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Abstract

Most partial evaluators do not take the availability of machine-level resources, such as registers or
cache, into consideration when making their specialization decisions. The resulting resource contention
can lead to severe performance degradation—causing, in extreme cases, the specialized code to run slower
than the unspecialized code. In this paper we consider how resource considerations can be incorporated
within a partial evaluator. We develop an abstract formulation of the problem, show that optimal
resource-bounded partial evaluation is NP-complete, and discuss simple heuristics that can be used to

address the problem in practice.

1 Introduction

The field of partial evaluation has matured greatly in recent years, and partial evaluators have been imple-
mented for a wide variety of programming languages [1, 4, 5, 6, 20, 29]. A central concern guiding these
implementations has been to ensure that input programs should be specialized as far as possible without
compromising termination of the partial evaluator. The good news is that most current implementations of
partial evaluators have achieved some success at satisfying this concern. Unfortunately, the bad news is also
that these systems are successful at meeting this concern. Focusing single-mindedly on specializing as much
of an input program as possible, partial evaluators typically ignore the availability of machine-level resources,
such as registers or cache, when making specialization decisions. The resulting resource contention can lead
to significant performance degradations—in some cases, causing the specialized program to run slower than
the unspecialized code.

The problem is illustrated by Figure 1. This figure illustrates how the speedup of a convolution-like
program, which computes Z;zl Sor_ | xiy; given two n-element integer vectors x and y and which has been
specialized to one of the input vectors, varies for different values of n.' It can be seen that while the
specialized program is about 25% faster than the unspecialized version for small values of n, the speedups
drop off steeply after n = 4000, and for n > 7000 the specialized code is slower than the unspecialized

program.

*

A preliminary version of this paper appeared in Proc. 1997 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM-97). This work was supported in part by the National Science Foundation
under grant CCR-9502826.

! The numbers are based on a Scheme program that represents a vector as a list, specialized using Similix [6] and compiled
using Bigloo version 1.8 [30], with gcc version 2.7.2 as the back-end compiler, and run on a 25 MHz SPARC TPC with 64 Kbytes
of cache and 32 Mbytes of main memory. See Section 5 for further details.
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Figure 1: Relative Performance of Specialized Convolution Programs

This loss in performance is due not so much to an “explosion” in code size as it is to specialization with
no regard for machine-level resources. What happens is that because one of the input vectors is known at
specialization time, the inner loop of the program is unrolled completely into a straight line sequence of code.
For different input sizes, this results in a family of specialized programs where the size of the body of the
main loop—where most of the execution time of the program is spent—grows linearly as n. This apparently
modest growth rate incurs significant performance penalties once n becomes large enough that the body of
the loop does not fit in the instruction cache of the processor.

There are two reasons why performance degradation due to over-specialization can be a problem. First,
as the example given illustrates, it can manifest itself even for commonly encountered computations and
reasonably sized inputs; and second, the performance degradation typically increases as the (static) input
size increases and is the worst for the largest inputs, whereas these are precisely the cases where we would
like partial evaluation technology to deliver the greatest benefits. For these reasons, it would seem desirable
to be able to incorporate some awareness of the availability of resources during the partial evaluation process.

The potential problem of code growth during partial evaluation has been noted in the past (e.g., see [24]),
but we do not know of any proposal to address code growth given fixed resources. There has been some work
on identifying those static computations whose specialization can contribute to good speedups [2], but these
do not directly address the particular problem that we are concerned with. The i1ssue of resource-bounded
partial evaluation has been discussed by Danvy et al. [11], who sketch possible approaches to the problem
at a very high level but offer few details. Many of the issues that arise in this work have been considered in
the compiler optimization literature as well, albeit in considerably more restricted contexts. This includes
work on function inlining [7, 12, 14, 15, 23], loop unrolling [9, 13, 16, 31], and improving cache utilization of
programs [22, 25, 28].

2 Underlying Concepts

We assume that the programs being specialized are expressed in a (untyped, eager) first-order functional
language. We will generally work with binding-time annotated programs with the following abstract syntax:

P € Prog (programs)
e € Expr (expressions)
r € Var (variables)



P .= {fl(l‘l,...,l‘n) :61,~~~,fn(x1a~~~axn) :en}

en=c constant)
| 25 static variable)
| 24 dynamic variable)
| op,Cer, ... en) static base operation)
| opyCer, ... en) dynamic base operation)

| if;(ey, ea, e3) static conditional)
| ifq(er, ea, es)
| Lift (e)

| let; @ = e in e

dynamic conditional)
lift a static expression)
static let expression)
| lety = €1 in es
| call, (f,e1,...,en)
| cally(f,e1,...,en)

dynamic let expression)
static call)
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The body of a function f will sometimes be denoted by body(f). It is assumed that all, and only, static
function calls are considered for unfolding. For concreteness, we will informally use a first-order subset of
Scheme for our examples.

2.1 Program Points

Let a control point refer to any executable construct within a program, and a static environment at a control
point refer to a mapping from the static variables at that point to values. Traditionally, a “program point”
in a specialized program is taken to be a pair (ep, senv), where ¢p is a control point in the original (i.e.,
unspecialized) program and senv a static environment for that point. For our purposes, we need to extend
this so that a program point in a specialized program is a pair (cp, SEnv) where SEnv is a set of static
environments corresponding to the control point ¢p in the original program. To see the reason for this,
consider the following Scheme code:

(define (foo y)

(define (£ y 1)

(if (=10 y
(let* ( (y0 (+ y 1)) (i0 (-1 1)) )
(£ y0 i0)))

)

(f y 10000)
)

The sort of code we would intuitively like to generate is that obtained by unfolding the recursive call to £,
as much as possible while ensuring that the body of the resulting code still fits in the cache, i.e., something

like

(define (foo y)
(define (£ y 1)
(if (=10 y
(let* ((y0_0 (+ y 1)) (10_0 (- i 1))
(y0o_1 (+ y0_0 i0_0)) (i0_1 (- 10_0 1))
(yo_2 (+ yo_1 i0_1)) (i0_2 (- i0_1 1))

(y0_99 (+ y0_98 i0_98)) (i0_99 (- i0_98 1))
)
(f y0_99 i0_99)))



)
(f y 10000)

However, if we take a specialized program point to be a (control point, static environment) pair, then
specialization will proceed with the sequence of program points (L, [1i — 10000]), (L, [1 — 9999]), ..., where
L denotes the control point where y0 is bound to (+ y i), and this will result in the generation of the
specialized statements with the static values of the variable i hard-wired in, as follows, which is not what
we want:

(define (foo y)
(define (f y)
(let* ( (y0_0 (+ y 10000))
(yo_1 (+ y0_0 9999))
(y0_2 (+ y0_1 9998))

)
y0_10000

)
(£ y)

This problem can be avoided by having a program point in a specialized program associate a set of static
environments with each control point in the original program: in the special case where this set is a singleton,
the values of the static variables can be substituted for the variables, as before.

If the available resources do not allow a program to be specialized to the extent where there is exactly one
static environment associated with each specialized program point, then those points that are associated with
more than one static environment cannot have the values of the corresponding static data hard-wired into
the residual code. For such points, it is necessary to retain the values of the static data separately, and we
need to take into account the resources necessary for this when estimating the amount of resources actually
available for accommodating code growth during partial evaluation (if instructions and data compete for
resources, 1t makes sense to try and have both the code and the data fit in the available resources if possible:
a cache miss due to a data reference is just as expensive as a miss due to an instruction reference). On the
other hand, if the program can be specialized to the extent that there is at most one static environment
per specialized program point, the static data values can be hard-wired into the residual program, making
it unnecessary to store them separately, and potentially freeing up additional space for code growth. In
other words, if we cannot be sure that the program can be specialized “all the way” and still fit within the
available resources, we should allow for the fact that some of the static data will have to be kept around,
and that as a result, not all of the resources may be available to accommodate code growth. This implies
also that if we are able to detect situations when the static data need not be kept around separately, 1t may
be possible to do a better job of specialization than if we conservatively retain space for the static data.

2.2 Specialization Annotations

Traditional offline partial evaluation consists of two components: a binding time analyzer, which determines
which computations can be specialized; and a specializer, which carries out the actual specialization, based
on the information provided by the binding time analyzer. To account for resource availability, we extend
this to include a third component, the accountant, as depicted in Figure 2. The idea is that the binding
time analyzer determines which computations can be specialized and passes this information—in the form
of a program annotated with binding times—to the specializer. The specializer then queries the accountant
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(a) Organization

Input : An input program P, resource bound ResourceAvail.
Output : A specialized program P,y .
Method :

Py := BindingTimeAnalysis(Piy);
repeat
Py := Accountant(Py, Resource Avail);
S := set of specialization annotated points in Py;
if S # 0 then
(Pa, ResourceUsed) := Specialize(Py);
Resource Avail == Resource Avail — ResourceUsed,
recompute static environments for functions where unfolding has occurred;
PO = Pz;
fi
until S = §;
P,y := remove binding time annotations from Py;

return P,qy;

(b) Algorithm

Figure 2: Overview of Resource-Bounded Partial Evaluation



with a binding-time annotated program, which indicates which operations can be specialized, together with
an estimate of the available resources. The accountant uses the resource information to determine which
operations should be specialized, and tags each static computation with one of the annotations specialize or
don’t-specialize (another way to think of this is to imagine the accountant as turning some of the “static”
annotations to “dynamic” to prevent some specializations from taking place). This specialization-annotated
program is returned to the specializer, which carries out a single “specialization step” (see below) based
on the decisions of the accountant and updates its resource availability estimates accordingly. Any new
control points in the resulting program are annotated with binding time annotations inherited from the
original binding-time annotated program where necessary, and static environments associated with such
points 1s determined. This is then used to query the accountant again, together with the updated resource
estimates. This process continues, with the specializer repeatedly querying the accountant with a binding-
time annotated (partially specialized) program together with an estimate of the available resources, then
specializing the specialization-annotated program returned by the accountant and updating its resource
estimates, until the accountant terminates the specialization process due to the exhaustion of available
resources (or possibly because it identifies a nonterminating specialization sequence) by returning a program
where no operation is annotated for specialization.

An important notion in this context is that of a specialization step, which refers to the actions the
specializer can take unilaterally between two consecutive queries to the accountant. Since we are concerned
primarily with code growth, which occurs when function calls are unfolded, we have to limit the number of
unfolding steps that can occur between any two consecutive queries to the accountant. We therefore define a
specialization step to be a (maximal) sequence of reductions such that, whenever a function call is unfolded,
calls occurring in the unfolded body are not considered for further unfolding.

In some ways, the use of specialization annotations resembles the notion of “mixline” partial evaluation
[10], where binding-time annotations of “possibly static” or “sometimes static” are permitted. The difference
is that in our model, the binding time analysis does not itself distinguish between “possibly static” and
“definitely static” entities: it identifies everything that is (definitely) static, and the accountant selects a
subset of these for actual specialization in any particular specialization step based on the availability of
resources. In the degenerate case where the accountant ignores the availability of resources and always
selects all static computations for specialization, this model becomes indistinguishable from the traditional
approach to partial evaluation.

Traditionally, the classification of variables as “static” or “dynamic” is required to satisfy a congruence
condition that states, essentially, that any variable that depends on a dynamic variable is itself dynamic.
The reason for this is that if the value of a variable is to be computable before the program is executed,
that value cannot be dependent on any quantity that is not available until runtime. It is not difficult to
see that the specialization-annotated program must satisfy a similar condition, since any operation that is
being specialized must have its operands available, which means that anything it depends on must also be
specialized.

2.3 An Abstract Formulation of the Problem

Intuitively, a resource-bounded partial evaluator will attempt to specialize as much of an input program
that 1t can, subject to the usual termination considerations as well as considerations of the availability of
resources. For this, 1t will need to be able to weigh the benefits of specializing a particular computation
against the costs so incurred. When a piece of code is specialized with respect to some static data, it
will typically be the case that the residual code will require fewer operations, measured, for example, in
instructions or function calls. The savings so incurred must be weighed against the storage requirements of
the residual program, measured, for example, in the number of registers required for live values, or in the
number of instructions that need to reside in cache. Specialization of an expression may lead to a reduction
in code size (if some operations are specialized away) or an increase in code size (if specialization involves



unfolding a function call; or leads to a primitive operation being open-coded instead of being implemented
as a call to a generic routine). Thus, with each control point p we can associate a cost cost(p) € Z and a
benefit savings(p) € Z, where Z denotes the set of integers. Moreover, given limited resources we will prefer
to focus on those parts of the program that are the most frequently executed: to this end, we assume that
each point p has a nonnegative “weight” wt(p) associated with it.

In general, the problem of resource-bounded partial evaluation for a resource bound of B would involve
coming up with a specialization sequence, 1.e., sequence of specialization steps, for any given program such
that (¢) the total savings is maximized, and (i¢) the size of the residual program does not exceed B. This
does not seem to be a straightforward problem: for example, the program resulting from an intermediate
specialization step can be allowed to exceed the bound B—perhaps by a considerable amount—as long as
enough code can specialized away subsequently to reduce the size of the final residual program to below
B. This would appear to involve a search for a global optimum over the space of all possible specialization
sequences, and it is not obvious that this will be practical, especially for nontrivial programs. We therefore
consider a stronger criterion, namely, that each specialization step in a specialization sequence should respect
the resource bound B. We refer to such specialization sequences as pointwise resource-bounded; An optimal
pointwise resource-bounded specialization sequence is one that is pointwise resource-bounded, and where at
each step the savings are maximized.

3 Complexity Issues

It is easy to see that one way to obtain an efficient algorithm for resource-bounded partial evaluation is to
focus on pointwise resource-bounded specialization sequences,; using an efficient algorithm for each special-
ization step, and ensuring that the specialization sequences are not too long (i.e., are within a polynomial
factor of the size of the input program). In this section we focus on the complexity of a single optimal
resource-bounded specialization step. This optimization problem can be rephrased as a decision problem as
follows:

Definition 3.1 The Optimal One-Step Resource-Bounded Specialization problem is defined as follows:
given a set of control points P; functions wt : P — Z, cost : P — Z and savings : P — Z; and posi-
tive integers B, K, is there a set of points @ C P satisfying the following requirements:

(7) if ¢ € @ and ¢ depends on p then p € Q;
1 wt(q) - savings(q) > K; and

q9€Q
(#41) 3 4eqcost(v) < B?

The structure of this problem, where we try to maximize one quantity while simultaneously trying to minimize
another, is reminiscent of “knapsack”-like problems. The following result therefore does not come as a great
surprise:

Theorem 3.1 Optimal One-Step Resource-Bounded Specialization is NP-complete in the strong sense, even
for first order programs.

Proof By a reduction from the Partially Ordered Knapsack problem, which is defined as follows [17]:
Given a finite partially ordered set (U, <), for each u € U a size s(u) € ZT and a value v(u) € Z¥,

and positive integers B and K, is there a subset U’ C U such that if w € U’ and v’ < u then v’ € U’,
and such that } . s(u) < Band ) ov(u) > K7



This problem is known to be NP-complete in the strong sense [17]. Tt is easy to see that the partially ordered
knapsack problem is essentially isomorphic to the one-step resource-bounded specialization problem defined
above. Suppose we are given an instance of the partially ordered knapsack problem with partial ordered
set (U, X), size function s, value function v, and bounds B and K for size and value respectively. The
corresponding resource-bounded specialization problem has the set of control points U, with dependence
relation between control points given by <; the functions wt, cost, and savings are defined as follows for all
uel:

wt(u) = 1;
cost(u) = s(u);

savings(u) = v(u);

Finally, the bounds B and K are the same as in the partially ordered knapsack problem. It is easy to see that
this problem admits a solution if and only if the given instance of partially ordered knapsack has a solution,
which means that resource-bounded specialization is NP-hard in the strong sense. Membership in NP is
straightforward, since we can simply guess a subset U’ € U and verify in polynomial time that it satisfies
the closure requirement under <, i.e., w € U’ and «’ < implies u’ € U’, as well as that ) ., cost(u) < B
and ) ypsavings(u) > K. O

We note in passing that the partially ordered knapsack problem can be solved optimally in pseudo-
polynomial time via dynamic programming techniques if < is a “tree” partial order [17]. This means that
resource-bounded specialization problem can also be solved optimally in pseudo-polynomial time when the
dependence relation between control points is a tree partial order, simply by transforming it into a partially
ordered knapsack problem over a set (U, <) where U is the set of control points and =< the dependence
relation; the size function is s(u) = cost(u) ; and the value function is given by v(u) = wt(u) - savings(u) .

4 A Heuristic Algorithm

Theorem 3.1 implies that the existence of efficient algorithms for optimal one-step resource-bounded program
specialization are unlikely. We are forced, therefore, to resort to heuristics. we do this in two phases: first,
we determine the costs and benefits associated with specializing each operation that is specializable. We
then use this information to choose a set of points to specialize.

Recall, from the discussion in Section 2.1, that for our purposes, a program point needs to associate a
set of static environments with a control point, and that this may in some cases preclude static values from
being hard-wired into the residual code. It turns out that this may also prevent some specialization from
taking place. To see this, consider an expression

if,(x>2, z4+2, —3)

at a control point with associated set of static environments {(z — 1), (x — 3)}. Even though the conditional
here is static, the set of values & can take on does not allow us to determine the outcome of the test uniquely,
and therefore prevents us from specializing the test away. On the other hand, if the set of static environments
had been {(z — 0), (z — 1)}, the expression would be specializable. This shows that in order to estimate
the savings accruing from the specialization of a program point, and the size of the resulting residual code,
we need to take into account the set of static environments associated with that point.

As this example suggests, in order to estimate the code size and savings resulting from specialization, we
need to be able to determine the set of values an expression can take on given a set of static environments.
Let ‘77 denote a value that is “statically undetermined”—the notion is close to, but not quite the same as,
that of a dynamic value, since it 1s possible to have a static expression whose value, in the context of a set
of static expressions, 1s not uniquely determined: an example is the expression if;(x > 2, x4+ 2, x —3)



shown above, in the context of the set of static environments {(z — 1), (x — 3)}. Given an expression e and
a (single) static environment env, let the value of e in environment env be given by a function

value : Expr x (Var — Val) — Val U {7}.

This function is defined essentially as one would expect, the only twist being the need to deal with statically
undetermined quantities:?

value([c], p) = ¢

value([zs], p) = lookup(x, p)
(
(

value([zq], p) =7

value([op,Cer, ... en)], p) = let uy = value(eq, p), . .., up = value(e,, p) in
if u; =7 for some i, 1 <i<n, then?
else m,p(u1, ..., u,)

where 7,, is the function associated with op.
value([opgaCer,...,en)], p) =7
value([ifs(ey, ea, e3)],p) =
if value(ey, p) = true then value(ea, p)
else if value(ey, p) = false then value(es, p)
else ?
value([if4(er, ez, e3)],p) =7
value([let; » = e1 in es], p) = value(eq, plx — value(ey, p)])
value([lety © = ey in es], p) = value(es, plx — value(ey, p)])
value([call; (f,e1, ..., en)], p) = value(body(f),{x1 — value(er, p), ...,y — value(en, p)})
value([callq(f,er,...,en)],p) =7

Let Val denote the set of denotable values, and SEnv = P(Var = Val) the set of all static environments,
where P(S) denotes the powerset of a set S. The set of possible values for an expression in the context of a
set of static environments can now be defined easily:

valueset (e, envs) = {value(e, p) | p € envs}

Finally, for notational convenience we define the predicate unique that specifies whether the value of an
expression is uniquely determined in the context of a given set of static environments:

unique(e, envs) < |valueset(e, envs)| = 1 and ? & valueset(e, envs)

4.1 Estimating Costs and Benefits

We first consider how to estimate (an upper bound to) the size of the code resulting from a single specialization
step of an annotated expression e. Let this be given by

size : Expr x SEnv x Bool = N

where N denotes the set of natural numbers. The Boolean argument is used to ensure that once a function
call has been considered as unfolded, calls in its body are not considered to be unfolded: it starts out as

2Statically undetermined values may arise even if we consider only static expressions in the context of a single static
environment, since it is possible for a static call to have a statically undetermined value in such an environment, depending on
the way in which such calls are defined (e.g., see [24], Sec. 5.5.1).



true in the initial call to size, but is set to false when evaluating the body of an unfolded function call. This
gives a conservative approximation to the amount of unfolding that can occur in a single specialization step.
Let ||op|| denote the size of the code required to implement a primitive operation op. We now consider how
these estimates may be computed:

1. Code need not be generated for constants and static variables whose values are uniquely determined
in the context of the given set of static environments (except for those occurring in the context of a
1ift operator, which is considered later). If we assume a load-store architecture for simplicity, and
conservatively (in order to avoid making assumptions about register allocation) assume that variables
are loaded from memory when referenced, we need a single load instruction for a dynamic variable or
a static variable whose value is not uniquely determined:

size([c], envs, ) =0 (1)
size([xs], envs, ) = if unique(zs, envs) then 0 else 1 (2)
size([eq], envs, -) = 1 (3)

2. Static base operations that can be evaluated at specialization time do not require any residual code.
The code for static base operations that cannot be so evaluated, and for dynamic base operations,
consists of the code for evaluating the arguments, together with the code for the operation itself:

size([op,Cery ... en)], envs, ) =
if /\umque(ei, envs) then 0 else ||op|| + > 7, size([e;], envs, u) (4)
i=1
size([opy(er, ..., en)], envs, u) = |lop|| + > i, size([e:], envs, u) (5)

3. If, in the context of the given set of static environments, the outcome of a static conditional can be
determined unambiguosly, then the conditional can be specialized, and the residual code is that for the
then-part or the else-part, depending on the outcome of the conditional. Otherwise, and for dynamic
conditionals, we need to generate code for the test as well as both branches of the conditional:

size([ifs(e1, ea, esz)], envs, u) =

if valueset(ey, envs) = {true} then size([ez], envs, u)

else if valueset(ey, envs) = {false} then size([es], envs, u)

else [|if|| + S27_, size([es], envs, u) (6)
size([ifg(ey, ez, e3)], envs, u) = ||if|| + 2?21 size([e;], envs, u) (7)

4. We need to generate a single load instruction to load the value of an expression 1ift(e) (strictly
speaking, a value of a type that does not admit a compact representation may require multiple load
instructions: for simplicity we ignore this here):

size([1ift(e)], envs, ) =1 (8)

5. For a static let expression, let, « = e; in e, if the value of e; can be uniquely determined in the
associated set of static environments, then this value can be hard-wired into es, so the resulting code
size is simply that for es; otherwise it is the code size for the subexpressions e; and ey (in this case
the value of « has to be loaded when computing es, but this cost is accounted for when we consider
occurrences of & within ez and so need not be considered separately here):

size([lets; ® = e in es], envs, u) =
size([ez], envs, u) + if unique(ey, envs) then 0 else size([e1], envs, u) (9)

size([letq « = ey in es]], envs, u) = 1 + size([e1], envs, u) + size([e2], envs, u) (10)

10



6. The code for a static function call consists of the code to evaluate the arguments, together with either
the code for (a specialized version of) the body if the call is considered to be unfolded, or the code to
implement the call operation itself if it is not. By contrast, the code for a dynamic call consists simply
of the code to evaluate the arguments, together with the instructions to actually make the call:

size([calls (f,e1,...,en)], envs, u) =
St size([e;], envs, u)+
if u then size(body(f), envs, false) else ||calll| (11)
size([cally(f,eq, ..., ex)], envs, ) = ||call|| + S_7_, size([e;], envs, u) (12)

In summary, the function size estimating the code size for an expression is given by equations (1)—(12).

Let e, be the expression at a control point p, and let envs be the associated set of static environments,
then the cost associated with that point can be expressed as

cost(p) = size(ep, envs, true).

Analogously to the above, let save : Expr x SEnv x Bool — A be a function that expresses the savings
due to a single specialization step. Intuitively, save(e, envs, u) gives a (lower bound) estimate of the savings
resulting from the specialization of an annotated expression e in the context of the set of static environments
envs, with the truth value u indicating whether or not function calls are to be unfolded. Let <op>>> denote
the (maximum) number of instructions necessary to execute a primitive operation op in the residual program.
Except for the cases involving 1ift and static calls, the reasoning behind these equations are very similar to
that for the size function, and hence are not repeated. For an expression 1ift(e), we determine the savings
incurred for the static expression e, but then subtract 1 because we have to execute an instruction at runtime
to load the value of this expression. For a static function call, the Boolean argument u determines whether
or not the call is actually considered as being unfolded. If it is, the savings includes the cost of making the
call, as well as the savings from specializing the unfolded body; otherwise, the savings are simply those from
specializing the computation of the actual parameters.

save([[c], envs, ) = 1 (1)
save([[xs], envs, -) = if unique(x;, envs) then 1 else 0 (2)
save([z4], envs, ) = 0 (3)
save([op,Cer, ..., en)], envs, u) =

if /\ unique(e;, envs) then <op>>+ > save([e;], envs, u)

i=1
else Y° | save([e;], envs, u) (4)
save([opyCer, ..., en)], envs, u) = 31 save([e;], envs, u) (5)

save([ifs (e1, ez, e3)], envs,u) =
if valueset(ey, envs) = {true} then <if>> + save([e1], envs, u) + save([e2], envs, u)
else if valueset(ey, envs) = {false} then <if>> + save([e1], envs, u) + save([es], envs, u)
else min(save([ez], envs, u), save([es], envs, u)) (6)

save([ifq(er, ea, e3z)], envs, u) =
save([e1], envs, u) + min(save([ez2], envs, u), save([es], envs, u)) (7)

save([1ift(e)], envs, u) = max(save([e], envs, u) — 1,0) (8)

save([lets, « = e; in eq], envs, u) =
save([e1], envs, u) + save([ez], envs, u) (9)

11



save([lety © = e1 in es], envs, u) = save([e1], envs, u) + save([ez], envs, u)

save([cally (f,e1,...,en)], envs, u) =
Sor save([e;], envs, u)+
if v then <call>» + save(body(f), envs, false) else 0
save([callq(f, e, ..., en)], envs, u) = S 1 save([e;], envs, u)

If the expression occurring at a control point p is e,, with associated set of static environments envs, we can
now write

savings(p) = save(ep, envs, true).

The equations given have a shortcoming, relating to the handling of static calls, that can sometimes result in
too little specialization. The problem is that when estimating the code size for a static call that 1s unfoldable,
the set of static environments with which the size of the body of the called function is estimated is taken
to be the same as that at of the static call (equation 11 for size). This can be imprecise enough to fail to
notice code that can be specialized away after unfolding. This can result in an overestimate of the size of
the unfolded body and an underestimate of the associated savings.

The problem can be illustrated by considering the program shown in Section 2.1, rewritten in the abstract
syntax of Section 2, together with the set of static environments at each point:

| Code | Static Environments |
f(yq, is) = is = 10000), (15 — 9999), ..., (i, = 0)}
if,(i; =5 O, is = 10000), (15 — 9999), ..., (i, = 0)}
Yd, iy = 0)}

let y1, = yq +q 1lift(i;) in
let i1, = iy, —-s 1 in
call,(f, yi,;, 1lift(ii,))

{(
{(
{(
{(is — 10000), (i, — 9999), ..., (i,
{(is — 10000), (i, — 9999), ..., (i,
{(i1, — 9999), ..., (i1, — 0)}

)

To determine the size of the static call, we try to determine the size of the body of £ () using the set of static
environments at the call site, i.e., {(i1, — 9999), ..., (i1, — 0)}. Unfortunately, this set of environments
does not allow us to predict the outcome of the test in the static conditional in the body. Because of this,
the code size and savings of the unfolded call is estimated very conservatively, with the conditional taken as
being unspecialized in the unfolded body. However, if the sets of static environments at different points of
the function are recomputed after unfolding the call, we have the following:

| Code | Static Environments |
f(yq, i5) = is +— 10000), (i; — 9998), ..., (i, = 0)}
if, (i, = O, is +— 10000), (i; — 9998), ..., (i, = 0)}
Yd, i; = 0)}

let y1, = yq +q¢ lift(i;) in
let i1, = iy, —-s 1 in
ifs(ils = 0,

ylda
let y2, = yq + 4 1ift(il,) in
let i2;, = i1, -, 1 in

call,(f, y2,, 1lift(i2,))

{(

{(

{(

{(is — 10000), (i, — 9998), ..., (i, — 2)}
{(i1, — 9999), (i1, — 9997), ...

{(i1, — 9999), (i1, — 9997), ...

{(i1, — 9999), (i1, — 9997), ...
{(i2, — 9998), (i2, — 9996), ...
{(i2, — 9998), (i, — 9996), ..., (i2, — 0)

, (i1, = 1)}
, (i1, = 1)}

, (11— 1
, (12, — 0

)}
)}
}
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Input : A set of control points P together with a dependence relation ~+ on P (p ~ ¢ means p depends on
q); functions wt : P — Z, cost : P — Z, savings : P — Z; and a resource bound B.

Output : A set of control points ) C P that can be specialized without exceeding the resource bound B.

Method :

1. For each p € P compute, using depth-first traversals,
CumCost(p) = > {cost(q) |p~*q}
CumSvgs(p) = Y- {wt(q) - savings(q) | p~~ ¢}

2. Let Candidates = {p € P | CumCost(p) < B}.

If Candidates = () then @ = ;
otherwise, @ = {p | ¢ ~* p}, where q € Candidales satisfies:

(1) CumSvgs(q) > CumSvgs(p) for all p € Candidates; and

(#4) CumSvgs(p) = CumSvgs(q) implies CumCost(q) < CumCost(p) for all p € Candidates.
3. Let @ =QU{q¢ | g € Q: ¢ is a static subexpression of ¢};
4. return ’.

Figure 3: A heuristic algorithm for the accountant component

It is clear that the outcome of the static conditional if,(i1l; =; 0, ...) can now be predicted, and the size
and savings determined more accurately. The problem is that if the overestimation of code size due to this
reason is high enough, it may prevent the unfolding of a call, in which case we will not be able to discover
some opportunities for subsequent specialization: e.g., in the example above, it could be that the code size
estimate prior to unfolding is too high to allow unfolding given the available resource bounds, even though
the unfolded body after the static conditional has been specialized away may be small enough to fit within
these bounds. One possible way to address this problem would be to estimate code sizes of unfolded bodies
more carefully, by first determining the set of static environments that would be associated with each point
in the unfolded body, then using these static environments to estimate code sizes.

4.2 Cumulative Costs and Benefits

Because of the congruence requirements, it will not be possible, in general, to select operations for special-
ization in isolation: when a point is selected for specialization, it will be necessary to ensure that all points it
depends on are also selected. This means that the total cost of specializing a given point p is given by the cost
of p together with the cost of all of the points it depends on. On the other hand, since all of the points that
p depends on are also specialized when p is specialized, the total savings resulting from the specialization of
p 1s given by the savings for p together with the savings for all of the points p depends on. We refer to these
values as the cumulative cost CumCost(p) and the cumulative savings CumSvgs(v) respectively. Let p ~ ¢
denote that point p depends on point ¢, and let ~* denote the reflexive transitive closure of ~». Then, for
any point p, the values of CumCost(p) and CumSvgs(p) can be computed using depth-first search to visit
each point ¢ such that p ~* ¢, i.e., the point p itself together with all the points that p depends on, accumu-
lating the costs and savings of each node visited during the traversal. If the program being specialized is of
size n (this could be either the original program, or a partly specialized program that is fed back from the
specialized to the accountant), there are n control points, and the worst-case complexity of the computation
of cumulative costs and savings for all points is O(n?) time and O(n) space. Notice that (i) it is not correct
to write CumCost(p) = cost(p) + > {CumCost(q) |p~~ ¢}, since this can sometimes cause the cost of some
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Figure 4: Resource-Bounded vs. Uncontrolled Specialization

nodes to be counted more than once; and (é) if, instead of repeated depth-first traversals of the dependency
graph, we explicitly associate, with each control point, the set of all of the points it depends on, we incur a
quadratic space cost, which can be prohibitive for large programs.

Once the cumulative costs and savings corresponding to each control point have been determined, we are
in a position to determine the set of points that can be specialized without exceeding the available resources.
For this, we simply find a control point with largest cumulative savings whose cumulative cost does not
exceed the available resource bounds. This point, and all of its predecessors in the dependency graph, are
now marked for specialization. We also mark for specialization each of static subexpressions of the set of
expressions so marked, since the costs of these subexpressions were taken into account for when computing
the cost of the expressions that were determined to be specializable without exceeding the available resource

bounds.

At this point, there may still be enough resources available, after we update our estimate of available
resources to account for the control points that have been chosen for specialization, to leave room for further
specialization. However, if we simply repeat the above procedure—that is, if we take an available control
point whose cumulative savings are the highest among the remaining nodes, and whose resource requirements
do not exceed the available resources—we can conceivably consider some nodes twice. The reason 1s that the
cumulative cost of a node a 1s determined using the cost of all of the nodes it depends on. It may happen that
some of these predecessors have already been marked for specialization in the previous step: in this case, the
costs and benefits resulting from the specialization of those nodes have already been accounted for. However,
the cumulative cost and savings for the node a have not been updated to account for this, which means that
they no longer correctly reflect the incremental costs and savings for a given the specialization decisions
that have already been made. We could, in principle, rectify this problem by updating the cumulative costs
and savings for the remaining nodes appropriately, and then repeat the above procedure, until no further
specialization can be carried out. We choose to not do this, since we get essentially the same effect by having
the accountant return to the specializer the first set of points it has marked for specialization as described
above, then have the specializer query the accountant again with the resulting specialized program. The
resulting algorithm is shown in Figure 3.

5 Experimental Results

The ideas described here have not yet been implemented as part of a partial evaluator: the results we
describe were obtained via hand-simulation. At this time, we have had time to run experiments on only
a few programs. In this section we describe two of the experiments we conducted in order to explain our
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results and put them in proper perspective. These were run on a lightly-loaded 25 MHz SPARC IPC with
64 Kbytes of cache and 32 Mbytes of main memory.® The resource bound used was 16384 (the number of
4-byte words in a 64 Kbyte cache). Runtimes were obtained using the gettimeofday system call and taking
the smallest time from five runs of each program.

The first experiment involved convolution-like program mentioned in Section 1. This is a simple Scheme
. — — n n
program that, given two n-element vectors z and y, computes ijl Zi:l Y

(define (conv x y)
(define (conv0 x y acc)
(if (null? y)
acc
(conv0 x (cdr y)
(convl x (car y) acc))))
)
(define (convl x y0 acc)
(if (null? x)
acc
(convl (cdr x) yO
(+ acc (x (car x) y0))))
)
(conv0 x y 0)

Our aim was to specialize the function conv(x, y) to the first argument, x, and measure the speedups
obtained for different lengths of x. We used Similix [6] running on the sem Scheme interpreter for the
specialization, and the Bigloo Scheme-to-C translator (version 1.8) [30] invoked as bigloo1.8 -04 -unsafe
—-farithmetic, with gcc version 2.7.2 as the back-end compiler, to produce executables. It turned out that
the memory requirements of Similix and Bigloo were higher than we could afford: the scminterpreter running
Similix ran out of memory for an input length of 300, while Bigloo was unable to compile the specialized
program corresponding to n = 200 due to a stack overflow in the preprocessor phase. Fortunately, the
structure of both the Scheme code generated by Similix, and the resulting C code obtained from Bigloo,
were sufficiently regular in this case as to allow us to extrapolate to larger values of n. Our performance
numbers were thus obtained by extrapolating in this manner, using a script to generate C code very similar
to what would have been generated given infinite memory. Some further modifications, such as flattening
of deeply nested expressions, were necessary to allow gcc to parse the input without exhausting the parser
stack; we were careful to ensure that none of these transformations changed the essential characteristics of
the computation. We then compiled this code using gcc -0 and timed the resulting executables.

Our second program was a straightforward nested-loops floating-point matrix multiplication program,
specialized to one of the matrices. For this, we used a C program, with matrices represented in the natural C
style, i.e., as an array of arrays of floating point values. The specialized versions in this case were generated
directly using a script, as in the previous case discussed above, and compiled with gcc -02.

The performance of the resulting programs is shown in Figure 4. Figure 4(a) shows the performance of
the convolution program. Here, because the resource-bounded specialization is conservative in its estimate
of the size of the inner loop of the program, it stops unrolling the loop “too soon,” resulting in an early
drop in performance for resource-bounded specialization compared to that of uncontrolled specialization.
For larger input sizes, however, resource-bounded specialization maintains its speedup while speedups for
uncontrolled specialization drops off quickly once the inner loop can no longer fit in the instruction cache.
Overall, the code resulting from resource-bounded specialization maintains a speedup of about 15%—-20%

3We chose this architecture, despite the fact that it is somewhat dated, because the absence of multi-level caches simplified
the memory hierarchy and made for a better fit with our current cost model.
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over the unspecialized code, while that resulting from uncontrolled specialization is initially about 25% faster
than the unspecialized code, but ends up about 5% slower. The performance of the matrix multiplication
program is shown in Figure 4(b). In this case, it turns out that the for matrices larger than 128 x 128, the
single combined cache cannot accommodate all of the data as well as the code—this accounts for the steep
performance drop for both the uncontrolled and the resource-bounded specialized versions at about this input
size. At this point (actually slightly earlier, because of its conservative data reference estimates), resource-
bounded specialization stops code specialization because it determines that all of the available resources have
been exhausted; as a result, the resource-bounded specialized code 1s identical to the unspecialized code for
larger inputs, and the speedup is 1.0 (since this case worked directly with C arrays, it did not get the small
speedups resulting from specialization of CAR() and CDR() operations as in the convolution program). It can
be seen, however, that in either case, by avoiding uncontrolled code growth, resource-bounded specialization
is able to avoid the dramatic performance loss suffered by uncontrolled specialization for large inputs.

5.1 Discussion of Performance Results

In order to fully understand the behavior illustrated in Figure 4, it is important to consider the code being
generated for the various programs that we ran. First, consider the convolution program. The C code
generated by Bigloo for the inner loop of the original unspecialized program has the following form (here
NULLP(), CINT() and CDR() are Bigloo macros with the behavior one intuitively expects):

acc_0 = 0;
loop: if (NULLP(x)) acc = acc_0;
else {
acc_0 += (long)CINT(CAR(x))*(long)CINT (y);
x = CDR(x);
goto loop;
¥

By contrast, in the program specialized by Similix without regard to resource bounds, the inner loop is
completely unrolled, resulting in C code of the form:

acc_0 = 0;

acc_0 += 1000* (long) CINT (y) ;
acc_0 += 999*(long)CINT(y) ;
acc_0 += 998*(long)CINT(y);

acc_0 += 3% (long) CINT (y) ;

acc_0 += 2% (long) CINT (y) ;
acc_0 += 1% (long) CINT (y) ;

acc = acc_0;

Finally, consider the code produced by resource-bounded specialization. For this program, this code consists
of a loop, obtained by partially unrolling the inner loop of the original program, whose body does not
exceed the amount of available cache, followed by a straight-line code segment corresponding to any left-over
computations. A first observation is that, unlike the fully-unrolled version, the assignments to acc_0 inside
the loop in this program cannot have the value of the static data hard-wired into them. However, it is not
necessary to give up all hope of specializing these statements and revert to explicitly accessing the elements
of a list using CAR() and CDR() operations as in the unspecialized program: the specializer knows the actual
values of the static data, and the sequence in which they are accessed, and 1t is not unreasonable to suppose
that it can eliminate some of the overhead of accessing these values by replacing the list by an array of
integers that is accessed via a pointer. The resulting code therefore has the following structure:
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Figure 5: Speedups for Different Estimates of Inner Loop Size
long tbl[] = {1000, 999, 998, ..., 3, 2, 1};

acc_0 = 0;
ptr = &(tb1[0]);
cnt = ... /* no. of iterations of the
partially unrolled loop */
for (1 = 0; 1 < cnt; i++) {
/* partially unrolled loop */
acc_0 += (*ptr++)*(long)CINT(y);
acc_0 += (*ptr++)*(long)CINT(y);

acc_0 += (*ptr++)*(long)CINT(y);
}

/*-- remainder of computation --*/
acc_0 += 74*(long)CINT (y);
acc_0 += 73*(long)CINT(y);

acc_0 += 3% (long)CINT(y);
acc_0 += 2% (long)CINT(y);
acc_0 += 1%(1long)CINT(y);
acc = acc_0;

There are two low-level aspects of the particular machine on which our experiments were carried out that
have profound effects on the performance characteristics of these programs. The first is that the SPARC
IPC does not have a hardware multiplier, so integer multiplication is carried out in software via a call to
a function (implemented in hand-coded assembly code) whose body contains about 50 instructions. The
second is that when one of the two operands of an integer multiplication operation is a constant, C compilers
such as cc and gcc are able to implement the multiplication using a sequence of bit-manipulation operations
such as left-shift, add, and logical-or, which turn out to be considerably cheaper than a call to the general-
purpose multiplication function. As a result, for an input length of 1000, for example, the specialized
program obtained from Similix, with its fully unrolled loop, 1s about 9.5 times faster than the original
program—considerably more than a straightforward examination of the C source code would suggest. In
the partially unrolled loops resulting from resource-bounded specialization, unfortunately, the expressions
involving multiplication do not have integer constants hard-wired into them as operands; as a result, these
operations are implemented using calls to the multiplication function. Because of this, for small input sizes,
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the code resulting from the resource-bounded specialization turn out to be roughly an order of magnitude
slower than the fully unrolled versions.

It can be argued, however, that speed improvements resulting from C compiler tricks for a particular
operation should not be counted towards the gains resulting from partial evaluation. To see this, suppose
that instead of integer multiplication, the “product operation” in this computation was floating point multi-
plication or bitwise-xor: the programs resulting from partial evaluation would have been essentially identical
in each case, modulo the change in the product operator, but their relative performance would have been
considerably different because of the absence of corresponding bit-twiddling tricks in the C compiler. Simi-
larly, if the processor had a hardware multiplier, the cost of carrying out the multiplication operations would
be reduced considerably, again leading to significant differences in relative performance.

For these reasons, we felt that in order to obtain a fair comparison between resource-bounded and
uncontrolled partial evaluation, we should separate out effects due to low-level compiler tricks, by forcing
the C compiler to always use the general purpose multiplication function for integer multiplication. It turns
out that in this case, the fully unrolled loop resulting from uncontrolled specialization of the convolution
program is about 25% faster than the unspecialized program for small input sizes (this does not affect the
matrix multiplication example, since this program does not contain any integer multiplication operations).
The speedups resulting from these programs, for different input lengths, is shown in Figure 4.

Since partial evaluation is usually formulated as a source-to-source transformation, a question of some
interest is: how precise does the resource-bounded specializer’s estimates of the size of the generated code
have to be? To examine this issue, we examined the performance due to resource-bounded specialization
of the convolution program for different estimates of the size of the inner loop. The results are shown in
Figure 5, where the parameter N denotes the specializer’s estimate of the number of instructions in the

1 We found that as long as the size estimate is conservative enough to ensure

inner loop of the program.
that the specialized code does not overflow the cache, the performance for different values of N 1s noticeable
but not huge. For example, for the convolution program, shown in Figure 5(a), the difference between the
curve for N = 40 and that for N = 60 is typically about 5%—7%. The reason the performance curve for
N = T—which 1s actually the closest to the actual size of the generated code—drops steeply at an input
size of 4000 is that once the input exceeds this size, the resource-bounded specializer determines that the
inner loop should not be unrolled further, and switches to pointer-based accesses of data from a table, which
results in a memory reference with an additional level of indirection for each data value (however, unlike
uncontrolled specialization, this halts further performance degradation). The difference between the curves
for N = 7 and N = 60 are again not intolerably large. For the matrix multiplication program, shown in
Figure 5(b), going from N = 10 to N = 50 has only a very minor effect on the overall speedups. This leads
us to believe that it is possible to use resource-bounded specialization to attain reasonable performance as
long as the specializer makes conservative but reasonable assumptions about the compiler technology being
used to generate the executable code.

The discussion thus far has focused on a single resource bound. We believe that in general, it will be
necessary to model the memory hierarchy of a computational environment in more detail: for example,
many processors now come equipped with two (and, occasionally, three) levels of cache memory, and it is
not unreasonable to consider hardware registers as another level above all of these. Whether or not a certain
increase in code size is worthwhile then depends greatly on the relative costs of accessing the different levels
of such a multi-level hierarchy. We hope to address such issues in future work.

4The reason Figure 4(a) shows the graph corresponding to N = 60 is that our code size estimates were not smart enough
to realize that multiple calls to the integer multiplication routine within an unrolled loop would nevertheless result in a single
copy of the code for that function being resident in the cache. In other words, it assumed—conservatively—that each such call

would be unfolded.
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6 Discussion

The introduction of an “accountant” that guides specialization decisions based on resource usage can lead
to some interesting generalizations to ideas traditionally used in offline partial evaluation. Here we explore
some of these.

6.1 Termination Considerations

In traditional offline partial evaluation, since the specializer blindly specializes all computations annotated
as “static”, the responsibility for ensuring termination falls on the binding time analysis [3, 18, 21]. This is
undesirable; both for conceptual and pragmatic reasons. Conceptually, it mixes two independent concerns:
the question of what can be specialized, and that of what should be specialized. In other words, traditional of-
fline partial evaluation overloads the binding time annotation “dynamic” to mean both “cannot be statically
computed” and “should not be (blindly) computed statically due to termination concerns.” Pragmatically,
it means that some kinds of transformations are necessarily ruled out, even though they may lead to per-
formance improvements: for example, a recursive function whose recursion is controlled by a dynamic value
will not be unfolded, even though a limited amount of unfolding could be beneficial in improving program
performance.

In our model, by contrast, the separation of concerns is much sharper: the binding time analysis is
concerned solely with identifying which computations can be specialized, while accountant is responsible for
deciding which computations should be specialized. As mentioned at the end of Section 4.2, the number of
invocations of the accountant—and, therefore, the number of specialization steps that take place—depends
on, among other things, the rate at which the amount of available resources decreases as the program is
specialized. It can happen that the amount of code growth during a specialization step due to unfolding
is exactly equal to the amount of code that is then specialized away, resulting in no net change in either
code size or resource usage: this can lead to nontermination of partial evaluation in programs with static
infinite loops. For this reason, while most of the discussion thus far has focused on effective utilization of
resources by the specialized code, it may not be unreasonable to require the accountant to be responsible for
termination of partial evaluation as well. If this is done, the model described in this paper can be extended
to obtain some additional flexibility during partial evaluation. For example, in a program that spends much
of 1ts time in a recursive function whose recursion is controlled by a dynamic parameter, it may be possible
to allow this function to be unfolded to a limited extent, and this can have beneficial performance effects
without compromising termination of partial evaluation.

6.2 Flexible Binding of Resource Information

Hard-wiring in resource information pertinent to a particular computational environment too early in the
specialization process may lead to an overly inflexible system. This potential inflexibility can be handled
by considering the resource information to be an additional static input whose value becomes available at
some point during a multi-level specialization process [19]. By appropriately choosing the level at which
the resource information becomes available, we can obtain a variety of behaviors: for example, by making
the resource information known at an early level, we can get a partial evaluator that can handle different
programs for a particular machine, while by making the resource information available late in the multi-level
specialization process we can get a generating extension for a particular program that can be used on a
variety of different machines.

6.3 Value-selective Specialization using “The Trick”

A standard technique for binding-time improvement for variables of bounded static variation is “the trick”
[24]. The basic idea is as follows: suppose we have the following program fragment from a network commu-
nication protocol:
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process(status, pkt)

where status is the status of the previous transmission, and pkt a packet to be sent. Suppose that status
is dynamic, but can take on values only from the set {ok, timeout, corrupt}. Then we can rewrite the above
computation as (something semantically equivalent to):

case status of
ok: process(ok, pkt);
timeout: process(timeout, pkt);
corrupt: process(corrupt, pkt);
end

Specialization of this rewritten program specializes each of the calls to process() to the value of the cor-
responding first argument, as desired. Now suppose that it turns out that in the vast majority of cases the
value taken on by status is ok. In this case, it may make sense to generate specialized code for this case only
(especially if, as is very often the case, the rarely-executed exception handling code is large and bulky), and
resort to the general-purpose unspecialized code for the other cases.® Since resource-bounded specialization
takes execution weights into account when determining the cumulative savings for various control points, it
can achieve a similar effect, specializing for only those values that yield sufficient benefits without exceeding
the available resources. Of course, a similar effect can be obtained by manually writing the code as

if (status = ok) then
process(ok, pkt)
else
process(status, pkt)

However, resource-bounded specialization can offer greater flexibility: for example, continuing the network
protocol application line, consider a packet classifier that takes a packet received from the network, identifies
which protocol it belongs to, and processes it accordingly. In Europe, such a classifier might find that
the X.25 protocol is very commonly used, while in the USA the IP protocol might be found to be much
more common. In either case, it makes sense to specialize the code in the packet classifier for the more
commonly encountered protocol(s), but this is awkward at best using manual rewriting. With resource-
bounded specialization, classifiers in different operational environments can be specialized in different ways
without excessive manual intervention.

7 Conclusions

Traditional off-line partial evaluators generally do not take into account the availability of machine resources
during specialization. This can adversely affect performance, in extreme cases causing a specialized pro-
gram to run more slowly than the unspecialized version. In this paper we consider how resource availability
considerations can be incorporated into a partial evaluator. We show that optimal resource-bounded special-
ization is an NP-complete problem, and discuss simple heuristics that can be used to address the problem in
practice, and discuss how awareness of resource availability can lead to some interesting generalizations of
ideas traditionally used in offline partial evaluation. While our algorithms have not been incorporated into
a partial evaluator, preliminary experiments appear encouraging.
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