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ABSTRACT
This paper describes PLTO, a link-time instrumentation and opti-
mization tool we have developed for the Intel IA-32 architecture. A
number of characteristics of this architecture complicate the task of
link-time optimization. These include a large number of op-codes
and addressing modes, which increases the complexity of program
analysis; variable-length instructions, which complicates disassem-
bly of machine code; a paucity of available registers, which limits
the extent of some optimizations; and a reliance on using mem-
ory locations for holding values and for parameter passing, which
complicates program analysis and optimization. We describe how
PLTO addresses these problems and the resulting performance im-
provements it is able to achieve.

1. INTRODUCTION
Results from a number of recent projects indicate that post-link-

time code optimization of executable programs can yield significant
improvements in performance, even for programs that have been
subjected to extensive compile-time code optimization [6, 14, 16,
17]. Much of this work has been carried out in the context of pro-
cessors with RISC architectures, which typically have a relatively
small set of op-codes and addressing modes and a large number of
general-purpose registers. By contrast, CISC architectures such as
the widely-used Intel IA-32 have characteristics that make the task
of link-time code modification and optimization considerably more
challenging. Examples of these include a large number of op-codes
and addressing modes, which increases the complexity of program
analysis; variable-length instructions, which complicates disassem-
bly of machine code; a paucity of available registers, which limits
the extent of some optimizations; and a reliance on using mem-
ory locations for holding values and for parameter passing, which
complicates program analysis and optimization.

This paper describes PLTO, a link-time instrumentation and op-
timization tool we have developed for the Intel IA-32 architecture.
We describe how PLTO addresses the problems mentioned above
and the resulting performance improvements it is able to achieve.
We focus purely on static optimization; dynamic optimization,
where code transformations are carried out at runtime, is not (yet)
considered. Our goal is to carry out aggressive whole-program op-
timization, possibly including statically linked libraries [1]. For this
reason, we cannot rule out the presence of hand-optimized assem-
bly code that might not adhere to the application binary interface
(ABI) for the system or that might not follow familiar conventions
such as a single entry point per function. Consequently, we attempt
to make as few assumptions as possible about the input executable�This work was supported in part by the National Science Foun-
dation under grants ASC-9720738, CCR-0073394, EIA-0080123,
and CCR-0113633.

code. For example, we do not assume that the code uses any spe-
cific code idioms that a particular compiler may generate or that
it adheres to standard calling conventions. The main contribution
of this paper is to describe the analyses and code transformations
we use for link-time optimization where such optimization is non-
trivial, both because of architectural features that make it harder
to reason about the structure and behavior of executable files, and
because of our desire to handle a wide variety of executables, in-
cluding those containing statically linked libraries and hand-coded
assembly routines.

2. SYSTEM OVERVIEW
The PLTO system consists of a front end for reading in exe-

cutables, modules for code transformations, and a back end for
emitting machine code. At present PLTO optimizes x86 executa-
bles, in the Executable and Linkable Format (ELF), under RedHat
Linux. To enhance portability, we use the GNU Binary File De-
scriptor Library (libbfd); supporting other executable formats,
e.g., the COFF (Common Object File Format) format used in Win-
dows executables, would require making only minor changes to the
front end. PLTO requires that the input executable contain reloca-
tion information (this currently implies statically linked executa-
bles, since the linkerld refuses to retain relocation information for
non-statically-linked executables). Relocation information is used
to distinguish between addresses and non-address constants; this
distinction is essential because code addresses must be updated to
reflect the results of optimizations, while the values of constants
cannot be changed. Most linkers, if not all, can be instructed to
leave relocation information inside the executable.

An executable file is processed in two stages to produce an op-
timized version of the program. In the first stage, described in
Section 4, PLTO inserts instrumentation code into the binary to
gather execution profiles. The user then executes the resulting in-
strumented binary on a training input set to produce representa-
tive weights for the edges in the interprocedural control flow graph
(ICFG) of the program. In the second stage, PLTO uses these edge
profiles to analyze and transform the program as follows:

ICFG Construction and Simplification. PLTO first disas-
sembles all segments containing code, creates a single in-
struction stream, and constructs an interprocedural control
flow graph for the entire program. It uses relocation infor-
mation and knowledge about instruction semantics to guide
these steps. PLTO then examines the initial ICFG to elimi-
nate unreachable code; often up to 10% of the instructions in
the original program can be removed. We do this optimiza-
tion now (and again later) because it reduces the number of
calling contexts for many functions and thus improves later
analyses.



Code Optimization. PLTO then begins trying to simplify
code by performing a round of constant propagation through
registers and the runtime stack. Constant operands of arith-
metic instructions are then replaced by immediate constants,
while conditional branches with constant operands are sim-
plified away by deleting the control flow edge that will not
be taken. This reduces the number of register and memory
references and usually results in more dead and unreachable
code that can later be eliminated. Next, we inline functions
that meet certain criteria (see Section 5.1 for details). This
reduces the number of calling contexts and opens the way
for a second round of constant propagation. This is followed
by load/store forwarding to reduce the number of memory
loads (see Section 5.2). Finally, PLTO does liveness analyses
of registers, the runtime stack, and the program status word
(PSW), as discussed in Section 3.5. This liveness informa-
tion is used to eliminate instructions that store either to dead
registers or to dead locations on the stack.

Repair and Layout. During the course of its optimizations,
PLTO is likely to ruin any attempt the linker or compiler made
to schedule instructions intelligently. In addition, no-ops
inserted by the compiler for alignment purposes have been
eliminated. Consequently, PLTO redoes instruction schedul-
ing and alignment in order to improve decoding and execu-
tion efficiency. Basic blocks are also positioned to improve
instruction cache utilization and reduce the frequency with
which jumps are taken [15]. Alignment no-ops are inserted
where appropriate to improve instruction-fetch hit rates. Fi-
nally, relocation information is used to update any addresses
that are referenced in the executable, and the binary is written
out.

Sections 3 and 5 describe the most interesting analyses and opti-
mizations that PLTO performs.

3. ANALYSES
PLTO uses a number of different analyses to support the opti-

mizations it carries out. This section describes the most important
of these analyses.

3.1 Disassembly and Control Flow Analysis
Disassembly begins at the entry point of the program, as speci-

fied in the header of the executable file. Instructions are disassem-
bled in sequence, as they are encountered (see [3]). One poten-
tial problem that arises is that of data or alignment bytes appearing
in code segments, which can complicate the disassembling of ma-
chine code. As an example, in one of the string libraries on our sys-
tem (RedHat Linux), we found that the programmer had inserted a
NULL byte (0x00) at one point, presumably for alignment. Un-
fortunately, during disassembly this looks like a validadd instruc-
tion; because of the IA-32 architecture’s variable-length instruc-
tions, this causes the rest of the disassembly from that point on to
be erroneous. To deal with such problems, PLTO currently looks
for targets of jumps and relocations that may point to the middle
of another instruction. If there is a jump into the middle of an
already disassembled instruction, then an error was made in con-
structing the instruction stream. In this case PLTO repairs the error
and restarts the disassembly process from the target of the jump or
relocation.

Once disassembly is complete, PLTO constructs an interprocedu-
ral control flow graph (ICFG) for the program. Several issues com-
plicate the construction of the ICFG: indirect calls, indirect jumps
through tables, and data appearing in segments, such as.text,
that are typically reserved for instructions. Indirect calls through
registers are modeled using a special pseudo-node in the ICFG,

BHELL. This node belongs to a special pseudo-function,FHELL.
BothBHELL andFHELL are used by many of the analyses and opti-
mizations to represent worst-case scenarios. For example,BHELL is
assumed to use all registers, define all registers, and possibly write
to all possible (writable) memory locations, possibly overwriting
data in the stack frames of any callers. This ensures that all analy-
ses performed by PLTO are conservative.

Indirect jumps through a table of addresses are often generated
by a compiler for multi-way branches, such asswitch constructs
in C. PLTO attempts to recover the possible targets of these indirect
jumps by tracing backwards through the instruction stream to find
the size and base address of the table, using the bounds check to
infer the table size [5]. Jumps whose targets cannot be resolved are
modeled using the special nodeBHELL.

3.2 Stack Analysis
One of our optimization goals for PLTO is to allow function inlin-

ing and the subsequent propagation of the actual parameters from
the call site into the (cloned) body of the inlined function.1 In par-
ticular, we want to be able to optimize away conditional branches
in the inlined code based on constant arguments in the caller. Since
function arguments are passed on the stack in the IA-32 architec-
ture, this requires the ability to reason about the caller’s stack frame
and its relationship to the callee’s stack frame. This is done via
stack analysis. To the best of our knowledge, this analysis is novel:
other comparable binary rewriting systems do not implement a sim-
ilar analysis.

The idea can be illustrated by the following source code frag-
ments:

int f(...) void g(int x, int y)
{ {

... ...
g(123, 456); if (y != 0) ...

} }

At the machine code level, the code for these functions resembles
the following:

f: ...
push $456 # push arg 2
push $123 # push arg 1
call g
addl $8, %esp # pop args
...

g: push %ebp # save old frame ptr
movl %esp, %ebp # update frame ptr
subl $32, %esp # allocate stack frame
...
movl 8(%ebp), %eax # load y
testl %eax, %eax # y != 0 ?
jne ...
...
leave # deallocate frame
ret

We would like to inlineg() into the body off(), propagate the
value of the (constant) second argument into the inlined body, and
thereby eliminate the test and conditional branch corresponding to
the statement ‘if (y != 0) ...,’ as well as thepush opera-
tion(s) at the call site for parameter passing. To do this, we have to
be able to infer the following about the location` written to by the
instruction ‘push $456’ in f():

1. ` is the same as that referenced by the instruction ‘movl
8(%ebp), %eax’ in g(), in order to propagate the value
of the argument into the body ofg().

1We expect the compiler to have already carried out any compile-
time inlining it is able to. Our focus is on inlining across module
and library boundaries.



2. ` is not overwritten by any prior store operations withing().

3. ` becomes dead once all references to it in the body ofg()
have been replaced by the constant value of the argument.

To make these inferences, we have to be able to determine the po-
sition of the locatioǹ addressed by the instruction ‘push $456’
relative to both the “old” frame pointer inf() as well as the “new”
frame pointer ing() and to reason about the liveness of specific
memory locations within the stack frame off() after the call to
g() has been inlined. We do this using a stack analysis that allows
us to model the stack frame of a function as an array of words; sub-
sequent analyses then reason about the contents, liveness, etc., of
locations within this array.

To determine the size of a function’s stack frame, we examine the
basic blocks of the function and compute the maximum value of the
difference between the frame pointer register%ebp and the top-of-
stack pointer register%esp. The essential intuition is to keep track
of operations that update the stack and frame pointers. When we
come to a function call, we cannot in general assume that the stack
will have the same height on return from the callee as it did on entry
to it. Hence, to determine the size of the stack frame when control
returns from the callee, we have to take into account the behavior
of the callee. To this end, we first carry out a well-behavedness
analysis to identify functions that leave the stack at the same height
as it had when the function was entered.

A function f is said to bewell-behavedif there is no net change
in the height of the runtime stack due to the execution off , for
all possible execution paths throughf . Well-behavedness analysis
is done in two phases. First, we mark as well-behaved all those
functions that(i) push the frame pointer%ebp on entry; and(ii)
execute theleave instruction immediately before returning to the
caller. The effect of this combination is to restore the stack and
frame pointers to the values they had just before entry tof . Second,
as described below, we propagate information about changes in the
height of the runtime stack due to the execution of each basic block
in the program and use this to identify functions where the runtime
stack is at the same height on return as it was on entry.

Given information about well-behavedness of functions, we an-
alyze each function to determine the (maximum) size of its stack
frame (including the space for actual parameters, which is shared
with the caller). This is done as one would expect. We first deter-
mine, for each basic block in the function, the change in the stack
size due to the execution of that block. This is then propagated
through the control flow graph of the function. If a basic block has
more than one predecessor, and different incoming edges have dif-
ferent values for the change in stack size along that execution path,
then the stack frame height at the entry to that block is set toun-
known. This procedure is iterated, in a manner very similar to that
for constant propagation, until the stack height at the entry to, and
exit from, each basic block has stabilized. This allows us to deter-
mine the change in stack size at the entry to each block relative to
that at entry to the function, and thence the maximum size of its
stack frame.

3.3 Use-Depth and Kill-Depth Analysis
The relatively small number of compiler-visible general pur-

pose registers in the IA-32 architecture often causes values to be
placed in (or spilled to) a function’s stack frame. In the absence
of any other information, program analyses must make worst-case
assumptions about the effects of function calls on such values. For
example, constant propagation (Section 3.4) must assume that a
function call can destroy all such values, because a function might
write to any memory location, while stack liveness analysis (Sec-
tion 3.5) must assume that stack locations are live because they
may be accessed by a function call. Such worst-case assumptions

can affect the precision of our analyses quite significantly. To ad-
dress this, we useuse depthandkill depthanalyses to estimate the
effect of function calls on the runtime stack.

The use depthof a function is either a non-negative integer or
the value∞; it represents an upper bound on the depth in the stack,
relative to the top of stack when the function is called, from which
the function may read a value. The psuedo-functionFHELL, which
is used to model indirect function calls, is assumed to have a use
depth of∞. The use depth of the other functions in the program are
computed in two phases:

1. [Local analysis.] The instructions in each function are exam-
ined to determine from how far down the stack they may load
a value. Indirect loads are assumed to be able to load from
any location, and result in a use depth of∞. This forms an
initial approximation to the use depth of each function.

2. [Iterative propagation.] Use depth information is iteratively
propagated along the call graph of the program from callee to
caller. In a given iteration, consider a functionf whose use
depth is currently set tom. Suppose thatf calls functions
g1; : : : ;gk from call sitesC1; : : : ;Ck respectively, and that the
use depths of the functionsg1; : : : ;gk are set ton1; : : : ;nk re-
spectively. Moreover, suppose that the height off ’s stack
frame, determined from the stack analysis described in Sec-
tion 3.2, at the call siteCi is pi , 1� i � k. Let di be the
maximum depth in the stack that can be accessed by the call
to gi , 1� i � k, relative to the stack top at the timef was
called. We computedi as follows:

– If pi = unknown, we do not know how largef ’s stack
frame is at that call site. In this case, the deepest loca-
tion in the stack that can be accessed by a load opera-
tion in the calleegi cannot be deeper thanni relative to
the top of the stack at the call siteCi in f . It follows that
this location cannot be deeper thatni relative to the top
of the stack whenf was called (sincef ’s stack frame
cannot have negative size). So we setdi = ni .

– If pi 6= unknown, we have two possibilities. Ifpi � ni ,
then load operations within the callee cannot access any
stack location outsidef ’s stack frame. On the other
hand, ifpi < ni then the deepest location accessed by a
load operation withingi , relative to the stack top at the
point whenf was called, is at mostni� pi . In this case,
therefore, we havedi = max(0;ni � pi).

The use depth off is then updated tomax(m;d1; : : : ;dk): This
is repeated until a fixpoint is reached and the use depth of
every function stabilizes.

The kill depth of a function is analogous to that of use depth: it
is either a non-negative integer or the value∞, and represents an
upper bound on the depth in the stack, relative to the top of the
stack when the function is called, to which that function may write
a value. The computation of kill depths is exactly analogous to that
of use depths.

3.4 Constant Propagation
Our experience with thealto system [14] showed that constant

propagation—which at link time propagates addresses and con-
stant arguments across function and module boundaries—can be
an important source of performance improvements resulting from
link-time optimization. To carry out constant propagation on ma-
chine code, however, it is necessary to specify, in some form, the
semantics of the instructions of the underlying architecture. The



IA-32 instruction set contains a large number (over 300) of differ-
ent instruction classes,2 making this a tedious and time-consuming
proposition. It turns out, however, that a relatively small num-
ber of different instruction classes account for the vast majority
of all instructions actually encountered in executable files in prac-
tice. PLTO therefore uses semantic knowledge about only a small
subset of all possible IA-32 instruction classes, based on an exam-
ination of the static and dynamic distribution of instructions in the
code for all of the SPEC-95 benchmark programs; the remaining
instruction classes are treated conservatively and their results taken
to be unknown. This allows us to handle the vast majority of in-
structions encountered in practice without requiring an exorbitant
implementation effort. This results in some 31 different instruction
classes that are considered by the constant propagator; however,
with knowledge about the semantics of these 31 instruction classes
it is able to process all of our benchmarks without significant loss
of information.

The constant propagation algorithm PLTO uses is straightfor-
ward conditional constant propagation [19]; processor status word
(PSW) bits are treated as one-bit registers. The notion of kill depth,
discussed in Section 3.3, is used to estimate the effect of function
calls on the runtime stack. This allows us to limit the amount of
stack whose contents have to be invalidated during constant prop-
agation when a function call is encountered. For example, if the
callee has a kill depth of 8, then only the top 8 bytes of the stack
can be affected, and the values of deeper locations need not be dis-
carded by the constant propagator.

3.5 Liveness Analysis
The IA-32 has eight general purpose registers—six are generally

available to a compiler; two are reserved for the stack and frame
pointer. This small set of usable registers results in the compiler
generating code that operates directly on memory, rather than ex-
plicitly loading, modifying and storing values. For this reason, it
is insufficient to restrict liveness analyses to registers. To this end,
PLTO models and analyzes the runtime stack in addition to the set
of registers. For liveness analysis purposes, moreover, PSW bits
are treated as one-bit registers.

PLTO uses a standard context sensitive approach to computing
register liveness information [9, 12]. Muth found that on a RISC
architecture, the Compaq Alpha, the use of a context sensitive live-
ness analysis increased the number of dead registers available per
basic block in the SPECint-95 benchmark suite, on the average,
from about 3.0 to 5.2, compared to a context insensitive approach—
an increase of about 70% [12]. By contrast, in PLTO a context-
sensitive analysis finds an average of 1.8 dead registers per basic
block in the SPECint-95 suite, up from 1.67 dead registers per
block obtained with a context-insensitive analysis: an improvement
of only 7.8%. This incremental improvement increase is much less
than Muth’s usingalto, but this is not entirely surprising given
that there are so few registers to work with.

It turns out that when a function stores callee-saved registers to
the stack (viapush instructions upon entry), the use of these reg-
isters propagates back to the caller. This results in the callee-saved
registers being live in blocks prior to the function call. A straight-
forward liveness analysis does not recognize that callee-saved reg-
isters are restored (viapop instructions on function exit) prior to re-
turning control to the caller. One would like to know that although
these registers are used, their values are not examined except for
the save on entry and restore on exit. To solve this problem, PLTO

performs a local analysis for each function to determine if a callee-

2An instruction class corresponds, roughly, to an operation, e.g.,
add or load; within a particular instruction class there may be
several different op-codes, specifying different kinds or sizes of
operands.

saved register is used. It is used if the contents of the register are
used (ignoring the action of saving the register) before being de-
fined, if the location to which it was stored on the stack is used, or
if the register is restored and then used. The results from the local
analysis are then iteratively propagated along the call graph until
a fixpoint is reached. Indirect loads through registers are treated
conservatively—we assume that they could come from anywhere,
including slots on the stack. Our context sensitive analysis is tuned
to subtract the registers that PLTO finds as being callee-saved from
the set of registers used by that function.

PLTO’s liveness analysis of the runtime stack is similar to that
of registers, with 4-byte slots on the stack taking their place. Indi-
rect loads from registers are treated conservatively—they may load
from anywhere, including the stack. Indirect stores through reg-
isters are also treated conservatively; in most cases we can safely
say that they define nothing, i.e., any live stack slot remains live
after an indirect store. The analysis is interprocedural, and uses the
use depth of a function, discussed in Section 3.3, to estimate the
may-use behavior for function calls.

4. INSTRUMENTATION
Many of the optimizations carried out by PLTO rely on low-level

profile information. Since Red Hat Linux does not currently come
with instrumentation tools for gathering such low-level profiles, we
have built this functionality into PLTO.

A command-line option can be used to instruct PLTO to add in-
strumentation code for gathering edge profiles. This causes the in-
sertion of profiling blocks along each edge in the interprocedural
control flow graph of the original program. Each such block con-
tains code to update a (64-bit) counter that records the number of
times the corresponding edge has been traversed. The data section
of the program is expanded to accommodate these counters. PLTO

also adds a procedure to the code that writes the edge profiles to a
file, and inserts a call to this procedure just before the program exit
point. The profiles gathered by executing this instrumented binary
on representative training input are subsequently read in by PLTO

and used to guide optimization decisions.
PLTO also supports the gathering and use of value profiles [13].

A value profile for a variablex at a program pointp is a partial
probability distribution of the values taken on byx at p. If this dis-
tribution is found to be sufficiently skewed to a particular valuea,
we can generate specialized code when the value ofx is a at pro-
gram pointp. In particular, when control reachesp we test whether
x has valuea and, if so, branch to the specialized code. Whether
such specialization is worthwhile is determined using a low-level
cost-benefit analysis [13]. We use goal-directed value profiling to
reduce the cost of gathering value profiles [18]. The results de-
scribed in this paper, however, did not rely on value profiles.

5. OPTIMIZATIONS
PLTO performs numerous code optimizations, as summarized in

Section 2. Below we describe some of the more important of these
optimizations.

5.1 Inlining
Inlining is a well-known optimization where a call to a functionf

is replaced by a copy of the body of the calleef [2, 8]. When inlin-
ing is carried out on executable programs after linking, the goal is to
inline across module and library boundaries. The main benefits of
inlining—apart from locality effects arising from bringing the code
for the caller and callee closer together in memory—are three-fold.
The first is to eliminate the function call/return overhead. Usu-
ally, inlining a function call gets rid of 2–5 instructions: the call
and return instructions, and—if the callee is not a leaf function—
instructions to allocate a stack frame on entry and deallocate it on



return. The second benefit is to reduce or eliminate the overhead of
argument passing by eliminatingpush operations at the call site
and memory loads within the callee. The third benefit is to exploit
callsite-specific information in the callee. For example, constant
argument values can be exploited to eliminate conditional branches
within the callee that use those values; and memory aliasing rela-
tionships between the caller’s code and the callee’s code may be-
come easier to determine after inlining, when they would refer to
the same stack frame rather than two different frames. The main
potential disadvantage to inlining is code growth; doing inlining
without attending to its effects on cache behavior can have a signif-
icant negative effect on program performance (this is dramatically
evident in, for example, the SPECint-95 benchmark programgo).

The criteria used for inlining within PLTO are as follows. If a
function has a single call site, or if its body contains at most 5
instructions, it is always inlined, since this cannot result in any code
growth. Otherwise, a functionf is inlined into a call siteC provided
that each of the following hold:

1. The inlining can be expected to yield a reasonable perfor-
mance improvement. We consider two possibilities. The first
is thatC is a “hot” call site, i.e., it is executed sufficiently of-
ten that the benefit of eliminating the overheads of parameter
passing and control transfer is likely to be significant. The
second is thatC passes constant arguments tof , and f uses
its arguments or passes them to other functions that use them,
such that optimizingf ’s code using information about con-
stant arguments atC can yield performance benefits.

2. Inlining f into C will not cause excessive code growth or
interfere with other optimizations within PLTO. Under this
criterion we check, for example, thatC is not a recursive call
and that the inlining will not adversely affect stack analysis
(Section 3.2). The cache model we use to estimate the effect
of inlining on the instruction cache utilization of the program
can be thought of as a simplified version of McFarling’s [11].

We are currently investigating techniques to improve our estimation
of the benefits of knowing constant arguments to a function.

5.2 Load/Store Forwarding
Load/store forwarding is an optimization that attempts to elimi-

nate unnecessary load operations from memory. The idea is to find
a pair of instructionsI andJ such that:(i) I is a load instruction
r0 load(`); (ii) J loads a registerr1 from, or storesr1 to, the
location`; (iii ) J dominatesI ; and(iv) we can guarantee that the
contents of memory locatioǹdo not change betweenJ andI . In
this case, provided that some additional conditions are satisfied, we
can replace the load operationI by a register-to-register move from
r1 to r0 (or, if r0 = r1, simply eliminateI ). The optimization can be
thought of as a special case of common subexpression elimination.

The implementation of load/store forwarding in PLTO works as
follows. We consider situations of the form

/* Block B1 */ J : r1 load(`) or ` store(r1)
. . .

/* Block Bn */ I : r0 load(`)
where the sequence of basic blocksB1 : : :Bn forms an extended ba-
sic block. In other words, if we trace back fromBn up toB1, each
block along the way (except possiblyB1) has exactly one prede-
cessor. To ensure that the contents of location` are not modified
between instructionsJ and I , we examine each store instruction
between these instructions to see whether the target location may
overlap`. This is done using the following memory disambiguation
rules:

1. an indirect memory reference can overlap any other memory
reference;

2. an absolute memory location does not overlap a stack loca-
tion; and

3. two memory references are non-overlapping if they use the
same base and index registers, and the same scale factor, but
have different displacements.

If r0 6= r1, we have to insert a register move instruction to copyr1
into r0; this is inserted as late in the extended basic blockB1 : : :Bn
as possible, while ensuring that at the insertion pointr1 still con-
tains the value loaded from locatioǹand that registerr0 is not
live at that point. As a pragmatic measure we allow only one such
copy operation to be inserted per load operation being eliminated;
this has the effect of allowing at most one of the registersr0 or
r1 (none, if r0 = r1) to be modified between instructionsJ and I .
We also ensure that the execution frequency of the program point
where this copy operation is inserted is low enough, relative to that
of instructionI , so that its runtime cost does not exceed the benefit
of eliminating instructionI .

5.3 CMOV Introduction
The Intel P6 processor incorporates some instructions not found

in older Pentium processors, includingconditional move(CMOV)
instructions for integer and floating point operands. The effect of
a CMOV instruction is to copy its source operand to its destination
if the condition specified holds. If PLTO encounters a branch in-
struction whose only effect is to conditionally jump over a move
operation, it optimizes this to replace the conditional branch and
move operation with an appropriate CMOV instruction. The ef-
fect of this optimization is to eliminate potentially unpredictable
branches. Among the SPECint-95 benchmarks, them88ksimpro-
gram experiences a significant performance improvement due to
this optimization.

6. EXPERIMENTAL RESULTS
We evaluated the performance improvements obtained from

PLTO using the SPECint-95 benchmark suite. Our experiments
were run on an otherwise unloaded 600 MHz Pentium III system
with 128 MB of main memory running RedHat Linux 6.2. The pro-
grams were compiled withgccversionegcs-2.91.66at optimization
level-O3. The programs were profiled using the SPEC training in-
puts, optimized by PLTO using these profiles, and then timed on the
SPEC reference inputs.

The execution times for our programs, before and after optimiza-
tion, are shown in Table 1. Each number was obtained by running
the corresponding executable 7 times, discarding the highest and
lowest times, and computing the arithmetic mean of the remaining
5 times. The last line of Table 1 shows the average speed improve-
ment obtained, computed as the geometric mean of the speed ratios
for the individual programs. Them88ksimbenchmark obtains the
greatest performance improvement of a little over 15%, while the
gcc, vortex, andperl benchmarks obtain improvements of 8.6%,
7.4%, and 6.4% respectively. On average, we see an improvement
of 6.2%.

We also measured the effects of PLTO on the low-level execution
behavior of programs. These were measured using the Rabbit per-
formance counters library [10], with each number obtained as the
average of three runs on an otherwise unloaded machine. Some of
the results are shown in Figure 1:

Memory Operations : Improvements in the number of memory
operations are shown in Figure 1(a). For several programs,
PLTO is able to achieve significant reductions in the number
of memory operations, due primarily to the effects of inlin-
ing and load/store forwarding, withli achieving a reduction
of over 9% andvortexa reduction of over 7%. On average,
the number of memory operations is reduced by about 5.6%.



Program Execution Time(secs) Ratio
Original (T0) Optimized (T1) T1=T0

compress 116.96 113.89 0.974
gcc 79.89 72.98 0.914
go 123.12 121.05 0.983
ijpeg 128.56 127.45 0.991
li 100.45 94.79 0.944
m88ksim 115.27 97.63 0.847
perl 77.30 72.38 0.936
vortex 132.75 122.95 0.926

GEOMETRIC MEAN: 0.938

Table 1: Speed improvements due toPLTO

Taken Branches : The number of taken branches, shown in Figure
1(b), is reduced dramatically, by about 64.5% on the average.
This is due primarily to code layout. Thevortex program
experiences the greatest improvement, with a reduction of
close to 74%.

Mispredicted Branches : The improvement in the number of
mispredicted branches is shown in Figure 1(c). Most of
the benchmarks experience significant improvements in the
number of branch mispredictions, withm88ksimandvortex
having improvements of around 30%, whilegcc and perl
experience smaller—but still significant—improvements of
over 12%. Overall, the programs experience a 12.7% im-
provement in the number of mispredicted branches.

Instruction Fetches : The number of instruction fetches decreases
for all programs, as shown in Figure 1(d). The largest im-
provements are seen form88ksim, with a 13.6% reduction
in the number of instructions fetched, andm88ksim, with a
7.9% reduction. The average reduction in the number of in-
structions fetched is 5.5%.

Instruction Cache Misses : Changes in the number of instruction
cache misses are shown in Figure 1(e). Unfortunately, these
numbers are significantly worse than we would like: several
programs experience significant increases in the number of
i-cache misses, withgo incurring a 121% increase, andli in-
curring a 12-fold(!) increase. On the other hand, some pro-
grams exhibit significant reductions in the number of i-cache
misses, withm88ksimandperl experiencing improvements
of 76.5% and 36% respectively. Overall, the programs suffer
a 15.3% increase in the number of i-cache misses.

We are currently investigating the reasons for these increases,
and anticipate further improvements in the overall speedups
PLTO is able to achieve when this problem has been ad-
dressed.

An interesting aspect of our experiences with PLTO was in the in-
teraction between code layout and the Branch Target Buffer (BTB)
management algorithm. Our experiments indicated that profile-
guided code layout using the Pettis-Hansen algorithm [15] led to
a huge increase (by roughly two orders of magnitude) in the num-
ber of BTB misses. This initially raised the possibility that profile-
guided code layout may have been inadvertantly introducing signif-
icant runtime overheads arising from these BTB misses. We even-
tually tracked the problem down to the fact that on the Pentium III
processor, a conditional branch does not enter the BTB until it has
been taken. Recall that the Pettis-Hansen code layout algorithm
is set up so that conditional branches fall through—i.e., are not
taken—wherever possible. Each such branch can, therefore, give
rise to a BTB miss each time it is encountered until eventually it
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(a) Memory operations
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(c) Branches mispredicted
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(d) Instruction fetches
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See text for remarks on i-cache misses forli

(e) I-cache misses

Figure 1: Effects of PLTO on Low Level Program Behavior



enters the BTB (if it does). Fortunately, it turns out that in this par-
ticular case the BTB miss does not incur any performance penalty.
However—apart from the fact that this behavior was initially quite
disconcerting—it also means that the “unpenalized” BTB misses
arising from profile-guided code layout can mask BTB misses else-
where in the program that do incur a performance penalty, thereby
making it harder to identify and rectify the latter.

7. RELATED WORK
Binary rewriting and link-time code optimization have been con-

sidered by a number of researchers. The work most closely related
to ours are those focusing on static optimization of executable bina-
ries. Most of the work in this context, including Spike [6],alto [14],
and OM [17], has focused on RISC architectures such as the Com-
paq Alpha. Compared to such RISC architectures, the Intel IA-32
architecture targeted by PLTO offers very different challenges to
link-time optimization.

The Etch system, like PLTO, is aimed at modifying IA-32 exe-
cutables [16]. Its primary goal appears to be instrumentation rather
than optimization. It implements a relatively small set of optimiza-
tions; the only one specifically mentioned by the authors is profile-
guided code layout. Other systems aimed at instrumentation and
analysis of IA-32 programs include NT-Atom and HiProf [7].

Also related is UQBT, a binary translation system that is able to
process IA-32 executables [4]. The primary focus of this work is
on the translation of executable programs across platforms rather
than aggressive optimization within the context of a particular plat-
form. This difference in focus between UQBT and PLTO leads to
significant differences in their internal architectures as well as the
assumptions they make about input binaries; in particular, UQBT
does not attempt to optimize code that does not conform to high-
level specifications, such as hand-optimized assembly code within
libraries.

8. CONCLUSIONS
We have described PLTO, a link-time optimizer for the Intel IA-

32 architecture. The goal of our system is to optimize executables
that have been aggressively optimized by the compiler, and which
may contain statically linked libraries and/or hand-optimized as-
sembly code that need not adhere to higher level conventions. Our
system implements several analyses that are, to the best of our
knowledge, new: examples include the stack analysis, use depth
and kill depth analyses, etc. We currently obtain reasonable perfor-
mance improvements on medium-sized programs, as exemplified
by the SPECint-95 benchmark suite, which experience a speed im-
provement of a little over 6% on the average.
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