
Resource-Bounded Partial Evaluation �Saumya DebrayDepartment of Computer ScienceUniversity of ArizonaTucson, AZ 85721, U.S.A.debray@cs.arizona.eduAbstractMost partial evaluators do not take the availability of machine-level resources, such as registers orcache, into consideration when making their specialization decisions. The resulting resource contentioncan lead to severe performance degradation|causing, in extreme cases, the specialized code to run slowerthan the unspecialized code. In this paper we consider how resource considerations can be incorporatedwithin a partial evaluator. We develop an abstract formulation of the problem, show that optimalresource-bounded partial evaluation is NP-complete, and discuss simple heuristics that can be used toaddress the problem in practice.1 IntroductionThe �eld of partial evaluation has matured greatly in recent years, and partial evaluators have been imple-mented for a wide variety of programming languages [1, 4, 5, 6, 20, 29]. A central concern guiding theseimplementations has been to ensure that input programs should be specialized as far as possible withoutcompromising termination of the partial evaluator. The good news is that most current implementations ofpartial evaluators have achieved some success at satisfying this concern. Unfortunately, the bad news is alsothat these systems are successful at meeting this concern. Focusing single-mindedly on specializing as muchof an input program as possible, partial evaluators typically ignore the availability of machine-level resources,such as registers or cache, when making specialization decisions. The resulting resource contention can leadto signi�cant performance degradations|in some cases, causing the specialized program to run slower thanthe unspecialized code.The problem is illustrated by Figure 1. This �gure illustrates how the speedup of a convolution-likeprogram, which computesPnj=1Pni=1 xiyj given two n-element integer vectors x and y and which has beenspecialized to one of the input vectors, varies for di�erent values of n.1 It can be seen that while thespecialized program is about 25% faster than the unspecialized version for small values of n, the speedupsdrop o� steeply after n = 4000, and for n � 7000 the specialized code is slower than the unspecializedprogram.� A preliminary version of this paper appeared in Proc. 1997 ACM SIGPLAN Symposium on Partial Evaluation andSemantics-Based Program Manipulation (PEPM-97). This work was supported in part by the National Science Foundationunder grant CCR-9502826.1The numbers are based on a Scheme program that represents a vector as a list, specialized using Similix [6] and compiledusing Bigloo version 1.8 [30], with gcc version 2.7.2 as the back-end compiler, and run on a 25 MHz SPARC IPC with 64 Kbytesof cache and 32 Mbytes of main memory. See Section 5 for further details.1

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

0 2000 4000 6000 8000 10000

S
pe

ed
up

input sizeFigure 1: Relative Performance of Specialized Convolution ProgramsThis loss in performance is due not so much to an \explosion" in code size as it is to specialization withno regard for machine-level resources. What happens is that because one of the input vectors is known atspecialization time, the inner loop of the program is unrolled completely into a straight line sequence of code.For di�erent input sizes, this results in a family of specialized programs where the size of the body of themain loop|where most of the execution time of the program is spent|grows linearly as n. This apparentlymodest growth rate incurs signi�cant performance penalties once n becomes large enough that the body ofthe loop does not �t in the instruction cache of the processor.There are two reasons why performance degradation due to over-specialization can be a problem. First,as the example given illustrates, it can manifest itself even for commonly encountered computations andreasonably sized inputs; and second, the performance degradation typically increases as the (static) inputsize increases and is the worst for the largest inputs, whereas these are precisely the cases where we wouldlike partial evaluation technology to deliver the greatest bene�ts. For these reasons, it would seem desirableto be able to incorporate some awareness of the availability of resources during the partial evaluation process.The potential problem of code growth during partial evaluation has been noted in the past (e.g., see [24]),but we do not know of any proposal to address code growth given �xed resources. There has been some workon identifying those static computations whose specialization can contribute to good speedups [2], but thesedo not directly address the particular problem that we are concerned with. The issue of resource-boundedpartial evaluation has been discussed by Danvy et al. [11], who sketch possible approaches to the problemat a very high level but o�er few details. Many of the issues that arise in this work have been considered inthe compiler optimization literature as well, albeit in considerably more restricted contexts. This includeswork on function inlining [7, 12, 14, 15, 23], loop unrolling [9, 13, 16, 31], and improving cache utilization ofprograms [22, 25, 28].2 Underlying ConceptsWe assume that the programs being specialized are expressed in a (untyped, eager) �rst-order functionallanguage. We will generally work with binding-time annotated programs with the following abstract syntax:P 2 Prog (programs)e 2 Expr (expressions)x 2 Var (variables) 2

P ::= ff1(x1; : : : ; xn) = e1; : : : ; fn(x1; : : : ; xn) = enge ::= c (constant)j xs (static variable)j xd (dynamic variable)j ops(e1; : : : ; en) (static base operation)j opd(e1; : : : ; en) (dynamic base operation)j ifs(e1, e2, e3) (static conditional)j ifd(e1, e2, e3) (dynamic conditional)j lift(e) (lift a static expression)j lets x = e1 in e2 (static let expression)j letd x = e1 in e2 (dynamic let expression)j calls(f; e1; : : : ; en) (static call)j calld(f; e1; : : : ; en) (dynamic call)The body of a function f will sometimes be denoted by body(f). It is assumed that all, and only, staticfunction calls are considered for unfolding. For concreteness, we will informally use a �rst-order subset ofScheme for our examples.2.1 Program PointsLet a control point refer to any executable construct within a program, and a static environment at a controlpoint refer to a mapping from the static variables at that point to values. Traditionally, a \program point"in a specialized program is taken to be a pair (cp; senv), where cp is a control point in the original (i.e.,unspecialized) program and senv a static environment for that point. For our purposes, we need to extendthis so that a program point in a specialized program is a pair (cp; SEnv) where SEnv is a set of staticenvironments corresponding to the control point cp in the original program. To see the reason for this,consider the following Scheme code:(define (foo y)(define (f y i)(if (= i 0) y(let* ((y0 (+ y i)) (i0 (- i 1)))(f y0 i0))))(f y 10000))The sort of code we would intuitively like to generate is that obtained by unfolding the recursive call to f,as much as possible while ensuring that the body of the resulting code still �ts in the cache, i.e., somethinglike (define (foo y)(define (f y i)(if (= i 0) y(let* ((y0_0 (+ y i)) (i0_0 (- i 1))(y0_1 (+ y0_0 i0_0)) (i0_1 (- i0_0 1))(y0_2 (+ y0_1 i0_1)) (i0_2 (- i0_1 1))...(y0_99 (+ y0_98 i0_98)) (i0_99 (- i0_98 1)))(f y0_99 i0_99))) 3

)(f y 10000))However, if we take a specialized program point to be a (control point, static environment) pair, thenspecialization will proceed with the sequence of program points (L; [i 7! 10000]); (L; [i 7! 9999]); : : :, whereL denotes the control point where y0 is bound to (+ y i), and this will result in the generation of thespecialized statements with the static values of the variable i hard-wired in, as follows, which is not whatwe want:(define (foo y)(define (f y)(let* ((y0_0 (+ y 10000))(y0_1 (+ y0_0 9999))(y0_2 (+ y0_1 9998))...)y0_10000))(f y))This problem can be avoided by having a program point in a specialized program associate a set of staticenvironments with each control point in the original program: in the special case where this set is a singleton,the values of the static variables can be substituted for the variables, as before.If the available resources do not allow a program to be specialized to the extent where there is exactly onestatic environment associated with each specialized program point, then those points that are associated withmore than one static environment cannot have the values of the corresponding static data hard-wired intothe residual code. For such points, it is necessary to retain the values of the static data separately, and weneed to take into account the resources necessary for this when estimating the amount of resources actuallyavailable for accommodating code growth during partial evaluation (if instructions and data compete forresources, it makes sense to try and have both the code and the data �t in the available resources if possible:a cache miss due to a data reference is just as expensive as a miss due to an instruction reference). On theother hand, if the program can be specialized to the extent that there is at most one static environmentper specialized program point, the static data values can be hard-wired into the residual program, makingit unnecessary to store them separately, and potentially freeing up additional space for code growth. Inother words, if we cannot be sure that the program can be specialized \all the way" and still �t within theavailable resources, we should allow for the fact that some of the static data will have to be kept around,and that as a result, not all of the resources may be available to accommodate code growth. This impliesalso that if we are able to detect situations when the static data need not be kept around separately, it maybe possible to do a better job of specialization than if we conservatively retain space for the static data.2.2 Specialization AnnotationsTraditional o�ine partial evaluation consists of two components: a binding time analyzer, which determineswhich computations can be specialized; and a specializer, which carries out the actual specialization, basedon the information provided by the binding time analyzer. To account for resource availability, we extendthis to include a third component, the accountant, as depicted in Figure 2. The idea is that the bindingtime analyzer determines which computations can be specialized and passes this information|in the formof a program annotated with binding times|to the specializer. The specializer then queries the accountant4

Binding Time

Annotated Program
Binding Time

Resource
Estimate

Annotated Program
Specialization

BTA

Annotated Program

Program

Accountant

Specializer

Input Program

Static Input

Resources
Total

Specialized(a) OrganizationInput : An input program Pin , resource bound ResourceAvail.Output : A specialized program Pout .Method :P0 := BindingTimeAnalysis(Pin);repeatP1 := Accountant(P0;ResourceAvail);S := set of specialization annotated points in P1;if S 6= ; then(P2;ResourceUsed) := Specialize(P1);ResourceAvail := ResourceAvail �ResourceUsed ;recompute static environments for functions where unfolding has occurred;P0 := P2;�until S = ;;Pout := remove binding time annotations from P0;return Pout ; (b) AlgorithmFigure 2: Overview of Resource-Bounded Partial Evaluation5

with a binding-time annotated program, which indicates which operations can be specialized, together withan estimate of the available resources. The accountant uses the resource information to determine whichoperations should be specialized, and tags each static computation with one of the annotations specialize ordon't-specialize (another way to think of this is to imagine the accountant as turning some of the \static"annotations to \dynamic" to prevent some specializations from taking place). This specialization-annotatedprogram is returned to the specializer, which carries out a single \specialization step" (see below) basedon the decisions of the accountant and updates its resource availability estimates accordingly. Any newcontrol points in the resulting program are annotated with binding time annotations inherited from theoriginal binding-time annotated program where necessary, and static environments associated with suchpoints is determined. This is then used to query the accountant again, together with the updated resourceestimates. This process continues, with the specializer repeatedly querying the accountant with a binding-time annotated (partially specialized) program together with an estimate of the available resources, thenspecializing the specialization-annotated program returned by the accountant and updating its resourceestimates, until the accountant terminates the specialization process due to the exhaustion of availableresources (or possibly because it identi�es a nonterminating specialization sequence) by returning a programwhere no operation is annotated for specialization.An important notion in this context is that of a specialization step, which refers to the actions thespecializer can take unilaterally between two consecutive queries to the accountant. Since we are concernedprimarily with code growth, which occurs when function calls are unfolded, we have to limit the number ofunfolding steps that can occur between any two consecutive queries to the accountant. We therefore de�ne aspecialization step to be a (maximal) sequence of reductions such that, whenever a function call is unfolded,calls occurring in the unfolded body are not considered for further unfolding.In some ways, the use of specialization annotations resembles the notion of \mixline" partial evaluation[10], where binding-time annotations of \possibly static" or \sometimes static" are permitted. The di�erenceis that in our model, the binding time analysis does not itself distinguish between \possibly static" and\de�nitely static" entities: it identi�es everything that is (de�nitely) static, and the accountant selects asubset of these for actual specialization in any particular specialization step based on the availability ofresources. In the degenerate case where the accountant ignores the availability of resources and alwaysselects all static computations for specialization, this model becomes indistinguishable from the traditionalapproach to partial evaluation.Traditionally, the classi�cation of variables as \static" or \dynamic" is required to satisfy a congruencecondition that states, essentially, that any variable that depends on a dynamic variable is itself dynamic.The reason for this is that if the value of a variable is to be computable before the program is executed,that value cannot be dependent on any quantity that is not available until runtime. It is not di�cult tosee that the specialization-annotated program must satisfy a similar condition, since any operation that isbeing specialized must have its operands available, which means that anything it depends on must also bespecialized.2.3 An Abstract Formulation of the ProblemIntuitively, a resource-bounded partial evaluator will attempt to specialize as much of an input programthat it can, subject to the usual termination considerations as well as considerations of the availability ofresources. For this, it will need to be able to weigh the bene�ts of specializing a particular computationagainst the costs so incurred. When a piece of code is specialized with respect to some static data, itwill typically be the case that the residual code will require fewer operations, measured, for example, ininstructions or function calls. The savings so incurred must be weighed against the storage requirements ofthe residual program, measured, for example, in the number of registers required for live values, or in thenumber of instructions that need to reside in cache. Specialization of an expression may lead to a reductionin code size (if some operations are specialized away) or an increase in code size (if specialization involves6

unfolding a function call; or leads to a primitive operation being open-coded instead of being implementedas a call to a generic routine). Thus, with each control point p we can associate a cost cost(p) 2 Z and abene�t savings(p) 2 Z, where Z denotes the set of integers. Moreover, given limited resources we will preferto focus on those parts of the program that are the most frequently executed: to this end, we assume thateach point p has a nonnegative \weight" wt(p) associated with it.In general, the problem of resource-bounded partial evaluation for a resource bound of B would involvecoming up with a specialization sequence, i.e., sequence of specialization steps, for any given program suchthat (i) the total savings is maximized, and (ii) the size of the residual program does not exceed B. Thisdoes not seem to be a straightforward problem: for example, the program resulting from an intermediatespecialization step can be allowed to exceed the bound B|perhaps by a considerable amount|as long asenough code can specialized away subsequently to reduce the size of the �nal residual program to belowB. This would appear to involve a search for a global optimum over the space of all possible specializationsequences, and it is not obvious that this will be practical, especially for nontrivial programs. We thereforeconsider a stronger criterion, namely, that each specialization step in a specialization sequence should respectthe resource bound B. We refer to such specialization sequences as pointwise resource-bounded; An optimalpointwise resource-bounded specialization sequence is one that is pointwise resource-bounded, and where ateach step the savings are maximized.3 Complexity IssuesIt is easy to see that one way to obtain an e�cient algorithm for resource-bounded partial evaluation is tofocus on pointwise resource-bounded specialization sequences, using an e�cient algorithm for each special-ization step, and ensuring that the specialization sequences are not too long (i.e., are within a polynomialfactor of the size of the input program). In this section we focus on the complexity of a single optimalresource-bounded specialization step. This optimization problem can be rephrased as a decision problem asfollows:De�nition 3.1 The Optimal One-Step Resource-Bounded Specialization problem is de�ned as follows:given a set of control points P ; functions wt : P ! Z, cost : P ! Z and savings : P ! Z; and posi-tive integers B, K, is there a set of points Q � P satisfying the following requirements:(i) if q 2 Q and q depends on p then p 2 Q;(ii) Pq2Q wt(q) � savings(q) � K; and(iii) Pq2Q cost(v) � B?The structure of this problem, where we try to maximize one quantity while simultaneously trying to minimizeanother, is reminiscent of \knapsack"-like problems. The following result therefore does not come as a greatsurprise:Theorem 3.1 Optimal One-Step Resource-Bounded Specialization is NP-complete in the strong sense, evenfor �rst order programs.Proof By a reduction from the Partially Ordered Knapsack problem, which is de�ned as follows [17]:Given a �nite partially ordered set (U;�), for each u 2 U a size s(u) 2 Z+ and a value v(u) 2 Z+,and positive integers B and K, is there a subset U 0 � U such that if u 2 U 0 and u0 � u then u0 2 U 0,and such that Pu2U 0 s(u) � B and Pu2U 0 v(u) � K?7

This problem is known to be NP-complete in the strong sense [17]. It is easy to see that the partially orderedknapsack problem is essentially isomorphic to the one-step resource-bounded specialization problem de�nedabove. Suppose we are given an instance of the partially ordered knapsack problem with partial orderedset (U;�), size function s, value function v, and bounds B and K for size and value respectively. Thecorresponding resource-bounded specialization problem has the set of control points U , with dependencerelation between control points given by �; the functions wt, cost, and savings are de�ned as follows for allu 2 U :wt(u) = 1;cost(u) = s(u);savings(u) = v(u);Finally, the bounds B and K are the same as in the partially ordered knapsack problem. It is easy to see thatthis problem admits a solution if and only if the given instance of partially ordered knapsack has a solution,which means that resource-bounded specialization is NP-hard in the strong sense. Membership in NP isstraightforward, since we can simply guess a subset U 0 2 U and verify in polynomial time that it satis�esthe closure requirement under �, i.e., u 2 U 0 and u0 � implies u0 2 U 0, as well as that Pu2U 0 cost(u) � Band Pu2U 0 savings(u) � K. 2We note in passing that the partially ordered knapsack problem can be solved optimally in pseudo-polynomial time via dynamic programming techniques if � is a \tree" partial order [17]. This means thatresource-bounded specialization problem can also be solved optimally in pseudo-polynomial time when thedependence relation between control points is a tree partial order, simply by transforming it into a partiallyordered knapsack problem over a set (U;�) where U is the set of control points and � the dependencerelation; the size function is s(u) = cost(u) ; and the value function is given by v(u) = wt(u) � savings(u) .4 A Heuristic AlgorithmTheorem 3.1 implies that the existence of e�cient algorithms for optimal one-step resource-bounded programspecialization are unlikely. We are forced, therefore, to resort to heuristics. we do this in two phases: �rst,we determine the costs and bene�ts associated with specializing each operation that is specializable. Wethen use this information to choose a set of points to specialize.Recall, from the discussion in Section 2.1, that for our purposes, a program point needs to associate aset of static environments with a control point, and that this may in some cases preclude static values frombeing hard-wired into the residual code. It turns out that this may also prevent some specialization fromtaking place. To see this, consider an expressionifs(x > 2, x+ 2, x� 3)at a control point with associated set of static environments f(x 7! 1); (x 7! 3)g. Even though the conditionalhere is static, the set of values x can take on does not allow us to determine the outcome of the test uniquely,and therefore prevents us from specializing the test away. On the other hand, if the set of static environmentshad been f(x 7! 0); (x 7! 1)g, the expression would be specializable. This shows that in order to estimatethe savings accruing from the specialization of a program point, and the size of the resulting residual code,we need to take into account the set of static environments associated with that point.As this example suggests, in order to estimate the code size and savings resulting from specialization, weneed to be able to determine the set of values an expression can take on given a set of static environments.Let `?' denote a value that is \statically undetermined"|the notion is close to, but not quite the same as,that of a dynamic value, since it is possible to have a static expression whose value, in the context of a setof static expressions, is not uniquely determined: an example is the expression ifs(x > 2, x+ 2, x� 3)8

shown above, in the context of the set of static environments f(x 7! 1); (x 7! 3)g. Given an expression e anda (single) static environment env, let the value of e in environment env be given by a functionvalue : Expr � (Var! Val)! Val [f?g.This function is de�ned essentially as one would expect, the only twist being the need to deal with staticallyundetermined quantities:2value([[c]]; �) = cvalue([[xs]]; �) = lookup(x; �)value([[xd]]; �) = ?value([[ops(e1; : : : ; en)]]; �) = let u1 = value(e1; �); : : : ; un = value(en; �) inif ui = ? for some i, 1 � i � n, then ?else �op(u1; : : : ; un)where �op is the function associated with op.value([[opd(e1; : : : ; en)]]; �) = ?value([[ifs(e1, e2, e3)]]; �) =if value(e1; �) = true then value(e2; �)else if value(e1; �) = false then value(e3; �)else ?value([[ifd(e1, e2, e3)]]; �) = ?value([[lets x = e1 in e2]]; �) = value(e2; �[x 7! value(e1; �)])value([[letd x = e1 in e2]]; �) = value(e2; �[x 7! value(e1; �)])value([[calls(f; e1; : : : ; en)]]; �) = value(body (f); fx1 7! value(e1; �); : : : ; xn 7! value(en; �)g)value([[calld(f; e1; : : : ; en)]]; �) = ?Let Val denote the set of denotable values, and SEnv = P(Var! Val) the set of all static environments,where P(S) denotes the powerset of a set S. The set of possible values for an expression in the context of aset of static environments can now be de�ned easily:valueset(e; envs) = fvalue(e; �) j � 2 envsgFinally, for notational convenience we de�ne the predicate unique that speci�es whether the value of anexpression is uniquely determined in the context of a given set of static environments:unique(e; envs) , jvalueset(e; envs)j = 1 and ? 62 valueset(e; envs)4.1 Estimating Costs and Bene�tsWe �rst consider how to estimate (an upper bound to) the size of the code resulting from a single specializationstep of an annotated expression e. Let this be given bysize : Expr � SEnv �Bool!Nwhere N denotes the set of natural numbers. The Boolean argument is used to ensure that once a functioncall has been considered as unfolded, calls in its body are not considered to be unfolded: it starts out as2Statically undetermined values may arise even if we consider only static expressions in the context of a single staticenvironment, since it is possible for a static call to have a statically undetermined value in such an environment, depending onthe way in which such calls are de�ned (e.g., see [24], Sec. 5.5.1).9

true in the initial call to size, but is set to false when evaluating the body of an unfolded function call. Thisgives a conservative approximation to the amount of unfolding that can occur in a single specialization step.Let kopk denote the size of the code required to implement a primitive operation op. We now consider howthese estimates may be computed:1. Code need not be generated for constants and static variables whose values are uniquely determinedin the context of the given set of static environments (except for those occurring in the context of alift operator, which is considered later). If we assume a load-store architecture for simplicity, andconservatively (in order to avoid making assumptions about register allocation) assume that variablesare loaded from memory when referenced, we need a single load instruction for a dynamic variable ora static variable whose value is not uniquely determined:size([[c]]; envs ;) = 0 (1)size([[xs]]; envs;) = if unique(xs; envs) then 0 else 1 (2)size([[xd]]; envs;) = 1 (3)2. Static base operations that can be evaluated at specialization time do not require any residual code.The code for static base operations that cannot be so evaluated, and for dynamic base operations,consists of the code for evaluating the arguments, together with the code for the operation itself:size([[ops(e1; : : : ; en)]]; envs;) =if n̂i=1unique(ei; envs) then 0 else kopk+Pni=1 size([[ei]]; envs ; u) (4)size([[opd(e1; : : : ; en)]]; envs; u) = kopk+Pni=1 size([[ei]]; envs; u) (5)3. If, in the context of the given set of static environments, the outcome of a static conditional can bedetermined unambiguosly, then the conditional can be specialized, and the residual code is that for thethen-part or the else-part, depending on the outcome of the conditional. Otherwise, and for dynamicconditionals, we need to generate code for the test as well as both branches of the conditional:size([[ifs(e1, e2, e3)]]; envs; u) =if valueset(e1; envs) = ftrueg then size([[e2]]; envs; u)else if valueset(e1; envs) = ffalseg then size([[e3]]; envs; u)else kifk+P3i=1 size([[ei]]; envs; u) (6)size([[ifd(e1, e2, e3)]]; envs; u) = kifk+P3i=1 size([[ei]]; envs; u) (7)4. We need to generate a single load instruction to load the value of an expression lift(e) (strictlyspeaking, a value of a type that does not admit a compact representation may require multiple loadinstructions: for simplicity we ignore this here):size([[lift(e)]]; envs;) = 1 (8)5. For a static let expression, lets x = e1 in e2, if the value of e1 can be uniquely determined in theassociated set of static environments, then this value can be hard-wired into e2, so the resulting codesize is simply that for e2; otherwise it is the code size for the subexpressions e1 and e2 (in this casethe value of x has to be loaded when computing e2, but this cost is accounted for when we consideroccurrences of x within e2 and so need not be considered separately here):size([[lets x = e1 in e2]]; envs; u) =size([[e2]]; envs; u) + if unique(e1; envs) then 0 else size([[e1]]; envs; u) (9)size([[letd x = e1 in e2]]; envs; u) = 1 + size([[e1]]; envs; u) + size([[e2]]; envs; u) (10)10

6. The code for a static function call consists of the code to evaluate the arguments, together with eitherthe code for (a specialized version of) the body if the call is considered to be unfolded, or the code toimplement the call operation itself if it is not. By contrast, the code for a dynamic call consists simplyof the code to evaluate the arguments, together with the instructions to actually make the call:size([[calls(f; e1; : : : ; en)]]; envs; u) =Pni=1 size([[ei]]; envs; u)+if u then size(body(f); envs; false) else kcallk (11)size([[calld(f; e1; : : : ; en)]]; envs;) = kcallk+Pni=1 size([[ei]]; envs; u) (12)In summary, the function size estimating the code size for an expression is given by equations (1){(12).Let ep be the expression at a control point p, and let envs be the associated set of static environments,then the cost associated with that point can be expressed ascost(p) = size(ep; envs; true).Analogously to the above, let save : Expr � SEnv � Bool ! N be a function that expresses the savingsdue to a single specialization step. Intuitively, save(e; envs; u) gives a (lower bound) estimate of the savingsresulting from the specialization of an annotated expression e in the context of the set of static environmentsenvs, with the truth value u indicating whether or not function calls are to be unfolded. Let �op� denotethe (maximum) number of instructions necessary to execute a primitive operation op in the residual program.Except for the cases involving lift and static calls, the reasoning behind these equations are very similar tothat for the size function, and hence are not repeated. For an expression lift(e), we determine the savingsincurred for the static expression e, but then subtract 1 because we have to execute an instruction at runtimeto load the value of this expression. For a static function call, the Boolean argument u determines whetheror not the call is actually considered as being unfolded. If it is, the savings includes the cost of making thecall, as well as the savings from specializing the unfolded body; otherwise, the savings are simply those fromspecializing the computation of the actual parameters.save([[c]]; envs;) = 1 (1)save([[xs]]; envs;) = if unique(xs; envs) then 1 else 0 (2)save([[xd]]; envs;) = 0 (3)save([[ops(e1; : : : ; en)]]; envs; u) =if n̂i=1unique(ei; envs) then �op�+Pni=1 save([[ei]]; envs; u)elsePni=1 save([[ei]]; envs; u) (4)save([[opd(e1; : : : ; en)]]; envs; u) =Pni=1 save([[ei]]; envs; u) (5)save([[ifs(e1, e2, e3)]]; envs; u) =if valueset(e1; envs) = ftrueg then �if�+ save([[e1]]; envs; u) + save([[e2]]; envs; u)else if valueset(e1; envs) = ffalseg then �if�+ save([[e1]]; envs; u) + save([[e3]]; envs; u)else min(save([[e2]]; envs; u); save([[e3]]; envs; u)) (6)save([[ifd(e1, e2, e3)]]; envs; u) =save([[e1]]; envs; u) + min(save([[e2]]; envs; u); save([[e3]]; envs; u)) (7)save([[lift(e)]]; envs; u) = max(save([[e]]; envs; u) � 1; 0) (8)save([[lets x = e1 in e2]]; envs; u) =save([[e1]]; envs; u) + save([[e2]]; envs; u) (9)11

save([[letd x = e1 in e2]]; envs; u) = save([[e1]]; envs; u) + save([[e2]]; envs; u) (10)save([[calls(f; e1; : : : ; en)]]; envs; u) =Pni=1 save([[ei]]; envs; u)+if u then �call� + save(body(f); envs; false) else 0 (11)save([[calld(f; e1; : : : ; en)]]; envs; u) =Pni=1 save([[ei]]; envs; u) (12)If the expression occurring at a control point p is ep, with associated set of static environments envs, we cannow writesavings(p) = save(ep; envs; true):The equations given have a shortcoming, relating to the handling of static calls, that can sometimes result intoo little specialization. The problem is that when estimating the code size for a static call that is unfoldable,the set of static environments with which the size of the body of the called function is estimated is takento be the same as that at of the static call (equation 11 for size). This can be imprecise enough to fail tonotice code that can be specialized away after unfolding. This can result in an overestimate of the size ofthe unfolded body and an underestimate of the associated savings.The problem can be illustrated by considering the program shown in Section 2.1, rewritten in the abstractsyntax of Section 2, together with the set of static environments at each point:Code Static Environmentsf(yd, is) = f(is 7! 10000), (is 7! 9999), . . . , (is 7! 0)gifs(is =s 0, f(is 7! 10000), (is 7! 9999), . . . , (is 7! 0)gyd, f(is 7! 0)glet y1d = yd +d lift(is) in f(is 7! 10000), (is 7! 9999), . . . , (is 7! 1)glet i1s = is -s 1 in f(is 7! 10000), (is 7! 9999), . . . , (is 7! 1)gcalls(f, y1d, lift(i1s)) f(i1s 7! 9999), . . . , (i1s 7! 0)g)To determine the size of the static call, we try to determine the size of the body of f() using the set of staticenvironments at the call site, i.e., f(i1s 7! 9999), . . . , (i1s 7! 0)g. Unfortunately, this set of environmentsdoes not allow us to predict the outcome of the test in the static conditional in the body. Because of this,the code size and savings of the unfolded call is estimated very conservatively, with the conditional taken asbeing unspecialized in the unfolded body. However, if the sets of static environments at di�erent points ofthe function are recomputed after unfolding the call, we have the following:Code Static Environmentsf(yd, is) = f(is 7! 10000), (is 7! 9998), . . . , (is 7! 0)gifs(is =s 0, f(is 7! 10000), (is 7! 9998), . . . , (is 7! 0)gyd, f(is 7! 0)glet y1d = yd +d lift(is) in f(is 7! 10000), (is 7! 9998), . . . , (is 7! 2)glet i1s = is -s 1 in f(i1s 7! 9999), (i1s 7! 9997), . . . , (i1s 7! 1)gifs(i1s =s 0, f(i1s 7! 9999), (i1s 7! 9997), . . . , (i1s 7! 1)gy1d, f glet y2d = yd + d lift(i1s) in f(i1s 7! 9999), (i1s 7! 9997), . . . , (i1s 7! 1)glet i2s = i1s -s 1 in f(i2s 7! 9998), (i2s 7! 9996), . . . , (i2s 7! 0)gcalls(f, y2d, lift(i2s)) f(i2s 7! 9998), (is 7! 9996), . . . , (i2s 7! 0)g)) 12

Input : A set of control points P together with a dependence relation; on P (p; q means p depends onq); functions wt : P ! Z, cost : P ! Z, savings : P ! Z; and a resource bound B.Output : A set of control points Q � P that can be specialized without exceeding the resource bound B.Method :1. For each p 2 P compute, using depth-�rst traversals,CumCost(p) =Pfcost(q) j p;� qgCumSvgs(p) =Pfwt(q) � savings(q) j p;� qg2. Let Candidates = fp 2 P j CumCost(p) � Bg.If Candidates = ; then Q = ;;otherwise, Q = fp j q;� pg, where q 2 Candidates satis�es:(i) CumSvgs(q) � CumSvgs(p) for all p 2 Candidates; and(ii) CumSvgs(p) = CumSvgs(q) implies CumCost(q) � CumCost(p) for all p 2 Candidates .3. Let Q0 = Q [fq0 j 9q 2 Q : q0 is a static subexpression of qg;4. return Q0. Figure 3: A heuristic algorithm for the accountant componentIt is clear that the outcome of the static conditional ifs(i1s =s 0, ...) can now be predicted, and the sizeand savings determined more accurately. The problem is that if the overestimation of code size due to thisreason is high enough, it may prevent the unfolding of a call, in which case we will not be able to discoversome opportunities for subsequent specialization: e.g., in the example above, it could be that the code sizeestimate prior to unfolding is too high to allow unfolding given the available resource bounds, even thoughthe unfolded body after the static conditional has been specialized away may be small enough to �t withinthese bounds. One possible way to address this problem would be to estimate code sizes of unfolded bodiesmore carefully, by �rst determining the set of static environments that would be associated with each pointin the unfolded body, then using these static environments to estimate code sizes.4.2 Cumulative Costs and Bene�tsBecause of the congruence requirements, it will not be possible, in general, to select operations for special-ization in isolation: when a point is selected for specialization, it will be necessary to ensure that all points itdepends on are also selected. This means that the total cost of specializing a given point p is given by the costof p together with the cost of all of the points it depends on. On the other hand, since all of the points thatp depends on are also specialized when p is specialized, the total savings resulting from the specialization ofp is given by the savings for p together with the savings for all of the points p depends on. We refer to thesevalues as the cumulative cost CumCost(p) and the cumulative savings CumSvgs(v) respectively. Let p; qdenote that point p depends on point q, and let ;� denote the re
exive transitive closure of ;. Then, forany point p, the values of CumCost(p) and CumSvgs(p) can be computed using depth-�rst search to visiteach point q such that p;� q, i.e., the point p itself together with all the points that p depends on, accumu-lating the costs and savings of each node visited during the traversal. If the program being specialized is ofsize n (this could be either the original program, or a partly specialized program that is fed back from thespecialized to the accountant), there are n control points, and the worst-case complexity of the computationof cumulative costs and savings for all points is O(n2) time and O(n) space. Notice that (i) it is not correctto write CumCost(p) = cost(p) +PfCumCost(q) j p; qg, since this can sometimes cause the cost of some13

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

0 2000 4000 6000 8000 10000

S
pe

ed
up

input size

resource-bounded
uncontrolled

(a) convolution 0.6

0.8

1

1.2

1.4

1.6

1.8

0 100 200 300 400 500 600 700

S
pe

ed
up

input size

resource-bounded
uncontrolled

(b) matrix multiplicationFigure 4: Resource-Bounded vs. Uncontrolled Specializationnodes to be counted more than once; and (ii) if, instead of repeated depth-�rst traversals of the dependencygraph, we explicitly associate, with each control point, the set of all of the points it depends on, we incur aquadratic space cost, which can be prohibitive for large programs.Once the cumulative costs and savings corresponding to each control point have been determined, we arein a position to determine the set of points that can be specialized without exceeding the available resources.For this, we simply �nd a control point with largest cumulative savings whose cumulative cost does notexceed the available resource bounds. This point, and all of its predecessors in the dependency graph, arenow marked for specialization. We also mark for specialization each of static subexpressions of the set ofexpressions so marked, since the costs of these subexpressions were taken into account for when computingthe cost of the expressions that were determined to be specializable without exceeding the available resourcebounds.At this point, there may still be enough resources available, after we update our estimate of availableresources to account for the control points that have been chosen for specialization, to leave room for furtherspecialization. However, if we simply repeat the above procedure|that is, if we take an available controlpoint whose cumulative savings are the highest among the remaining nodes, and whose resource requirementsdo not exceed the available resources|we can conceivably consider some nodes twice. The reason is that thecumulative cost of a node a is determined using the cost of all of the nodes it depends on. It may happen thatsome of these predecessors have already been marked for specialization in the previous step: in this case, thecosts and bene�ts resulting from the specialization of those nodes have already been accounted for. However,the cumulative cost and savings for the node a have not been updated to account for this, which means thatthey no longer correctly re
ect the incremental costs and savings for a given the specialization decisionsthat have already been made. We could, in principle, rectify this problem by updating the cumulative costsand savings for the remaining nodes appropriately, and then repeat the above procedure, until no furtherspecialization can be carried out. We choose to not do this, since we get essentially the same e�ect by havingthe accountant return to the specializer the �rst set of points it has marked for specialization as describedabove, then have the specializer query the accountant again with the resulting specialized program. Theresulting algorithm is shown in Figure 3.5 Experimental ResultsThe ideas described here have not yet been implemented as part of a partial evaluator: the results wedescribe were obtained via hand-simulation. At this time, we have had time to run experiments on onlya few programs. In this section we describe two of the experiments we conducted in order to explain our14

results and put them in proper perspective. These were run on a lightly-loaded 25 MHz SPARC IPC with64 Kbytes of cache and 32 Mbytes of main memory.3 The resource bound used was 16384 (the number of4-byte words in a 64 Kbyte cache). Runtimes were obtained using the gettimeofday system call and takingthe smallest time from �ve runs of each program.The �rst experiment involved convolution-like program mentioned in Section 1. This is a simple Schemeprogram that, given two n-element vectors �x and �y, computes Pnj=1Pni=1 xiyj :(define (conv x y)(define (conv0 x y acc)(if (null? y)acc(conv0 x (cdr y)(conv1 x (car y) acc)))))(define (conv1 x y0 acc)(if (null? x)acc(conv1 (cdr x) y0(+ acc (* (car x) y0)))))(conv0 x y 0)Our aim was to specialize the function conv(x, y) to the �rst argument, x, and measure the speedupsobtained for di�erent lengths of x. We used Similix [6] running on the scm Scheme interpreter for thespecialization, and the Bigloo Scheme-to-C translator (version 1.8) [30] invoked as bigloo1.8 -O4 -unsafe-farithmetic, with gcc version 2.7.2 as the back-end compiler, to produce executables. It turned out thatthe memory requirements of Similix and Bigloo were higher than we could a�ord: the scm interpreter runningSimilix ran out of memory for an input length of 300, while Bigloo was unable to compile the specializedprogram corresponding to n = 200 due to a stack over
ow in the preprocessor phase. Fortunately, thestructure of both the Scheme code generated by Similix, and the resulting C code obtained from Bigloo,were su�ciently regular in this case as to allow us to extrapolate to larger values of n. Our performancenumbers were thus obtained by extrapolating in this manner, using a script to generate C code very similarto what would have been generated given in�nite memory. Some further modi�cations, such as
atteningof deeply nested expressions, were necessary to allow gcc to parse the input without exhausting the parserstack; we were careful to ensure that none of these transformations changed the essential characteristics ofthe computation. We then compiled this code using gcc -O and timed the resulting executables.Our second program was a straightforward nested-loops
oating-point matrix multiplication program,specialized to one of the matrices. For this, we used a C program, with matrices represented in the natural Cstyle, i.e., as an array of arrays of
oating point values. The specialized versions in this case were generateddirectly using a script, as in the previous case discussed above, and compiled with gcc -O2.The performance of the resulting programs is shown in Figure 4. Figure 4(a) shows the performance ofthe convolution program. Here, because the resource-bounded specialization is conservative in its estimateof the size of the inner loop of the program, it stops unrolling the loop \too soon," resulting in an earlydrop in performance for resource-bounded specialization compared to that of uncontrolled specialization.For larger input sizes, however, resource-bounded specialization maintains its speedup while speedups foruncontrolled specialization drops o� quickly once the inner loop can no longer �t in the instruction cache.Overall, the code resulting from resource-bounded specialization maintains a speedup of about 15%{20%3We chose this architecture, despite the fact that it is somewhat dated, because the absence of multi-level caches simpli�edthe memory hierarchy and made for a better �t with our current cost model.15

over the unspecialized code, while that resulting from uncontrolled specialization is initially about 25% fasterthan the unspecialized code, but ends up about 5% slower. The performance of the matrix multiplicationprogram is shown in Figure 4(b). In this case, it turns out that the for matrices larger than 128� 128, thesingle combined cache cannot accommodate all of the data as well as the code|this accounts for the steepperformance drop for both the uncontrolled and the resource-bounded specialized versions at about this inputsize. At this point (actually slightly earlier, because of its conservative data reference estimates), resource-bounded specialization stops code specialization because it determines that all of the available resources havebeen exhausted; as a result, the resource-bounded specialized code is identical to the unspecialized code forlarger inputs, and the speedup is 1.0 (since this case worked directly with C arrays, it did not get the smallspeedups resulting from specialization of CAR() and CDR() operations as in the convolution program). It canbe seen, however, that in either case, by avoiding uncontrolled code growth, resource-bounded specializationis able to avoid the dramatic performance loss su�ered by uncontrolled specialization for large inputs.5.1 Discussion of Performance ResultsIn order to fully understand the behavior illustrated in Figure 4, it is important to consider the code beinggenerated for the various programs that we ran. First, consider the convolution program. The C codegenerated by Bigloo for the inner loop of the original unspecialized program has the following form (hereNULLP(), CINT() and CDR() are Bigloo macros with the behavior one intuitively expects):acc_0 = 0;loop: if (NULLP(x)) acc = acc_0;else {acc_0 += (long)CINT(CAR(x))*(long)CINT(y);x = CDR(x);goto loop;}By contrast, in the program specialized by Similix without regard to resource bounds, the inner loop iscompletely unrolled, resulting in C code of the form:acc_0 = 0;acc_0 += 1000*(long)CINT(y);acc_0 += 999*(long)CINT(y);acc_0 += 998*(long)CINT(y);...acc_0 += 3*(long)CINT(y);acc_0 += 2*(long)CINT(y);acc_0 += 1*(long)CINT(y);acc = acc_0;Finally, consider the code produced by resource-bounded specialization. For this program, this code consistsof a loop, obtained by partially unrolling the inner loop of the original program, whose body does notexceed the amount of available cache, followed by a straight-line code segment corresponding to any left-overcomputations. A �rst observation is that, unlike the fully-unrolled version, the assignments to acc 0 insidethe loop in this program cannot have the value of the static data hard-wired into them. However, it is notnecessary to give up all hope of specializing these statements and revert to explicitly accessing the elementsof a list using CAR() and CDR() operations as in the unspecialized program: the specializer knows the actualvalues of the static data, and the sequence in which they are accessed, and it is not unreasonable to supposethat it can eliminate some of the overhead of accessing these values by replacing the list by an array ofintegers that is accessed via a pointer. The resulting code therefore has the following structure:16

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

0 2000 4000 6000 8000 10000

S
pe

ed
up

input size

N = 60
N = 40
N = 7
N = 0

(a) convolution 0.6

0.8

1

1.2

1.4

1.6

1.8

0 100 200 300 400 500 600 700

S
pe

ed
up

input size

N = 50
N = 25
N = 10
N = 0

(b) matrix multiplicationFigure 5: Speedups for Di�erent Estimates of Inner Loop Sizelong tbl[] = {1000, 999, 998, ..., 3, 2, 1};...acc_0 = 0;ptr = &(tbl[0]);cnt = ... /* no. of iterations of thepartially unrolled loop */for (i = 0; i < cnt; i++) {/* partially unrolled loop */acc_0 += (*ptr++)*(long)CINT(y);acc_0 += (*ptr++)*(long)CINT(y);...acc_0 += (*ptr++)*(long)CINT(y);}/*-- remainder of computation --*/acc_0 += 74*(long)CINT(y);acc_0 += 73*(long)CINT(y);...acc_0 += 3*(long)CINT(y);acc_0 += 2*(long)CINT(y);acc_0 += 1*(long)CINT(y);acc = acc_0;There are two low-level aspects of the particular machine on which our experiments were carried out thathave profound e�ects on the performance characteristics of these programs. The �rst is that the SPARCIPC does not have a hardware multiplier, so integer multiplication is carried out in software via a call toa function (implemented in hand-coded assembly code) whose body contains about 50 instructions. Thesecond is that when one of the two operands of an integer multiplication operation is a constant, C compilerssuch as cc and gcc are able to implement the multiplication using a sequence of bit-manipulation operationssuch as left-shift, add, and logical-or, which turn out to be considerably cheaper than a call to the general-purpose multiplication function. As a result, for an input length of 1000, for example, the specializedprogram obtained from Similix, with its fully unrolled loop, is about 9.5 times faster than the originalprogram|considerably more than a straightforward examination of the C source code would suggest. Inthe partially unrolled loops resulting from resource-bounded specialization, unfortunately, the expressionsinvolving multiplication do not have integer constants hard-wired into them as operands; as a result, theseoperations are implemented using calls to the multiplication function. Because of this, for small input sizes,17

the code resulting from the resource-bounded specialization turn out to be roughly an order of magnitudeslower than the fully unrolled versions.It can be argued, however, that speed improvements resulting from C compiler tricks for a particularoperation should not be counted towards the gains resulting from partial evaluation. To see this, supposethat instead of integer multiplication, the \product operation" in this computation was
oating point multi-plication or bitwise-xor: the programs resulting from partial evaluation would have been essentially identicalin each case, modulo the change in the product operator, but their relative performance would have beenconsiderably di�erent because of the absence of corresponding bit-twiddling tricks in the C compiler. Simi-larly, if the processor had a hardware multiplier, the cost of carrying out the multiplication operations wouldbe reduced considerably, again leading to signi�cant di�erences in relative performance.For these reasons, we felt that in order to obtain a fair comparison between resource-bounded anduncontrolled partial evaluation, we should separate out e�ects due to low-level compiler tricks, by forcingthe C compiler to always use the general purpose multiplication function for integer multiplication. It turnsout that in this case, the fully unrolled loop resulting from uncontrolled specialization of the convolutionprogram is about 25% faster than the unspecialized program for small input sizes (this does not a�ect thematrix multiplication example, since this program does not contain any integer multiplication operations).The speedups resulting from these programs, for di�erent input lengths, is shown in Figure 4.Since partial evaluation is usually formulated as a source-to-source transformation, a question of someinterest is: how precise does the resource-bounded specializer's estimates of the size of the generated codehave to be? To examine this issue, we examined the performance due to resource-bounded specializationof the convolution program for di�erent estimates of the size of the inner loop. The results are shown inFigure 5, where the parameter N denotes the specializer's estimate of the number of instructions in theinner loop of the program.4 We found that as long as the size estimate is conservative enough to ensurethat the specialized code does not over
ow the cache, the performance for di�erent values of N is noticeablebut not huge. For example, for the convolution program, shown in Figure 5(a), the di�erence between thecurve for N = 40 and that for N = 60 is typically about 5%{7%. The reason the performance curve forN = 7|which is actually the closest to the actual size of the generated code|drops steeply at an inputsize of 4000 is that once the input exceeds this size, the resource-bounded specializer determines that theinner loop should not be unrolled further, and switches to pointer-based accesses of data from a table, whichresults in a memory reference with an additional level of indirection for each data value (however, unlikeuncontrolled specialization, this halts further performance degradation). The di�erence between the curvesfor N = 7 and N = 60 are again not intolerably large. For the matrix multiplication program, shown inFigure 5(b), going from N = 10 to N = 50 has only a very minor e�ect on the overall speedups. This leadsus to believe that it is possible to use resource-bounded specialization to attain reasonable performance aslong as the specializer makes conservative but reasonable assumptions about the compiler technology beingused to generate the executable code.The discussion thus far has focused on a single resource bound. We believe that in general, it will benecessary to model the memory hierarchy of a computational environment in more detail: for example,many processors now come equipped with two (and, occasionally, three) levels of cache memory, and it isnot unreasonable to consider hardware registers as another level above all of these. Whether or not a certainincrease in code size is worthwhile then depends greatly on the relative costs of accessing the di�erent levelsof such a multi-level hierarchy. We hope to address such issues in future work.4The reason Figure 4(a) shows the graph corresponding to N = 60 is that our code size estimates were not smart enoughto realize that multiple calls to the integer multiplication routine within an unrolled loop would nevertheless result in a singlecopy of the code for that function being resident in the cache. In other words, it assumed|conservatively|that each such callwould be unfolded. 18

6 DiscussionThe introduction of an \accountant" that guides specialization decisions based on resource usage can leadto some interesting generalizations to ideas traditionally used in o�ine partial evaluation. Here we exploresome of these.6.1 Termination ConsiderationsIn traditional o�ine partial evaluation, since the specializer blindly specializes all computations annotatedas \static", the responsibility for ensuring termination falls on the binding time analysis [3, 18, 21]. This isundesirable, both for conceptual and pragmatic reasons. Conceptually, it mixes two independent concerns:the question of what can be specialized, and that of what should be specialized. In other words, traditional of-
ine partial evaluation overloads the binding time annotation \dynamic" to mean both \cannot be staticallycomputed" and \should not be (blindly) computed statically due to termination concerns." Pragmatically,it means that some kinds of transformations are necessarily ruled out, even though they may lead to per-formance improvements: for example, a recursive function whose recursion is controlled by a dynamic valuewill not be unfolded, even though a limited amount of unfolding could be bene�cial in improving programperformance.In our model, by contrast, the separation of concerns is much sharper: the binding time analysis isconcerned solely with identifying which computations can be specialized, while accountant is responsible fordeciding which computations should be specialized. As mentioned at the end of Section 4.2, the number ofinvocations of the accountant|and, therefore, the number of specialization steps that take place|dependson, among other things, the rate at which the amount of available resources decreases as the program isspecialized. It can happen that the amount of code growth during a specialization step due to unfoldingis exactly equal to the amount of code that is then specialized away, resulting in no net change in eithercode size or resource usage: this can lead to nontermination of partial evaluation in programs with staticin�nite loops. For this reason, while most of the discussion thus far has focused on e�ective utilization ofresources by the specialized code, it may not be unreasonable to require the accountant to be responsible fortermination of partial evaluation as well. If this is done, the model described in this paper can be extendedto obtain some additional
exibility during partial evaluation. For example, in a program that spends muchof its time in a recursive function whose recursion is controlled by a dynamic parameter, it may be possibleto allow this function to be unfolded to a limited extent, and this can have bene�cial performance e�ectswithout compromising termination of partial evaluation.6.2 Flexible Binding of Resource InformationHard-wiring in resource information pertinent to a particular computational environment too early in thespecialization process may lead to an overly in
exible system. This potential in
exibility can be handledby considering the resource information to be an additional static input whose value becomes available atsome point during a multi-level specialization process [19]. By appropriately choosing the level at whichthe resource information becomes available, we can obtain a variety of behaviors: for example, by makingthe resource information known at an early level, we can get a partial evaluator that can handle di�erentprograms for a particular machine, while by making the resource information available late in the multi-levelspecialization process we can get a generating extension for a particular program that can be used on avariety of di�erent machines.6.3 Value-selective Specialization using \The Trick"A standard technique for binding-time improvement for variables of bounded static variation is \the trick"[24]. The basic idea is as follows: suppose we have the following program fragment from a network commu-nication protocol: 19

process(status, pkt)where status is the status of the previous transmission, and pkt a packet to be sent. Suppose that statusis dynamic, but can take on values only from the set fok, timeout, corruptg. Then we can rewrite the abovecomputation as (something semantically equivalent to):case status ofok: process(ok, pkt);timeout: process(timeout, pkt);corrupt: process(corrupt, pkt);endSpecialization of this rewritten program specializes each of the calls to process() to the value of the cor-responding �rst argument, as desired. Now suppose that it turns out that in the vast majority of cases thevalue taken on by status is ok. In this case, it may make sense to generate specialized code for this case only(especially if, as is very often the case, the rarely-executed exception handling code is large and bulky), andresort to the general-purpose unspecialized code for the other cases.5 Since resource-bounded specializationtakes execution weights into account when determining the cumulative savings for various control points, itcan achieve a similar e�ect, specializing for only those values that yield su�cient bene�ts without exceedingthe available resources. Of course, a similar e�ect can be obtained by manually writing the code asif (status = ok) thenprocess(ok, pkt)elseprocess(status, pkt)However, resource-bounded specialization can o�er greater
exibility: for example, continuing the networkprotocol application line, consider a packet classi�er that takes a packet received from the network, identi�eswhich protocol it belongs to, and processes it accordingly. In Europe, such a classi�er might �nd thatthe X.25 protocol is very commonly used, while in the USA the IP protocol might be found to be muchmore common. In either case, it makes sense to specialize the code in the packet classi�er for the morecommonly encountered protocol(s), but this is awkward at best using manual rewriting. With resource-bounded specialization, classi�ers in di�erent operational environments can be specialized in di�erent wayswithout excessive manual intervention.7 ConclusionsTraditional o�-line partial evaluators generally do not take into account the availability of machine resourcesduring specialization. This can adversely a�ect performance, in extreme cases causing a specialized pro-gram to run more slowly than the unspecialized version. In this paper we consider how resource availabilityconsiderations can be incorporated into a partial evaluator. We show that optimal resource-bounded special-ization is an NP-complete problem, and discuss simple heuristics that can be used to address the problem inpractice, and discuss how awareness of resource availability can lead to some interesting generalizations ofideas traditionally used in o�ine partial evaluation. While our algorithms have not been incorporated intoa partial evaluator, preliminary experiments appear encouraging.AcknowledgementsThis paper has bene�ted greatly from comments by Peter Holst Andersen as well as the anonymous referees.5In operating systems parlance, this kind of selective specialization is referred to as \outlining" [8, 26, 27].20

References[1] L. O. Anderson, \ProgramAnalysis and Specialization for the C ProgrammingLanguage", DIKU ReportNo. 94/19, Dept. of Computer Science, University of Copenhagen, 1994.[2] L. O. Andersen and C. K. Gomard, \Speedup Analysis in Partial Evaluation (Preliminary Results)",Proc. ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation,June 1992, pp. 1{7. (Also available as Technical Report YALEU/DCS/RR-909,Department of ComputerScience, Yale University, New Haven, CT.)[3] P. H. Andersen and C. K. Holst, \Termination Analysis for O�ine Partial Evaluation of a Higher OrderProgramming Language", Proc. Third International Static Analysis Symposium, 1996.[4] R. Baier, R. Gl�uck, and R. Z�ochling, \Partial Evaluation of Numerical Programs in Fortran", Proc.ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation, 1994,pp. 119{132. Report 94/9, Dept. of Computer Science, University of Melbourne.[5] L. Birkedal and M. Welinder, \Partial Evaluation of Standard ML", DIKU Report No. 93/22, Dept. ofComputer Science, University of Copenhagen, 1993.[6] A. Bondorf, Similix 5.0 Manual, Department of Computer Science, University of Copenhagen, Copen-hagen, Denmark, May 1993.[7] R. M. Burstall and J. Darlington, \A Transformation System for Developing Recursive Programs",Journal of the ACM vol. 24 no. 1, Jan. 1977, pp. 44-67.[8] C. Castelluccia, \Automating Header Prediction", Proc. Workshop on Compiler Support for SystemSoftware, Tucson, Feb. 1996, pp. 44{53.[9] W. Y. Chen, P. P. Chung, T. M. Conte, and W. W. Hwu, \The E�ect of Code Expanding Optimizationson Instruction Cache Design", IEEE Transactions on Computers 42(9), Sept. 1993, pp. 1045{1057.[10] C. Consel, \Binding Time Analysis for Higher Order Untyped Functional Languages", Proc. 1990 ACMConference on Lisp and Functional Programming, pp. 264{272.[11] O. Danvy, N. Heintze and K. Malmkj�r, \Resource-Bounded Partial Evaluation", ACM ComputingSurveys vol. 28 no. 2, June 1996, pp. 329{332.[12] J. W. Davidson and A. M. Holler, \Subprogram Inlining: A Study of its E�ects on Program ExecutionTime", IEEE Transactions on Software Engineering vol. 18 no. 2, Feb. 1992, pp. 89{102.[13] J. W. Davidson and S. Jinturkar, \An Aggressive Approach to Loop Unrolling", Proc. Compiler Con-struction '96.[14] J. Dean and C. Chambers, \Towards Better Inlining Decisions using Inlining Trials", Proc. 1994 ACMConference on Lisp and Functional Programming, Orlando, Florida, June 1994, pp. 273{282.[15] J. Dean, C. Chambers and D. Grove, \Selective Specialization for Object-Oriented Languages", Proc.SIGPLAN '95 Conference on Programming Language Design and Implementation, June 1995, pp. 93{102.[16] J. Dongarra and A. R. Hinds, \Unrolling Loops in FORTRAN", Software Practice and Experience vol.9 no. 3, March 1979, pp. 219{226.[17] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979. 21

[18] A. J. Glenstrup and N. D. Jones, \BTA Algorithms to Ensure Termination of O�-line Partial Evalu-ation", in Perspectives of System Informatics: Proceedings of the Andrei Ershov Second InternationalMemorial Conference, June 1996.[19] R. Gl�uck and J. J�rgensen, \E�cient Multi-Level Generating Extensions for Program Specialization",Proc. International Symposium on Programming Languages, Implementation, Logics and Programs(PLILP), 1995.[20] C. Gurr, A Self-Applicable Partial Evaluator for the Logic Programming Language G�odel, Ph.D. Thesis,University of Bristol, 1994.[21] C. K. Holst, \Finiteness Analysis", Proc. Functional Programming and Computer Architecture, 1991,pp. 473{495.[22] W. W. Hwu and P. H. Chang, \Achieving High Instruction Cache Performance with an OptimizingCompiler", Proc. 16th. International Symposium on Computer Architecture, May 1989, pp. 242{251.[23] W. W. Hwu and P. H. Chang, \Inline Function Expansion for Compiling C Programs", Proc. SIGPLAN'89 Conference on Programming Language Design and Implementation, June 1989, pp. 246{257.[24] N. D. Jones, C. K. Gomard and P. Sestoft, Partial Evaluation and Automatic Program Generation,Prentice Hall, 1993.[25] S. McFarling, Program Analysis and Optimization for Machines with Instruction Cache, Ph.D. Disser-tation, Stanford University, Sept. 1991.[26] D. Mosberger, L. L. Peterson, P. G. Bridges, and S. O'Malley, \Improving the I-Cache E�ectivenessof Network Software", Proc. Workshop on Compiler Support for System Software, Tucson, Feb. 1996,pp. 29{36.[27] D. Mosberger, L. L. Peterson, P. G. Bridges, and S. O'Malley, \Analysis of Techniques to ImproveProtocol Processing Latency", Proc. SIGCOMM '96, pp. 73{84, Sept. 1996.[28] K. Pettis and R. C. Hansen, \Pro�le Guided Code Positioning", Proc. SIGPLAN '90 Conference onProgramming Language Design and Implementation, 1990, pp. 16{27.[29] D. Sahlin, An Automatic Partial Evaluator for Full Prolog, Ph.D. Thesis, Kungliga Tekniska H�ogskolan,Stockholm, Sweden, 1991. Report TRITA-TCS-9101.[30] M. Serrano and P. Weis, \Bigloo: a portable and optimizing compiler for strict functional languages"Proc. Static Analysis Symposium (SAS '95), 1995, pp. 366{381.[31] S. Weiss and J. E. Smith, \A Study of Scalar Compilation Techniques for Pipelined Supercomput-ers", Proc. Second International Conference on Architectural Support for Programming Languages andOperating Systems (ASPLOS II) , Oct. 1987, pp. 105{109.
22

