for C++", Pro
. Sixth USENIX C++ Te
hni
alConferen
e, April 1994, pp. 85{97.[16℄ T. Reps, \Program Analysis via Graph Rea
hability",Information and Software Te
hnology 40, 11{12 (Nov.-De
. 1998), pp. 701-726.[17℄ T. Reps, \Unde
idability of Context-Sensitive Data-Dependen
e Analysis", Te
hni
al Report TR-1397,Computer S
ien
es Department, University of Wis
on-sin, Madison, Mar
h 1999.[18℄ S. Zhang and B. Ryder, \Complexity of single levelfun
tion pointer aliasing analysis", Te
hni
al ReportLCSR-TR-233, Laboratory of Computer S
ien
e Re-sear
h, Rutgers University, O
tober 1994.9

Appendix : Proofs of TheoremsTheorem 3.1 The single value problem for programs inBase
an be solved in polynomial time, provided that prim-itive operations of the analysis
an be
arried out in polyno-mial time.Proof: A straightforward independent-attribute analysissuÆ
es in this
ase. Jones and Mu
hni
k ([5℄, Se
tion 12.2)show that this
an be
arried out in time quadrati
 in thesize of the program, provided that primitive operations ofthe analysis, e.g.,
he
king whether two abstra
t domainelements are equal (whi
h is ne
essary to determine whena �xpoint has been rea
hed),
an be
arried out in O(1)time. The requirement of
onstant-time operations
an berelaxed to allow polynomial-time primitive operations andstill preserve an overall polynomial time
omplexity.Theorem 3.2 The simultaneous values problem for a
y
li
programs in Base is NP-
omplete.Proof: The proof of NP-hardness is by redu
tion from the3-SAT problem, whi
h is the problem of determining, givena set of
lauses ' ea
h
ontaining three literals, whether 'is satis�able. This problem is known to be NP-
omplete [4℄.Given a formula ' � (u11_� � �_u13)^� � �^(um1_� � �_um3)over a set of variables fx1; : : : ; xng, where ea
h of the literalsuij is either a variable or its negation, we generate a programP', with variables fx 1t, . . . , x nt, x 1f, . . . , x nf,
1, . . . ,
mg, of the following form:if (-) fx 1t = 0; x 1f = 1;gelse fx 1t = 1; x 1f = 0;gif (-) fx 2t = 0; x 2f = 1;gelse fx 2t = 1; x 2f = 0;g...if (-) fx nt = 0; x nf = 1;gelse fx nt = 1; x nf = 0;gif (-)
1 = w11;else if (-)
1 = w12;else
1 = w13;...if (-)
m = wm1;else if (-)
m = wm2;else
m = wm3;L: Here, wij are de�ned as follows: if the literal uij is avariable xk for some k, then wij = x kt; if the literal uij is anegated variable xk for some k, then wij = x kf. Intuitively,x it = 1 in P' represents an assignment of a truth value trueto xi in ', while x if = 1 represents a truth value of false.Ea
h path through the �rst group of
onditionals representsa truth assignment for the variables of '. The se
ond groupof
onditionals represents the evaluation of the
lauses: theith
lause evaluates to true if and only if there is a paththrough the ith
onditional in the se
ond group that assigns

1 to the variable
i. The simultaneous value problem wepose at the program point labelled L is
1 = 1 ^ ...^
m = 1.This is true if and only if there is a path through all of thestatements in P' that assigns 1 to ea
h of the
i, i.e., if andonly if there is a truth assignment to the variables of ' that
auses ea
h of its
lauses to evaluate to true.To see that the simultaneous value problem is in NP,given any a
y
li
 program in Base we simply guess a paththrough the program and
he
k whether the assignmentsalong this path make the problem true.Lemma 3.3 A given polynomial-spa
e-bounded Turing ma-
hine M a

epts its input x if and only if A

eptingCon�gmay hold at the point in PM;x labelled End, whereA

eptingCon�g �UnambiguousFinalState ^ TempsClear ^ TapeClear .Proof: (sket
h) Let a
on�guration � of M
orrespond toa state b� of PM;x, written � � b�, if and only if the followingholds: in �, M is in state qk, s
anning tape
ell m, withtape
ontents s0s1 : : : snt; and in b�, PM;x has the followingvalues for its variables, with
ontrol at the point labelledDispat
h:Qi = � 1 if i = k0 otherwise ;Xi = 0; for all i;Ti;j = � 1 if s(i�m) mod (nt+1) = j0 otherwiseWe use the following notation: if M
an go from
on�gura-tion � to
on�guration � via a sequen
e of transitions, wewrite � `�M �; if there is a path in the program PM;x thattransforms a state u to a state v, with
ontrol being at thepoint labelled Dispat
h in ea
h
ase, we write u `�P v.We �rst show that if, given
on�gurations � and � forM and states b� and b� for PM;x su
h that � � b� and � � b�,if � `�M � then b� `�P b�. Pi
torially:
βα

∼
βα

∗

∗
M

P

∼The proof is by indu
tion on the length n of the transitionsequen
e of M . The base
ase, for n = 0, is trivial. For theindu
tive
ase, suppose that the
laim holds for transitionsequen
es of length n, and
onsider
on�gurations �, � and
 of M and states b� and b
 of PM;x, with � � b� and
 � b
,su
h that � `nM
 `M �. From the indu
tion hypothesis, wehave b� `�P b
. Suppose that in the transition
 `M � M goesfrom state qa, s
anning tape symbol
, to state qb. In PM;x,
onsider state resulting from b
 by taking the path from thepoint labelled Dispat
h to that referred to as MOV a;
. Anexamination of the de�nition of the
ode
orresponding toMOV i;j shows that the resulting state b� of PM;x
orresponds10

to the
on�guration � ofM after the n+ 1st transition. The
laim follows.Sin
e, from the de�nition of PM;x, the initial
on�gura-tion ofM
orresponds to the state of PM;x when
ontrol �rstrea
hes Dispat
h, it follows from this that if M a

epts itsinput and halts|i.e., rea
hes a
on�guration with state q1and its tape erased (re
all that q1 is the �nal state ofM , andwe assumed that M would erase its tape prior to halting)|then there is a path in PM;x that leads to a
orrespondingstate, whi
h is des
ribed by A

eptingCon�g. This meansthat A

eptingCon�g holds at the point End. Conversely,if there is a path through PM;x su
h that A

eptingCon�gholds at its end at the point labelled End, then we
an usethe sequen
e of MOV i;j
ode exe
uted along this path to re-
onstru
t a sequen
e of moves of M leading to a

eptan
e.This establishes thatM a

epts its input if and only if thereis a path in PM;x,
onsisting of \good" guesses, at the endof whi
h A

eptingCon�g holds at the point End.Next,
onsider any path in PM;x that does not
orre-spond to a valid
omputation of M . This must
ome from a\bad guess" in PM;x of either the state (variables Qi) or thetape symbol (variables Tj;k), resulting in the exe
ution of a
ode fragment MOV i;k. It
an be seen, from the de�nitionof MOV i;k, that the variable setting that results when
on-trol next returns to the point Dispat
h has more than onethe variables Qi set to 1, or more than one of the variablesTi;j set to 1. Su
h a variable setting is
alled illegal be
auseit does not represent any valid
on�guration. Furthermore,on
e we obtain an illegal variable setting we
annot turnthis ba
k into a legal one be
ause ea
h of the MOV i;j
odesegments preserves or in
reases the number variables set to1. This means that A

eptingCon�g will not hold at the endof su
h a path in PM;x.Together, it follows from these that A

eptingCon�g willhold at the point labelled End if and only if M a

epts x.Lemma .1 Given a polynomial-spa
e-bounded Turing ma-
hine M and input x, the program PM;x illustrated in Figure1
an be generated in spa
e O(log(jM j+ jxj)).Proof: Suppose we are given a Turing ma
hine M that,on any input of length n, is p(n)-spa
e-bounded for somepolynomial p(n). The
ode for the
orresponding programPM;x
an be divided into three distin
t, and independent,
omponents: the initialization
ode; the
ode for the emu-lation loop,
onsisting of the
ode to
lear the variables Xifollowed by the
ode for the transitions of M ; and the
odefor \rotating" the tape, labelled
opy right and
opy left,and the \
leanup"
omputation at the label Done. The spa
erequirements for ea
h of these
omponents is as follows:{ The initialization step
onsists of j�j � p(jxj) assign-ments, where ea
h assignment statement is of �xedsize. To generate this
ode we need a
ounter ofsize log(j�j � p(jxj)) = log j�j + log p(jxj) bits. Sin
ej�j = O(jM j) and log p(n) = O(log n) for any polyno-mial p(n), this
omponent requires O(log jM j+ log jxj)spa
e.{ For the emulation loop,
learing the temporary vari-ables requires log j�j = O(1) bits. The outer if state-ment in the emulation loop
onsists of jQj
ases, whereea
h
ase (with the ex
eption of that for Q1 = 1)
on-sists of an inner if statement with O(j�j)
ases, ea
hof whi
h
onsists of a �xed amount of
ode. Thus the

spa
e requirement for generating this is log(jQj�j�j) =log jQj+log j�j = O(log jM j). Thus, the total spa
e re-quired for this
omponent is O(log jM j).{ Ea
h of the
opy right and
opy left portions of theprogram
onsists of j�j+ j�j � p(jxj) = O(j�j � p(jxj))assignments, where ea
h assignment statement is of�xed size. The
leanup
ode at the label Done
on-sists of j�j�p(jxj) assignments, where ea
h assignmentstatement is of �xed size. To generate these assign-ments we need a
ounter of size log(j�j � p(jxj)) =log j�j + log p(jxj) bits. Sin
e j�j = O(jM j) andlog p(n) = O(log n) for any polynomial p(n), this
om-ponent requires O(log jM j+ log jxj) spa
e.The total spa
e required is therefore O(log jxj + log jM j).Sin
e log jxj � log(jM j + jxj) and log jM j � log(jM j + jxj),we have O(log jxj+log jM j) = O(log(jM j+jxj)). The lemmafollows.Theorem 3.4 The simultaneous value problem for pro-grams in Base is PSPACE-
omplete.Proof: (sket
h) PSPACE-hardness follows dire
tly fromLemmas 3.3 and .1.To show that the simultaneous value problem is inPSPACE, we show that a given su
h a problem for a pro-gram P , we
an
onstru
t a nondeterministi
 multi-tapepolynomial-spa
e-bounded Turing ma
hine MP to solve theproblem. Given a program P , the input to MP
onsistsof the
ontrol
ow graph GP of P , an initial assignmentEinit of values for the variables of P , a target program pointnt, and a target environment Et for the variables of P :Et = fx0 7!
0; x1 7!
1; : : : ; xn 7!
ng spe
i�es the si-multaneous value problem x0 =
0 ^x1 =
1 ^ : : :^xn =
n.We wantM to halt i� there is a path from the initial node ofGP to nt that transforms Einit to the target environmentEt.MP
opies GP and Et to two work tapes and maintains an-other work tape Tenv that
ontains a list of (variable, value)pairs, one for ea
h program variable. Tenv is initialized fromthe initial assignment Einit . MP then starts simulating theexe
ution of P by traversing GP At ea
h vertex of the
on-trol
ow graph, it simulates the e�e
ts of assignments andupdates Tenv appropriately. At bran
h nodes MP nonde-terministi
ally
hooses a su

essor to
ontinue pro
essing.Whenever MP rea
hes the target node nt it
he
ks whetherthe variable values on Tenv mat
h the desired environmentEt, and halts if this is the
ase. It is
lear that if there isan exe
ution path in P su
h that, starting from the initialvariable assignment Einit , exe
ution
an rea
h the point ntwith the desired values Et for the variables, then M
anguess this path and will eventually halt and a

ept its in-put. Conversely, if MP halts and a

epts, there must havebeen su
h a path.The spa
e needs for MP are bounded by the spa
e re-quired to store the GP and Einit and the spa
e required forthe tape Tenv . The spa
e required for GP and Einit is O(n),where n is the size of the input program. Under the assump-tion that the we have a �xed number of
onstants to dealwith (i.e., that the analysis is being
arried out over a �xed�nite domain), we need O(1) bits for the value of a variableat any program point; there
an be at most O(n) variablesin P , so the spa
e requirements for Tenv are O(n). It followsthat M is polynomial-spa
e-bounded.11

Theorem 3.5 The
lass of Inter-pro
edural simultaneousvalues problems for non-re
ursive programs in Base+Pro
is PSPACE-
omplete.Proof: PSPACE-hardness follows from Theorem 3.4. Tosee that the problem remains in PSPACE,
onsider a non-re
ursive program
ontaining k pro
edures. The runtime
all sta
k of this program
an have depth at most k. We usea nondeterministi
 Turing ma
hine similar to that used toshow membership in PSPACE in the proof of Theorem 3.4,ex
ept that it uses a tape that is k times longer than before.This tape is used as a sta
k: at a pro
edure
all, it \pushes"a frame by
opying the values of the arguments after the\
urrent frame" at the end of the tape; and on a returnfrom a pro
edure, it \pops" the
urrent frame by erasingthe appropriate tape
ells and moves to the next frame. Thespa
e requirement of this ma
hine is still polynomial in thelength of the input, when
e it follows that the analysis is inPSPACE.Theorem 3.6 The single-value problem for pointer vari-ables in Base+1ptr
an be solved in polynomial time. Thesingle-value problem for base variables in Base+1ptr isPSPACE-
omplete.Proof: For a single-value problem for a pointer vari-able, the analysis need
on
ern itself only with assignmentsto pointer variables, and a straightforward independent-attribute analysis is suÆ
ient. Reasoning as for Theorem3.1 shows that this is solvable in polynomial time.To prove PSPACE-hardness of the base variable
ase, weshow how a binary simultaneous value problem in Base
anbe redu
ed to a single-value problem for base variables inBase+1ptr . Given a program P in Base the idea is togenerate a program P 0 as follows (here, X1; X2; : : : denotevariables in P while X1; X2; : : : denote variables in P 0). Theprogram P 0
ontains two variables, Zero and One, that areinitialized to the
onstants 0 and 1 respe
tively. For ea
hvariable X in P we have two variables X and X in P 0. As-signments in P are translated into P 0 as follows:{ An assignment `X = 0' in P is translated to a pair ofassignments `X = &Zero; X = &One' in P 0; an assign-ment `X = 1' is translated to `X = &One; X = &Zero.'{ An assignment `X = Y in P is translated to a pair ofassignments `X = Y; X = Y.'The intuition is that X tells us what the value of the originalvariable X is, while X tells us what it is not. Other
on-stru
ts, su
h as
onditionals and
ontrol transfers, remainun
hanged in the translation.Suppose we are given a binary simultaneous value prob-lem in of the form X1 =
1 ^ � � � ^ Xn =
n at a point pin the original program P , where
i 2 f0; 1g. Consider the
onjun
t X1 =
1: if
1 � 0 then, in the generated pro-gram program, we want to test whether X1 points to Zero.If
1 � 1, we want to test whether X1 points to One; orequivalently, whether X1 does not point to Zero (sin
e thevariables One and Zero are the only base variables in theprogram, and hen
e the only things that X1
ould point to);or equivalently, whether X1 points to Zero. Let p0 be theprogram point in P 0 that
orresponds to the point p in P ,and let u ; v denote that u points to v. We want to de-termine whether there is an exe
ution path in P 0 upto p0su
h that x1 ; Zero ^ � � � ^ xn ; Zero, where xi is Xi if

i � 0, and Xi if
i � 1. We do this by inserting the following
ode fragment at the point p0 (where xi is either Xi or Xi ,depending on whether
i is 0 or not, as just des
ribed).if (-) f*x1 = 0; ...; *xn = 0;L: goto End; /* go to end of pgm, halt */gIf, for some exe
ution path leading to p0 in the program P 0,xi ; Zero for ea
h xi, then all of the assignments *xi = 0will write to the variable Zero. This means that the initialassignment of 1 to the variable One will not be overwritten(sin
e there are no other assignments to either Zero or One,or any indire
t assignments through any of the variables Xior Xi, elsewhere in the program), so One will have the value1 at the point labelled L in the
ode fragment above. On theother hand, if for every exe
ution path leading to p0 we havexj 6; Zero for some j, it must be the
ase that xj ; One,whi
h means that the assignment *xj = 0 will overwrite theinitial assignment to One. Thus, by answering the single-value problem of whether or not One has the value 1 atthe point L, we
an solve the original binary simultaneousvalue problem for the program P . The result follows fromTheorem 3.6.Theorem 4.1 PM;x has a valid
all tree with root (fq ; Ti;j)if and only if M has an a

epting
omputation tree with rootqu, where Ti;j � u.Proof: We �rst show that PM;x has a valid
all tree TPwith root (fq ; Ti;j) if M has an a

epting
omputation treeTM with root qu, where Ti;j � u. We pro
eed by indu
tionon the height of TM .The base
ase is for n = 0, whi
h means that q is ana

epting state. Suppose that the root of TM is labelledqu. From the
onstru
tion of PM;x, it follows that the tree
onsisting of the single node (fq; Ti;j), where Ti;j � u, is avalid
all tree.For the indu
tive
ase, assume that PM;x has a valid
all tree with root (fq0 ; �v0) whenever M has an a

epting
omputation tree with root q0u0 and height � k, where �v0 �u0, and
onsider an a

epting
omputation tree TM of Mwith height k + 1. Let the root of TM be qu, and supposethat Ti;j � u. We have two possibilities:1. q is an existential state. From the de�nition of
om-putation trees, TM 's root has a single
hild q0u0, andthe subtree T 0M rooted at this
hild is also an a

epting
omputation tree of M . Sin
e T 0M has height less thank+1, it follows from the indu
tion hypothesis that PM;xhas a valid
all tree T 0P whose root is labelled (fq0 ; �v0)su
h that �v0 � u0.Suppose that the transition from q to q0 o

urs on tapesymbol si. From the
onstru
tion of PM;x, the fun
-tion fq
ontains an exe
ution path through the
odede�ned by TRANSITION(q; si; q0) that veri�es that thetape symbol s
anned is si, adjusts the variables Ti;j asne
essary to
orrespond to the tape
ontents u0, and
alls fq0 . It follows from this that a tree with root(fq ; Ti;j) that has a single subtree T 0P is a valid
alltree for PM;x.2. q is a universal state. This means that TM 's root hastwo
hildren q0u0 and q00u00, and that the subtrees T 0Mand T 00M rooted at ea
h of these
hildren are a

epting12

omputation trees for M . Sin
e ea
h of these subtreeshas height less than k+1, it follows from the indu
tionhypothesis that PM;x has valid
all trees T 0P , with rootlabelled (fq0 ; �v0), and T 00P , with root labelled (fq00 ; �v00),where �v0 � u0 and �v00 � u00.Suppose that the transitions from q to q0 and q00 o

uron tape symbol si. From the
onstru
tion of PM;x, thefun
tion fq
ontains an exe
ution pathif (-) fTRANSITION(q; si; q0);TRANSITION(q; si; q00);gthat simulates ea
h of these transitions by verifyingthat the tape symbol s
anned is si, adjusting the vari-ables Ti;j as ne
essary, and
alling the appropriate fun
-tion in PM;x. It follows that a tree with root (fq; Ti;j)that has two subtrees T 0P and T 00P is a valid
all tree forPM;x.The proof in the other dire
tion is very similar, ex
ept thatthe indu
tion is on the height of the valid
all trees of PM;x.Corollary .2 M a

epts x if and only if there is an exe
u-tion path p in PM;x from the program point labelled Startto that labelled End su
h NoErr = 1 at the end of p.Proof: We observe that by
onstru
tion of PM;x, the
odeat the point labelled Start sets NoErr to 1 and initializesthe variables Ti;j a

ording to the input x.Suppose that M a

epts x, i.e., there is an a

epting
omputation tree TM rooted at q0x. It follows from Theo-rem 4.1 that there is a valid
all tree TP for PM;x with root(fq0 ; Ti;j) where Ti;j � x. This means that there is an exe-
ution path in PM;x from Start to End su
h that NoErr = 1at End.Suppose that M does not a

ept x, i.e., there is no a
-
epting
omputation tree TM rooted at q0x. From Theorem4.1, it follows that there is no valid
all tree in PM;x withroot (fq0 ; Ti;j) su
h that Ti;j � x. It follows that there is noexe
ution path from Start to End along whi
h the value ofNoErr remains 1.Theorem 4.3 The inter-pro
edural single-value problemfor base variables in Base+Pro
+1ptr is EXPTIME-
omplete.Proof: The proof is by redu
tion from the inter-pro
eduralsingle-value problem for Base+Pro
+Err . We show howany program PM;x in Base+Pro
+Err , generated for anATM M and input x as dis
ussed in Se
tion 4,
an betranslated to a program P 0 in Base+Pro
+1ptr (here,X1; X2; : : : denote variables in P while X1; X2; : : : denote vari-ables in P 0):1. P 0
ontains global variables Zero and One, whi
h areinitialized to 0 and 1 respe
tively. Additionally, forea
h global variable V in P there is a global pointervariable V in P 0; in parti
ular, the distinguished (base)variable NoErr in P
orresponds to a global pointervariable NoErr in P 0, whi
h is initialized to the value&One.

2. For ea
h n-argument fun
tion f in P there is an n-argument fun
tion f in P 0. For ea
h su
h pair of
orre-sponding fun
tions, for ea
h lo
al variable V in f thereis a lo
al pointer variable V in f.3. Assignment statements in P are translated as follows:a statement `X = e' in P translates to the statement`X = e0', where e0 is given bye0 = (&Zero if e � 0&One if e � 1Y if e � Y for some variable YFun
tion
alls are translated as follows: a
all`f(e1; : : : ; en)' translates to `f(e01; : : : ; e0n)', where thee0i are given by:e0i = (&Zero if ei � 0&One if ei � 1Y if ei � Y for some variable YConditionals are translated un
hanged.4. A statement Error-if-Zero(X) is translated to `*NoErr= *X.'5. The single-value problem `NoErr = 0' in P
orrespondsto the base-variable single-value problem `One = 1' inP 0.Ea
h variable V in P is translated to a pointer variable V inP 0; a value of 0 for V in P
orresponds to V being a pointerto the base variable Zero in P 0, while a value of 1 for V
orresponds V being a pointer to the variable One.Consider the program PM;x generated for a given ATMM and input x. In the
orresponding program P 0M;x inBase+1ptr , the variable NoErr is initially set to pointto One, whi
h has the value 1. Now
onsider any exe
u-tion path p in P . If p does not
ontain any o

urren
e ofa Error-if-Zero(�) statement, the exe
ution along the
or-responding path in P 0 simply parallels that in P , the onlydi�eren
e being that instead of the values 0 and 1 in P wehave &Zero and &One in P 0. If the path p
ontains a state-ment Error-if-Zero(X) , then the
orresponding statement inP 0 is `*NoErr = *X.' We have the following possibilities:1. NoErr points to One, X points to One, and the valueof One is 1 (
orresponding to the variables NoErr andX in P both having the value 1). In this
ase thisassignment to *NoErr has no e�e
t on the value of anyvariable in P 0. This parallels the behavior of P .2. NoErr points to One and X points to Zero (
orrespond-ing to X having the value 0 in P). In this
ase theassignment sets the variable One to have the value 0.This again parallels the behavior of P .3. NoErr points to One, but the value of One is 0 (due toan assigment
orresponding to the previous
ase earlierin the exe
ution). In this
ase, regardless of whetherX points to One or to Zero, the value of *X is 0, so theassignment `*NoErr = *X' does not
hange the valueof any variable in P 0. In parti
ular this means that*NoErr remains 0. Again, this parallels the behavior ofP .
13

Thus, at the end of the exe
ution of P 0, the variable One hasthe value 1 if and only if, at the end of the
orrespondingexe
ution path in P , the value of NoErr is 1. The redu
-tion des
ribed above establishes that the inter-pro
eduralsingle-value problem for base variables in Base+1ptr isEXPTIME-hard.We next show how a program P in Base+Pro
+1ptr
an be simulated by a p(n)-spa
e-bounded ATMMP , wheren is the program size. MP has its tape divided into fourregions: Globals, Anti
ipatedGlobals, TempGlobals, and Lo-
als. Globals
ontains the
urrent snapshot of the globalvariables. Anti
ipatedGlobals shows the Globals as we ex-pe
t them to be upon return from the
urrent subroutine.TempGlobals is an auxiliary region big enough to hold Glob-als and Anti
ipatedGlobals. Lo
als
ontains the
ontents oflo
al variables and subroutine arguments; the s
ope of thesevariables extends only to the end of the
urrent subroutine(parameter passing and returning of results
an be a
hievedusing global variables). These regions are obviously polyno-mially bounded by the size of P.MP works as follows: It interprets the
urrent subroutinef in P , updating Globals and Lo
als appropriately. WhenP is nondeterministi
 be
ause of uninterpreted
onditionalsso is MP , whi
h \guesses" one of the bran
hes of the
on-ditional to
ontinue interpreting (using existential states).When f returnsMP
ompares Globals with Anti
ipatedGlob-als and goes into an a

epting state if they are equal andotherwise into a reje
ting state.The key me
hanism is how
alls to a subroutine g are sim-ulated. First MP
opies the Anti
ipatedGlobals into Temp-Globals MP then guesses the e�e
t of the subroutine
all onGlobals and writes this guess into Anti
ipatedGlobals. Im-mediately after thisMP swit
hes into a universal state. Onesu

essor of this state starts interpreting subroutine g. This
omputation bran
h will rea
h an a

epting state only ifAnti
ipatedGlobals was guessed
orre
tly. The other su

es-sor
ontinues interpreting subroutine f assuming the
all tog behaves as expe
ted, i.e., it
opies Anti
ipatedGlobals toGlobals and TempGlobals ba
k to Anti
ipatedGlobals.The subroutine main(), where the simulation begins ishandled slightly di�erently. At the beginning of main()Globals is initialized and upon return from main MP alwaysenters an a

epting state.It is not hard to see that this will faithfully simulateP. If we interested in solving a single or simultaneous valueproblem|whi
h we assume, without loss of generality, to beposed at the end of main|we
an make MP test the
ondi-tion at the end of main and either go into an a

epting stateif the
ondition is satis�ed or in a reje
ting state otherwise.Theorem 4.6 The single value problem for Base extendedwith pro
edures with referen
e parameters is PSPACE-
omplete for non-re
ursive programs and EXPTIME-
omplete for arbitrary programs.Proof: (sket
h) The proof is very similar to that for Theo-rem 4.3, the primary di�eren
e being that instead of expli
itpointer variables we use referen
e parameters. Ea
h pro
e-dure in the program takes two additional arguments that arereferen
es to the global variables Zero and One. Instead ofexpli
it assignments of &Zero and &One, as in the
onstru
-tion in the proof of Theorem 4.3, we use these referen
eparameters. The remainder of the proof remains essentiallyun
hanged.

Corollary 4.7 Pre
ise inter-pro
edural liveness analysisand available expressions analysis for Base extended withpro
edures with referen
e parameters are both PSPACE-
omplete for non-re
ursive programs, and EXPTIME-
omplete for arbitrary programs.Proof: The proof follows the lines of that of Theorem 4.6,modi�ed in a manner analogous to that in Theorem 3.9.

14

