
Writing Efficient Programs
Performance Issues in an Undergraduate CS Curriculum �

Saumya Debray
Department of Computer Science

University of Arizona
Tucson, AZ 85721.

debray@cs.arizona.edu

ABSTRACT
Performance is an essential aspect of many software systems, and
it is important for programmers to understand performance issues.
However, most undergraduate curricula do not explicitly cover per-
formance issues—performance monitoring and profiling tools, per-
formance improvement techniques, and case studies—in their cur-
ricula. This paper describes how we address this topic as part of a
third-year programming course. We focus on tools and techniques
for monitoring and improving performance, as well as the interac-
tion between clean program design and performance tuning.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques; D.1
[Programming Techniques]: General; K.3.2 [Computers and
Education]: Computer and Information Science Education—Com-
puter science education

General Terms
Performance, Design

Keywords
Profiling, Performance tuning

1. MOTIVATION
Performance is an essential aspect of many software systems,

and it is vitally important for programmers to understand perfor-
mance issues: when it matters and when it doesn’t; how to sys-
tematically identify performance bottlenecks and improveprogram
performance; and how program design interacts with and affects
performance tuning. Despite this, the issue of performanceand per-
formance tuning—including tools, techniques, and case studies—is
not explicitly addressed, as a topic in its own right, in mostcur-
ricula. Very often, the closest students come to encountering this� This work was supported in part by the National Science Foun-
dation under grants EIA-0080123 and CCR-0113633.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’04,March 3–7, 2004, Norfolk, Virginia, USA.
Copyright 2004 ACM 1-58113-798-2/04/0003 ...$5.00.

issue is through a patchwork of topics such as machine organiza-
tion and/or architecture (focusing on hardware aspects), algorithms
(typically focusing only on asymptotic complexity, and ignoring
“constant factors”), and possibly compilers (focusing on code gen-
eration issues). Our experience has been that such a piecemeal ap-
proach does not give students an adequate understanding of perfor-
mance issues from a programming perspective.

A lack of understanding of performance tuning issues can ad-
versely affect a student’s programming even in situations where
performance is not an issue. We have observed, for example,
that many of our students become interested in computer science
through their interest in computer games. Quite often, theyhave
the (deeply held but erroneous) belief that programming is all about
speed; in many cases, they also believe that “fast code” is synony-
mous with “tricky code.” Then, when confronted with a program-
ming problem they do not understand fully, they try to write fast
code but often end up with code that is neither fast nor correct. In
one fourth-yearCompiler Designcourse, for example, we found
that many students were spending a great deal of time squeezing
every ounce of speed out of the hashing routines that manipulated
the symbol table—possibly because they had studied hashingin
their Data Structures class, this was one part of the assignment that
was familiar to them, and “speed is important.” This actually did
very little to speed up their compilers, because most of the execu-
tion time was actually spent doing I/O; the problem was that the
time so spent resulted in other parts of the project being neglected.
At the other extreme, students whose primary encounter with“ef-
ficiency” has been in the context of asymptotic complexity analy-
ses in algorithm design classes may spend inordinate amounts of
time working on elaborate data structures, such as AVL trees, in
situations where a sequential search through a simple linear list is
perfectly adequate.

This paper discusses how we have addressed this topic, as part
of a third-yearSystems Programmingcourse (roughly comparable
to CS291s in the IEEE/ACM 2001 Computing Curriculum [3]).

2. BACKGROUND
One option for teaching performance issues would be at the

fourth-year level [5], by which point students have encountered
topics in computer architecture, operating systems, and compiler
design at a reasonable level of detail, and therefore have some ap-
preciation for the various issues affecting performance. We chose
not to follow this option: we wanted students learning to program
in C to be exposed, at the same time, to topics and tools relating
to performance tuning, in order to inculcate good programming
habits early. Our approach was to include these topics in a third-
year course onSystems Programmingthat covers, in addition, Unix

and C programming topics. The material on performance tuning
covers roughly 20% of the course (about 3 weeks).

In addition to introducing students to the topics and tools for
performance tuning early, this has the advantage of allowing them
to apply their knowledge in their final-year programming-intensive
courses such asOperating SystemsandCompiler Design. However,
it imposes significant constraints on the background we can assume
for the students. For example, while we can assume that students
have had an introductory (at the first- or second-year level)course
on machine organization, we cannot assume that they have hada
course on data structures (taught in their third year) or algorithm
design (final year). This, in turn, affects the sophistication of the
data structures they can be expected to use in their assignments. In
effect, we are limited to using a small set of straightforward data
structures and algorithms covered in their first- and second-year
programming classes. It also affects the extent to which we can
discuss architectural issues, e.g., cache effects [4], andtheir impact
on performance. We touch on this point in Section 4.1.

3. THE TUNING PROCESS
We begin the discussion on performance by emphasizing that

when writing code, not all programs need to be sped up. The
point is that what we want is not necessarily thefastestprogram,
but one that is most cost-effective in terms of the tradeoff between
programmer time, on the one hand, and execution speed (or other
performance metric), on the other. In addition to setting the stage
for performance tuning issues, this is also helpful in giving stu-
dents a broader perspective of a range of programming solutions
they have been taught—ranging from shell scripts, throughperl and
similar scripting languages, to optimized C code and even assem-
bly code—and how one might go about deciding which of these is
most appropriate under different circumstances.

We observe, also, that it is often difficult to determine, ahead of
time, whether a particular piece of software will have “adequate”
performance or whether it will need to be tuned further—the more
so if it is being implemented by a team, where each team member
has only a relatively limited view of the code. This raises three
issues for discussion:

1. How can we identifywherewe should focus efforts to im-
prove performance?

2. How might we go about figuring out how we should trans-
form the program so as to improve its performance?

3. How can we design the program so as to simplify subsequent
performance tuning?

The classroom discussions on performance tuning address each of
these issues by examining specific programming examples in de-
tail. In this paper, the first point is discussed in Section 3.1, the
second in Sections 3.2 and 3.3, and the third in Section 5.

3.1 Identifying Performance Bottlenecks
We focus on two tools for identifying possible candidates for

performance tuning: the function-level profiling toolgprof [2]; and
basic block profiling within a function using thegcccompiler.

The profiles obtained fromgprof typically provide high-level in-
formation about the program’s behavior. This includes statistics
about how many times each function in the program is called; the
execution time spent in that function, both by itself and taking into
account all of the functions it calls (transitively); and the average
execution time per call. This is illustrated in Figure 1(a).We use
these data to identify the functions that account for a significant

percentage of the program’s execution time. These functions are
candidates for performance-improving transformations. The other
function-level profile data—the number of times it is calledand av-
erage execution time per call—can then be used to guide us to the
next step in the tuning process: either the application of code trans-
formations at the function level, or further profiling to obtain more
fine-grained basic block level profile data.

While students don’t actually encounter the notion of a “basic
block” officially until a fourth-year Compiler Design class, the intu-
itive idea—that of a straight-line sequence of code with no branches
into or out of its middle—can be explained easily enough. A ba-
sic block profile (generated, for example, by compiling a program
using ‘gcc -g -a ’ or ‘ gcc -g -ax ’ and running the result-
ing executable) gives execution counts for the basic blocksin a
program, together with information about their location (file name,
function, and line number), as shown in Figure 1(b). Basic block
profiles are used primarily to identify the lines within the body of
a function that are executed the largest number of times; they are
a crude but generally effective way to identify expensive program
fragments. In our discussions, we resort to basic block profiles once
function-level optimizations have been carried out, and further per-
formance improvements require profile information at a finergran-
ularity than the function level.

3.2 Program Transformations
Obviously, the particular program transformations that might be

appropriate for improving the performance of a program willde-
pend on specifics of that program, and are therefore likely bediffer-
ent for different programs. We can, nevertheless, identifydifferent
classes of transformations that can be used to improve a program’s
performance, such as the following (this is not intended as an ex-
haustive list):

Cacheing : computing some data once, ahead of time, and then
looking them up, instead of recomputing them repeatedly.
The speed improvement comes from avoiding recomputa-
tion; the tradeoff is the additional space needed to store the
precomputed values.

Buffering : Instead of invoking some action repeatedly on a large
number of small objects, we may choose to “buffer” them
into larger collections, and invoke the actions on the larger
data that result. The speed improvement comes from reduc-
ing the number of times the action is invoked. The tradeoff
is that more space is needed for the buffered objects.

Filtering : When examining large quantities of data to select those
items that satisfy some specific property, if it may sometimes
be possible to devise a “filter” that allows us to avoid ex-
amining (some) useless data. Examples of filtering include
hashing, and also the use of binary search, which uses a sim-
ple test to localize the search and thereby avoid searching
through irrelevant data.

We also discuss low-level program transformations that canbe use-
ful in improving performance, but in a lot less detail. Specific
examples include function inlining (and the conceptually related
transformation of replacing function calls with macros), as well as
transformations aimed at reducing the amount of unnecessary com-
putation, such as invariant code motion out of loops and common
subexpression elimination. The points made in this contextare that
such transformations are typically applied by a compiler, but there
may be situations where a compiler does not carry out the opti-
mization. In such cases, the ability to understand and applythe
transformations manually can be useful.

% time cum. self no. of self total
seconds seconds calls ms/call ms/call name

39.9 1.39 1.39 internal_mcount [4]
25.0 2.26 0.87 7450087 0.00 0.00 strcmp [5]
21.8 3.02 0.76 45404 0.02 0.04 wordLookup [3]

1.4 3.07 0.05 88364 0.00 0.00 _doprnt [15]
1.1 3.11 0.04 499876 0.00 0.00 _getc_unlocked [17]
0.9 3.21 0.03 176728 0.00 0.00 _smalloc [18]
0.9 3.24 0.03 45404 0.00 0.00 sort_string [21]
0.9 3.27 0.03 45404 0.00 0.00 string [16]
0.6 3.34 0.02 133768 0.00 0.00 strlen [23]
0.6 3.36 0.02 88364 0.00 0.00 hashval [24]
0.3 3.43 0.01 176730 0.00 0.00 malloc [8]

(a) (Partial) function-level profile obtained usinggprof

Block No. no. of times Address Function name Line no. File nam e
executed

1 88364 0x10c70 hashval 37 hash.c
2 712740 0x10c98 hashval 40 hash.c
3 88364 0x10cc8 hashval 44 hash.c
4 1 0x10d04 hashInit 51 hash.c
5 0 0x10d28 hashInit 51 hash.c
6 0 0x10d48 hashInit 52 hash.c
7 45404 0x10d80 wordLookup 61 anagram.c
8 0 0x10d9c wordLookup 65 anagram.c
9 45404 0x10dc4 wordLookup 67 anagram.c

10 45276 0x10df8 wordLookup 70 anagram.c
11 7447073 0x10e0c wordLookup 70 anagram.c

(b) (Partial) basic block profile obtained usinggcc -a

Figure 1: Examples of Function-level and Basic block-levelexecution profiles

3.3 Applying the Transformations
The execution time profiles for different functions is illuminat-

ing, not just for pointing out potential optimization candidates, but
also for suggesting how we might go about optimizing them. For
example, if we find a “heavyweight” function—one called perhaps
only a few times, but where each call incurs a significant execution
cost—then the natural course of action is to use basic block profiles
to identify which portions of its body are the most frequently exe-
cuted, then focus on these portions of the code. On the other hand,
we may have a situation where a function has been coded quite
efficiently, so that the time taken for a single execution through
its body is very small, but where it is called so many times that
overall, it incurs a large cost. In this case, we want to reduce the
number of times the function is called. While the details of how
this might be done depends on specifics of the underlying appli-
cation, we can draw some general guidelines. For example, ifthe
commonly-called function is being used to search for objects satis-
fying some property, we might consider some form of hashing (or,
more generally, filtering); if it is carrying out actions that can be
“bundled up together,” we can consider buffering.

The utility of basic block profiles comes from the fact that—
unlike the function-level profiles obtained from tools likegprof—
they offer a detailed look at the execution behavior within afunc-
tion. This is especially useful if, as a result of other program trans-
formations and/or due to specific coding decisions, a programmer
is confronted with a “heavyweight” function whose performance
needs to be improved. For example, suppose that a basic blockpro-
file indicates that a function contains a doubly nested loop where

the inner loop has a high execution count, and an examinationof
the inner loop indicates that it is traversing a data structure search-
ing for objects satisfying some property. In this case, a plausible
approach to reducing the performance overhead for this piece of
code might be to try and use some sort of filter, or a more intelli-
gent data structure, to reduce the number of times the inner loop is
executed. Basic block profiles can also be useful for determining a
good ordering for tests. For example, given code of the form

if (test1 && test2) ...

If test1 and test2 are independent tests, and basic block profiles
indicate thattest1 is false a smaller fraction of the time thantest2—
indicating thattest1 is not as effective filter astest2—then a plau-
sible transformation would be to reorder them so thattest2 is done
first.

The larger point made in these discussions on program transfor-
mation strategies is that the problem of performance tuningcan be
approached systematically, using general principles and guidelines.

4. ASSIGNMENTS
Hands-on experimentation is crucial for getting a good under-

standing of profiling and performance tuning, and we accordingly
attach a great deal of importance to programming assignments on
this topic. This section discusses various aspects of the design and
administration of these assignments.

4.1 Desiderata
The problem of designing appropriate performance tuning as-

signments that are consistent with the student background we can
assume raises some interesting challenges. We attempt to construct
programs with the following characteristics:

– The program should be of reasonable size: small enough that
a student can understand the code without undue effort; yet
large enough that the performance bottlenecks are not obvi-
ous simply from inspecting the code.

– The program should have a number of different performance
bottlenecks, in order to avoid an “all-or-nothing” situation
with a bipolar distribution of assignment scores.

– The different sources of overhead should preferably be
amenable to different types of program transformations, in
order to force students think about performance issues rather
than reflexively apply a stock solution (e.g., hashing).

– The performance bottlenecks should require different levels
of sophistication to identify and address, so as to provide
“something for everyone,” ranging from average and rela-
tively inexperienced students to the top students and experi-
enced programmers.

– The solutions should not require knowledge of advanced
data structures or algorithms, e.g., AVL-trees or sophisticated
graph algorithms, since such topics are not part of the student
background that can be assumed given the course prerequi-
sites.

The following is an example problem satisfying some of thesecri-
teria. The problem, taken from Bentley’sProgramming Pearls[1],
is to count the number of ‘1’ bits in a file. The unoptimized pro-
gram given to the students is a straightforward piece of codethat
repeatedly reads a single byte from the input file, counts thenum-
ber of ‘1’ bits in it using a simple repeated shift-and-mask scheme
to examine each bit in isolation, and adds the count for each byte to
an accumulator. The code can be improved in a number of ways:

Simple : The shift-and-mask code to count the number of ‘1’ bits
iterates over 32 bits, even though the input file is read in a
byte, i.e., 8 bits, at a time. The iteration count can be reduced
to 8.

Moderate : The system call used to read a byte,fgetc() , is
not the most efficient one for the purpose. A more efficient
system call that is equivalent for our purposes in this case,
namely,getc() , can be used instead.

Moderate : The input can be read a page at a time, instead of a
single byte at a time, and buffered.

Sophisticated : The number of ‘1’ bits in each byte can be precom-
puted into an array of size 256, such that the entry in element
k of this array is the number of ‘1’ bits in the byte whose (un-
signed) value isk. Instead of a shift-and-mask loop to count
the number of ‘1’ bits in each byte, we can then simply index
into this table with any particular byte to obtain the count of
the number of ‘1’ bits in it.

Referring back to the classes of transformations mentionedin
Section 3.2, these can be seen to include Cacheing and Buffering.
The interested reader may find additional performance tuning
examples and assignments in
http://www.cs.arizona.edu/˜debray/PerfTuning/ .

4.2 Administration
For each performance tuning assignment, students are giventhe

following:

1. A source program whose performance has to be improved.

2. Sample inputs, including one that will be used as the “of-
ficial” input for determining the overall speed improvement
achieved.

3. An executable for a “fast” version of the program, which in-
dicates the extent of improvement realizable, and provides
students a concrete performance target.

Students take the program given, modify it as appropriate, and
eventually turn in the modified source program. They are alsore-
quired to turn in aREADMEfile that describes in detail the particular
performance bottlenecks they observed (consisting of raw profile
data together with the conclusions they drew from these data) and
the specific changes they made to the program code to ameliorate
the bottlenecks. The modifications to the program are required to
address the specific performance bottlenecks observed (ruling out
submissions of the form “the program was observed to be quite
slow, and I found this much faster program on the Internet, which I
decided to turn in”).

The rules that have to be followed when modifying the program
are as follows:

1. The modified program must be semantically equivalent to the
original, i.e., produce the same output on all inputs. This in-
cludes both the sample inputs provided as part of the assign-
ment handout, and others we may choose.

2. The modified program must obtain its performance improve-
ments using “general-purpose” techniques: approaches of
the form

“ if the input file is named ‘infile.big ’ print
out the value1234567”

are not allowed.

3. There is a “free allowance” of 4 Kbytes of additional space
(compared to the original program) that programs can use.
Students must get special permission if their program uses
more space than this.

The last rule serves to preclude programs that “bludgeon theprob-
lem to death” using space-time tradeoffs that might work forthe
small programs used for the assignments but would be wildly im-
practical for larger programs that students would encounter in re-
ality. It also makes students think carefully about how muchspace
their solutions use (all else being same, one that uses less space is
better).

4.3 Grading
Programs are graded based on how much performance improve-

ment they are able to achieve. This rewards students who work
harder and do a better job of improving the program, but raises the
question of exactly how “the amount of performance improvement”
realized by a program is to be measured. Since the execution time
of a program can be affected by the overall system load, a faircom-
parison between the runtimes of the original program given out, and
the optimized version turned in by a student, requires that they be
run under as similar conditions as possible. We therefore run each
student’s program alternately with the base program in an effort to

mitigate the effects of system load fluctations, and computesome
sort of average for the resulting run times for each executable.1 The
ratio of the original program’s average run time to the optimized
program’s average run time constitutes the extent of performance
improvement achieved; this number is then used to determinea
score for the student.

To offer motivated students an additional challenge, students
whose programs are found to be faster than the “fast executable”
supplied as part of the assignment are given a small bonus score
(typically around 15%–20%).

5. PROGRAM DESIGN ISSUES
Students sometimes have the perception that software design

principles such as abstraction and modularization incur a perfor-
mance penalty, and that fast software must,ipso facto, abandon
such niceties. An important aspect of our discussion of perfor-
mance considerations is the focus on the relationship between pro-
gram design and performance tuning. In particular, we emphasize
that not only does clean software design not preclude good perfor-
mance, but that it can actually be quite helpful in attainingit.

A fundamentally important principle in the course is that cor-
rectness cannot be compromised for speed: an incorrect result, no
matter how quickly it is computed, is not very useful. We attempt to
discuss the meaning of the word “correctness” in context. E.g., re-
ordering arithmetic operations on floating point numbers can some-
times result in small changes to the value computed: whetherthis
compromises correctness or not depends on the error bounds on the
result promised by the computation and/or expected by the user.

As repeatedly emphasized in class (and demonstrated via case
studies of programs), the actual performance bottlenecks in a pro-
gram are often difficult to predict ahead of time, even for relatively
moderate sized programs. This is, in fact, the rationale forusing
profiling tools such asgprof. Meanwhile, programming projects—
whether in the classroom or in the workplace—usually have dead-
lines by which they must be completed. Suppose that our priorities,
in descending order, are as follows:

1. the code should work, i.e., be as free of bugs as possible; and

2. the code should be “fast enough.”

Given these goals, how should a programmer proceed? Since we
don’t know, ahead of time, where the bottlenecks are and how much
time it’ll take to tune the code, a sensible approach would beto
leave as much time as possible towards the end for performance
tuning: this means that we want to get the code written, tested,
and debugged quickly. Furthermore, during the performancetun-
ing process, we want each profile-run-transform iteration over the
program to be as quick as possible, so that we can get rid of as
many performance bottlenecks as we can. Both these considera-
tions suggest that the program should be designed and structured
in such a way that changes to data structures and algorithms induce
only local changes to the code—i.e., they do not require making
(potentially error-prone) edits across large portions of the program.
The inevitable conclusion is that the programmer should design the
code in a clean and modular way, using appropriate abstractions,
so that changes to the algorithms and data structures can be made
quickly via edits of limited and localized scope.

Students often feel that abstraction necessarily involvesindirec-
tion, which in turn involves a performance penalty. For example,

1In our class, each of the two executables is run five times and
timed; the best and worst of the five run times are discarded; and
the remaining three run times averaged to obtain a single number.

code abstraction is viewed as necessarily involving functions or
procedures, which incur call/return overheads at runtime.An al-
ternative, discussed in class, is to use macros instead of functions
where appropriate, i.e., in situations where (part of) the perfor-
mance bottleneck is due to a function call in a frequently executed
portion of the program. Macros are also very valuable as accessors
for components of complex data structures. The reason for this is
that when we start writing a program we may not know what our
data structures will look like eventually—they may change during
development, e.g., due to performance tuning. Ideally, anysuch
data structure changes—which require changes to the code for ac-
cessing and updating their components as well—should result in
only localized edits to a program. This can be done by systemati-
cally using macros to access data structure components. Changes
to data structures are then simply accompanied by the correspond-
ing changes to the macro definitions; the remainder of the program
does not have to change.

The bottom line is that, not only are cleanly designed and struc-
tured programs easier to debug and maintain, but—once perfor-
mance bottlenecks have been identified—such programs are usu-
ally also much easier to optimize than tricky spaghetti code. This
gives even the “macho programmers” among the students a very
real incentive to pay attention to clean design.

6. CONCLUSIONS
While performance considerations are an important aspect of

many software systems, most undergraduate curricula do notex-
plicitly teach students about tools and techniques for improving
sortware performance. Instead, the topic seems to be addressed al-
most incidentally, via a patchwork of disparate topics, ranging from
architectural issues in Machine Organization courses, to asymptotic
complexity in Algorithm Design courses.

Our experience has been that such a piecemeal approach does
not give students a good understanding of performance issues from
a programming perspective. As a result, students often havedeeply
held but erroneous beliefs about programming for performance.
The problem can be addressed, to some extent, by making perfor-
mance issues an integral part of the programming curriculum. This
can help teach students how design programs with performance is-
sues in mind, and identify and rectify performance bottlenecks, in
a systematic way.

Acknowledgements
The author is grateful to Suzanne Westbrook for many very helpful
comments on the manuscript.

7. REFERENCES
[1] J. Bentley.Programming Pearls. Addison-Wesley, 1999.
[2] S. L. Graham, P. B. Kessler, and M. K. McKusick.gprof : A

call graph execution profiler. InProc. ACM SIGPLAN ’82
Symposium on Compiler Construction, pages 120–126, June
1982.

[3] Joint Task Force on Computing Curricula.Computing
Curricula 2001: Computer Science. IEEE Computer Society
and ACM, December 2001.

[4] A. L. Lebeck. Cache conscious programming in undergraduate
computer science. InProc. 30th SIGCSE technical symposium
on Computer science education, pages 247–251, March 1999.

[5] C. M. Shub. Performance experiments for the performance
course. InProc. 20th SIGCSE technical symposium on
Computer science education, pages 222–225, February 1989.

