Writing Efficient Programs

Performance Issues in an Undergraduate CS Curriculum *

Saumya Debray
Department of Computer Science
University of Arizona
Tucson, AZ 85721.

debray@cs.arizona.edu

ABSTRACT

Performance is an essential aspect of many software systemis
it is important for programmers to understand performassads.
However, most undergraduate curricula do not explicitiyerqer-
formance issues—performance monitoring and profilingstomér-
formance improvement techniques, and case studies—indiei
ricula. This paper describes how we address this topic dpar
third-year programming course. We focus on tools and tegles
for monitoring and improving performance, as well as theriat-
tion between clean program design and performance tuning.

Categories and Subject Descriptors

C.4 [Performance of Systemp Measurement techniques; D.1
[Programming Techniqueg: General; K.3.2 Computers and
Education]: Computer and Information Science EducatioGem-
puter science education

General Terms
Performance, Design

Keywords

Profiling, Performance tuning

1. MOTIVATION

Performance is an essential aspect of many software systems

and it is vitally important for programmers to understandfqre

mance issues: when it matters and when it doesn’t; how to sys-

tematically identify performance bottlenecks and imprprx@gram
performance; and how program design interacts with andaffe
performance tuning. Despite this, the issue of performandeer-
formance tuning—including tools, technigues, and cas#iestu—is
not explicitly addressed, as a topic in its own right, in most-
ricula. Very often, the closest students come to encourgetiis

* This work was supported in part by the National Science Foun-

dation under grants EIA-0080123 and CCR-0113633.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGCSE’04March 3-7, 2004, Norfolk, Virginia, USA.

Copyright 2004 ACM 1-58113-798-2/04/000355.00.

issue is through a patchwork of topics such as machine agani
tion and/or architecture (focusing on hardware aspedtgrithms
(typically focusing only on asymptotic complexity, and dgimg
“constant factors”), and possibly compilers (focusing ode gen-
eration issues). Our experience has been that such a pieceme
proach does not give students an adequate understandiegfof-p
mance issues from a programming perspective.

A lack of understanding of performance tuning issues can ad-
versely affect a student’s programming even in situatioh®ne
performance is not an issue. We have observed, for example,
that many of our students become interested in computenceie
through their interest in computer games. Quite often, thesye
the (deeply held but erroneous) belief that programming abaut
speed; in many cases, they also believe that “fast codehisrgy
mous with “tricky code.” Then, when confronted with a pragra
ming problem they do not understand fully, they try to wrisstf
code but often end up with code that is neither fast nor cariec
one fourth-yeaiCompiler Designcourse, for example, we found
that many students were spending a great deal of time saqupezi
every ounce of speed out of the hashing routines that maxtgall
the symbol table—possibly because they had studied hashing
their Data Structures class, this was one part of the assighthat
was familiar to them, and “speed is important.” This actaid
very little to speed up their compilers, because most of Keee
tion time was actually spent doing I/O; the problem was that t
time so spent resulted in other parts of the project bein¢eoesy.

At the other extreme, students whose primary encounter ‘@fth
ficiency” has been in the context of asymptotic complexitglgn
ses in algorithm design classes may spend inordinate asofint
time working on elaborate data structures, such as AVL friges
situations where a sequential search through a simplerlirstés
perfectly adequate.

This paper discusses how we have addressed this topic, tas par
of a third-yearSystems Programmingpurse (roughly comparable
to CS291s in the IEEE/ACM 2001 Computing Curriculum [3]).

2. BACKGROUND

One option for teaching performance issues would be at the
fourth-year level [5], by which point students have enceuved
topics in computer architecture, operating systems, amcpier
design at a reasonable level of detail, and therefore have sp-
preciation for the various issues affecting performance. dhbse
not to follow this option: we wanted students learning toguean
in C to be exposed, at the same time, to topics and toolsnglati
to performance tuning, in order to inculcate good prograngmi
habits early. Our approach was to include these topics ifir@-th
year course ofsystems Programmirtbat covers, in addition, Unix

and C programming topics. The material on performance tunin
covers roughly 20% of the course (about 3 weeks).
In addition to introducing students to the topics and toaois f

performance tuning early, this has the advantage of aligwhem

to apply their knowledge in their final-year programminggimsive
courses such @perating SystenendCompiler DesignHowever,
itimposes significant constraints on the background we saurae
for the students. For example, while we can assume thatrgside
have had an introductory (at the first- or second-year le@lyse

percentage of the program’s execution time. These funstioe
candidates for performance-improving transformationise dther
function-level profile data—the number of times it is caléed! av-
erage execution time per call—can then be used to guide teto t
next step in the tuning process: either the application dédoans-
formations at the function level, or further profiling to abt more
fine-grained basic block level profile data.
While students don't actually encounter the notion of a Ibas

block” officially until a fourth-year Compiler Design clagke intu-

on machine organization, we cannot assume that they hava had itive idea—that of a straight-line sequence of code withrambhes

course on data structures (taught in their third year) oorétlym
design (final year). This, in turn, affects the sophistmatof the
data structures they can be expected to use in their assigsunie
effect, we are limited to using a small set of straightfordvelata
structures and algorithms covered in their first- and seg@adt
programming classes. It also affects the extent to which ave c
discuss architectural issues, e.g., cache effects [4]traidimpact
on performance. We touch on this point in Section 4.1.

3. THE TUNING PROCESS

We begin the discussion on performance by emphasizing that
when writing code, not all programs need to be sped up. The

point is that what we want is not necessarily thstestprogram,
but one that is most cost-effective in terms of the tradeefiMeen

programmer time, on the one hand, and execution speed (@r oth

performance metric), on the other. In addition to settirgstage
for performance tuning issues, this is also helpful in givstu-
dents a broader perspective of a range of programming sphuti
they have been taught—ranging from shell scripts, thrqaeghand
similar scripting languages, to optimized C code and eveeras

bly code—and how one might go about deciding which of these is

most appropriate under different circumstances.

We observe, also, that it is often difficult to determine,ahef
time, whether a particular piece of software will have “adzsg”
performance or whether it will need to be tuned further—ttozen

so if it is being implemented by a team, where each team member

has only a relatively limited view of the code. This raiseseth
issues for discussion:

1. How can we identifywherewe should focus efforts to im-
prove performance?

2. How might we go about figuring out how we should trans-
form the program so as to improve its performance?

into or out of its middle—can be explained easily enough. A ba
sic block profile (generated, for example, by compiling agoam
using ‘gcc -g -a 'or ‘gcc -g -ax ' and running the result-
ing executable) gives execution counts for the basic blacks
program, together with information about their locatiote(fiame,
function, and line number), as shown in Figure 1(b). Basockl
profiles are used primarily to identify the lines within thedy of
a function that are executed the largest number of timey; dhe
a crude but generally effective way to identify expensivegoam
fragments. In our discussions, we resort to basic blocklpsofince
function-level optimizations have been carried out, amthfer per-
formance improvements require profile information at a fgran-
ularity than the function level.

3.2 Program Transformations

Obviously, the particular program transformations thagtmhbe
appropriate for improving the performance of a program et
pend on specifics of that program, and are therefore likebjifer-
ent for different programs. We can, nevertheless, ideuifferent
classes of transformations that can be used to improve agmng
performance, such as the following (this is not intendedrasxa
haustive list):

Cacheing : computing some data once, ahead of time, and then
looking them up, instead of recomputing them repeatedly.
The speed improvement comes from avoiding recomputa-
tion; the tradeoff is the additional space needed to stare th
precomputed values.

Buffering : Instead of invoking some action repeatedly on a large
number of small objects, we may choose to “buffer” them
into larger collections, and invoke the actions on the large
data that result. The speed improvement comes from reduc-
ing the number of times the action is invoked. The tradeoff
is that more space is needed for the buffered objects.

3. How can we design the program so as to simplify subsequent Filtering : When examining large quantities of data to select those

performance tuning?

The classroom discussions on performance tuning addrebsoéa
these issues by examining specific programming examples-in d
tail. In this paper, the first point is discussed in Sectidh #e
second in Sections 3.2 and 3.3, and the third in Section 5.

3.1 Identifying Performance Bottlenecks

We focus on two tools for identifying possible candidates fo
performance tuning: the function-level profiling taggrof[2]; and
basic block profiling within a function using thlgeccompiler.

The profiles obtained fromgprof typically provide high-level in-
formation about the program’s behavior. This includesistias
about how many times each function in the program is callegl; t
execution time spent in that function, both by itself andrigknto
account all of the functions it calls (transitively); andethverage
execution time per call. This is illustrated in Figure 1(&)e use
these data to identify the functions that account for a ficant

items that satisfy some specific property, if it may somesime
be possible to devise a “filter” that allows us to avoid ex-
amining (some) useless data. Examples of filtering include
hashing, and also the use of binary search, which uses a sim-
ple test to localize the search and thereby avoid searching
through irrelevant data.

We also discuss low-level program transformations thabeamse-
ful in improving performance, but in a lot less detail. Spfieci
examples include function inlining (and the conceptuaéiated
transformation of replacing function calls with macros veell as
transformations aimed at reducing the amount of unnecgssar-
putation, such as invariant code motion out of loops and comm
subexpression elimination. The points made in this corstexthat
such transformations are typically applied by a compilat,there
may be situations where a compiler does not carry out the opti
mization. In such cases, the ability to understand and atbyay
transformations manually can be useful.

% time cum. self no. of self total
seconds seconds calls ms/call ms/call name

39.9 1.39 1.39 internal_mcount [4]
25.0 2.26 0.87 7450087 0.00 0.00 strcmp [5]

21.8 3.02 0.76 45404 0.02 0.04 wordLookup [3]

1.4 3.07 0.05 88364 0.00 0.00 _doprnt [15]

1.1 3.11 0.04 499876 0.00 0.00 _getc_unlocked [17]

0.9 3.21 0.03 176728 0.00 0.00 _smalloc [18]

0.9 3.24 0.03 45404 0.00 0.00 sort_string [21]

0.9 3.27 0.03 45404 0.00 0.00 string [16]

0.6 3.34 0.02 133768 0.00 0.00 strlen [23]

0.6 3.36 0.02 88364 0.00 0.00 hashval [24]

0.3 3.43 0.01 176730 0.00 0.00 malloc [8]

(a) (Partial) function-level profile obtained usiggrof
Block No. no. of times Address Function name Line no. File nam e
executed

1 88364 0x10c70 hashval 37 hash.c

2 712740 0x10c98 hashval 40 hash.c

3 88364 0x10cc8 hashval 44 hash.c

4 1 0x10d04 hashinit 51 hash.c

5 0 0x10d28 hashlnit 51 hash.c

6 0 0x10d48 hashinit 52 hash.c

7 45404 0x10d80 wordLookup 61 anagram.c

8 0 0x10d9c wordLookup 65 anagram.c

9 45404 0x10dc4 wordLookup 67 anagram.c
10 45276 0x10df8 wordLookup 70 anagram.c
11 7447073 0x10e0c wordLookup 70 anagram.c

(b) (Partial) basic block profile obtained usiggc -a

Figure 1: Examples of Function-level and Basic block-levetxecution profiles

3.3 Applying the Transformations

The execution time profiles for different functions is illurat-
ing, not just for pointing out potential optimization caddites, but
also for suggesting how we might go about optimizing them: Fo
example, if we find a “heavyweight” function—one called pEph
only a few times, but where each call incurs a significant etieo
cost—then the natural course of action is to use basic bloaf{gs
to identify which portions of its body are the most frequergke-
cuted, then focus on these portions of the code. On the otret, h
we may have a situation where a function has been coded quite
efficiently, so that the time taken for a single executiorotigh
its body is very small, but where it is called so many timeg tha
overall, it incurs a large cost. In this case, we want to redhe
number of times the function is called. While the details ofvh
this might be done depends on specifics of the underlyingi-appl
cation, we can draw some general guidelines. For exampleeg if
commonly-called function is being used to search for olsjsatis-
fying some property, we might consider some form of hasharg (
more generally, filtering); if it is carrying out actions thean be
“bundled up together,” we can consider buffering.

The utility of basic block profiles comes from the fact that—
unlike the function-level profiles obtained from tools ligprof—
they offer a detailed look at the execution behavior withfiurzc-
tion. This is especially useful if, as a result of other pesgrtrans-
formations and/or due to specific coding decisions, a prograr
is confronted with a “heavyweight” function whose performa
needs to be improved. For example, suppose that a basicfnlock
file indicates that a function contains a doubly nested lobpre

the inner loop has a high execution count, and an examinafion
the inner loop indicates that it is traversing a data stmgcsearch-
ing for objects satisfying some property. In this case, aglde
approach to reducing the performance overhead for thisspéc
code might be to try and use some sort of filter, or a more intell
gent data structure, to reduce the number of times the ioogris
executed. Basic block profiles can also be useful for deténgia
good ordering for tests. For example, given code of the form

if (test && tesh) ...

If test andtesp are independent tests, and basic block profiles
indicate thatest is false a smaller fraction of the time thtesb—
indicating thattest is not as effective filter akesp—then a plau-
sible transformation would be to reorder them so tkeab is done
first.

The larger point made in these discussions on program tiansf
mation strategies is that the problem of performance tuoargbe
approached systematically, using general principles aitktines.

4. ASSIGNMENTS

Hands-on experimentation is crucial for getting a good unde
standing of profiling and performance tuning, and we acomlgi
attach a great deal of importance to programming assigrement
this topic. This section discusses various aspects of thigiland
administration of these assignments.

4.1 Desiderata

The problem of designing appropriate performance tuninrg as
signments that are consistent with the student backgroundam
assume raises some interesting challenges. We attempidtroct
programs with the following characteristics:

— The program should be of reasonable size: small enough that
a student can understand the code without undue effort; yet
large enough that the performance bottlenecks are not obvi-

ous simply from inspecting the code.

The program should have a number of different performance
bottlenecks, in order to avoid an “all-or-nothing” situmti
with a bipolar distribution of assignment scores.

The different sources of overhead should preferably be
amenable to different types of program transformations, in
order to force students think about performance issuesmrath
than reflexively apply a stock solution (e.g., hashing).

The performance bottlenecks should require differergltev
of sophistication to identify and address, so as to provide
“something for everyone,” ranging from average and rela-
tively inexperienced students to the top students and exper
enced programmers.

The solutions should not require knowledge of advanced
data structures or algorithms, e.g., AVL-trees or soptastid
graph algorithms, since such topics are not part of the stude

background that can be assumed given the course prerequi-

sites.

The following is an example problem satisfying some of thase
teria. The problem, taken from Bentley’sogramming Pearl$1],

is to count the number ofl’ bits in a file. The unoptimized pro-
gram given to the students is a straightforward piece of ¢bde
repeatedly reads a single byte from the input file, countstime-

ber of ‘1’ bits in it using a simple repeated shift-and-mask scheme
to examine each bit in isolation, and adds the count for egteghtb

an accumulator. The code can be improved in a number of ways:

Simple : The shift-and-mask code to count the numberlofaits
iterates over 32 bits, even though the input file is read in a
byte, i.e., 8 bits, at a time. The iteration count can be reduc
to 8.

Moderate : The system call used to read a byfgetc() , is

4.2 Administration
For each performance tuning assignment, students are tjigen

following:

1. A source program whose performance has to be improved.

2. Sample inputs, including one that will be used as the “of-
ficial” input for determining the overall speed improvement
achieved.

3. An executable for a “fast” version of the program, which in
dicates the extent of improvement realizable, and provides
students a concrete performance target.

Students take the program given, modify it as appropriate, a
eventually turn in the modified source program. They are @so
quired to turn in &READMIle that describes in detail the particular
performance bottlenecks they observed (consisting of nafil@
data together with the conclusions they drew from these) dauich
the specific changes they made to the program code to anteliora
the bottlenecks. The modifications to the program are reduiv
address the specific performance bottlenecks observadgroilit
submissions of the formthe program was observed to be quite
slow, and | found this much faster program on the Internetctvh
decided to turn ify.

The rules that have to be followed when modifying the program
are as follows:

1. The modified program must be semantically equivalentdo th
original, i.e., produce the same output on all inputs. Tihis i
cludes both the sample inputs provided as part of the assign-
ment handout, and others we may choose.

2. The modified program must obtain its performance improve-
ments using “general-purpose” techniques: approaches of
the form

“if the input file is namedinfile.big " print
out the valuel234567”
are not allowed.
3. There is a “free allowance” of 4 Kbytes of additional space

(compared to the original program) that programs can use.
Students must get special permission if their program uses
more space than this.

not the most efficient one for the purpose. A more efficient The last rule serves to preclude programs that “bludgeopribie-

system call that is equivalent for our purposes in this case, lem to death” using space-time tradeoffs that might workther
namely,getc() , can be used instead. small programs used for the assignments but would be witdly i

) . . practical for larger programs that students would encatintee-

Moderate : The input can be read a page at a time, instead of a yjity. |t also makes students think carefully about how msphce

single byte at a time, and buffered.

Sophisticated : The number of1’ bits in each byte can be precom-

puted into an array of size 256, such that the entry in element

k of this array is the number of' bits in the byte whose (un-
signed) value i&. Instead of a shift-and-mask loop to count
the number of1’ bits in each byte, we can then simply index
into this table with any particular byte to obtain the couht o
the number of 1’ bits in it.

Referring back to the classes of transformations mentioned
Section 3.2, these can be seen to include Cacheing and Bgffer
The interested reader may find additional performance ¢unin
examples and assignments in
http://www.cs.arizona.edu/"debray/PerfTuning/

their solutions use (all else being same, one that usespess $s
better).

4.3 Grading

Programs are graded based on how much performance improve-
ment they are able to achieve. This rewards students who work
harder and do a better job of improving the program, but saise
question of exactly how “the amount of performance improssth
realized by a program is to be measured. Since the execirmien t
of a program can be affected by the overall system load, adair
parison between the runtimes of the original program givenand
the optimized version turned in by a student, requires thayt be
run under as similar conditions as possible. We therefareeach
student’s program alternately with the base program in fonteb

mitigate the effects of system load fluctations, and compatae
sort of average for the resulting run times for each exeteifafhe
ratio of the original program’s average run time to the optad
program’s average run time constitutes the extent of pedioce
improvement achieved; this number is then used to deteraine
score for the student.

To offer motivated students an additional challenge, sitge
whose programs are found to be faster than the “fast exdefitab
supplied as part of the assignment are given a small bonus sco
(typically around 15%—20%).

5. PROGRAM DESIGN ISSUES

Students sometimes have the perception that softwarendesig
principles such as abstraction and modularization incueréop
mance penalty, and that fast software mipso factg abandon
such niceties. An important aspect of our discussion ofqgperf
mance considerations is the focus on the relationship lestyweo-
gram design and performance tuning. In particular, we esipha
that not only does clean software design not preclude goddrpe
mance, but that it can actually be quite helpful in attairiing

A fundamentally important principle in the course is that-co
rectness cannot be compromised for speed: an incorredt, nesu
matter how quickly itis computed, is not very useful. We @iupé to
discuss the meaning of the word “correctness” in contexd., Ee-
ordering arithmetic operations on floating point numbersszane-
times result in small changes to the value computed: whékiier
compromises correctness or not depends on the error bouritie o
result promised by the computation and/or expected by tbe us

code abstraction is viewed as necessarily involving famstior
procedures, which incur call/return overheads at runtivhe.al-
ternative, discussed in class, is to use macros insteachofidms
where appropriate, i.e., in situations where (part of) teefqr-
mance bottleneck is due to a function call in a frequentlycaied
portion of the program. Macros are also very valuable asszors
for components of complex data structures. The reason if@igh
that when we start writing a program we may not know what our
data structures will look like eventually—they may changeiny
development, e.g., due to performance tuning. ldeally, aargh
data structure changes—which require changes to the codefo
cessing and updating their components as well—shouldtresul
only localized edits to a program. This can be done by sydiema
cally using macros to access data structure componentaigéba
to data structures are then simply accompanied by the games
ing changes to the macro definitions; the remainder of thgrarm
does not have to change.

The bottom line is that, not only are cleanly designed anatstr
tured programs easier to debug and maintain, but—once rperfo
mance bottlenecks have been identified—such programs are us
ally also much easier to optimize than tricky spaghetti cotlais
gives even the “macho programmers” among the students a very
real incentive to pay attention to clean design.

6. CONCLUSIONS

While performance considerations are an important asplect o
many software systems, most undergraduate curricula dexiot
plicitly teach students about tools and techniques for aving

As repeatedly emphasized in class (and demonstrated wa cas sortware performance. Instead, the topic seems to be addres

studies of programs), the actual performance bottlenackspiro-
gram are often difficult to predict ahead of time, even foatigely
moderate sized programs. This is, in fact, the rationaleuging
profiling tools such agprof. Meanwhile, programming projects—
whether in the classroom or in the workplace—usually haalde
lines by which they must be completed. Suppose that ouripeisr
in descending order, are as follows:

1. the code should work, i.e., be as free of bugs as possitue; a
2. the code should be “fast enough.”

Given these goals, how should a programmer proceed? Since w
don’t know, ahead of time, where the bottlenecks are and hoehm
time it'll take to tune the code, a sensible approach woulddoe
leave as much time as possible towards the end for perfoenanc
tuning: this means that we want to get the code written, deste
and debugged quickly. Furthermore, during the performdnce

ing process, we want each profile-run-transform iteratiegr the

e

most incidentally, via a patchwork of disparate topicsgiag from
architectural issues in Machine Organization coursessyimatotic
complexity in Algorithm Design courses.

Our experience has been that such a piecemeal approach does
not give students a good understanding of performanceddsum
a programming perspective. As a result, students often deeply
held but erroneous beliefs about programming for perfooaan
The problem can be addressed, to some extent, by makingperfo
mance issues an integral part of the programming curricultins
can help teach students how design programs with perforenanc
sues in mind, and identify and rectify performance bottésein
a systematic way.

Acknowledgements

The author is grateful to Suzanne Westbrook for many verpfakel
comments on the manuscript.

7. REFERENCES

program to be as quick as possible, so that we can get rid of as[1] J. Bentley.Programming PearlsAddison-Wesley, 1999.

many performance bottlenecks as we can. Both these coasider
tions suggest that the program should be designed andwsedct
in such a way that changes to data structures and algoritidnsé
only local changes to the code—i.e., they do not require ngpki
(potentially error-prone) edits across large portionshefgirogram.
The inevitable conclusion is that the programmer shoulibdebe
code in a clean and modular way, using appropriate absiregti
so that changes to the algorithms and data structures carate m
quickly via edits of limited and localized scope.

Students often feel that abstraction necessarily invalvdisec-
tion, which in turn involves a performance penalty. For egbam

lin our class, each of the two executables is run five times and
timed; the best and worst of the five run times are discarded; a
the remaining three run times averaged to obtain a singldoeum

[2] S. L. Graham, P. B. Kessler, and M. K. McKusigprof : A
call graph execution profiler. IRroc. ACM SIGPLAN 82
Symposium on Compiler Constructjgrages 120-126, June
1982.

[3] Joint Task Force on Computing Curricul2omputing
Curricula 2001: Computer SciencEEEE Computer Society
and ACM, December 2001.

[4] A.L. Lebeck. Cache conscious programming in undergaselu
computer science. IRroc. 30th SIGCSE technical symposium
on Computer science educatigrages 247-251, March 1999.

[5] C. M. Shub. Performance experiments for the performance
course. InProc. 20th SIGCSE technical symposium on
Computer science educatigpages 222-225, February 1989.

