
Software Power Optimization via Post-Link-Time Binary Rewriting�
Saumya Debray Robert Muth Scott Watterson

Abstract

It is well known that compiler optimizations can signif-
icantly reduce the energy usage of a program. How-
ever, the traditional model of compilation imposes inher-
ent limits on the extent of code optimization possible at
compile time. In particular, analyses and optimizations
are typically limited to individual procedures, and hence
cannot cross procedural and module boundaries as well
as the boundaries between application and library code.
These limitations can be overcome by carrying out ad-
ditional code optimization on the object file obtained af-
ter linking has been carried out. These optimizations are
complementary to those carried out by the compiler. Our
experiments indicate that significant improvements in en-
ergy usage can be obtained via post-link-time code opti-
mization, even for programs that have been subjected to
extensive compile-time optimization.

1 Motivation

The amount of energy consumed during program execu-
tion is becoming an increasingly important concern for a
wide spectrum of computing systems, influencing issues
ranging from battery lifetime to the amount of heat gen-
erated. It is well known that the energy usage of a pro-
gram can be significantly reduced via compiler optimiza-
tions (see, for example, [5, 7, 9, 14, 15]). The reason is
that such optimizations have the effect of eliminating in-
structions that tend to be “power-hungry,” such as mem-
ory operations and branch instructions, and organize other
instructions in ways that reduce the amount of energy con-
sumed. For example, optimizations such as register allo-
cation and invariant code motion out of loops have the
effect of reducing memory operations; procedure inlining
and loop unrolling result in the execution of fewer branch
operations; and instruction packing and scheduling have
the effect of reorganizing the instruction stream so as to
reduce their overall power consumption.

However, the traditional model of compilation suf-�This work was supported in part by the National Science Foun-
dation under grants CCR-0073394, EIA-0080123, and ASC-9720738.
Authors’ addresses: S. Debray and S. Watterson: Departmentof Com-
puter Science, The University of Arizona, Tucson, AZ 85721;e-mail:fdebray, sawg@cs.arizona.edu; R. Muth: Alpha Develop-
ment Group, Compaq Computer Corporation, Shrewsbury, MA 01749;
email:Robert.Muth@compaq.com.

fers from a number of deficiencies that limit the scope
and extent of these optimizations. Programs are typically
compiled a procedure at a time, which means that opti-
mizations do not cross procedure and module boundaries.
While there has been some research on inter-procedural
code optimization, most compilers do not currently sup-
port such optimizations; even inter-procedural optimiza-
tions, where proposed, are generally limited in scope to
individual modules. Moreover, compilers do not have
access to the code for library routines at compile time,
and hence are unable to optimize library calls. The latter
problem cannot be readily solved within the traditional
compilation model, for three reasons: first, library code
is not available until link time; second, library routines
often contain hand-written assembly code that cannot be
processed by the compiler; and finally, even if we could
modify the compilation process to work with libraries,
the source code for third-party libraries may not be avail-
able. This is especially problematic because the trend
towards accelerating product development cycles encour-
ages modern software engineering techniques that aim at
the use of components or code libraries that are developed
with reusability and generality in mind.

These problems can be addressed by carrying out
post-link-time code optimization on binaries, i.e., exe-
cutable machine code files. The issues that arise, and the
benefits that are obtained, in this context are complemen-
tary to those for compilers for high-level languages. This
paper describes our experiences with link-time code op-
timization, with an eye towards energy usage reduction,
usingalto, a link-time optimizer we have developed for
the Compaq Alpha architecture. The main contributions
of this paper are to show that: (1) the overheads remaining
in code after compile-time optimizations—even for pro-
grams that have been extensively optimized (in our exper-
iments, at level-O4) by high-quality compilers—can be
quite substantial; (2) much of this overhead can be elimi-
nated by subsequent post-link-time optimization of the ex-
ecutable binaries; and (3) this can yield significant overall
improvements in performance.

2 Link-Time Code Optimization and alto

The issues involved in “parsing” (i.e., decompiling), ana-
lyzing, and optimizing an executable file are very different
from the corresponding source level actions in a compiler.

Binary files typically have much less semantic informa-
tion than source programs, which makes it harder to re-
cover information about the program. As a result, tasks
that are straightforward at the source level—e.g., deter-
mining the targets of aswitchstatement (i.e., an indirect
jump through memory)—can turn out to be very difficult
at the machine code level. In general it is also difficult to
distinguish between code and data, and between addresses
and non-address constants (the latter distinction is essen-
tial because code addresses must be updated to reflect the
results of optimizations, while the values of constants can-
not be changed).1 Moreover, executable files can contain
code generated from hand-written assembly routines that
violate high-level invariants assumed by the compiler. For
example, our experience with the standard C and mathe-
matical libraries on a number of different platforms indi-
cates that it is not uncommon for control to branch from
one function into the middle of another, or fall through
from one function into another, instead of using a func-
tion call. This kind of code complicates program analysis
and optimization considerably. On the other hand, it is
easier to carry out various low-level cost-benefit analyses,
which are necessary to determine the profitability of opti-
mizations, at the level of binaries than at the source level.
Another benefit of working with binaries is that the entire
program is available for analysis and optimization.

We have implemented a link-time optimizer, called
alto [11], for the Compaq Alpha architecture; this system
is freely available atwww.cs.arizona.edu/alto.
While a detailed description ofalto is beyond the scope
of this paper, we give a brief overview of the system to
provide context for the discussion that follows. The exe-
cution ofalto consists of five phases. First, an executable
file is read in, and an inter-procedural control flow graph
is constructed. A suite of analyses and optimizations is
then applied iteratively to the program. This is followed
by a function inlining phase. The fourth phase repeats the
optimizations carried out in the second phase on the re-
sulting code. The final phase carries out profile-directed
code layout [12], code alignment and instruction schedul-
ing, after which the code is written out.

3 Optimizations

There are two main classes of optimizations withinalto
that lead to energy usage improvements: memory opera-
tion elimination and value-based code specialization. This
section discusses these in more detail.

3.1 Memory Operation Elimination

A number of optimizations contribute to the reduction
of memory operations. These includeprocedure call

1Alto uses relocation information, which must be supplied by the
linker, to distinguish addresses from data. This is done by invoking the
linker with additional options that instruct it to retain relocation infor-
mation in the executable file.

optimization, constant computation optimization, and
load/store forwarding(in addition, other classical opti-
mizations, such as invariant code motion out of loops and
shrink-wrapping, are also enabled by link-time code trans-
formations and are carried out byalto, and permit the re-
duction of the number of memory operations executed be-
yond what is achievable at compile time).

3.1.1 Procedure Call Optimization

On most architectures, a procedure call can be imple-
mented in two ways: we can use a PC-relative “branch-
to-subroutine” (bsr) instruction, or we can load the ad-
dress of the callee into a register and then use an indirect
jump through the register using a “jump-to-subroutine”
(jsr) instruction.2 The former is more efficient—it does
not have to load the target address from memory in order
to effect the branch—but can reach only a limited num-
ber of addresses from the call site; the latter can reach any
address, but is more expensive.

Compilers typically process programs a procedure at
a time. Moreover, compilers do not know the order in
which different object files will be linked together to pro-
duce the final executable for a program. For these reasons,
when generating code for a procedure call, a compiler typ-
ically does not know how far away the callee is from the
call site. This means that the compiler cannot, in general,
assume that the call can be realized using a PC-relative
bsr instruction, and therefore is forced to use a more ex-
pensivejsr instruction. The result is that procedure calls
incur extra load operations because of the need to load the
callee’s address from memory.

During link-time optimization,alto uses global and
inter-procedural constant propagation to compute the tar-
get address for everyjsr instruction. If this address can
be guaranteed to be a fixed constant that is within the
range of absr instruction, the indirect procedure call can
be replaced by a more efficient direct call. (The replace-
ment of the indirect procedure call by a direct call also
makes it possible to have a more precise representation of
interprocedural control flow in the program, which turns
out to be very helpful for assisting other optimizations.)
This transformation is assisted by profile-directed code
layout [12], which causes frequently executed code frag-
ments to be placed close together in memory. While the
primary benefit of such code layout is to improve instruc-
tion cache utilization, it has the effect of placing func-
tions close to their frequently executed call sites. This has
the result that the distance between the call site and the
callee’s entry point typically come close enough to allow
the use of the cheaperbsr instruction.

2On a CISC architecture such as the Pentium, we can also provide
the address of the callee as an immediate operand of acall instruction:
this is essentially equivalent to thejsr instruction in the sense that we
have to load the address of the target from memory before we can branch
to it.

2

An example of the utility of this optimization is in the
Mediabench benchmarkmpeg2decode: one of the most
frequently executed loops in this program, in the function
Reference ICDT(), contains a call to the library rou-
tinefloor(). Optimizing this call from ajsr to absr
instruction, as described above, removes a load instruc-
tion from one of the busiest loops in the program, and has
a significant impact on performance.

3.1.2 Constant Computation Optimization

In the Alpha architecture, 64-bit constants are placed in
data areas calledglobal address tables, which are ac-
cessed via aglobal pointer register$gp. Accessing a
global object involves two steps: first, the address of the
object is loaded from the global address table; this is then
used to access the object referred to, e.g., to load from or
store to a global variable, or jump to a procedure.

If it is possible to determine, from constant propaga-
tion/folding, that a value being computed or loaded into a
register is a constant,alto attempts to find a cheaper in-
struction to compute the constant into that register. This
is done as follows. Suppose that a registerr0 is known to
contain a constanta0 at a program point where the pro-
gram loads a constanta1 into a registerr1. The code gen-
erated by the compiler will load these constants from the
global address table. However, if the difference betweena0 anda1 is not too big (fits within 16 bits),alto can elim-
inate the load from memory intor1, and instead use arith-
metic to compute the valuea1 from the valuea0 in r0.
The primary benefit of this optimization is to significantly
reduce the number of loads from the global address table,
replacing them by register operations that are significantly
cheaper in terms of both time and energy usage.

Alto also tries to optimize the use of constants. Most
integer arithmetic instructions on the Alpha processor al-
low one of the operands to be a small immediate constant
rather than a register.Alto attempts to exploit this feature:
whenever it can guarantee that a register contains a small
constant,alto attempts to modify arithmetic instructions
involving that register to use an immediate value instead.
This has the benefit that it frees up the register holding the
constant; this register can now be used for other optimiza-
tions, such as the load/store forwarding optimization dis-
cussed below. The applicability of this optimization arises
from the fact that, since at link timealto has access to the
entire program, it is able to propagate constant arguments
from procedure calls into the callee.

3.1.3 Load/Store Forwarding

It is sometimes possible to identify load (and, less fre-
quently, store) operations as unnecessary at link time, and
eliminate such operations. Unnecessary loads and stores
can arise for a variety of reasons: a variable may not

have been kept in a register by the compiler because it
is a global, or because the compiler was unable to resolve
aliasing adequately, or because there were not enough free
registers available to the compiler. At link time, accesses
to globals from different modules become evident, mak-
ing it possible to keep them in registers.Alto is also able to
take advantage of inlining across module boundaries, and
of library routines, as well as value-based code specializa-
tion (see Section 3.2), to resolve aliasing beyond what can
be done at compile time. Finally,alto scavenges registers–
e.g., as discussed in Section 3.1.2, and also as a result of
other optimizations such as the elimination of code that
becomes unreachable due to the propagation of constant
arguments across function boundaries—and these regis-
ters can then be used to hold values that were spilled to
memory by the compiler.

Suppose that an instructionI1 stores registerr1 to
memory locationl (or loads froml), and is followed soon
after by an instructionI2 that loads from locationl into
registerr2. If it can be shown that that locationl is not
modified between these two instructions, thenload for-
warding attempts to delete instructionI2 and replace it
with a register move fromr1 to r2. It may happen that
registerr1 is overwritten between instructionsI1 andI2:
in this case,alto tries to find a free registerr3 that can be
used to hold the value inr1. If the instructionI1 can now
be shown to be dead, it can also be deleted.

3.2 Value-Based Code Specialization

Sincealto is able to modify executable files, in addition
to carrying out optimizations, it is also able to insert in-
strumentation code to gather low-level execution profiles.
One form of profiling it is able to carry out isvalue pro-
filing. A value profile for a variable at a particular pro-
gram point is information about the distribution of the val-
ues taken on by that variable at that point. Since gather-
ing value profiles is a relatively expensive operation, we
use a cost-benefit analysis, guided by the execution pro-
file of the program and a cost model for the architecture
under consideration, to prune the set of candidate vari-
able/program point pairs to those where value profiling
may be profitable [16].

Suppose that the value profile for a variablex at a par-
ticular program point indicates that it takes on the value 0
most of the time. If knowing thatx has the value 0 allows
the code to be simplified significantly,alto transforms the
program so that it tests whetherx = 0 at that point and
branches to an optimized version of the code, specialized
to the value 0 forx, if this is the case. The effect of
this optimization is to allow optimized code for common-
case values without sacrificing correctness for other val-
ues [10]. A low-level cost model is used to weigh the costs
and benefits of such value-based code specialization and
guide the decision about what code fragments are worth

3

B0

cmpne $a0, 0x0, $r1
beq $r1, B2

. . .

B1 B2

store $r0, Addr0 store $r2, Addr0
. . .

. . .

. . .

. . .

B3

B4 B5

load $r3, Addr0
beq $r3, B4

. . .

.

Figure 1: Example control flow graph

specializing, and for which values. Note that this opti-
mization is not possible using existing compiler technol-
ogy because compilers do not specialize code for a value
unless that value is guaranteed to be a fixed compile-time
constant.

We can generalize this idea further and allow arbitrary
expressions to be profiled. For example, given a pair of
pointersp andq that are used for indirect loads and stores
in a frequently executed code fragment, we can profile the
expression ‘p 6= q’ to determine whether these pointers
are aliases in the common case.3 We can then generate
optimized code for situations where two pointers are un-
aliased most of the time, though possibly not all of the
time; moreover, we can do this without having to resort to
expensive and potentially conservative compile-time alias
analysis. On the SPEC-95 benchmarkm88ksim, such spe-
cialization yields a speed improvement of over 13% [10].

Overall, the effect of such code specialization is to
eliminate memory and branch operations—which typi-
cally have relatively high latencies and consume a lot
of energy—along commonly executed execution paths,
thereby improving execution speed. Onm88ksim, for ex-
ample, we see a 17% reduction in the number of memory
operations and a 5% reduction in the number of branch
operations.

3.3 Interactions Between Optimizations

Much of the benefits of link-time code optimization are
obtained from synergistic interactions between different
optimizations. This is illustrated in Figure 1, which shows
the control flow graph of a simple function. The function
shown checks whether the first argument, passed to it in
register$a0, is NULL, and branches to block B2 if it
is (if $a0 has a non-zero value, thecmpne instruction

3Our implementation also takes into account the width of the mem-
ory references viap andq to determine whether the addresses so refer-
enced can overlap.

a
d

p
c

m

e
p

ic

g
7

2
1

_
e

n
c

o
d

e

jp
e

g
_

d
e

c
o

d
e

jp
e

g
_

e
n

c
o

d
e

m
p

e
g

2
_

d
e

c
o

d
e

m
p

e
g

2
_

e
n

c
o

d
e

M
E

A
N

0.0

5.0

10.0

15.0

20.0

E
ne

rg
y

us
ag

e
re

du
ct

io
n

(%
)

Figure 2: Energy usage reduction

sets register$r1 to 1; in this case the conditional branch
beq—which branches to B2 if the operand register$r1
is equal to 0—is not taken).

Suppose that all of the call sites for this function pass
a non-NULL argument to this function. Context-sensitive
inter-procedural constant propagation is then able to infer,
from these argument values, that register$r1 always has
the value 1 after thecmpne instruction in block B0, and
hence that the conditional branch in B0 is never taken.
The optimizer accordingly deletes thecmpne andbeq
instructions at the end of B0 and eliminates the edge B0! B2 from the control flow graph.

When unreachable code elimination is applied to the
resulting graph, it identifies block B2 as unreachable,
deletes it from the control flow graph, and adjusts the
graph accordingly.

Suppose that the locationAddr0 is not modified be-
tween thestore instruction in block B1 and theload
in B3: load/store forwarding (Section 3.1.3) is then able
to eliminate theload instruction in B3, replacing it by a
register move from$r0 to $r3.

If there are no other references to the locationAddr0
in the function, and it can be shown that this location is
not live after the return from the function (e.g., ifAddr0
is a variable that is local to this function), then thestore
instruction in block B1 can also be eliminated. If the con-
tents of register$r0 at thestore instruction in block
B1 are known, it also becomes possible to statically deter-
mine the outcome of the conditional branch at the end of
block B3, and eliminate this branch instruction as well.

4 Experimental Results

To evaluate the improvements resulting from link-
time optimization usingalto, we used a set of seven
benchmarks from the Mediabench suite:adpcm, epic,
g721encode, jpeg encode, jpeg decode mpeg2decode,
andmpeg2encode. The low-level performance character-
istics of these programs were measured using the Wattch

4

a
d

p
c

m

e
p

ic

g
7

2
1

_
e

n
c

o
d

e

jp
e

g
_

d
e

c
o

d
e

jp
e

g
_

e
n

c
o

d
e

m
p

e
g

2
_

d
e

c
o

d
e

m
p

e
g

2
_

e
n

c
o

d
e

M
E

A
N

0.0

10.0

20.0

30.0

40.0
Im

pr
ov

em
en

t
(%

)
Total no. of instructions
Total no. of memory references
Total execution cycles

Figure 3: Low-level runtime performance characteristics

simulator [2], configured to simulate an Alpha 21264 pro-
cessor [8]. Validation studies indicate that the simulation
results are quite close to published energy usage data for
this processor [2].

To ensure a balanced and reasonable evaluation of
the benefits resulting from link-time optimization, we
should ensure that the programs under consideration are
subjected to as much compiler optimization as possible,
preferably using a compiler with good optimization ca-
pabilities. To this end, we compiled our programs with
the vendor-supplied C compiler (the highly optimizing
GEM compiler system [1], which generates better code
than current versions ofgcc) V5.2-036, invoked ascc
-O4, with additional linker options to retain relocation in-
formation and produce statically linked executables.4

The effect of link-time optimization on the energy us-
age of our programs are shown in Figure 2. The data
shown refer to aggressive but non-ideal conditional clock-
ing (i.e., some small amount of power is still consumed
when a portion of the processor is not clocked), corre-
sponding to the implementation of the Alpha 21264 pro-
cessor [6]. It can be seen that most of the programs tested
experience energy usage reductions in excess of 10%,
with adpcmandmpeg2decodeobtaining improvements
of over 15%. The smallest gain is forjpeg encode, which
improves by 9.7%. On average, the energy usage of this
set of programs is reduced by about 12.5%.

Figure 3 shows the effect of link-time code optimiza-
tion on several aspects of the low-level behavior of the
programs. The total number of instructions executed by
the programs generally drops by about 10–18%. Par-
ticularly significant is the effect of link-time optimiza-
tion on the number of memory references (i.e., load and
store instructions): several of our programs (adpcm, epic,
g721encode, mpeg2decode) experience memory opera-

4We use statically linked executables becausealto relies on the pres-
ence of relocation information for its control flow analysis. The Dig-
ital Unix linker ld refuses to retain relocation information for non-
statically-linked executables.

a
d

p
c

m

e
p

ic

g
7

2
1

_
e

n
c

o
d

e

jp
e

g
_

d
e

c
o

d
e

jp
e

g
_

e
n

c
o

d
e

m
p

e
g

2
_

d
e

c
o

d
e

m
p

e
g

2
_

e
n

c
o

d
e

M
E

A
N

0.0

5.0

10.0

15.0

20.0

25.0

R
ed

uc
ti

on
 (

%
)

Register File

Instruction Cache

Data Cache

ALU

Clock

Figure 4: Breakdown of energy usage improvements

tion reductions in excess of 10%, withepicachieving the
largest improvement of over 36%. These reductions lead
to significant improvements in the total number of execu-
tion cycles as well, with reductions in the 10–20% range
for several programs. Overall, we get an average reduc-
tion of 12.5% in the total number of instructions, 8.8% in
the number of memory operations, and 9.7% in the num-
ber of cycles.

Figure 4 gives a detailed breakdown of the effects
of link-time optimization on different components of the
processor during program execution. The energy usage of
the register file is reduced by 10–15% (average: 12.6%).
The instruction cache sees an improvement of 7–10% for
most programs (average: 8.6%). Data cache energy usage
is reduced by 5–25% (average: 9.8%). The energy usage
of the ALU is reduced by 7–18% (average: 13.8%), and
clock energy by 9–19% (average: 12.2%). The synergis-
tic effects of the the various optimizations carried out by
altocan be seen, for example, by focusing on the improve-
ments in cache behavior. First, the elimination of memory
(as well as other types of) instructions translates to a re-
duction in the number of instruction cache accesses, with
a concomitant reduction in its energy consumption. Sec-
ond, the elimination of load operations by keeping data
values in registers, or computing them via register oper-
ations, means that less energy is used in the data cache.
Finally, both these phenomena have a beneficial effect on
the level-2 unified instruction and data cache. The reduc-
tions in misses in the primary instruction and data caches
mean that there are fewer L2 cache accesses, and since
there are fewer instructions and data values competing for
space in the L2 cache there are fewer L2 cache misses
as well. In either case, the result is a decrease in the L2
cache energy usage: detailed figures for this are omitted
from Figure 4 due to space constraints, but we find that on
average there is a 10.2% improvement in the energy usage
of the level-2 cache.

It is important to note that these performance im-
provements are achieved on executables generated using
a very high degree of compile-time optimization (at level

5

-O4). Moreover, these performance benefits generally re-
sult from information that is unavailable at compile time,
namely, addresses of globals and functions, and by the
propagation of information across boundaries that are typ-
ically not crossed in the traditional model of compilation,
e.g., across procedure and module boundaries, and be-
tween application and library code. This indicates that,
even though the compiler has done everything it can to
eliminate inefficiencies in the code at compile time, there
are nevertheless a considerable amount of overheads that
remain. Link-time optimization can be used to eliminate
some of these residual overheads, and this can lead to sig-
nificant performance improvements overall.

5 Related Work

There has been a great deal of work on the application
of compile-time code optimization to reduce the energy
usage of programs [5, 9, 14, 15]. Most of these works
investigate the effects of specific individual optimizations
on energy usage. Our work, by contrast, examines the
synergies and effects of a suite of different optimizations
on energy usage.

Like us, Kandemiret al. also examine the combined
effect of different optimizations [7]. However, their work
is focused purely on compile-time optimization, while
we focus on the additional energy savings that can be
achieved via link-time optimization after the compiler
has already optimized the program as much as it can.
Other authors have looked into link-time code optimiza-
tion [4, 13], but have not investigated the effects of such
optimizations on energy usage.

The application of value-profile-based specialization
to energy optimization is also discussed by Chunget al.
[3]. This work carries out specialization at the source level
at the granularity of procedures, while we use a low-level
cost model—which can be more sensitive to machine-
level cost/benefit tradeoffs—to guide specialization at the
machine code level, and can specialize smaller code re-
gions, e.g., basic blocks or loops, within procedures. We
are also able to carry out expression-based specialization,
which allows us to optimize code based on more general
properties than simply the values of variables, e.g., non-
aliasing between pointers.

6 Conclusions

While compiler optimizations can be very useful in reduc-
ing the energy usage of programs, the traditional model of
compilation imposes inherent limits on the extent of op-
timization that can be achieved at compile time. This pa-
per shows that the residual overheads, which can be quite
substantial, can be greatly reduced via post-link-time code
optimization applied to executable files. We describe our
experiences withalto, a link-time optimizer we have de-
veloped for the Compaq Alpha architecture. Experiments

with a collection of programs from the Mediabench suite
indicate that energy usage reductions of over 10%, on the
average, can be achieved even for programs that have been
heavily optimized by a high-quality compiler.

References

[1] D. Blickstein et al., “The GEM Optimizing Com-
piler System”,Digital Technical Journal, 4(4):121–
136.

[2] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch:
A Framework for Architectural-Level Power Anal-
ysis and Optimizations”,Proc. 27th. International
Symposium on Computer Architecture, June 2000,
pp. 83–94.

[3] E.-Y. Chung, L. Benini, and G. De Micheli, “En-
ergy Efficient Source Code Transformation based on
Value Profiling”, Proc. International Workshop on
Compilers and Operating Systems for Low Power,
Philadelphia, Oct. 2000.

[4] R. Cohn, D. Goodwin, P. G. Lowney, and N. Ru-
bin, “Optimizing Alpha Executables on Windows
NT with Spike”,Digital Technical Journalvol. 9 no.
4, 1997, pp. 3–20.

[5] G. C. S. de Araújo,Code Generation Algorithms
for Digital Signal Processors, PhD. Dissertation,
Princeton University, June 1997.

[6] M. K. Gowan, L. L. Biro, and D. B. Jackson, “Power
Considerations in the Design of the Alpha 21264
Microprocessor”,Proc. 35th. ACM Conference on
Design Automation(DAC ’98), June 1998, pp. 726–
731.

[7] M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W.
Ye, “Influence of Compiler Optimizations on Sys-
tem Power”,Proc. 37th. ACM Conference on Design
Automation(DAC ’00), pp. 304–307.

[8] R. E. Kessler, “The Alpha 21264 Microprocessor”,
IEEE Micro, Vol. 19, No. 2, March/April 1999.

[9] M. T.-C. Lee and V. Tiwari, “A Memory Allocation
Technique for Low-Energy Embedded DSP Soft-
ware”, Proc. 1995 IEEE Symposium on Low Power
Electronics, Oct. 1995.

[10] R. Muth, S. Watterson, and S. K. Debray, “Code
Specialization based on Value Profiles”,Proc.
7th. International Static Analysis Symposium(SAS
2000), June 2000, pp. 340–359. Springer LNCS vol.
1824.

[11] R. Muth, S. K. Debray, S. Watterson, and K. De
Bosschere, “alto : A Link-Time Optimizer for the
Compaq Alpha”,Software Practice and Experience
31:67–101, Jan. 2001.

6

[12] K. Pettis and R. C. Hansen, “Profile-Guided Code
Positioning”, Proc. SIGPLAN ’90 Conference on
Programming Language Design and Implementa-
tion, June 1990, pp. 16–27.

[13] A. Srivastava and D. W. Wall, “A Practical Sys-
tem for Intermodule Code Optimization at Link-
Time”, Journal of Programming Languages, pp. 1–
18, March 1993.

[14] V. Tiwari, S. Malik and A. Wolfe, “Compilation
Techniques for Low Energy: An Overview”,Proc.
IEEE 1994 Symposium on Low Power Electronics,
Oct. 1994.

[15] S. Udayanarayanan and C. Chakrabarti, “Energy-
efficient Code Generation for DSP56000 Family”,
Proc. International Symposium on Low Power Elec-
tronics and Design(ISLPED), July 2000, pp. 247–
249.

[16] S. A. Watterson and S. K. Debray, “Goal-Directed
Value Profiling”, Proc. 2001 International Confer-
ence on Compiler Construction(CC 2001), April
2001 (to appear).

7

