
Non-Failure Analysis forLogic ProgramsSaumya DebrayDepartment of Computer ScienceUniversity of ArizonaTucson, AZ 85721, U.S.A.debray@cs.arizona.eduPedro L�opez-Garc��a, Manuel HermenegildoFacultad de Inform�aticaUniversidad Polit�ecnica de MadridE-28660 Madrid, Spainpedro@dia.�.upm.es, herme@.�.upm.esAbstractWe provide a method whereby, given mode and (upper approximation) type in-formation, we can detect procedures and goals that can be guaranteed to not fail(i.e., to produce at least one solution or not terminate). The technique is based onan intuitively very simple notion, that of a (set of) tests \covering" the type of aset of variables. We show that the problem of determining a covering is undecid-able in general, and give decidability and complexity results for the Herbrand andlinear arithmetic constraint systems. We give sound algorithms for determining cov-ering that are precise and e�cient in practice. Based on this information, we showhow to identify goals and procedures that can be guaranteed to not fail at runtime.Applications of such non-failure information include programming error detection,program transformations and parallel execution optimization, avoiding speculativeparallelism and estimating lower bounds on the computational costs of goals, whichcan be used for granularity control. Finally, we report on an implementation of ourmethod and show that better results are obtained than with previously proposedapproaches.1 IntroductionThere are two important motivations for considering compile-time analyses to iden-tify non-failure in logic programs. The �rst is that it is usually very useful to be ableto identify badly-behaved programs where possible. For example, in statically typedlanguages, the behavior one expects is that program components will be used in away consistent with their types, and compile-time type checking is used to detectdepartures from this expected behavior. While this does not rule out programmingerrors, it makes it a lot simpler to identify and localize certain kinds of commonprogramming errors. Similarly, in logic programs, the usual expectation is that apredicate will succeed and produce one or more solutions. In most logic program-ming systems, however, the only checking that is done is a rather simplistic|thoughuseful|check about the naming of singleton variables. The second reason is thatknowledge of non-failure can be used to aid a number of program transformations



and optimizations. For example, we may want to execute possibly-failing goals aheadof non-failing goals where possible; and in parallel systems, knowledge of non-failurecan be used to avoid speculative parallelism and to estimate lower bounds on thecomputational costs of goals [7, 5], which can be used for granularity control ofparallel tasks [9].The problem with naive attempts to infer non-failure is that, in general, it isalways possible for a goal to fail because \bad" argument values cause a failureduring head uni�cation. An obvious solution would be to try and rule out suchargument values by considering the types of predicates. However, most existing typeanalyses provide upper approximations, in the sense that the type of a predicate isa superset of the set of argument values that are actually encountered at runtime.Unfortunately, straightforward attempts to address this issue, for example by tryingto infer lower approximations to the calling types of predicates, fail to yield nontriviallower bounds for most cases.In this paper, we show how, given mode and (upper approximation) type infor-mation, we can detect procedures and goals that can be guaranteed to not fail. Ourtechnique is based on an intuitively very simple notion, that of a (set of) tests \cov-ering" the type of a variable. We show that the problem of determining a covering isundecidable in general, and give decidability and complexity results for the commoncases involving the Herbrand and linear arithmetic constraint systems. We then givean algorithm for checking whether a set of tests covers a type, that is e�cient inpractice. Based on this information, we show how to identify goals and proceduresthat can be guaranteed to not fail at runtime.Space limitations prevent us from discussing several issues completely or includ-ing some of the longer proofs. We refer the reader to [4] for details.2 PreliminariesWe assume an acquaintance with the basic notions of logic programming. In or-der to reason about non-failure, it is necessary to distinguish between uni�cationoperations that act as tests (and which may fail), and output uni�cations that actas assignments (and always succeed). To this end, we assume that programs aremoded, i.e., for each uni�cation operation in each predicate, we know whether theoperation acts as a test or creates an output binding (note that this is weaker thanmost conventional notions of moding in that it does not require input argumentsto be ground, and allows an output argument to occur as a subterm of an inputargument). Where it is necessary to emphasize the input tests in a clause, we writethe clause in \guarded" form, asp(x1; : : : ; xn) :� input tests(x1; : : : ; xn) [] Body :Consider a predicate de�ned by the clausesabs(X;Y ) :� X � 0 [] Y = X:abs(Y; Z) :� Y < 0 [] Z = �Y:Suppose we know that this predicate will always be called with its �rst argumentbound to an integer. Obviously, for any particular call, one or the other of the tests`X � 0' and `X < 0' may fail; however, taken together, one of them will succeed.This shows that we cannot rely on examining the tests of each clause separately:it is necessary to collect them together and examine the behavior of the collectionas a whole. When collecting tests together, however, we must be careful to makesure that we do not get confused by di�erent variable names in di�erent clauses.For example, in the abs predicate de�ned above, we need to make sure that (i) we



notice that the variable X in the �rst clause and the variable Y in the second clauseactually refer to the same component of the arguments to the predicate; and (ii) wedo not confuse the variable Y in the �rst clause with the variable Y in the secondclause.These pitfalls can be avoided by normalizing clauses so that they use variablenames consistently and according to a prede�ned convention. We rely on the usualapproach of using sequences of integers to encode paths in ordered trees: the emptysequence " corresponds to the root node of the tree, and if a sequence � correspondsto a node N , then the sequences �1; : : : ; �k correspond to its children N1; : : : ; Nktaken in order. We adopt the convention that a variable in a clause is designatedas X�, where � is (the sequence encoding) the path from the root of the clause,labeled :-/2, to the leftmost occurrence of that variable. To enhance readability,the examples used in this paper will not resort to explicitly naming variables in thisway unless necessary, with the understanding that the algorithms are de�ned withrespect to normalized clauses.3 Types, Tests, and CoveringsA type refers to a set of terms, and can be denoted by using several type repre-sentations (e.g. type terms and regular term grammars as in [3], or type graphs asin [13]). Let type[q] denote the type of each predicate q in a given program. In thispaper, we are concerned exclusively with \calling types" for predicates|in otherwords, when we say \a predicate p in a program P has type type[p]", we mean thatin any execution of the program P starting from some class of queries of interest,whenever there is a call p(�t) to the predicate p, the argument tuple �t in the call willbe an element of the set denoted by type[p]. The non-failure analysis we describe isbased on regular types [3], which are speci�ed by regular term grammars in whicheach type symbol has exactly one de�ning type rule.A more detailed treatment of these issues may be found in papers on type anal-ysis, e.g., [3, 13]. Due to space limitations we do not pursue them further here. Wedenote the Herbrand Universe (i.e., the set of all ground terms) as H, and the set ofn{tuples of elements of H as Hn.Given a (�nite) set of variables V , a type assignment over V is a mapping from Vto a set of types. A type assignment � over a set of variables fx1; : : : ; xng is writtenas (x1 : a1; : : : ; xn : an), where �(xi) = ai; 1 � i � n, and ai is a type representation.Given a term t and a type representation T , we abuse of terminology and say t 2 T ,meaning that t belongs to the set of terms denoted by T .A primitive test is an \atom" whose predicate is a built-in such as the uni�cationor some arithmetic predicate (<;>;�;�; 6=, etc.) which acts as a \test". De�ne atest to be either a primitive test, or a conjunction �1 ^ �2 or a disjunction �1 _ �2, ora negation :�1, where �1 and �2 are tests.Fundamental to our approach to detecting non-failure is the notion of a test\covering" a type assignment:De�nition 3.1 A test S(�x) covers a type assignment �x : �T , where �T is a tuple ofnonempty types, if for every �t 2 �T it is the case that �x = �t j= S(�x).Consider a predicate p de�ned by n clauses, with input tests �1; : : : ; �n:p(�x) :� �1(�x) [] Body1:. . .p(�x) :� �n(�x) [] Bodyn:We refer to the test � (�x) � �1(�x) _ � � � _ �n(�x) as the input test of p. Suppose thatthe predicate p has type type[p]: in the interest of simplicity, we sometimes abuse



terminology and say that the predicate p covers the type type[p] if the input test� (�x) of p covers the type assignment �x : type[p].De�ne the \calls" relation between predicates in a program as follows: p calls q,written p ; q, if and only if a literal with predicate symbol q appears in the bodyof a clause de�ning p, and let ;? denote the re
exive transitive closure of ;. Theimportance of the notion of covering is expressed by the following result:Theorem 3.1 A predicate p in the program is non-failing if, for each predicate qsuch that p;? q, q covers type[q].Proof Assume that p can fail, i.e., there is a goal p(�t), with �t 2 type[p], that fails. Itis a straightforward induction on the number of resolution steps to show that thereis a q such that p;? q and q does not cover its type.Note that non-failure does not imply success: a predicate that is non-failing maynevertheless not produce an answer because it does not terminate. This is illustratedby the predicate, de�ned by the single clause given below, which is non-failing and|on most existing Prolog systems|non-terminating:p(X) :� p(X).Ideally, we would like to have a decision procedure to determine whether a testcovers a given type assignment. Unfortunately, this is impossible in general, as thefollowing result shows:Theorem 3.2 Given an arbitrary test and type assignment, it is in general unde-cidable whether the test covers the type assignment.Proof The proof is straightforward from a result, due to Matijasevi�c, that showsthat determining the existence of (integer) solutions for arbitrary Diophantine equa-tions is undecidable [16]. Given an arbitrary polynomial �(x1; : : : ; xn), consider thetest �(x1; : : : ; xn) 6= 0. This test covers the type assignment (x1 : integer; : : : ; xn :integer) if and only if every possible assignment of integers to the variablesx1; : : : ; xn causes the polynomial � to take on a non-zero value, i.e., if and onlyif the Diophantine equation �(x1; : : : ; xn) = 0 has no integer solutions. But sincethe problem of determining the existence of integer roots for an arbitrary Diophan-tine equation is undecidable, it follows that the problem of determining whether anarbitrary test covers an arbitrary type assignment is also undecidable.We are therefore forced to resort to sound (but, necessarily, incomplete) algo-rithms to determine coverings. In the remainder of this section we show that coveringproblems are decidable for most cases arising in practice|in particular, for equalityand disequality tests over the Herbrand domain and for linear arithmetic tests|and give algorithms for deciding covering for these cases. Given a test and a typeassignment that we want to check for covering, our approach is to �rst partitionthe test such that tests in di�erent resulting partitions involve di�erent constraintsystems, and then apply to each partition a covering algorithm particular to the cor-responding constraint system. In this paper we consider two commonly encounteredconstraint systems: �rst order terms with equality and disequality tests, on variableswith tuple-distributive regular types [3] (types which are speci�ed by regular termgrammars in which each type symbol has exactly one de�ning type rule and eachtype rule is deterministic); and for linear arithmetic tests on integer variables.3.1 Covering in the Herbrand Domain3.1.1 Decidability and ComplexityWhile covering is undecidable in the presence of arbitrary arithmetic operations, itturns out to be decidable if we restrict ourselves to equations and disequations overHerbrand terms. Before discussing the algorithm for this, we give a result on thecomplexity of the covering problem for Herbrand:



Theorem 3.3 The covering problem for the Herbrand domain is co-NP-hard. Itremains co-NP-hard even if we restrict ourselves to equality tests.Proof By reduction from the problem of determining whether a propositionalformula in disjunctive normal form, containing at most 3 literals per disjunct, is atautology ([10], problem LO8).3.1.2 A Decision ProcedureThe decision procedure presented here is inspired by a result, due to Kunen [14],that the emptiness problem is decidable for Boolean combinations of (notationsfor) certain \basic" subsets of the Herbrand universe of a program. It also usesstraightforward adaptations of some operations described by Dart and Zobel [3].The reason the covering algorithm for Herbrand is as complex as it is is that wewant a complete algorithm for equality and disequality tests. It is possible to simplifythis considerably if we are interested in equality tests only. Before describing thealgorithm, we introduce some de�nitions and notation.We use the notions (to be de�ned in the following) of type-annotated term, andin general elementary set, as representations which denote some subsets of Hn (forsome n � 1). Given a representation S (elementary set or type-annotated term),Den(S) refers to the subset of Hn denoted by S.De�nition 3.2 [type-annotated term] A type-annotated term is a pair M = (�t; �),where �t is a tuple of terms, and � is a type assignment (x1 : T1; : : : ; xk : Tk). Toenhance readability, the type of xi in M , i.e., Ti, will sometimes be written astype(xi;M ) or as type(xi; �). Also, given a type-annotated term M , we denote itstuple of terms and its type assignment as �tM and �M respectively. A type-annotatedterm denotes the set of all the ground terms �(�t) such that �(x) 2 type(�t; �) for eachvariable in �t.Given a type-annotated term (�t; �), the tuple of terms �t can be regarded as a typeterm and � can be considered to be a type substitution. This is useful for usingan algorithm described by Dart and Zobel [3] to compute the \intersection" and\inclusion" of type-annotated terms, to be de�ned later. Let > denote the type ofthe entire Herbrand universe. When we have a type-annotated term (�t; �) such that�(x) = > for each variable x in �t, we omit the type assignment � for brevity and usethe tuple of terms �t. Thus, a tuple of terms �t with no associated type assignment canbe regarded as a type-annotated term which denotes the set of all ground instancesof �t.De�nition 3.3 [elementary set] An elementary set is de�ned as follows:� � is an elementary set, and denotes the set ; (i.e., Den(�) = ;);� a type-annotated term (�t; �) is an elementary set; and� if A and B are elementary sets, then A
B, A�B and comp(A) are elementarysets that denote, respectively, the sets of (tuples of) terms Den(A) \Den(B),Den(A) [Den(B), and Hn nDen(A).We de�ne the following relations between elementary sets: A v B i� Den(A) �Den(B). A ' B i� Den(A) = Den(B).De�nition 3.4 [cobasic set] A cobasic set is an elementary set of the form comp(B),where B is a tuple of terms.De�nition 3.5 [minset] A minset is either � or an elementary set of the formX 
 comp(Y1) 
 � � � 
 comp(Yp), for some p � 0, where X is a tuple of terms,comp(Y1); : : : ; comp(Yp) are cobasic sets, and for all 1 � i � p, Yi = X�i andX 6v Yi for some substitution �i.



For brevity, we write a minset of the form X 
 comp(Y1)
 � � � 
 comp(Yp) as X=C,where C = fY1; : : : ; Ypg (we say that C is the set of cobasic sets of the minset,although syntactically Y1; : : : ; Yp are tuples of terms).De�nition 3.6 [type-annotated term instance] We say that the type-annotatedterm I is an instance of the type-annotated term R if Den(I) � Den(R) and thereis a substitution � such that �tI = �tR�.Consider a predicate p de�ned by n clauses, with input tests �1(�x); : : : ; �n(�x): Sup-pose that the predicate p has type type[p]. Testing whether the input test ofp, � (�x), covers the type assignment �x : type[p] can be reduced to test whetherM v S1 � � � � � Sn, where M is a type-annotated term which is a representation of�x : type[p], and each Si is a minset, which is the representation of �i(�x). �i(�x) canbe transformed into the minset Si as follows:1. Assume that the test �i(�x) is of the form Ei ^D1i ^ � � � ^Dmi , where Ei is theconjunction of all uni�cation tests of �i(�x) (i.e., a system of equations) andeach Dji a disuni�cation test (i.e., an disequation).2. Let �i be the substitution associated with the solved form of Ei (this can becomputed by using the techniques of Lassez et al. [15]).3. Let �ji , for 1 � j � m, be the substitution associated with the solved form ofEi ^N ji , where N ji is the negation of Dji .4. Si = Bi 
 comp(B1i )
 � � � 
 comp(Bmi ), where Bi = (�x)�i and Bji = (�x)�ji , for1 � j � m.Then, we have that M v S1 � � � � � Sm i� M 
 comp(S1) 
 � � � 
 comp(Sm) ' �.We then can write comp(S1) 
 � � � 
 comp(Sm) into disjunctive normal form asM1 � � � � � Mu, where each Mi is a minset. 1 Since M 
 (M1 � � � � � Mu) 'M 
M1 � � � � �M 
Mu, we have that M v S1 � � � � � Sm i� M 
Mi ' � forall 1 � i � u. Thus, the fundamental problem is to devise an algorithm to testwhether M 
 S ' �, where M is a type-annotated term and S a minset. Thealgorithm that we propose is given by the boolean function empty(M;S), de�ned inFigure 1.2 First, it performs the \intersection" of M and the tuple of terms of theminset S. This intersection is implemented by the function intersection(R;Cob),which returns R
Cob (recall that a tuple of terms is a type-annotated term), and isa straightforward adaptation of the function unify(�1; �2; T;�) described in [3], thatperforms a type uni�cation where �1 and �2 are type terms, � a type substitutionfor the variables in �1 and �2, and T a set of type rules de�ning �1, �2, and �. Then,if the mentioned intersection is not empty, nor A (S = A=C) is \included" in R,it calls empty1 (C;R; ;), which checks whether R=C ' �. This is done by checkingif R is \included" in some cobasic set in C (in which case R=C ' �). For thispurpose, it uses the function included (R;Co), which is a straightforward adaptationof the function subsetT (�1; �2) described in [3], that determines whether the typedenoted by one pure type term is a subset of the type denoted by another (i.e.,included(R;Co) returns true if and only if R v Co).Note that R=C can be seen as a system of one equation (corresponding to R)and zero or more disequations (each of them corresponding to a cobasic set in C).Thus the problem can be seen as determining whether such system has no solutions.1Note that �, 
, and comp constitute a Boolean algebra, and the operation 
 is computablefor type-annotated terms.2We use the type representationof [3], and assume that there is a common set of rules where typesymbols are described. For brevity, we omit such set of rules in the description of the algorithms.



We say that a cobasic set Cob is \useless" (for determining the unsatis�ability of thesystem) whenever if R=(C � fCobg) 6' �, then R=C 6' �. Any useless cobasic setCob can be removed from C, since R=(C�fCobg) ' � if and only if R=C ' � (notethat if R=(C � fCobg) ' �, then obviously R=C ' �). If a cobasic set Cob in C is\disjoint" with R, then it is useless (however, there can be useless cobasic sets in Cwhich are not disjoint with R). If R is not \included" in none of the cobasic sets in C,this means that R is \too big", and thus, it is \expanded" to a set of \smaller" type-annotated terms (with the hope that each of them be \included" in some cobasicset in C). This is done in step 4, where a cobasic set Cob of C 00 is selected, and R is\expanded" by using the function expansion(R;Cob), which takes a type-annotatedterm R and a cobasic set Cob and returns a pair (R0; Rest) (which is a \partition"of R) such that: R0 is a type-annotated term; Rest is a set of type-annotated terms;for all x 2 vars(R0), x� is a variable, where � = mgu(�tR0 ; Cob), or type(x;R0) = >;([X2RestDen(X)) [ Den(R0) = Den(R); and for all X 2 Rest, X 
 Cob ' �.R0 is an instance of R obtained by expanding R to some \decision depth." Thisdepth allows us to detect if the cobasic set Cob is useless. The function mgu(A;B)returns an (idempotent) most general uni�er � of the tuples of terms A and B.For example, assume that R = ((X;Y ); (X : list; Y : list)) and C = fC1; C2g,where C1 = ([HjL]; Z) and C2 = ([ ]; Z). R is not included in none of the cobasicsets in C, but if we expands R using C1, i.e., fR1; R2g = expansion(R;C1), whereR1 = (([H1jL1]; Y 1); (H1 : >; L1 : list; Y 1 : list)) and R2 = (([ ]; Y 2); (Y 2 : list)),we have that R1 and R2 are included in C1 and C2 respectively. However, in othersituations, the problem cannot be solved by expanding R: assume, for example, thatnow C = f(Z;Z)g, in this case, R is not included in (Z;Z) because this cobasic setintroduces an equality constraint in Den(R) (note that here R is already expandedto the \decision depth," in which the equality constraints are given by the \aliasedvariables"). In step 6, these aliased variables are computed by using the functionaliased(R;Cob), which takes a cobasic set Cob and a type-annotated term R suchthat for all x 2 vars(R), x� is a variable, where � = mgu(�tR; Cob), and returns a setof variables AlV ars such that v 2 AlV ars i� v 2 vars(R) and exists v0 2 vars(R)such that v� � v0�. If for some x 2 vars(R0), it holds that type(x;R0) = > andeither x 2 AV ars, or x�0 is not a variable, then we can say that Cob useless. Thiscan be proved by using the variable x to construct an instance S such that: assumingthat there exists an instance I of R, such that I 
Cs ' � for all Cs 2 Cset, whereCset = C 0 [ fCS j (B;A;CS) 2 ALg, then, S can be constructed from I so thatS 
C2 ' � for all C2 2 fCobg [Cset.The function empty1 (C;R;AL) performs a \�rst round" over the cobasic setsin C. After this round (whose end is detected in step 2 by the condition C 00 � ;),cobasic sets which have been detected to be useless are ignored (removed) and therest are stored in AL, which is an accumulation parameter. In step 7, R0 and AV ars(besides Cob) are recorded in this parameter, because aliased variables whose typeis in�nite (or which after having been expanded get bounded to a term containingvariables whose type is in�nite) allow us to detect useless cobasic sets (which areremoved before empty2 (AL0; R) is called in step 2).The function empty2 (AL;R) selects a cobasic set Cob in AL, and, if R is notincluded in it, then R is expanded as a set of type-annotated terms R1; : : : ; Rn byexpanding only \decision variables". This ensures that every Ri is either \included"in Cob or \disjoint" with it. It also ensures that R is not in�nitely expanded (notethat the type of such variables is �nite).



Example 3.1 Consider the predicate reverse/2:reverse(X,Y) :� X = [] [] Y = [].reverse(X,Y) :� X = [X1|X2] [] reverse(X2,Y2), append(Y2,[X1],Y).and the type assignment � � (X : list), where list ::= [ ] j [>jlist]. Let � be theinput test of the predicate reverse/2, i.e., � � X = [ ] _X = [X1jX2]. Let M bethe type-annotated term which is a representation of �, i.e., M = ((X); (X : list)).The minset representations of X = [ ] and X = [X1jX2] are ([ ]) and ([X1jX2])respectively (in this example we deal with unary tuples).We have that � covers � i� ((X); (X : list)) v ([ ]) � ([X1jX2]) i�((X); (X : list)) 
 comp(([ ]) � ([X1jX2])) ' � i� ((X); (X : list)) 
 comp(([ ])) 
comp(([X1jX2])) ' �. The disjunctive normal form of comp(([]))
comp(([X1jX2]))is (X3)
 comp(([ ]))
 comp(([X1jX2])), which has only one minset. Now, we haveto prove that ((X); (X : list)) 
 (X3) 
 comp(([ ])) 
 comp(([X1jX2])) ' �, i.e.,whether the call empty(M;S), where M = (�tM ; �M), �tM � (X), �M � (X : list),and S � (X3)=f([ ]); ([X1jX2])g returns true. This call proceeds as follows (and infact returns true):1. intersection(M; (X3)) returns the type-annotated term ((X4); (X4 : list)).2. Since this intersection is not \empty" and (X3)|which represents the type-annotated term ((X3); (X3 : >)) |is not \included" in ((X4); (X4 : list)),the call empty1 (f([ ]); ([X1jX2])g; ((X4); (X4 : list)); ;) is performed. Thiscalls returns true and the computation is as follows:(a) We have that ((X4); (X4 : list)) is not \included" in none of the cobasicsets in f([ ]); ([X1jX2])g. Thus, a cobasic set is selected from this set.Assume that ([X1jX2]) is the selected cobasic set;(b) (R0; Rest) = expansion (((X4); (X4 : list)); ([X1jX2])), where R0 =(([X5jX6]); (X5 : >; X6 : list)), and Rest = f(([ ]); ;)g (; denotes anempty type assignment, since ([ ]) has no variables).(c) The call included(R0; ([X1jX2])) returns true, and thus the callempty1 (f([ ])g; (([ ]); ;); ;) is performed. This call also returns true, be-cause (([ ]); ;) v ([ ]). Thus, the initial call returns true. 2The covering algorithm we present is complete for tuple-distributive regular types:Theorem 3.4 Let M be a type-annotated term in which all types are tuple-distributive regular types, and S a minset. Then empty(M;S) terminates, and re-turns true i� M 
 S ' �.While sound, the algorithm is not complete for regular types in general (though webelieve it is fairly accurate in practice):Theorem 3.5 LetM be a type-annotated term where all types are regular types, andS a minset. Then empty(M;S) terminates, and if it returns true then M 
 S ' �.For each of these theorems, correctness can be argued by induction on the depthof recursion of functions empty1 and empty2 upon termination; the terminationarguments follow standard lines. Complete proofs can be found in [4].One reason for imprecision in the case of non tuple-distributive regular typesis that the function intersection(M;A) described above computes a superset of theexact intersection when we deal with general regular types (this result can be derivedfrom the work of Dart and Zobel [3]). Another reason comes from the use of thefunction expansion (R;Cob) to partition the type-annotated term R in the boolean



empty(M;S) :Input: a type-annotated term M and a minset S (S = A=C, where A is a tuple of terms,and C a set of tuples of terms).Output: a boolean value denoting whether M 
 S ' �.Process:1. if S � � then return(true), otherwise, let R = intersection(M;A);2. if R � � then return(true);3. otherwise, if included(A;R) then return(false) else return(empty1(C;R; ;)).empty1(C;R; AL) :Input: a type-annotated term R, a set of cobasic sets C, and, a set AL of triples of theform (B;AV;CS) where:� B is a type-annotated term,� CS is a cobasic set,� For all x 2 vars(B), x� (where � = mgu(�tB; CS)) is a variable, and,� v 2 AV i� v 2 vars(B) and exists v0 2 vars(B) such that v� � v0� (i.e., AVis the set of variables in vars(B) which are aliased with some other variable invars(B) by �).Output: a boolean value denoting whether R=C1 ' �, where C1 = C [ fCob j(B;A;Cob) 2 AL; for some B and Ag.Process:1. Let C 00 = fCob 2 C j intersection(R;Cob) 6' �g;2. If C 00 � ; then return(empty2(AL0;R)), where AL0 = f(S; AV ars;Cob) j(S;AV ars;Cob) 2 AL; intersection(R;Cob) 6' �; � = mgu(�tS ; �tR), and for allx;y such that x 2 AV ars and y 2 vars(x�), type(y;R) is �nite (there arestraightforward algorithms to test whether a type expression denotes an in�-nite or �nite set of terms) g.3. Otherwise, if included(R;Co) for some cobasic set Co in C 00 then return(true);4. Otherwise, take a cobasic set Cob of C 00, and let C 0 = C 00 � fCobg and(R0;Rest) = expansion(R;Cob);5. If included(R0; Cob) then return(VX2Rest empty1(C 0;X;AL));6. Otherwise, let AV ars = aliased(R0; Cob). If for some x 2 vars(R0), it holdsthat type(x;R0) = > and either x 2 AV ars, or x�0 is not a variable, where�0 =mgu(�tR0 ; Cob), then return(empty1(C 0;R; AL));7. Otherwise, let AL0 = AL [ f(R0;AV ars;Cob)g;8. return(empty1(C 0;R0;AL0) ^ (VX2Rest empty1(C 0;X;AL)));empty2(AL;R):1. If AL � ; then return(false); otherwise, take an item A 2 AL. Assume thatA � (B;AV; Cob), and let AL0 = AL� fAg and � =mgu(�tB ; �tR);2. if included(R;Cob) then return(true), otherwise, for all variables y 2 AV , expandall variables x such that x 2 vars(y�) (necessarily x 2 vars(R) and type(x;R) is�nite). Let RS be the set of type-annotated terms resulting from these expansions.3. Let RS0 = fr 2 RS j intersection(r;Cob) ' �g (necessarily for all s 2 RS ands =2 RS0, s v Cob);4. if RS0 = ; then return(true), otherwise return(VX2RS0 empty2(AL0;X)).Figure 1: empty(M;S)



function empty1 (C;R; ;). Given a pair (R0; Rest) where R0 is a type-annotatedterm, and Rest is a set of type-annotated terms, we assume that all type-annotatedterms in Rest are disjoint with the cobasic set Cob, but this is not true for generalregular types, and, consequently, precision may be lost. A possible solution in orderto obtain a complete algorithm for general regular types would be to rewrite thetype annotated term which represents the input type of a predicate as a union oftype annotated terms containing only tuple-distributive types, and then apply theabove described covering algorithm for each of the elements of the union.3.2 Covering in Linear Arithmetic over IntegersIn this section, we consider linear arithmetic tests over integers (the ideas extenddirectly to linear tests over the reals, which turn out to be computationally somewhatsimpler). Without loss of generality, assume that the tests are in disjunctive normalform, i.e., they are of the form �(�x) = Wni=1Vmj=1 �ij(�x) where each of the tests�ij(�x) is of the form �ij(�x) � a0+a1x1+� � �+akxk 
? 0, with
? 2 f=; 6=; <;�; >;�g.Determining whether �(�x) covers the type assignment of integer to each variable in�x amounts to determining whether j= (8�x)�(�x). This is true if and only if (9�x):�(�x)is unsatis�able. In other words, we need to determine the unsatis�ability of:�(�x) = n̂i=1 m_j=1:�ij(�x) = n̂i=1 m_j=1 ij(�x),where  ij(�x) is derived from :�ij(�x) as follows: let �ij(�x) = Pki=0 aixi 
? 0. If 
?is a comparison operator other than `=',  ij(�x) is simplyPki=0 aixi 
? 0, where 
?is the complementary operator to 
? , e.g., if 
? � `>' then 
? � `�'. If 
? � `=',the corresponding complementary operator is 6̀=', but this can be written in termsof two tests involving the operators `>' and `<': ij(�x) = (Pki=0 aixi > 0) _ (Pki=0 aixi < 0).The resulting system, transformed to disjunctive normal form, de�nes of a set ofinteger programming problems: the answer to the original covering problem is \yes"if and only if none of these integer programming programs has a solution. Since atest can give rise to at most �nitely many integer programs in this way, it followsthat the covering problem for linear integer tests is decidable.Since determining whether an integer programming problem is solvable is NP-complete [10], the following complexity result is immediate:Theorem 3.6 The covering problem for linear arithmetic tests over the integers isco-NP-hard.It should be noted, however, that the vast majority of arithmetic tests encounteredin practice tend to be fairly simple: our experience has been that tests involvingmore than two variables are rare. The solvability of integer programs in the casewhere each inequality involves at most two variables, i.e., is of the form ax+ by � c,can be decided e�ciently in polynomial time by examining the loops in a graphconstructed from the inequalities [1]. The integer programming problems that arisein practice, in the context of covering analysis, are therefore e�ciently decidable.3.3 Covering Analysis: Putting it TogetherLet � be the input test of predicate p and � a type assignment. Consider the typeassignment � written as a type-annotated term M , and � written in disjunctivenormal form, i.e., � = �1 _ � � � _ �n, where each �i is a conjunction of primitive tests(recall that primitive tests are uni�cation, disuni�cation, etc.). Consider the test�i written as �Hi ^ �Ai , where �Hi and �Ai are a conjunction of primitive uni�cationand arithmetic tests respectively (i.e., we write arithmetic tests after uni�cation



tests). Consider also �Hi written as a minset Di (recall that Di is the intersection(conjunction) of a tuple of terms, and zero or more cobasic sets). Let D be the union(disjunction) of the these minsets.Example 3.2 Let p be the predicate partition/4 from the familiar quicksort pro-gram. Let � be X = [ ]_ (X = [HjL]^H > Y )_ (X = [HjL]^H � Y ) and let � be(X : intlist; Y : integer), where intlist ::= [] j [integerjintlist]. In this case, we havethat M is ((X;Y ); (X : intlist; Y : integer)). �1 � X = [ ], �2 � X = [HjL];H > Y ,and �3 = X = [HjL];H � Y . �1 can be written as �H1 ^ �A1 , where �H1 � X = [ ]and �A1 � true. Similarly, �H2 � X = [HjL] and �A2 � H > Y , and �H3 � X = [HjL]and �A3 � H � Y . D = D1 � D2 � D3, where D1 � ([ ]; Y ), D2 � ([HjL]; Y ) andD3 � ([HjL]; Y ). 2To test whether � covers �, we �rst test that D coversM , ignoring the arithmetictests. If D does not cover M , then obviously, the (whole) input test of p, � , doesnot cover M , and we report failure. Otherwise, we create (zero or more) coveringsubproblems, each of them containing only arithmetic tests, as follows:1. Let A be the set of all the tuples of terms and negations of cobasic sets ap-pearing in D (note that the negation of a cobasic set is a tuple of terms, thusA is a set of tuples of terms), and let A0 = fb 2 A jM 
 b 6' �g.2. For each tuple of terms b in A0:(a) Let I =M 
 b and � = mgu(�tM ; �tI);(b) Let �b = Wmj=1 rj, where fr1; : : : ; rmg = fti j b v Di for some 1 �i � n and ti is the result of applying � to �Ai (this is done to take intoaccount possible variable aliasing)g. Note that there is an algorithm totest whether b v Di in [14].(c) Test whether �b covers �I (recall that �I refers to the type assignment ofI):i. Assume that �b = s1_� � �_sn and each si is a conjunction of primitivearithmetic tests. If �b � true then report success;ii. otherwise, if for some variable x appearing in all si, 1 � i � n, itholds that type(x; �I ) is not a numeric type, then report failure;iii. otherwise, use the algorithm described in section 3.2 to test whether�b covers �I .Theorem 3.7 If D covers M and for each b 2 A0, �b covers I, then the input testof p, � , covers M .Proof It is clear that if D covers M , then the disjunction of all the basic sets inA0 also covers M . Thus, for any tuple of terms �x which is an instance of M , thereis at least a b 2 A0, such that �x is an instance of b, and all the tests �Hi such thatb v Di, will succeed for �x. If �b covers M , then at least one of the tests ti in �b willsucceed for �x. Thus, by the construction of �b, at least one �i will succeed for �x, andwe conclude that � covers M .Example 3.3 Consider Example 3.2. It is clear that D covers M , thus we proceedas follows:1. A = f([ ]; Y ); ([HjL]; Y )g, and A0 = A.2. Let b1 = ([]; Y ) and b2 = ([HjL]). Then �b1 � true and �b2 � H > Y _H � Y .3. We have that true covers (([]; Y ); (Y : integer)), and also thatH > Y _H � Ycovers (L : intlist;H : integer; Y : integer), thus � covers M . 2



4 Non-Failure Analysis4.1 The Analysis AlgorithmOnce we have determined which predicates cover their types, determining non-failureis straightforward: from Theorem 3.1, analysis of non-failure reduces to the determi-nation of reachability in the call graph of the program. In other words, a predicatep is non-failing if there is no path in the call graph of the program from p to anypredicate q that does not cover its type. It is straightforward to propagate thisreachability information in a single traversal of the call graph in reverse topologicalorder. The idea can be illustrated by the following example.Example 4.1 Consider the following predicate taken from a quicksort program:qs(X1,X2) :� X1 = [] [] X2 = [].qs(X1,X2) :� X1 = [H|L] [] part(H,L,Sm,Lg),qs(Sm,Sm1), qs(Lg,Lg1), app(Sm1,[H|Lg1],X2).Suppose that qs/2 has mode (in, out) and type (intlist, -), and suppose wehave already shown that part/4 and app/3 cover the types (int, intlist, -, -)and (intlist, intlist, -) induced for their body literals in the recursive clauseabove. The input tests for qs/2 are X1 = [] _ X1 = [H|L], and this covers thetype intlist, which means that head uni�cation will not fail for qs/2. It followsthat a call to qs/2 with the �rst argument bound to a list of integers will not fail.24.2 A Prototype ImplementationIn order to evaluate the e�ectiveness and e�ciency of our approach to non-failureanalysis we have constructed a relatively complete prototype which performs suchanalysis in an automatic way. The system takes Prolog programs as input, whichinclude a module de�nition in the standard way. In addition, the types and modesof the arguments of exported predicates are given, as well as the required typede�nitions. The system uses the PLAI analyzer to derive mode information, usingthe Sharing+Freeness domain [17], and an adaptation of Gallagher's analysis toderive the types of predicates [8]. The resulting type- and mode-annotated programsare analyzed using the algorithms presented for Herbrand and linear arithmetic tests.Herbrand covering is checked by a naive direct implementation of the analysespresented. Testing of covering for linear arithmetic tests is implemented directlyusing the Omega test [18]. This test determines whether there is an integer solutionto an arbitrary set of linear equalities and inequalities, referred to as a problem.We have tested the prototype �rst on a number of simple standard benchmarks,and then on more complex ones. The latter are taken from those used in the cardi-nality analysis of Braem et al. [2], which is the closest related previous work that weare aware of. Some relevant results of these tests are presented in Table 1. Programlists the program names, N the number of predicates in the program, F the numberof predicates detected by the analysis as non-failing, Cov the number of predicatesdetected to cover their type, C the number of non-failing predicates detected in [2],TF the time required by the covering analysis (SPARCstation 10, 55MHz, 64Mbytesof memory), TM the time required to derive the modes and types, and TT the totalanalysis time (all times are given in milliseconds). Averages (per predicate in thecase of analysis time) are also provided in the last row of the table.The results are quite encouraging showing that the developed analysis is fairlyaccurate. The analysis is signi�cantly more powerful than those previously reportedin non-failure detection (the experimental results presented in [2] suggest that it is



more appropriate for detecting determinacy than for non-failure). It is pointed outin [2] that the sure success information can be improved by using a more sophisticatedtype domain. However, this is also applicable to our analysis, and the types inferredby our system are similar to those used in [2]. Much of the power of our algorithmcomes from the use of the notion of covering, which allows detecting when at leastone of the clauses (not necessarily the same) de�ning a predicate will not fail forall possible calls. The cardinality analysis detects non-failure only when at leastone of the clauses (always the same) de�ning a predicate will not fail for all thepossible calls. The non-failure analysis times are quite good, despite the currentlynaive implementation of the system (for example, the call to the omega test is doneby calling an external process). The overall analysis times are quite acceptable, evenwhen including the type and mode analysis times, which are in any case very usefulin other parts of the compilation process.The Mercury system [11] allows the programmer to declare that a predicatewill produce at least one solution, and attempts to verify this with respect to theHerbrand terms with equality tests. As far as we know, the Mercury compiler doesnot handle disequality constraints on the Herbrand domain. Nor does it handlearithmetic tests, except in the context of the if-then-else construct. As such, it isconsiderably weaker than the approach described here.Program N F (%) Cov (%) C TF TM TTHanoi 2 2 (100) 2 (100) N/A 60 860 920Deriv 1 1 (100) 1 (100) N/A 80 940 1,020Fib 1 1 (100) 1 (100) N/A 20 90 110Mmatrix 3 3 (100) 3 (100) N/A 90 350 440Tak 1 1 (100) 1 (100) N/A 10 110 120Subs 1 1 (100) 1 (100) N/A 50 90 140Reverse 2 2 (100) 2 (100) N/A 10 100 110Qsort 3 3 (100) 3 (100) 0 (0) 80 440 520Qsort2 5 3 (60) 3 (60) 0 (0) 100 390 490Queens 5 2 (40) 2 (40) 0 (0) 120 360 480Gabriel 20 3 (15) 10 (50) 0 (0) 420 1,860 2,280Read 38 8 (21) 19 (50) 8 (21) 540 12,240 12,780Kalah 44 18 (40) 29 (65) 6 (13) 1,500 14,570 16,070Plan 16 4 (25) 11 (68) 0 (0) 810 7,000 7,810Credit 25 10 (40) 18 (72) 0 (0) 4,720 1,470 6,190Pg 10 2 (20) 6 (60) 0 (0) 540 1,600 2,140Mean { 36% 63% 3% 51 (/p) 239 (/p) 291 (/p)Table 1: Accuracy and e�ciency of the non-failure analysis (times in mS).5 ApplicationsThere are several applications of this analysis. The �rst application is implementinggranularity control in parallelizing compilers. All of the work that we know of inthis context involves estimating upper bounds to the cost of goals (see, for example,[6]). The use of upper bounds allows us to guarantee that, given a program thatis already parallelized, we can make it run more e�ciently by running some of theparallel goals sequentially. However, the problem faced by parallelizing compilers isin fact exactly the converse of the one tackled above: what needs to be guaranteed isthat the parallel execution will be more e�cient than the sequential one, rather thanthe other way around. This type of granularity control can be solved using essentiallythe same general approach, but we need a lower bound on the cost of each goal. The



detection of such lower bounds is not too di�erent from that of upper bounds, exceptthat it requires knowledge of non-failure, since otherwise only a trivial lower boundof zero can be derived [7]. The techniques presented in the paper directly addressthis problem. In fact, the usefulness of lower bounds was already clear when thework presented in [6] was developed, but the determination of useful lower boundswas deemed too di�cult at the time. This approach allows us to guarantee that,given a sequential program, it will run more e�ciently by running some of the goalsin parallel. This in e�ect allows obtaining guaranteed speedups (or, at least, ensuringthat no slow-downs will occur) from automatic parallelization, even in architecturesfor which parallel execution involves a signi�cant overhead. We know of no otherapproach which can achieve this.The second application has to do again with (and-)parallelism, in particular withthe avoidance of speculative computation. Consider a number of goals in a resolventwhich are determined to be independent. As shown in [12], and ignoring paralleliza-tion overheads (which can be dealt with as illustrated above), the time involvedin their parallel execution can be guaranteed to be smaller or equal to that of thecorresponding sequential execution. However, it is impossible to guarantee that nomore work will be performed. This is due to the possibility of failure of one of thegoals. Consider two goals p and q so that q is executed after p in the sequentialexecution. Assume also that p fails (both in the sequential and, correspondingly, inthe parallel execution). If p and q are scheduled for execution in parallel, a part of qmay be executed until the point in which p fails (the execution of q will normally bekilled at this point). Although not producing a slow-down, this constitutes unneces-sary computation which steals computing resources from any useful work that mayexist in the system (and therefore does reduce speedup). Determining that goalsin a conjunction will not fail (at least all but the rightmost one { note that failureof q in the example above does not have these ill-e�ects) thus allows guaranteeingavoidance of speculative computation.A third application is in the general area of program transformation, whereinformation about non-failure can be used in determining the order of execution ofliterals in a clause. Consider a clauseH :� B1; p(X); B2; q(X); B3where B1; B2; B3 are sequences of literals, p(X) produces bindings for X, and q(X)is the left-most body goal that has X as an input argument. If p is known to benon-failing, it may be possible to transform this clause toH :� B1; B2; p(X); q(X); B3.The resulting code may be more e�cient than the original if a goal in B2 can fail.Finally, among the most important applications of non-failure we envision is inspeeding up program development by assisting programmers by reporting predicatesthat are not guaranteed to not fail. This can help in detecting programming errorsat compile time, in much the same way as type checking does in statically typed lan-guages, since in logic programs the usual expectation is that a predicate will succeedand produce one or more solutions. In most logic programming systems, however,little compile-time checking is performed. The system is currently integrated in theCIAO system and used for these purposes (as well as for optimization).AcknowledgementsThe work of S. Debray was supported in part by the National Science Foundationunder grant CCR-9123520. The work of M. Hermenegildo and P. L�opez-Garc��a wassupported in part by ESPRIT project LTR 22532 \DiSCiPl" and CICYT proyectnumber TIC96-1012-C02-01.
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