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Abstract fers from a number of deficiencies that limit the scope
It Il Kk that i timizati . .fand extent of these optimizations. Programs are typically
s t\;ve dnownth at comprier op |m|fza lons can S'gﬂ' compiled a procedure at a time, which means that opti-
Icantly reduce the€ energy usage of a program.  HOWg, 4iions do not cross procedure and module boundaries.
ever, the traditional model of comp||_at|_on IMmposes _|nh [While there has been some research on inter-procedural
ent I|r_n|ts_on the extent of code optimization p_os_5|bl_e de optimization, most compilers do not currently sup-
Comp"‘? time. I_n partlt_:ula_lr,_ analyses and optimizatio rt such optimizations; even inter-procedural optimiza-
are typically limited to individual procedures, and hen fons, where proposed, are generally limited in scope to

cannot cross prpcedural and mo_dul_e bounda_lries as Wedlividual modules. Moreover, compilers do not have
as the boundaries between application and library co Ecess to the code for library routines at compile time,

These limitations can be overcome by carrying out a nd hence are unable to optimize library calls. The latter

?'t'?ni! coﬂe OEt'm'Zat'on ((j)n ﬂ:eﬁ?]ed f|Iet.ol.)ta|tr.1ed abroblem cannot be readily solved within the traditional
erlinking has been carried out. 1hese optimizations gmpilation model, for three reasons: first, library code

compl_eme?tqry(/j_to tthciietca_rrle_fql OUtt by the compltler_. o| Mot available until link time; second, library routines
experiments indicate that significant Improvements in €igan contain hand-written assembly code that cannot be
ergy usage can be obtained via post-link-time code o

i f that h b biect ‘ocessed by the compiler; and finally, even if we could
m|tza lon, even _Iortprograrps_ at' ave been subjecte 8dify the compilation process to work with libraries,
extensive compiie-time optimization. the source code for third-party libraries may not be avail-
1 Motivation able. This is especially problematic because the trend

_ towards accelerating product development cycles encour-
'I_'he amount (_)f energy cons_umeo_l during program exeeigres modern software engineering techniques that aim at
tion is becoming an increasingly important concern forthe use of components or code libraries that are developed
wide spectrum of computing systems, influencing issugéth reusability and generality in mind.
ranging from battery lifetime to the amount of heat gen- h bl be add db .
erated. It is well known that the energy usage of a pro- Tl_eie_ pro egns can be a resslf )y carrying out
gram can be significantly reduced via compiler optimizROStInk-time code optimization on binaries, I.e., exe-
tions (see, for example, [5, 7, 9, 14, 15]). The reasonqgtabl,e machine codg f|Ies: Th_e issues that arise, and the
that such optimizations have the effect of eliminating i€Nefits that are obtained, in this context are complemen-
structions that tend to be “power-hungry,” such as mer@y to those for compilers for high-level languages. This

ory operations and branch instructions, and organize otRapPe" describes our experiences with link-time code op-

instructions in ways that reduce the amount of energy cdfization, with an eye towards energy usage reduction,

sumed. For example, optimizations such as register afffzingalto, & link-time optimizer we have developed for
cation and invariant code motion out of loops have yhge Compaq Alpha architecture. The main contributions

effect of reducing memory operations; procedure inlinirfy this paper are to show that: (1) the overheads remaining

and loop unrolling result in the execution of fewer brandf 0de after compile-time optimizations—even for pro-

operations; and instruction packing and scheduling hagfé"mSthat have been extensively optimized (in our exper-

the effect of reorganizing the instruction stream so as' ents, at Ieve_# O4) by hlgh-que_lhty compilers—can b_e .
reduce their overall power consumption. quite substantial; (2) much of this overhead can be elimi-

N o nated by subsequent post-link-time optimization of the ex-
However, the traditional model of compilation sufecutable binaries; and (3) this can yield significant overal
provements in performance.
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Binary files typically have much less semantic informaptimization constant computation optimizatiorand

tion than source programs, which makes it harder to tead/store forwarding(in addition, other classical opti-
cover information about the program. As a result, taskszations, such as invariant code motion out of loops and
that are straightforward at the source level—e.g., detshrink-wrapping, are also enabled by link-time code trans-
mining the targets of awitchstatement (i.e., an indirectformations and are carried out bjto, and permit the re-
jump through memory)—can turn out to be very difficuluction of the number of memory operations executed be-
at the machine code level. In general it is also difficult pond what is achievable at compile time).

distinguish between code and data, and between addresses

and non-address constants (the latter distinction is essgf 1 Procedure Call Optimization

tial because code addresses must be updated to reflect the

results of optimizations, while the values of constants ca@in most architectures, a procedure call can be imple-
not be changed).Moreover, executable files can contaimented in two ways: we can use a PC-relative “branch-
code generated from hand-written assembly routines thasubroutine” psr ) instruction, or we can load the ad-
violate high-level invariants assumed by the compiler. Fdress of the callee into a register and then use an indirect
example, our experience with the standard C and matfenp through the register using a “jump-to-subroutine”
matical libraries on a number of different platforms indij sr ) instruction? The former is more efficient—it does
cates that it is not uncommon for control to branch fromot have to load the target address from memory in order
one function into the middle of another, or fall througto effect the branch—but can reach only a limited num-
from one function into another, instead of using a funber of addresses from the call site; the latter can reach any
tion call. This kind of code complicates program analysildress, but is more expensive.

and optimization considerably. On the other hand, it is
easier to carry out various low-level cost-benefit analyses

which are necessary to determine the profitability of opjj- ich different object files will be linked together to pro-

s o e e vl e il executabe for progra. For hese reasons
program is available for analysis and optimization ﬁ/hen generating code for a procedure call, a compiler typ-
' ically does not know how far away the callee is from the

We have implemented a link-time optimizer, calledall site. This means that the compiler cannot, in general,
alto [11], for the Compag Alpha architecture; this systemssume that the call can be realized using a PC-relative
is freely available atwwv. cs. ari zona. edu/ al t 0. bsr instruction, and therefore is forced to use a more ex-
While a detailed description @lto is beyond the scopepensivg sr instruction. The result is that procedure calls
of this paper, we give a brief overview of the system facur extra load operations because of the need to load the
provide context for the discussion that follows. The exeallee’s address from memory.
cution ofalto consists of five phases. First, an executable
file is read in, and an inter-procedural control flow graqnt
is constructed. A suite of analyses and optimizations

Lhe; fi?wzltli?)i :ﬁ:ﬁtévelyhg)stehgrﬁéof%ﬁﬁ' Lzsésrgoggﬁe e guaranteed to be a fixed constant that is within the
y gp ’ P P %ge of ésr instruction, the indirect procedure call can

optimizations carne_d outin the se_cond phase. on .the be replaced by a more efficient direct call. (The replace-
sulting code. The final phase carries out profile-direct nt of the indirect procedure call by a direct call also

pode layout [12]’ code ahgnmgnt and instruction SCheo“l’#lfakes it possible to have a more precise representation of
ing, after which the code is written out. interprocedural control flow in the program, which turns
3 Optimizations out to be very helpful for assisting other optimizations.)
This transformation is assisted by profile-directed code
There are two main classes of optimizations withlto |ayout [12], which causes frequently executed code frag-
that lead to energy usage improvements: memory opéfgents to be placed close together in memory. While the
tion elimination and value-based code specializations Tiyrimary benefit of such code layout is to improve instruc-

Compilers typically process programs a procedure at
time. Moreover, compilers do not know the order in

During link-time optimization,alto uses global and
er-procedural constant propagation to compute the tar-
3t address for evelysr instruction. If this address can

section discusses these in more detail. tion cache utilization, it has the effect of placing func-
tions close to their frequently executed call sites. This ha
3.1 Memory Operation Elimination the result that the distance between the call site and the

o ) ~ callee’s entry point typically come close enough to allow
A number of optimizations contribute to the reductiofhe use of the cheapbsr instruction.

of memory operations. These incluggocedure call

20n a CISC architecture such as the Pentium, we can also provid

1Alto uses relocation information, which must be supplied by thbe address of the callee as an immediate operand af & instruction:
linker, to distinguish addresses from data. This is donenbgking the this is essentially equivalent to thier instruction in the sense that we
linker with additional options that instruct it to retainlgeation infor- have to load the address of the target from memory before wbreach
mation in the executable file. toit.



An example of the utility of this optimization is in thehave been kept in a register by the compiler because it
Mediabench benchmarkpeg2decode one of the most is a global, or because the compiler was unable to resolve
frequently executed loops in this program, in the functialiasing adequately, or because there were not enough free
Ref er ence_l CDT(), contains a call to the library rou-registers available to the compiler. At link time, accesses
tinef | oor () . Optimizing this call from @ sr to absr to globals from different modules become evident, mak-
instruction, as described above, removes a load instring it possible to keep them in registesdtois also able to
tion from one of the busiest loops in the program, and hiadke advantage of inlining across module boundaries, and

a significant impact on performance. of library routines, as well as value-based code specializa
tion (see Section 3.2), to resolve aliasing beyond what can
3.1.2 Constant Computation Optimization be done at compile time. Finallgjto scavenges registers—

e.g., as discussed in Section 3.1.2, and also as a result of
In the Alpha architecture, 64-bit constants are placeddther optimizations such as the elimination of code that
data areas calledlobal address tableswhich are ac- becomes unreachable due to the propagation of constant
cessed via @lobal pointerregister$gp. Accessing a arguments across function boundaries—and these regis-
global object involves two steps: first, the address of tkers can then be used to hold values that were spilled to
object is loaded from the global address table; this is theremory by the compiler.
used to access the object referred to, e.g., to load from or

store to a global variable, or jump to a procedure. Suppose that an instructioh stores register; to

memory locatiori (or loads froml), and is followed soon

If it is possible to determine, from constant propagafter by an instructiod, that loads from location into
tion/folding, that a value being computed or loaded intoragisterr,. If it can be shown that that locatidnis not
register is a constanalto attempts to find a cheaper inmodified between these two instructions, tHead for-
struction to compute the constant into that register. Thigrding attempts to delete instructioh and replace it
is done as follows. Suppose that a registeis known to with a register move fromr; to r,. It may happen that
contain a constant, at a program point where the proregisterr; is overwritten between instructiods and I:
gram loads a constaat into a register;. The code gen- in this casealto tries to find a free register; that can be
erated by the compiler will load these constants from tlhiged to hold the value i . If the instruction/; can now
global address table. However, if the difference betwebs shown to be dead, it can also be deleted.
ag anda; is not too big (fits within 16 bits)lto can elim-
inate the load from memory inta, and instead use arith-3 2 v/alue-Based Code Specialization
metic to compute the value, from the valueaq in rq.
The primary benefit of this optimization is to significanthBincealto is able to modify executable files, in addition
reduce the number of loads from the global address talite carrying out optimizations, it is also able to insert in-
replacing them by register operations that are signifigangitrumentation code to gather low-level execution profiles.
cheaper in terms of both time and energy usage. One form of profiling it is able to carry out &alue pro-
fiEng. A value profile for a variable at a particular pro-

Alto also tries to optimize the use of constants. MO% am point is information about the distribution of the val-

integer arithmetic instructions on the Alpha processor &s taken on by that variable at that point. Since gather-
low one of the operands to be a small immediate ConSt?r{SSvaIue profiles is a relatively expensive operation, we

rather than a registeplto attempts to exploit this feature:usﬁ a cost-benefit analysis, guided by the execution pro-

whenever it can guarantee that a register contains a SR of the program and a cost model for the architecture

constantalto attempts to modify arithmetic mstructlonsu der consideration, to prune the set of candidate vari-

involving that register to use an immediate value inste . ; .
This has the benefit that it frees up the register holding ?ﬁ%ﬁ/g;ogrr;ri?aglcg?;&alrs to those where value profiling
0 .

constant; this register can now be used for other optimiza-
tions, such as the load/store forwarding optimization dis- Suppose that the value profile for a variablat a par-
cussed below. The applicability of this optimization asisdicular program point indicates that it takes on the value 0
from the fact that, since at link timato has access to themost of the time. If knowing that has the value 0 allows
entire program, it is able to propagate constant argumettis code to be simplified significantlgito transforms the

from procedure calls into the callee. program so that it tests whether= 0 at that point and
branches to an optimized version of the code, specialized
3.1.3 Load/Store Forwarding to the value O forz, if this is the case. The effect of

this optimization is to allow optimized code for common-
It is sometimes possible to identify load (and, less frease values without sacrificing correctness for other val-
guently, store) operations as unnecessary at link time, areg [10]. A low-level cost model is used to weigh the costs
eliminate such operations. Unnecessary loads and stames benefits of such value-based code specialization and
can arise for a variety of reasons: a variable may ngiide the decision about what code fragments are worth
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Figure 2: Energy usage reduction
Figure 1: Example control flow graph

sets registe$r 1 to 1; in this case the conditional branch

specializing, and for which values. Note that this oped—which branches to B2 if the operand regisserl
mization is not possible using existing compiler technd® €gual to 0—is not taken).

ogy because compilers do not specialize code for a value syppose that all of the call sites for this function pass

unless that value is guaranteed to be a fixed compile-tild@on-NULL argument to this function. Context-sensitive
constant. inter-procedural constant propagation is then able ta,infe

We can generalize this idea further and allow arbitrag;m these argument values, that registed always has
expressions to be profiled. For example, given a pair §€ value 1 after thenpne instruction in block BO, and
pointersp andq that are used for indirect loads and stord¥ence that the conditional branch in BO is never taken.
in a frequently executed code fragment, we can profile the€ optimizer accordingly deletes tioerpne and beq
expressionp # g’ to determine whether these pointerfistructions at the end of BO and eliminates the edge BO
are aliases in the common casdle can then generate— B2 from the control flow graph.

optimized code for situations where two pointers are un- \when unreachable code elimination is applied to the

aliased most of the time, though possibly not all of thesyiting graph, it identifies block B2 as unreachable,

time; moreover, we can do this without having to resort {sjetes it from the control flow graph, and adjusts the
expensive and potentially conservative compile-timesaligraph accordingly.

analysis. On the SPEC-95 benchmanr&8ksimsuch spe- ) ) B
cialization yields a speed improvement of over 13% [10]. Suppose that the locatiokdr 0 is not modified be-
~_ tween thest or e instruction in block B1 and theoad
Overall, the effect of such code specialization is i B3: |oad/store forwarding (Section 3.1.3) is then able

eliminate memory and branch operations—which typj eliminate thd oad instruction in B3, replacing it by a
cally have relatively high latencies and consume a Iplgister move fron$r 0 to $r 3.

of energy—along commonly executed execution paths,
thereby improving execution speed. @88ksimfor ex-  If there are no other references to the locatalir 0
ample, we see a 17% reduction in the number of memdfythe function, and it can be shown that this location is
operations and a 5% reduction in the number of brangt live after the return from the function (e.g. Afidr 0
operations. is a variable that is local to this function), then gteor e
instruction in block B1 can also be eliminated. If the con-
tents of registefr 0 at thest or e instruction in block
B1 are known, it also becomes possible to statically deter-
Much of the benefits of link-time code optimization argine the outcome of the conditional branch at the end of
obtained from synergistic interactions between differelock B3, and eliminate this branch instruction as well.
optimizations. This is illustrated in Figure 1, which showg E . | Resul
the control flow graph of a simple function. The functio xperimental Results
shown checks whether the first argument, passed to itfid evaluate the improvements resulting from link-
register$a0, is NULL, and branches to block B2 if ittime optimization usingalto, we used a set of seven
is (if $a0 has a non-zero value, thEpne instruction penchmarks from the Mediabench suitadpcm epic

30ur implementation also takes into account the width of teenm 9721€ncode jpegencode jpeg decode mpegdecode
ory references vig andq to determine whether the addresses so refeendmpeg2encode The low-level performance character-
enced can overlap. istics of these programs were measured using the Wattch

3.3 Interactions Between Optimizations
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Figure 3: Low-level runtime performance characteristics Figure 4: Breakdown of energy usage improvements

simulator [2], configured to simulate an Alpha 21264 prdion reductions in excess of 10%, widpicachieving the
cessor [8]. Validation studies indicate that the simulatidargest improvement of over 36%. These reductions lead
results are quite close to published energy usage datatfosignificant improvements in the total number of execu-
this processor [2]. tion cycles as well, with reductions in the 10-20% range
To ensure a balanced and reasonable evaluatio forfseveral programs. Overall, we get an average reduc-
. . s L "i8h of 12.5% in the total number of instructions, 8.8% in
the benefits resulting from link-time optimization, wi

. o i
should ensure that the programs under consideration?é]é%g???:ﬁ;s()f memory operations, and 9.7% in the num
subjected to as much compiler optimization as possible, ycles.
preferably using a compiler with good optimization ca- Figure 4 gives a detailed breakdown of the effects
pabilities. To this end, we compiled our programs witaf link-time optimization on different components of the
the vendor-supplied C compiler (the highly optimizingrocessor during program execution. The energy usage of
GEM compiler system [1], which generates better codlee register file is reduced by 10-15% (average: 12.6%).
than current versions afcc) V5.2-036, invoked agc The instruction cache sees an improvement of 7—10% for
- (4, with additional linker options to retain relocation inmost programs (average: 8.6%). Data cache energy usage
formation and produce statically linked executafles. is reduced by 5-25% (average: 9.8%). The energy usage

X e _ :
The effect of link-time optimization on the energy us(—)]c the ALU is reduced by 7-18% (average: 13.8%), and

S lock energy by 9-19% (average: 12.2%). The synergis-
gﬁgwc;: rce)l;errﬁ)goaggrggzs?\:g ki?[or\lﬁl)z_'ig ei\'?éj orﬁdi} onT ;}ilgjé effects of the the various optimizations carried out by
ing (i.e., some small amount of power is still consum tocan be seen, fore>_<amp_|e, by focqsmg qnthe improve-
when. é’ portion of the processor is not clocked), corr ients in cache behavior. First, the_eI|m|nat|on of memory
sponding to the implementation of the Alpha 212&54 pr as well as other types of) instructions translates to a re-
cessor [6]. It can be seen that most of the programs tes o tion |n.the number of Instruction cache accesses, with
experiencé energy usage reductions in excess of 1 ).goncomngn_t re(_juctlon In its energy consumption. Sec-
with adpcmand mpeg2decodeobtaining improvementsor?d' th_e eI|m_|nat|on of load operations k.)y keepmg data
of over 15%. The smallest gain is figeg encodewhich values in registers, or computing them via register oper-
improves by.9 7%. On average, the energy usage of tions, means that less energy is used in th_e_data cache.
set of program.s i .reduced by al,Jout 12 5% |ﬁally, both th_ese_phenomena have a beneficial effect on
o the level-2 unified instruction and data cache. The reduc-

Figure 3 shows the effect of link-time code optimizaions in misses in the primary instruction and data caches
tion on several aspects of the low-level behavior of tieean that there are fewer L2 cache accesses, and since
programs. The total number of instructions executed Hyere are fewer instructions and data values competing for
the programs generally drops by about 10-18%. Papace in the L2 cache there are fewer L2 cache misses
ticularly significant is the effect of link-time optimiza-as well. In either case, the result is a decrease in the L2
tion on the number of memory references (i.e., load andche energy usage: detailed figures for this are omitted
store instructions): several of our prograradfjcm epic, from Figure 4 due to space constraints, but we find that on
g721encodempeg2decodé experience memory opera-average there is a 10.2% improvement in the energy usage
of the level-2 cache.

4We use statically linked executables becaaiserelies on the pres-

ence of relocation information for its control flow analysishe Dig- It is important to note that these performance im-
ital Unix linker | d refuses to retain relocation information for non-

statically-linked executables. provements are achieved on executables generated using
a very high degree of compile-time optimization (at level



- O4). Moreover, these performance benefits generally rgith a collection of programs from the Mediabench suite
sult from information that is unavailable at compile timeéndicate that energy usage reductions of over 10%, on the
namely, addresses of globals and functions, and by #nerage, can be achieved even for programs that have been
propagation of information across boundaries that are typeavily optimized by a high-quality compiler.
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