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ABSTRACT
As computers are increasingly used in contexts where the amount
of available memory is limited, it becomes important to devise
techniques that reduce the memory footprint of application pro-
grams while leaving them in an executable form. This paper de-
scribes an approach to applying data compression techniques to
reduce the size of infrequently executed portions of a program.
The compressed code is decompressed dynamically (via software)
if needed, prior to execution. The use of data compression tech-
niques increases the amount of code size reduction that can be
achieved; their application to infrequently executed code limits the
runtime overhead due to dynamic decompression; and the use of
software decompression renders the approach generally applicable,
without requiring specialized hardware. The code size reductions
obtained depend on the threshold used to determine what code is
“infrequently executed” and hence should be compressed: for low
thresholds, we see size reductions of 13.7% to 18.8%, on average,
for a set of embedded applications, without excessive runtime over-
head.
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1. INTRODUCTION
In recent years there has been an increasing trend towards the

incorporation of computers into a wide variety of devices, such as
palm-tops, telephones, embedded controllers, etc. In many of these
devices, the amount of memory available is limited, due to consid-
erations such as space, weight, power consumption, or price. For
example, the widely used TMS320-C5x DSP processor from Texas
Instruments has only 64 Kwords of program memory for executable
code [23]. At the same time, there is an increasing desire to use
more and more sophisticated software in such devices, such as en-
cryption software in telephones, speech/image processing software
in palm-tops, fault diagnosis software in embedded processors, etc.
Since these devices typically have no secondary storage, an appli-
cation that requires more memory than is available will not be able
to run. This makes it desirable to reduce the application’s runtime
memory requirements for both instructions and data – itsmemory
footprint – where possible. We focus in this work on reducing the
overall memory footprint by reducing the space required for in-
structions.

The intuition underlying our work is very simple. Most pro-
grams obey the so-called “80-20 rule,” which states, in essence,
that most of a program’s execution time is spent in a small portion
of its code (see [17]); a corollary is that the bulk of a program’s
code is generally executed infrequently. Our work aims at exploit-
ing this aspect of programs by using compression techniques that
yield smaller compressed representations, but may require greater
decompression effort at runtime, on infrequently executed portions
of programs. The expectation is that the increased compression for
the infrequently executed code will contribute to a significant im-
provement in the overall size reduction achieved, but that the con-
comitant increase in decompression effort will not lead to a signifi-
cant runtime penalty because the code affected by it is infrequently
executed.

This apparently simple idea poses some interesting implemen-
tation challenges and requires non-trivial design decisions. These
include the management of memory used to hold decompressed
functions (discussed in Section 2); the design of an effective com-
pression/decompression scheme so that the decompressor code is
small and quick (Section 3); identification of appropriate units for
compression and decompression (Section 4); as well as optimiza-
tions that improve the overall performance of the system (Section
6). Our work combines aspects of profile-directed optimization,
runtime code generation/modification, and program compression.
We discuss other related work in Section 8.
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Figure 1: Code Organization: Before and After Compression

2. THE BASIC APPROACH

2.1 Overview
Figure 1 shows The basic organization of code in our system.

Consider a program with three infrequently executed functions,1 f ,
g andh, as shown in Figure 1(a). The structure of the code after
compression is shown in Figure 1(b). The code for each of these
functions is replaced by astub (a very short sequence of instruc-
tions) that invokes a decompressor whose job is to decompress the
code for a function into theruntime bufferand then to transfer con-
trol to this decompressed code. Afunction offset tablespecifies the
location within the compressed code where the code for a given
function starts. The stub for each compressed function passes an
argument to the decompressor that is an index into this table; this
argument is indicated in Figure 1(b) by the label ([0] , [1] , etc.)
on the edge from each stub to the decompressor. The decompressor
uses this argument to index into the function offset table, retrieve
the start address of the compressed code for the appropriate func-
tion, and start generating uncompressed executable code into the
runtime buffer. Decompression stops when the decompressor en-
counters a sentinel (an illegal instruction) that is inserted at the end
of the code for each function. The decompressor then (flushes the
instruction cache, then) transfers control to the code it has gener-
ated in the runtime buffer. When this decompressed function fin-
ishes its execution, it returns to its caller in the usual way. Since the
control transfers from the stubs to the decompressor, and from the
decompressor to the runtime buffer do not alter the return address
transmitted from the original call site, no special action is necessary
to return from a decompressed function to its call site.

This method partitions the original program code into two parts.
Infrequently executed functions (such asf , g, andh) are placed
in a compressed code part, while frequently executed functions re-
main in anever-compressedpart. The stub code that manages con-
trol transfers to compressed functions must also lie in the never-
compressed part.

It is important to note that when comparing the space usage of the
original and compressed programs, the latter must take into account
the space occupied by the stubs, the decompressor, the function
offset table, the compressed code, the runtime buffer, and the never-
compressed original program code.1Our implementation uses a notion of “function” that is somewhat
more general than the usual connotation of this term in source lan-
guage programs. We discuss exactly what constitutes such a “func-
tion” in Section 4.

2.2 Buffer Management
The scheme described above is conceptually fairly straightfor-

ward but fails to mention several issues whose resolution deter-
mines its performance. The most important of these is the issue
of function calls in the compressed code. Suppose that in Figure 1,
the code forf contains a call tog. Sincef is compressed, the call
site is in the runtime buffer when the call is executed. As described
above, this call will be to the stub forg, and the code forg will
be decompressed and executed as expected. What happens wheng
returns? The return address points to the instruction following the
call in f . This is a problem: the instructions forf were over-
written wheng was decompressed. The return address points to a
location in the runtime buffer that now containsg’s code.

The question that we have to address, therefore, is:If a function
call is executed from the runtime buffer, how can we guarantee that
the correct code will be executed when the call returns?The an-
swer to this question is inextricably linked with the way we choose
to manage the runtime buffer. We have the following options for
buffer management:

1. We may simply avoid the problem by refusing to compress
any function whose body contains any function calls, since
these may result in a function call from within the runtime
buffer. We reject this option because it severely limits the
amount of code that can be subjected to compression.

2. We may choose to ensure that the decompressed code for
a function is never overwritten until after all function calls
within its body have returned. The simplest way to do this is
never to discard the decompressed code for a function. In this
case, the compressed code for a function is decompressed at
most once—the first time it is called—with subsequent calls
bypassing the decompressor and entering the decompressed
code directly. This conceptually resembles the behavior of
just-in-time compilers that translate interpretable code to na-
tive code [1, 22].

An alternative is to discard the decompressed code for a func-
tion when it is no longer on the call stack, since at this point
we can be certain that any function called by it has returned
to it already. This is the approach taken by Lucco [19],
though rather than immediately discarding a function after
execution, he caches the function in the hope that it might be
re-executed. TheSmalltalk-80system also extracts an exe-
cutable version of a function from an intermediate represen-
tation when the procedure is first invoked [8]. It caches the
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Figure 2: Managing Function Calls Out of the Runtime Buffer.

executable code, and only discards it to prevent the system
from running out of memory.

The main drawback with this approach is that the runtime
buffer must be made large enough to hold all of the decom-
pressed functions that can possibly coexist on the call stack.
In the worst case, this is the entire program. The resulting
memory footprint – which includes the space needed for the
runtime buffer as well as the stubs, the decompressor, and the
function offset table – will therefore be bigger than that of the
original program. This approach is therefore not suitable for
limited-memory devices.

3. When a decompressed functionf calls a functiong from
within the runtime buffer, we may choose to allow the de-
compressor to overwritef ’s code within the buffer. This is
the approach used in our implementation. This has the ben-
efit that we only need a runtime buffer large enough to hold
the code for the largest compressed function. As pointed out
above, however, this means that when the call fromg returns,
the runtime buffer may no longer hold the correct instruc-
tions for it to return to. This problem can be solved if we
can ensure that the code forf is restored into the runtime
buffer between the point where the calleeg returns and the
point where control is transferred to the callerf . We discuss
below how this can be done.

Suppose that a functionf within the runtime buffer calls a com-
pressed functiong. In our scheme, this causes the decompressor to
overwritef ’s code in the buffer withg’s code. For correctness, we
have to restoref ’s code to the buffer after the call tog returns but
before control is transferred to the appropriate instruction within
f . Since we don’t have any additional storage area wheref ’s code
could be cached, restoringf ’s code to the runtime buffer requires
that it be decompressed again. This means that when control re-
turns fromg, it must first be diverted to the decompressor, which
can then decompressf and transfer control to it. The decompressor
must also be given an additional argument specifying to where con-
trol should be transferred in the decompressed function, since the
program may (re-)enterf at some instruction other than its entry
point.

One option is to create a stub at compile time that contains the
function call tog followed by code to call the decompressor to
restoref to the runtime buffer and transfer control to the instruction

after f ’s call to g. This stub obviously cannot be placed in the
runtime buffer, since it may be overwritten there; it must be placed
in the never-compressed portion of the program. Since every call
from a compressed function requires its own stub, theserestore
stubsamount to a large fraction of the final executable’s size (e.g.,
if we only compress code that is never executed during profiling,
we create restore stubs that occupy 13%, on average, and for some
programs 20% of the never-compressed code; if we compress code
that accounts for at most 1% of the instructions executed during
profiling, the average percentage rises to 27%).

Rather than creating all restore stubs at compile time, we instead
create at runtime, wheng is called, a temporary restore stub that ex-
ists only untilg returns. The transfer tog is prefaced with code that
generates the restore stub and makes the return address of the orig-
inal call point to this stub. Then an unconditional jump or branch
is made tog.

If every control transfer from compressed code created a restore
stub, we would, in effect, be maintaining a call stack of calls from
compressed code. If the compressed code is recursive, this could
require an arbitrarily large amount of additional space. Instead, we
create only one restore stub for a particular call site in compressed
code and maintain a usage count for that restore stub to determine
when the stub is no longer needed. When asked to create a restore
stub, we first check to see if a stub for that call site already exists
and, if it does, increase its usage count and use its address for the
return address; otherwise we create a new restore stub with usage
count equal to 1. In effect, this implements a simple reference-
count-based garbage collection scheme for restore stubs. The text
area of memory for a program now conceptually consists of three
parts: the never-compressed code; the runtime stub list; and the
runtime decompression buffer (Figure 2(b)).

On return fromg, the restore stub invokes the decompressor
which recognizes that it has been called by a restore stub, decre-
ments the stub’s usage count, restoresf to the runtime buffer, and
transfers control to the appropriate instruction.

This runtime scheme never creates more restore stubs than the
compile-time scheme, though it does require an additional 8 bytes
per stub in order to maintain the count. In fact, the maximum num-
ber of restore stubs that exist at one time in our test suite is 9 for a
very aggressive profile threshold of� = 0:01, i.e., where the code
considered for compression accounts for 1% of the total dynamic
instruction count of the profiled program (see Section 5).



Figure 2 illustrates how this is done. Figure 2(a) shows a func-
tion f whose body contains a function call, at callsitecs0 , that
callsg. The instruction ‘bsr r, Label’ puts the address of the
next instruction (the return address) into registerr and branches to
Label. Callsitecs0 is at offset 96 within the body off (relative
to the beginning off ’s code), and the return address it passes to
its callee is that of the following instruction, which is at offset 97.
Figure 2(b) shows the result of transforming this code so that the
decompressor is called when the call tog returns. The function call
to g at cs0 is replaced by a function call toCreateStub using
the same return address register$ra . CreateStub creates a re-
store stub for this call site (or uses the existing restore stub for this
call site if it exists) and changes$ra to contain the stub’s address.
It then transfers control to an unconditional branch at offset 97 that
transfers control tog. Note that the single original instructionbsr
$ra, g becomes two instructions in the runtime buffer. To save
space in the compressed code, these two instructions are created by
the decompressor from the singlebsr $ra, g when filling the
runtime buffer.

Wheng returns, the instructions in the restore stub are executed.
This causes the decompressor to be invoked with the argument pair
<index(f), 98> , where index(f) is f ’s index within the
function offset table, and98 is the offset withinf ’s code where
control should be transferred after decompression. The overall ef-
fect is that when control returns from the function call,f ’s code is
decompressed, after which control is transferred to the instruction
following the function call in the original code.

It is important to note that, in the scheme described above, the
call stack of the original and compressed program are exactly the
same size at any point in the program’s execution. In fact, there is
no need to modify the return sequence of any function. A function
g may be called from either the runtime buffer or never-compressed
code and, in general, may have call sites in both. If the call site
is in a never-compressed function,CreateStub is not invoked
andg returns to the instruction following the call instruction in the
usual way. If the call site is in compressed code, then the return
address passed tog is that of the corresponding restore stub, and
control transfers to this stub wheng returns. It is not hard to see, in
fact, that the control transfers happen correctly regardless of howg
uses the return address passed to it: for example,g may save this
address in its environment at entry and restore it on exit; or keep
it in a register, if it is a leaf function; or pass the return address to
some other function, if tail-call optimization is carried out.

In some cases, such as control transfers throughlongjmp , a
function may be returned from without a corresponding call. This
means that the usage count for the callsite’s restore stub may be
inaccurate or, even worse, the restore stub may no longer exist. For
this reason, functions that callsetjmp are not compressed.

2.3 Decompressor Interface
The decompressor is invoked with two arguments: an index in

the function offset table, indicating the function to be decompressed;
and an offset in the runtime buffer, indicating the location in the
runtime buffer where control should be transferred after decom-
pression. Rather than pass these arguments to the decompressor in
a register, we put them in a dummy instruction, called atag, that
follows the call to the decompressor: the low 16 bits contain the
offset and the high 16 bits the function index. Since the decom-
pressor never returns to its caller (instead it transfers control to the
function it decompresses into the runtime buffer), this “instruction”
is never executed. We can, however, access it via the return address
set by the call to the decompressor.

Various registers may be used as the return address register on a
call to the decompressor. For a restore stub, the register that was

used in the original call instruction can be used; it is guaranteed to
be free. For an entry stub, any free register will do. (If no register is
free, we push the value of a register$ra , use$ra , and then restore
it at the end of the decompressor.) The decompressor, however,
must know which register contains the return address when it is
called. We accomplish this by giving the decompressor multiple
entry points, one per possible return address register. The entry
point for registerr pushesr onto the stack and then jumps to the
body of the decompressor. The decompressor now knows that the
return address is at the top of the stack. The decompressor then

1. saves all registers that it will use on the stack,

2. places an instruction at the start of the runtime buffer that
unconditionally jumps to the offset provided by the tag,

3. fills the rest of the runtime buffer by decompressing the func-
tion indicated by the tag,

4. restores all saved registers, and

5. unconditionally jumps to the start of the runtime buffer (which
immediately jumps to the appropriate offset).

By creating the unconditional jump instruction in the runtime
buffer, we avoid the need for a register to do the control transfer
from the end of the decompressor to the offset within the runtime
buffer. We insert one other instruction before this jump instruction
that sets the return register to the address of a restore stub (when
creating a stub) or restores$ra (when an entry stub has no free
register). We note thatCreateStub andDecompress are con-
tained in the same function. This saves having multiple entry points
(one per possible return address register) in two functions, and it is
easy to determine from the return address whether the function was
called from inside the runtime buffer (when it should act asCre-
ateStub ) or outside (when it should act asDecompress ).

3. COMPRESSION & DECOMPRESSION
Our primary consideration in choosing a compression scheme is

minimizing the size of the compressed functions. We would like
to achieve good compression even on very short sequences of in-
structions since the functions we may want to compress can be very
small. A second consideration is the size of the decompressor itself
since it becomes part of the memory footprint of the program. Fi-
nally, the decompressor must be fast since it is invoked every time
control transfers to a compressed function that is not already in the
runtime buffer. Since the functions that we choose to compress
have a low execution count, we don’t expect to invoke the decom-
pressor too often during execution. A faster decompressor, how-
ever, means we can tolerate the compression of more frequently
executed code which, in turn, leads to greater compression oppor-
tunities.

The compression technique that we use is a simplified version
of the “splitting streams” approach [9]. The data to be compressed
consists of a sequence of machine code instructions. Each instruc-
tion contains an opcode field and several operand fields, classified
by type. For example, in our test platform, a branch instruction
consists of a 6-bit opcode field, a 5-bit register field, and a 21-bit
displacement field [2]. In order to compress a sequence of instruc-
tions, we first split the sequence into separate streams of values,
one per field type, by extracting, for each field type, the sequence
of field values of that type from successive instructions. We then
compress each stream separately. For our test platform, we split the
instructions into 15 streams. Note that no instruction contains all
15 field types.



To reconstruct the instruction sequence, we decompress an op-
code from the opcode stream. This tells us the field types of the
instruction, and we obtain the field values from the corresponding
streams. We repeat this process until the opcode stream is empty.

We compress each stream by encoding each field value in the
stream using a Huffman code that is optimal for the stream. This
is a two-pass process. The first pass calculates the frequency of
the field values and constructs the Huffman code. The second pass
encodes the values using the code. Since the Huffman code is de-
signed for each stream, it must be stored along with the encoded
stream in order to permit decompression.

We use a variant of Huffman encoding calledcanonical Huffman
encodingthat permits fast decompression yet uses little memory
[5]. Like a Huffman code, a canonical Huffman code is an optimal
character-based code (the characters in this case are the field val-
ues). In fact, the length of the canonical Huffman codeword for a
character is the same as the length of the Huffman codeword for that
character. Thus the numberN [i℄ of codewords of lengthi in both
encodings is the same. The codewords of lengthi in the canoni-
cal Huffman code are theN [i℄, i-bit numbersbi; bi + 1; : : : ; bi +N [i℄ � 1 whereb1 = 0 andbi = 2(bi�1 +N [i� 1℄) for i � 2.

For example, ifN [2℄ = 3,N [3℄ = 1, andN [5℄ = 4 (andN [i℄ =0 otherwise) thenb1 = 0; b2 = 0; b3 = 6; b4 = 14; b5 = 28
and the codewords are00; 01; 10; 110; 11100; 11101; 11110; 11111:
Notice that the codewords are completely determined given the
number of codewords of each length, i.e., theN [i℄’s.

We store then characters to be encoded in an arrayD[0 : : : n�1℄
ordered by their codeword value. The advantage of the canonical
Huffman code is that a codeword can be rapidly decoded using the
arraysN [i℄ andD[j℄.
DECODE()v  0, b 0, j  0, i 0

do v  2v + NEXTBIT()b 2(b+N [i℄)j  j +N [i℄i i+ 1
while (v � b+N [i℄)
return D[j + v � b℄

The compressed program consists of the codeword sequence,
code representation (the arrayN [i℄), and value list (the arrayD[j℄)
for each stream. In fact, since every instruction begins with an
opcode that completely specifies the remaining fields of the in-
struction, we can merge the codeword sequences of the individual
streams into one sequence. We simply interpret the first bits of the
codeword sequence using the Huffman code for the opcode stream,
and use the decoded opcode to specify the appropriate Huffman
codes to use for the remaining fields. For example, when decoding
a branch instruction, we would read a codeword from the sequence
using first the opcode code, then the register code, and finally the
displacement code. The total space required by the compressed
program is approximately 66% of its original size.

We can achieve somewhat better compression for some streams
using move-to-front coding prior to Huffman coding. This has the
undesirable affect of increasing the code size and running time of
the decompression algorithm. Other approaches that decompress
larger parts of an instruction, or multiple instructions, in one de-
compression operation may result in better and faster decompres-
sion, but these approaches typically require a more complex de-

compression algorithm, or one that requires more space for data
structures.

4. COMPRESSIBLE REGIONS
The “functions” that we use as a unit of compression and decom-

pression may not agree with the functions specified by the program.
It is often the case that a program-specified function will contain
some frequently-executed code that should not be compressed, and
some infrequently-executed (cold) code that should be compressed.
If the unit of compression is the program-specified function then
the entire function cannot be compressed if it contains any code
that cannot be considered for compression. As a result, the amount
of code available for compression may be significantly less than the
total amount of cold code in the program.

In addition, the runtime buffer must be large enough to hold the
largest decompressed function. A single large function may often
account for a significant fraction of the cold code in a program.
Having a runtime buffer large enough to contain this function can
offset most of the space-savings due to compression.

To address this issue, we create “functions” from arbitrary code
regions and allow these regions to be compressed and decompressed.
This means that control transfers into and out of a compressed re-
gion of code may no longer follow the call/return model for func-
tions. For example, we may have to contend with a conditional
branch that goes from one compressed region of code to another,
different, compressed region. Since the runtime buffer holds the
code of at most one such region at any time, a branch from one re-
gion to another must now go through a stub that invokes the decom-
pressor. This is not a terrible complication. A compressed region
might have multiple entry points, each of which requires an entry
stub, but in all other ways it is the same as an original function. For
instance, function calls from within a compressed region are still
handled as discussed in Section 2.

We now face the problem of how to choose regions to com-
press. We want these regions to be reasonably small so that the
runtime buffer can be small, yet we want few control transfers be-
tween different regions so that the number of entry stubs is small.
This is an optimization problem. The input is a control flow graphG = (V;E) for a program in which a vertexb represents a basic
block and has sizejbj equal to the number of instructions in the
block, and an edge(a; b) represents a control transfer froma tob. In addition, the input specifies a subsetU of the vertices that
can be compressed. The output is a partition of a subsetS of the
compressible verticesU into regionsR1; R2; : : : ; Rk so that the
following cost is minimized:Xb2V nS jbj never-compressed code+ kXi=1 s(Ri) compressed code+ k function offset table+ 2jY j entry stubs+ maxi f
i +Xb2Ri jbjg runtime buffer

wheres(Ri) is the size of the regionRi after compression,Y is
the set of blocks requiring an entry stub, i.e.,Y = fb : (a; b) 2 E; b 2 Ri; anda 62 Ri for someig;
the constant2 is the number of words required for an entry stub, and
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Figure 3: Effect of Buffer Size Bound on Code Size
i is the number of external function calls withinRi (the decom-
pressor creates an additional instruction for each such call). Note
that we have not included the size of the restore stub list (calculat-
ing its size, even given a partition, is an NP-hard problem).

In practice, we cannot afford to calculates(R) for all possible
regionsR, so we assume that a fixed compression factor of
 < 1
applies to all regions (i.e.,s(R) = 
Pb2R jbj). Unfortunately, the
resulting simplified problem is NP-hard (PARTITION reduces to it).
We resort to a simple heuristic to choose the compressible regions.

We first decide which basic blocks can be compressed. Our cri-
teria for this decision are discussed in more detail in Section 5. We
also fix an upper boundK on the size of the runtime buffer (our cur-
rent implementation uses an empirically chosen value ofK = 512
bytes; this is determined as described below). We create an initial
set of regions by performing depth-first search in the control flow
graph. We limit the depth-first search so that it produces a tree that
contains at mostK instructions and is composed of compressible
blocks from a single function. If it is profitable to compress the
set of blocks in the tree, we make this tree a compressible region;
otherwise, we mark the root of the tree so that we never re-initiate a
depth-first search from it (though it might be visited in a subsequent
depth-first search starting from a different block). We continue the
depth-first search until all compressible blocks have been visited.

To decide if a region containingI instructions is profitable to
compress, we compare(1� 
)I, the number of instructions saved
by compressing the region, with the number of instructionsE added
for entry stubs. IfE < (1 � 
)I, the region is profitable to com-
press.

As mentioned above, we use an empirically determined upper
boundK on the size of the runtime buffer to guide the partition-
ing of functions into compressible regions. If we choose too small

a value forK, we get a large number of small compressible re-
gions, with a correspondingly large number of entry stubs and func-
tion offset table entries. These tend to offset the space benefits of
having a small runtime buffer, resulting in a large overall memory
footprint. If the value ofK is too large, we get a smaller number
of distinct compressible regions and function offset table entries,
but the savings there are offset by the space required for the run-
time buffer. Our empirical observations of the variation of overall
code size, asK is varied, are shown in Figure 3, for three differ-
ent thresholds� of cold code as well as the mean for each of these
thresholds (other values of� yield similar curves). It can be seen
that, for these benchmarks at least, the smallest overall code size is
obtained atK = 256 andK = 512. We prefer the latter value be-
cause the larger runtime buffer means that we get somewhat larger
regions and correspondingly fewer inter-region control transfers;
this results in fewer calls to the decompressor at runtime and yields
somewhat better performance.

The partition obtained by depth-first search, in practice, typically
contains many small regions. This is partly due to the presence of
small functions in user and library code, and partly due to frag-
mentation. This incurs overheads from two sources: first, each
compressible region requires a word in the function offset table;
and second, inter-region control transfers require additional code
in the form of entry or restore stubs to invoke the decompressor.
These overheads can be reduced by packing several small regions
into a single larger one that still contains at mostK instructions.

To pack regions, we start with the set of regions created by the
depth-first search and repeatedly merge the pair that yields the most
savings (without exceeding the instruction boundK) until no such
pairs exist. For the pair of regionsfR;R0g (and forR swapped
with R0 in the following), we save an entry stub for every basic
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block in regionR that has incoming edges fromR0 (and possibly
fromR) but from no other region. For every call from regionR toR0, we save a restore stub. We may also save a jump instruction for
every fall-through edge from regionR toR0.

In principle, the packing of regions in this way involves a space-
time tradeoff: packing saves space, but since each region is de-
compressed in its entirety before execution, the resulting larger re-
gions incur greater decompression cost at runtime. However, given
that only infrequently-executed code is subjected to runtime de-
compression, the actual increase in runtime cost is not significant.

5. IDENTIFYING COLD CODE
The discussion so far has implicitly assumed that we have iden-

tified portions of the program as “cold” and, therefore, candidates
for compression. The determination of which portions of the pro-
gram are cold is carried out as follows. We start with a threshold�, 0:0 � � � 1:0, that specifies the maximum fraction of the total
number of instructions executed at runtime (according to the execu-
tion profile for the program) that cold code can account for. Thus,� = 0:25 means that all of the code identified as cold should ac-
count for at most 25% of the total number of instructions executed
by the program at runtime.

Let the weight of a basic block be the number of instructions
in the block multiplied by its execution frequency, i.e., the block’s
contribution to the total number of instructions executed at runtime.
Let tot instr ct be the total number of instructions executed by the
program, as given by its execution profile. Given a value of�,
we consider all basic blocksb in the program in increasing order of
execution frequency, and determine the largest execution frequencyN such thatXb:freq(b)�N weight(b) � � � tot instr 
t :
Any basic block whose execution frequency is at mostN is consid-
ered to be cold.

Figure 4 shows (the geometric mean of) the relative amount of
cold and compressible code in our programs at different thresholds.
It can be seen, from Figure 4, that the amount of cold code varies
from about 73% of the total code, on average, when the threshold� = 0:0 (where only code that is never executed is considered cold)
to about 94% at� = 0:01 (the cold code accounts for 1% of the
total number of instructions executed by the program at runtime),
to 100% at� = 1:0. However, not all of this cold code can be
compressed: the amount of compressible code varies from about
69% of the program at� = 0:0 to about 90% at� = 0:01, to
about 96% at� = 1:0. The reason not all of the cold code is

compressible, at any given threshold, is that, as discussed in Section
4, a region of code may not be considered for compression even if
it is cold, because it is not profitable to do so.

6. OPTIMIZATIONS

6.1 Buffer-Safe Functions
As discussed earlier, function calls within compressed code cause

the creation, during execution, of a restore stub and an additional
instruction in the runtime buffer. This overhead can be avoided if
the callee isbuffer-safe, i.e., if it and any code it might call will not
invoke the decompressor. If the callee is buffer-safe, then the run-
time buffer will not be overwritten during the callee’s execution, so
the return address passed to the callee can be simply the address of
the instruction following the call instruction in the runtime buffer:
there is no need to create a stub for the call or to decompress the
caller when the call returns. In other words, a call from within a
compressed region to a buffer-safe function can be left unchanged.
This has two benefits: the space cost associated with the restore
stub and the additional runtime buffer instruction is eliminated, and
the time cost for decompressing the caller on return from the call is
avoided.

We use a straightforward iterative analysis to identify buffer-safe
functions. We first mark all regions that are clearly not buffer-safe:
i.e., those that have been identified as compressible, and those that
contain indirect function calls whose possible targets may include
non-buffer-safe regions. This information is then propagated itera-
tively to other regions: ifR is a region marked as non-buffer-safe,
andR0 is a region from which control can enterR—either through
a function call or via a branch operation—thenR0 is also marked
as being non-buffer-safe. This is repeated until no new region can
be marked in this way. Any region that is left unmarked at the end
of this process is buffer-safe.

For the benchmarks we tested, this analysis identifies on the
average, about 12.5% of the compressible regions as buffer-safe;
the gsmandg721 encbenchmarks have the largest proportion of
buffer-safe regions, with a little over 20% and 19%, respectively,
of their compressible regions inferred to be buffer-safe.

6.2 Unswitching
If a code region contains indirect jumps through a jump table, it

is necessary to process any such code to ensure that runtime con-
trol transfers within the decompressed code in the runtime buffer
are carried out correctly. We have two choices: we can either up-
date the addresses in the jump table to point into the runtime buffer,
at the locations where the corresponding targets would reside when
the region is decompressed; or we can “unswitch” the region to use
a series of conditional branches instead of an indirect jump through
a table. Note that in either case, we have to know the size of the
jump table: in the context of a binary rewriting implementation
such as ours, this may not always be possible. If we are unable to
determine the extent of the jump table, the block containing the in-
direct jump through the table and the set of possible targets of this
jump must be excluded from compression. For the sake of sim-
plicity, our current implementation uses unswitching to eliminate
the indirect jump, after which the space for the jump table can be
reclaimed.

7. EXPERIMENTAL RESULTS
Our ideas have been implemented in the form of a binary-rewriting

tool calledsquashthat is based onsqueeze, a compactor of Compaq
Alpha binaries [7].Squeezeis based onalto, a post-link-time code
optimizer [20].Squeezealone compacts binaries that have already



Program Profiling Input Timing Input
file name size(KB) file name size(KB)

adpcm clinton.pcm 295.0 mlk IHaveADream.pcm 1475.2
clinton.adpcm 73.8 mlk IHaveADream.adpcm 182.1

epic baboon.tif 262.4 baboon.tif 262.4
lena.tif 262.4

g721 dec clinton.g721 73.8 mlk IHaveADream.g721 368.8
g721 enc clinton.pcm 295.0 mlk IHaveADream.pcm 1475.2
gsm clinton.pcm 295.0 mlk IHaveADream.pcm 1475.2
jpeg dec testimg.jpg 5.8 roses17.jpg 25.1
jpeg end testimg.ppm 101.5 roses17.ppm 681.1
mpeg2dec sarnoff2.m2v 102.5 tcehv2.m2v 2310.7
mpeg2enc sarnoff2.m2v 102.5 tcehv2.m2v 2310.7
pgp compression.ps 717.2 TI-320-user-manual.ps 8456.6
rasta ex5 c1.wav 17.0 phone.pcmle.wav 83.7

Figure 5: Inputs used for profiling and timing runs
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Figure 6: Code Size Reduction due to Profile-Guided Code Compression at Different Thresholds

been space optimized by about 30% on average.Squash, using
the runtime decompression scheme outlined in this paper, compacts
squeezedbinaries by about another 14–19% on average.

To evaluate our work we used eleven embedded applications
from the MediaBench benchmark suite (available atwww.cs.ucla.
edu/˜leec/mediabench ): adpcm, which does speech com-
pression and decompression;epic, an image data compression util-
ity; g721 decandg721 enc, which are reference implementations
from Sun Microsystems of the CCITT G.721 voice compression
decoder and encoder;gsm, an implementation of the European
GSM 06.10 provisional standard for full-rate speech transcoding;
jpeg decand jpeg enc, which implement JPEG image decompres-
sion and compression;mpeg2decandmpeg2enc, which implement
MPEG-2 decoding and encoding respectively;pgp, a popular cryp-
tographic encryption/decryption program; andrasta, a speech-analysis
program. The inputs used to obtain the execution profiles used to
guide code compression, as well as those used to evaluate execu-
tion speed (Figure 7(b)), are described in Figure 5: the profiling

inputs refer to those used to obtain the execution profiles that were
used to carry out compression, while the timing inputs refer to the
inputs used to generate execution time data for the uncompressed
and compressed code. Details of these benchmarks are given in the
Appendix.

These programs were compiled using the vendor-supplied C com-
piler cc V5.2-036, invoked ascc -O1 , with additional flags in-
structing the linker to retain relocation information and to produce
statically linked executables.2 The vendor-supplied compilercc
produces the most compact code at optimization level-O1 : it car-
ries out local optimizations and recognition of common subexpres-
sions; global optimizations including code motion, strength reduc-
tion, and test replacement; split lifetime analysis; and code schedul-2The requirement for statically linked executables is a result of the
fact thatalto relies on the presence of relocation information to dis-
tinguish addresses from data. The Tru64 Unix linkerld refuses to
retain relocation information for executables that are not statically
linked.
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Figure 7: Effect of Profile-Guided Compression on Code Size and Execution Time

ing; but not size-increasing optimizations such as inlining; integer
multiplication and division expansion using shifts; loop unrolling;
and code replication to eliminate branches.

The programs were then compacted usingsqueeze. Squeezeelim-
inates redundant, unreachable, and dead code; performs interpro-
cedural strength reduction and constant propagation; and replaces
multiple similar program fragments with function calls to a single
representative function (i.e., it performs procedural abstraction).
Squeezeis very effective at compacting code. If we start with an ex-
ecutable produced bycc -O1 and remove unreachable code and
no-op instructions,squeezewill reduce the number of instructions
that remain by approximately 30% on average.

The remaining instructions were given tosquashalong with pro-
file information obtained by running the original executable on sam-
ple inputs to obtain execution counts for the program’s basic blocks.
Squashproduces an executable that contains never-compressed code,
entry stubs, the function offset table, the runtime decompressor, the
compressed code, the buffer used to hold dynamically generated
stubs, and the runtime buffer. All of this space is included in the
code size measurement ofsquashedexecutables.

Figure 6 shows how the amount of code size reduction obtained
using profile-guided compression varies with the cold code thresh-
old �. With � = 0:0, only code that is never executed is con-
sidered to be cold; in this case, we see size reductions ranging
from 9.0% (g721 enc) to 22.1% (pgp), with a mean reduction of
13.7%. The size reductions obtained increase as we increase�,

which makes more and more code available for compression. Thus,
at � = 0:00001 we have size reductions ranging from 12.1% (ad-
pcm) to 23.7% (pgp), with a mean reduction of 16.8%. At the
extreme, with� = 1:0, i.e., all code considered cold, the code
size reductions range from 21.5% (adpcm) to 31.8% (pgp), with a
mean of 26.5%. It is noteworthy that much of the size reductions
are obtained using quite low thresholds, and that the rate at which
the reduction in code size increases with� is quite small. For ex-
ample, increasing� by five orders of magnitude, from0:00001 to1:0, yields only an additional 10% benefit in code size reduction.
However, as� is increased, the runtime overhead associated with
repeated dynamic decompression of code quickly begins to make
itself felt. Our experience with this set of programs (and others)
indicates that beyond� = 0:0001 the runtime overhead becomes
quite noticeable. To obtain a reasonable balance between code size
improvements and execution speed, we focus on values of� up to
0.00005.

Execution time data were obtained on a workstation with a 667
MHz Compaq Alpha 21264 EV67 processor with a split two-way
set-associative primary cache (64 Kbytes each of instruction and
data cache) and 512 MB of main memory running Tru64 Unix. In
each case, the execution time was obtained as the smallest of 10
runs of an executable on an otherwise unloaded system.

Figure 7 examines the performance of our programs, both in
terms of size and speed, for� ranging from 0.0 to 0.00005. The fi-
nal set of bars in this figure shows the mean values for code size re-



duction and execution time, respectively, relative tosqueezedcode;
the number at the top of each bar gives the actual value of the ge-
ometric mean for that case. It can be seen that at low cold-code
thresholds, the runtime overhead incurred by profile-guided code
compression is small: at� = 0:0 the compressed code is about
the same speed, on average, as the code without compression; at� = 0:00001 we incur an average execution time overhead of
4%; and at� = 0:00005 the average overhead is 24%. Given
the corresponding size reductions obtained—ranging from 13.7%
to 18.8%—these overheads do not seem unreasonably high. (Note
that these reductions in size are on top of the roughly 30% code
size reduction we obtain using our prior work on code compaction
[7].)

It is important to note, in this context, that the execution speed
of compressed code can suffer dramatically if the timing inputs,
i.e., inputs used to measure “actual” execution speed, cause a large
number of calls to the decompressor. This can happen for two rea-
sons. First, a code fragment that is cold in the profile may occur
in a cycle, which can be either a loop within a procedure, or an
inter-procedural cycle arising out of recursion. Second, the region
partitioning algorithm described in Section 4 may split a loop into
multiple regions. In either case, if the loop or cycle is executed
repeatedly in the timing inputs, the repeated code decompression
can have a significant adverse effect on execution speed. An ex-
ample of the first situation occurs in the SPECint-95 benchmarkli ,
where an interprocedural cycle, that is never executed in the pro-
file, is executed many times with the timing input. An example of
the second situation occurs in the benchmarkmpeg2decwhen the
runtime buffer size boundK is small (e.g.,K = 128).

8. RELATED WORK
Our work combines aspects of profile-directed optimization, run-

time code generation/modification, and program compression. Dy-
namic optimization systems, such as Dynamo [4], collect profile
information and use it to generate or modify code at runtime. These
systems are not designed to minimize the memory footprint of the
executable, but rather to decrease execution time. They tend to
focus optimization effort on hot code, whereas our compression ef-
forts are most aggressive on cold code.

More closely related is the work of Hoogerbruggeet al., who
compile cold code into interpreted byte code for a stack-based ma-
chine [14]. By contrast, we use Huffman coding to compress cold
code, and dynamically uncompress the compressed code at runtime
as needed. Thus, our system does not incur the memory cost of a
byte-code interpreter.

There has been a significant amount of work on architectural ex-
tensions for the execution of compressed code: examples include
Thumb for ARM processors [3], CodePack for PowerPC proces-
sors [15], and MIPS16, for MIPS processors [16]. Special hard-
ware support is used to expand each compressed instruction to its
executable form prior to execution. While such an approach has the
advantage of not incurring the space overheads for control stubs
and time overheads for software decompression, the requirement
for special hardware limits its general applicability. Lefurgyet
al. describe a hybrid system where decompression is carried out
mostly in software, but with the assistance of special hardware
instructions to allow direct manipulation of the instruction cache
[18]; decompression is carried out at the granularity of individual
cache lines.

Previous work in program compression has explored the com-
pressibility of a wide range of program representations: source
programs, intermediate representations, machine codes, etc. [24].
The resulting compressed form either must be decompressed (and
perhaps compiled) before execution [9, 10, 11] or it can be exe-

cuted (or interpreted [13, 21]) without decompression [6, 12]. The
first method results in a smaller compressed representation than the
second, but requires the time and space overhead of decompres-
sion before execution. We avoid requiring a large amount of ad-
ditional space to place the decompressed code by choosing to de-
compress small pieces of the code on demand, using a single, small
runtime buffer. Similar techniques of partial decompression and
decompression-on-the-fly have been used under similar situations
[9, 19], but these techniques require altering the runtime operation
or the hardware of the computer.

Most of the earlier work on code compression to yield smaller
executables treated an executable program as a simple linear se-
quence of instructions, and used a suffix tree construction to iden-
tify repeated code fragments that could be abstracted out into func-
tions [6, 12]. We have recently shown that it is possible to obtain re-
sults that are as good, or better, by using aggressive inter-procedural
size-reducing compiler optimizations applied to the control flow
graph of the program, instead of using a suffix-tree construction
over a linear sequence of instructions [7].

9. CONCLUSIONS AND FUTURE WORK
We have described an approach to use execution profiles to guide

code compression. Infrequently executed code is compressed using
data compression techniques that produce compact representations,
and is decompressed dynamically prior to execution if needed. This
has several benefits: the use of powerful compression techniques
allows significant improvements in the amount of code size reduc-
tion achieved; for low execution frequency thresholds the runtime
overheads are small; and finally, no special hardware support is
needed for runtime decompression of compressed code. Experi-
mental results indicate that, with the proper choice of cold code
thresholds, this approach can be effective in reducing the mem-
ory footprint of programs without significantly compromising ex-
ecution speed: we see code size reductions of 13.7% (� = 0:0)
to 18.8% (� = 0:00005), on average, for a set of embedded ap-
plications, relative to the code size obtained using our prior work
on code compaction [7]; the concomitant effect on execution time
ranges from a very slight speedup for� = 0:0 to a 27% slowdown,
on average, for� = 0:00005.

We are currently looking into a number of ways to enhance this
work further. These include other algorithms for compression and
decompression, as well as other algorithms for constructing com-
pressible regions within a program.
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adpcm 18228 11690
epic 33880 24769
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g721 enc 15065 11771
gsm 29789 21597
jpeg dec 44094 37042
jpeg enc 38701 32168
mpeg2dec 37833 27942
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APPENDIX. BENCHMARK DATA
Our benchmarks are taken from the MediaBench benchmark suite,
available athttp://www.cs.ucla.edu/˜leec/mediabench .
We used the following programs:adpcm, which does speech com-
pression and decompression;epic, an image data compression util-
ity; g721 decandg721 enc, which are reference implementations
from Sun Microsystems of the CCITT G.721 voice compression
decoder and encoder;gsm, an implementation of the European
GSM 06.10 provisional standard for full-rate speech transcoding;
jpeg decand jpeg enc, which implement JPEG image decompres-
sion and compression;mpeg2decandmpeg2enc, which implement
MPEG-2 decoding and encoding respectively;pgp, a popular cryp-
tographic encryption/decryption program; andrasta, a speech-analysis
program. Table 1 gives the number of instructions in each program:
the second column, labeled “Input,” gives the number of instruc-
tions in the input program after the initial elimination of unreach-
able code and noops; the third column, labeled “Squeeze”, gives
the number of instructions after the application of our earlier code
compaction tool,squeeze. The performance data given in this paper
are relative to the third column of this table.

The inputs used to obtain the execution profiles used to guide
code compression, as well as those used to evaluate execution speed,
are described in Figure 5: the profiling inputs refer to those used to
obtain the execution profiles that were used to carry out compres-
sion, while the timing inputs refer to the inputs used to generate
execution time data for the uncompressed and compressed code.
These input files are as follows. The variousmlk IHaveADream.*
files were derived from the fileoblakhs011u1.wav , a 728.6
KB audio file of a speech by Martin Luther King Jr., obtained from
www.britannica.com/blackhistory/audiov.html .
The MPEG-2 filessarnoff2.m2v andtceh v2.m2v , used for
the benchmarksmpeg2decandmpeg2enc, were obtained from
http://bmrc.berkeley.edu/ftp/pub/mpeg/movies/
bitstreams/video/ . The filecompression.ps is PostScript
for the paper [7], obtained usinglatex2eanddvi2ps, while the file
TI-320-user-manual.ps is PostScript for a user manual for
the TI-320 processor, obtained from the Texas Instruments web
site. The variousclinton.* files, as well as the fileex5 c1.wav ,
were obtained as part of the Mediabench distribution.


