
Automatic Mode Inference for Logic Programs†

Saumya K. Debray

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

David S. Warren

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794

Abstract: In general, logic programs are undirected, i.e. there is no concept of ‘‘input’’ and ‘‘output’’

arguments to a procedure. An argument may be used either as an input or as an output argument, and

programs may be executed either in a ‘‘forward’’ direction or in a ‘‘backward’’ direction. However, it is

often the case that in a given program, a predicate is used with some of its arguments used consistently as

input arguments and others as output arguments. Such mode information can be used by a compiler to

effect various optimizations.

This paper considers the problem of automatically inferring the modes of the predicates in a pro-

gram. The dataflow analysis we use is more powerful than approaches relying on syntactic characteristics

of programs, e.g. [18]. Our work differs from that of Mellish [14, 15] in that (i) we give a sound and

efficient treatment of variable aliasing in mode inference; (ii) by propagating instantiation information

using state transformations rather than through dependencies between variables, we achieve greater preci-

sion in the treatment of unification, e.g. through =/2; and (iii) we describe an efficient implementation

based on the dynamic generation of customized mode interpreters. Several optimizations to improve the

performance of the mode inference algorithm are described, as are various program optimizations based

on mode information.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

This work was supported in part by the National Science Foundation under grant number DCR-8407688.

† This is a revised version of a paper presented at the Third Symposium on Logic Programming, Salt Lake

City, Utah, Sept. 1986.

1. Introduction

In general, logic programs are not directed, in the sense that there is no concept of ‘‘input’’

and ‘‘output’’ variables. A variable may be used as either an input or an output variable, and

programs may be executed in either a ‘‘forward’’ or a ‘‘backward’’ direction. However, it is

often the case that in a particular program, a predicate is executed in one direction only, i.e. it is

always called with a particular set of its variables bound (the ‘‘input’’ variables) and another set

unbound (the ‘‘output’’ variables). If a compiler is aware of this usage, it can make various

optimizations based on this fact, e.g. use efficient special-purpose unification routines instead of

the general unification algorithm where appropriate, infer determinacy, etc.

Traditionally, this information has been supplied by the programmer using what are called

‘‘mode declarations’’ [21]. This has the problem that errors made by the programmer in declar-

ing modes can lead to some very strange program behaviour, whose cause can be hard to find.

We consider the alternative solution of having the compiler infer the modes, using these either to

optimize a program without mode declarations, or to verify the declarations made by the pro-

grammer, much as type-checkers in other languages verify type declarations.

Some researchers have considered the question of verifying the consistency of mode

declarations supplied by the user [3, 17, 19]. The issue of automatic mode inference has been

considered by Mellish [14, 15] and Reddy [18], and more recently by Bruynooghe et al. [5] and

Mannila and Ukkonen [13]. We focus our attention on the inference of modes rather than on

verifying the consistency of user-supplied mode declarations. Unlike Reddy, who uses a syntac-

tic analysis of the program to assign modes to predicates, we use a dataflow analysis that is usu-

ally more precise. The work of Bruynooghe et al. is very similar to ours; Mannila and Ukkonen

restrict their attention to a much simpler mode set, consisting of two types of modes, ground and

nonground, and hence the precision of their algroithm is not as good as ours. The principal con-

tributions of this work are as follows:

(1) We consider the problem of aliasing explicitly, and give a sound and efficient method of

dealing with aliasing in the analysis framework (to our knowledge, this has not been done

elsewhere in the literature on mode inference). This enables us to prove the soundness of

our algorithm.

(2) While Mellish uses dependencies between variables to propagate information regarding

their instantiation, we do this by treating literals in a clause as state transformers. This

results in greater precision in the treatment of clauses containing predicates like =/2, which

occur quite frequently in programs.

(3) Our treatment suggests an efficient implementation where a mode inference program cus-

tomized to the program being analyzed can be generated dynamically. This can then be

2

executed to get the modes. This generative approach results in greater efficiency because

an extra level of interpretation can be avoided.

(4) Our approximation domain is much simpler than that used by Mellish. This has two posi-

tive effects: the treatment of aliasing can be simplified, and the inference procedure can be

made more efficient. On the other hand, it may result in the loss of more information than

would have been the case if a richer approximation domain had been used.

We assume the reader is acquainted with the basic concepts of logic programming. The

rest of this paper is organized as follows: Section 2 develops some of the ideas and definitions

that are used later in the paper. Section 3 considers, for expository purposes, a simple mode

inference scheme. Section 4 generalizes the results of Section 3 to a more realistic scheme. Sec-

tion 5 considers implementation issues and possible optimizations. Section 6 describes some

applications of mode information, and Section 7 describes the performance of our system.

2. Preliminaries

A Prolog program consists of a number of definite Horn clauses P (i.e. clauses containing

exactly one positive literal), together with a negative clause Q called the query.

The mode of a predicate in a program indicates how its arguments will be instantiated when

that predicate is called. The modes of a program thus represent statements about all computa-

tions that are possible from it. For the sake of simplicity, we classify terms occurring in a pro-

gram into four classes with regard to how they are instantiated: empty, closed, free and don’t-

know which refer, respectively, to the empty set, the set of closed (i.e. ground) terms, the set of

free variables and the set of all terms. We thus consider modes over the domain ∆ = {c, d, e, f },

where e denotes to the empty set, c denotes closed terms, f denotes free variables, and d denotes

‘‘don’t-know’’ terms (i.e. terms which may be partially instantiated, or which are not known to

be closed or free variables).

This serves to approximate the unbounded number of terms that may exist during the exe-

cution of a program by a finite, bounded set that may be reasoned about statically. This is done

by defining an equivalence relation over the set of terms that partitions it into a finite, bounded

number of equivalence classes, and then approximating the execution of the program by comput-

ing over these equivalence classes. This is an instance of a more general approach to program

analysis called abstract interpretation [7]. In this case there are four such equivalence classes,

represented by the elements of ∆. Clearly, modes are meaningful only when the control strategy

has been specified. For the purposes of this paper, we assume the control strategy of Prolog,

with its left-to-right order of evaluation of the literals in a clause; however, the techniques

described here are applicable to other evaluation strategies as well.

3

Given any set of terms, it is necessary to specify how to find its instantiation, i.e. the ele-

ment of ∆ that ‘‘describes’’ it. This is given by the instantiation function ι , which is defined as

follows:

Definition: The instantiation ι (T) of a set of terms T is given by ι (T) = ∩ {δ ∈ ∆ | T ⊆ δ }. g

Thus, any set of terms containing only ground terms will have instantiation c, any set of terms

containing only uninstantiated variables will have instantiation f, and so on. It is not difficult to

verify that if T = T1 ∪ T2, then ι (T) = ι (T1) $lub ι (T2).

When a clause is selected for resolution against a goal, its variables are renamed so that it is

variable-disjoint with the goal. Consider a use of clause C in a computation where the variables

of C have been renamed via a renaming substitution σ: we refer to this as a σ-activation of C.

The variable names appearing in a clause are referred to as its program variables; the program

variables of any clause form a finite set. For convenience, we use the notation ‘‘v $curly_arrow

t’’ to indicate that at runtime, the variable v can be instantiated to the term t. The set of terms a

variable can be instantiated to at any point in a program is described using instantiation states

(ι -states for short):

Definition: Let V be the set of program variables of a clause C in a program. Then, an instantia-

tion state ζ at a point in that clause is a mapping

ζ : V → ∆

such that for any v in V, if for any σ-activation of C in the computation it is the case that σ(v)

$curly_arrow t at that point, then t ∈ ζ (v). g

The extension of the mapping ζ to terms is straightforward: constants are mapped to c, and a

compound term is mapped to c if every proper subterm of it is mapped to c, and to d otherwise.

We denote the extended mapping by ζd. We refer to the ι -state of a clause where each variable is

mapped to f as the initial ι -state ζinit .

Tuples of instantiations will be referred to as instantiation patterns, or ι -patterns. In partic-

ular, the ι -patterns at the entry to a call will be referred to as calling patterns, and ι -patterns at

the return from a call as success patterns for that call. For example, the call

. . ., p(X, f(X), g(a)), . . .

with the variable X uninstantiated, has the calling pattern $langle f,d,c$rangle . If the call

succeeds binding X to the constant ‘b’, then its success pattern is $langle c,c,c$rangle .

4

The once-only nature of Prolog’s assignment means that terms can only become more

instantiated as execution progresses. The notion of ‘‘more instantiated than’’ is quite straightfor-

ward when dealing with individual terms: a term t2 is more instantiated than another term t1 if t2
is a substitution instance of t1. However, during static analysis, variables will be associated with

sets of terms, which makes it necessary to ‘‘lift’’ this order to sets of terms. Define unification

over sets of terms, denoted by s_ unify, as follows:

Definition: Given sets of terms T1 and T2, s_ unify(T1, T2) is the least set of terms T such that for

each pair of unifiable terms t1 ∈ T1, t2 ∈ T2 with most general unifier θ, θ(t1) is in T. g

It can be seen that given two terms t1 and t2, t2 is more instantiated than t1 if and only if the

result of unifying t1 and t2 is the term t2. We define the instantiation order over sets of terms,

denoted ≤J, as the natural extension of this:

Definition: Given sets of terms T1 and T2, T1 ≤J T2 if and only if s_ unify(T1, T2) = T2. g

The reader may verify that ≤J, as defined above, is transitive. If the set of terms T under con-

sideration is closed under unification (i.e. for any t1 and t2 in T, if t1 and t2 are unifiable with

most general unifier θ, then θ(t1) is also in T), then ≤J is also reflexive, and hence a preorder,

which is easily extended to a partial order ≤J/∼ modulo variable renaming. In what follows, we

will concern ourselves only with this partial order, and with this understanding, abuse notation

slightly and write the partial order as ≤J. Since each element of ∆ is closed under unification and

variable renaming, it follows that ≤J is a partial order over ∆:

f ≤J d ≤J c ≤J e

The join operation for this order will be written as ∇ . It is easy to verify that for any two ele-

ments δ1, δ2 in ∆, s_ unify(δ1, δ2) = δ1 ∇ δ 2.

The elements of ∆ form a complete lattice with respect to inclusion, as shown in Figure 1.

The ordering on this lattice will be written $le , with the least upper bound operation denoted by

$lub . The lower an element is in this lattice, the smaller the corresponding set of terms, and

intuitively, the greater the amount of information it conveys.

The ordering $le extends to tuples (ι -patterns) in the natural way via element-wise com-

parison. Let ↓ denote the selection operation on tuples: $langle t1, ..., tn$rangle ↓k = tk if 1 ≤ k ≤

n, and is undefined otherwise. Then, given two tuples T1, T2 ∈ ∆ n, T1 $le T2 if and only if T1↓ i

5

hh

g d

g c g f

g e

Figure 1: The lattice $langle ∆, $le $rangle

hh

$le T2↓ i for 1 ≤ i ≤ n. Similarly, the greatest lower bound and least upper bound of ι -patterns

are defined as the ι -patterns obtained by taking the appropriate bound elementwise. The

definitions are similar for ≤J.

The mode of a predicate in a program is a conservative statement of how its arguments will

be instantiated in any call to it:

Definition: The mode of a predicate p in a program, given the set of all calling patterns CALLp

for p, is defined to be $lub CALLp. g

The mode of an n-ary predicate is therefore an element in ∆n. In general, if the calling patterns

are computed over a domain S, the corresponding mode will be referred to as an S-mode. E.g. if

all calling patterns are tuples over {c,d,e} then the corresponding mode will be referred to as a

‘‘{c,d,e}-mode’’.

6

A mode inferred for a predicate in a program is sound if and only if for each argument posi-

tion of that predicate, the set of terms that can occur in that position in all calls to that predicate

at runtime is contained in the set of terms denoted by the corresponding element of the mode.

Thus, if an argument position of a predicate is inferred to have mode c, then soundness demands

that this argument be instantiated with a ground term in any call to that predicate. More for-

mally,

Definition: An inferred mode IM of a predicate in a program is sound if and only if the calling

pattern IC of any call to that predicate that can arise in the program satisfies IC $le IM. g

A mode inference procedure is sound if the mode inferred by it is sound for all predicates in all

programs.

Clearly, a procedure that always infers the mode of every predicate to be $langle d, d, . . .,

d$rangle is sound, if somewhat dull. We will be interested in sound inference procedures that

strive to be more precise than this, though complete precision will in general be unattainable.

Mode inference requires the inference of the calling patterns of a predicate. The computa-

tion of calling patterns, in turn, is dependent on a knowledge of success patterns. We now con-

sider the relationship between success patterns for a clause and success patterns for the literals in

the clause. For this, we have to take into account the left-to-right evaluation strategy of Prolog,

and the manner in which this changes the instantiations of terms as execution progresses. This

requires the ability to go from ι -states to instantiations of argument positions and vice versa:

Definition: Given a tuple of terms T = $langleT 1,...,Tn $rangle appearing in a clause and an ι -
state ζ for that clause, the projection of ζ on T, written πT(ζ), is defined to be the tuple

$langle ζd(T1), . . ., ζd(Tn)$rangle . g

Projections of ι -states permit the inference of instantiations of argument positions given the

instantiations of variables. This is necessary, for example, in determining the calling patterns for

a literal in the body of a clause. It is also necessary to be able to go in the other direction, so as

to determine, for example, how success through a literal affects ι -states. Consider the unification

of an n-tuple of terms Td with another n-tuple of terms Td¢, whose ι -pattern is I, in an ι -state ζ.

This amounts to the unification of terms Td↓ j with terms Td¢ ↓j with instantiation I↓ j, 1 ≤ j ≤ n.

Now from our choice of ∆, if the instantiation of any term t0 in an ι -state is I0, then the instantia-

tion of any subterm of t0 in that ι -state is no worse than I0. Thus, since the instantiation of Td¢ ↓j

7

in ι -state ζ is I↓ j, the instantiation of any subterm of Td¢ ↓j is also I↓ j. If a variable v occurs as a

subterm of the kth element of Td, then its instantiation in ι -state ζ is, in general, ζ(Td↓k), so that

after unification its instantiation is given by ζd(Td↓k) ∇ I↓k. Since v may occur in more than one

element of Td, we have to consider all such positions k and take the least upper bound ∇ to deter-

mine the final instantiation of v.1 This is done by defining a transformation δ on ι -states:

Definition: Given an n-tuple of terms T in an ι -state ζ and an ι -pattern I ∈ ∆ n, the ι -state

transformation δ is defined as follows: if a variable v occurs in T, then

δ(T,I,ζ)(v) = ∇ {(ζd(T↓k) ∇ I↓k) : v is a subterm of T↓k},

else δ(T, I, ζ)(v) = ζ(v). g

Thus, given a goal ‘p(Td)’ in a clause, let ζ be an ι -state for the clause just before this goal.

The calling pattern for the goal is π
Td

(ζ). Let I be a success pattern for this goal. Then, the ι -state

just after this call is given by δ(Td, I, ζ). It should be noted, however, that possible aliasing

effects were not considered here; indeed, ι -states do not contain enough information to cope with

aliasing and, as we will see, this can be a problem when considering the soundness of mode

inference.

We conclude this section by mentioning a restriction we place on programs. If sound mode

inference is to be possible, the entire search tree that might be traversed during execution should

be available statically for analysis. Programs where this is satisfied, i.e. which do not contain

any calls to call, assert etc., will be referred to as static. Throughout the rest of the paper, we

will assume that we are dealing with static programs. Somewhat more limited analyses may be

carried out for certain classes of dynamic programs using techniques discussed in [Debray

Analysis Dynamic 1987].

3. Calling and Success Patterns over { c, d, e }

For expository purposes, we restrict our attention in this section to a very simple approxi-

mation domain, consisting of sets of terms that are either empty (‘e’), closed (‘c’) or the universe

(‘d’). In the next section, the ideas of this section are extended to the full domain ∆.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 For the sake of simplicity we assume the two tuples of terms do not share variables, but this restriction is

easily gotten around.

8

3.1. Admissible Success Patterns

Given a calling pattern for a call, not all success patterns can be considered ‘‘reasonable’’

for it. Intuitively, a success pattern for a call is ‘‘reasonable’’ only if it agrees with what is

already known to be a ‘‘reasonable’’ computation of the call. We define an admissible success

pattern relation SUCCPAT(p) over calling and success patterns for a predicate p as follows:

Definition: Given a calling pattern IC for a predicate p and a success pattern IS, the tuple

$langle IC, IS$rangle is in SUCCPAT(p) if and only if there exists a clause

p(Td0) :− q1(Td1), . . ., qn(Tdn), n ≥ 0,

in the program such that IS = π
Td0

(ζn), where ζinit is the initial ι -state of the clause; ζ0 =

δ(Td0,IC ,ζinit); ζ j = δ(Tdj ,I j ,ζ j −1) for 1 ≤ j ≤ n; and $langle π
Tdj

(ζ j −1), I j $rangle ∈ SUCCPAT(qj). g

An admissible success pattern is thus obtained by determining the ι -state resulting after all

literals in the body of the clause have been evaluated, and then determining the resultant instan-

tiations of the terms in the head of the clause. This is done by first determining the ι -state ζ0

resulting from the unification of the calling literal with the head. From this, ι -states after succes-

sive literals in the body are determined by computing the calling pattern, and an admissible suc-

cess pattern corresponding to it, for each literal, proceeding from left to right in accordance with

Prolog’s evaluation strategy.

Example: Consider the program

p(X, Y) :− q(X, Z), r(Z, Y).

q(a, _).

r(b, b).

Here, Td0 = $langle X,Y$rangle , Td1 = $langle X,Z$rangle , Td2 = $langle Z,Y$rangle . Suppose p

is called with the calling pattern $langle d,d $rangle . Then, ζ0 = {X → d, Y → d, Z → d}, where

T → s indicates that the instantiation of the term T is s.

It follows from this that the calling pattern for q is π
Td1

(ζ0) = $langle d,d $rangle . From the

clauses for q, an admissible success pattern for this calling pattern can be deduced to be

$langle c,d $rangle . From this, ζ1 = δ(Td1,$langlec , d$rangle ,ζ0) = {X → c, Y → d, Z → d}.

The calling pattern of r is then the projection of ζ1 on Td2, which is $langle d,d $rangle .

The only admissible success pattern for r corresponding to this is $langle c,c$rangle . This gives

9

ζ2 = δ(Td2,$langlec , c$rangle ,ζ1) = {X → c, Y → c, Z → c}.

Then, an admissible success pattern for p relative to its calling pattern $langle d,d$rangle is

π
Td0

(ζ2) = $langle c, c$rangle . g

3.2. Admissible Calling Patterns

Given a class of queries that the user may ask of a program, only some of the possible cal-

ling patterns will in fact be encountered during computations. During static analysis, therefore,

not all calling patterns for a predicate will be ‘‘admissible’’. The admissible success pattern

relation can be used to define admissible calling patterns. The set of admissible calling patterns

CALLPAT(p) of a predicate p are defined as follows:

Definition: The set of admissible calling patterns CALLPAT(p) for a predicate p in a program for a

class of queries Q is the least set such that

(1) If p is an exported predicate and I is a calling pattern for p in the class of queries Q, then I

is in CALLPAT(p);

(2) If q0 is a predicate in the program, Ic ∈ CALLPAT(q0), and there is a clause in the program of

the form

q0(Td0) :− q 1(Td1), ..., qn (Tdn).

Let the ι -state at the point immediately after the literal qj (Xddj), 0 ≤ j ≤ n, be ζj, where ζinit is

the initial ι -state of the clause; ζ0 = δ(Td0, Ic, ζinit); then, for 1 ≤ i ≤ n, cpi = π
Tdi

(ζi−1) is in

CALLPAT(qi); and if $langle cpi, spi$rangle is in SUCCPAT(qi), then ζi = δ(Tdi , spi, ζi−1). g

The set CALLPAT(p) is in fact a conservative approximation of the set of calling patterns CALLp of

the predicate p in a program. That the sets CALLPAT(p) and SUCCPAT(p) are in fact computable

can be seen from the fact that given a set of calling patterns for the predicates exported by a

module, we can begin by considering these calling patterns and propagate instantiations, collect-

ing success and calling patterns until no more can be found. The termination of this procedure

follows from the finiteness of the program and the approximation domain ∆.

3.3. Aliasing

An issue that we have not considered so far is that of aliasing. Consider, for example, the

program

p(X, Y) :− q(X, Y), r(X), s(Y).

10

q(Z, Z).

r(a).

s(_).

Once execution succeeds past the literal for q in the clause for p, the variables X and Y are

aliased together, so that when the goal r(X) binds X to a, Y also gets bound to a. Thus, if the cal-

ling pattern for p is $langle d, d $rangle , we infer the success pattern $langle c, d $rangle , even

though it is really $langle c, c$rangle .

Aliasing, as in this case, refers to the situation where two or more variables point to the

same object, so that changing the instantiation of one term might result in changes to the instan-

tiation of another. For example, in the goal

. . ., X = f(Y), . . ., Y = a, . . .

the unification of Y with a affects the instantiation of X.

The reason aliasing is a problem is that since ι -patterns do not contain variables, they are

not sufficiently expressive to capture the effects of aliasing. It turns out, as we will show, that

aliasing does not affect the soundness of mode inference as long as we restrict our attention to

the approximation domain {c, d, e}. However, if we are also interested in knowing when an

argument will be a free variable, aliasing will have to be taken into account explicitly.

3.4. Soundness

Soundness requires that the mode inferred for any predicate must be above any calling pat-

tern that can arise at runtime with respect to $le . For this, it is sufficient to ensure that any cal-

ling pattern inferred during mode analysis is above any calling pattern that can arise at that point

in the program at runtime, with respect to $le . For this, we define the notion of safe instantia-

tions:

Definition: An inferred instantiation I0 for a term T at a point in a clause is defined to be safe if

and only if for any execution of the clause, the instantiation I1 of T at runtime at that point in the

clause satisfies I1 $le I0.

Lemma 3.1: Admissible calling and success patterns over {c, d, e} are safe.

Proof: If ι -patterns are restricted to {c, d, e}, then the worst that can happen due to aliasing is

that the instantiation of a variable can change from d to c. In this case, the actual instantiation is

c, the inferred instantiation is d, and since c $le d, the instantiation is safe. $always

11

This result, in fact, follows from a more general result in [10], which states that admissible cal-

ling and success patterns over an arbitrary approximation domain ∆ are safe whenever each ele-

ment of ∆ is closed under instantiation, i.e. for each δ in ∆, if x is in δ then every substitution

instance of x is also in δ.

Lemma 3.2: If a call to a predicate p with arguments Tdin in a static program succeeds with argu-

ments Tdout , then for some IS, $langle ι (Tdin), IS$rangle ∈ SUCCPAT(p) and ι (Tdout) $le IS, where

the ι -patterns are over {c, d, e }.

Proof: By induction on the number of steps k of deduction.

Consider the case k = 1. For the call to succeed in one step of deduction, there must be a

unit clause p(Td) which unifies with p(Tdin). In this case, the calling pattern is IC = ι (Tdin), and an

admissible success pattern is IS = π
Td

(δ(Td,IC,ζinit)), where ζinit is the initial ι -state of the clause.

By definition, $langle ι (Tdin), IS$rangle ∈ SUCCPAT(p), so the lemma holds.

Now assume that the lemma holds for values of k < n. Since the program is static, each

clause and each call can be considered when computing admissible success patterns. Consider a

goal p(Tdin) that succeeds in n steps. Then, there is a clause for p

p(Td) :− q1(Td1), . . ., qn(Tdn)

where each of the subgoals qj succeeds in fewer than n steps. From the induction hypothesis, if

qj succeeds with arguments Tdj (out), then there is an ι -pattern Ij such that $langle ι (Tdin),

Ij$rangle ∈ SUCCPAT(qj) and ι (Tdj (out)) $le Ij. Since success patterns are being computed over

{c, d, e}, from Lemma 3.1, they are safe. Thus, if Iinfer and Iactual represent the inferred and

actual instantiations of any term at a point just after qj, then Iactual $le Iinfer. In particular, this

holds for j = n, so that for each element of Td, the inferred instantiation is above the actual instan-

tiation with respect to $le . The lemma follows directly from this. $always

Theorem 3.1: {c, d, e}-Mode inference over admissible calling patterns is sound for static pro-

grams.

Proof: By induction on the number of steps k in the deduction.

Let CALLPAT(p) be the set of admissible calling patterns for a predicate p, and consider a

call p(Tdin) after k deductions.

If k = 0, then the user’s query must be

:− p(Tdin), . . ., qn(Tdn).

12

Since no variable bindings have been set up at this point, the calling pattern is π
Tdin

(ζinit), and this

is in CALLPAT(p) by definition.

Assume that the statement is true of calls after k deductions, for k < n, and consider a call

p(Tdin) after n deductions. For this, there must be a clause for a predicate r,

r(Td0) :− q1(Td1), . . ., qn(Tdn)

where qj = p for some j between 1 and n, and r was called with the arguments Tdr . Then, the cal-

ling pattern for r is I = ι (Tdr), and by the induction hypothesis, this calling pattern is in

CALLPAT(r). Let ζinit be the initial ι -state of this clause, ζ0 = δ(Td0,I ,ζinit) and ζ j = δ(Tdj ,I j ,ζ j −1)

for 1 ≤ j ≤ n, where I j is in SUCCPAT(qj). Let the calling pattern for qj be ICj
. From Lemma 3.2,

if qj succeeds with success pattern I j ¢, then there exists an I j such that $langleICj
, I j $rangle ∈

SUCCPAT(qj), and I j ¢$le I j , i.e. the inferred instantiation of any term is above the actual instan-

tiation of that term at runtime with respect to $le . It follows that if the actual calling pattern for

p is IC while the inferred calling pattern for p is π
Tdj

(ζ j −1), then π
Tdj

(ζ j −1) ∈ CALLPAT(p), and IC

$le π
Tdj

(ζ j −1). Therefore, IC $le $lub CALLPAT(p). $always

4. Calling and Success Patterns over { c, d, e, f }

This section extends the results of the previous section to consider modes over a larger and

more interesting domain, {c, d, e, f}. The definitions introduced in the previous section do not

change. However, once we begin to consider whether or not a variable is free at any point in a

program, aliasing assumes a crucial role in soundness considerations. It will turn out, however,

that the ideas developed in the previous section can still be applied, with slight modifications, to

the richer approximation domain we now consider.

4.1. Aliasing Revisited

When inferring modes over the full approximation domain ∆, care has to be exercised in

order not to infer a variable as having instantiation f when its instantiation is, in fact, d or c due

to aliasing. This is illustrated by the following example:

p(X, Y) :− q(X, Y), r(X), s(Y).

q(Z, Z).

r(a).

s(W).

Once execution succeeds past q, the variables X and Y are aliased together. As a result, even

though s appears to be called with an uninstantiated argument, the goal r actually instantiates the

13

argument to the goal s.

We can distinguish between two kinds of aliasing: call-aliasing, where there are repeated

variables in a call, and return-aliasing, where distinct variables in a call are aliased (in general,

share variables) on return. The example above illustrates an instance of return-aliasing. Prob-

lems that can arise due to call-aliasing are illustrated by the following example:

p :− q(X, X).

q(a, Y) :− r(Y).

Naive {c, d, e, f}-mode inference obtains the mode $langle f, f$rangle for q, but then errone-

ously infers a mode $langle f$rangle for r when in fact the mode of r is $langle c$rangle .

As mentioned earlier, ι -patterns are not expressive enough to capture aliasing effects. A

possible solution is global analysis to detect possible occurrences of aliasing; however, this can

be expensive. Instead, we use a conservative local analysis. Since the analysis is local, i.e. res-

tricted to the ι -patterns of the literals in a clause, it cannot be as thorough as a global analysis of

the program. It does, however, guarantee soundness.

It can be seen that in the first aliasing example above, problems arise because aliasing

makes the instantiation of the argument to s unsafe; in the second example, the instantiation of

the argument to r is unsafe. While the safety of an instantiation in the full approximation

domain ∆ is undecidable in general, it is possible to give sufficient conditions for safety. Let

vars(T) denote the set of variables occurring in a term T. Then, we have:

Lemma 4.1: Consider a clause q0(Td0) :− q1(Td1), . . ., qn(Tdn) with calling pattern I0, and let ζj be

the ι -state after the literal qj. Then, the input instantiation of a term Tdj ↓k, given by Ij↓k =

ζj−1(Tdj ↓k), is safe either of the following are satisfied:

(1) Ij↓k ≠ f; or

(2) There are no indices k1, k2, m1, m2, with k1 < k2 < j, such that vars(Tdk1↓m1) ∩

vars(Tdk2↓m2) ≠ ∅ , and ζk1(Tdk1↓m1) ≠ c.

Proof:

(1) In this case, Ij↓k is either c or d. If it is c then it contains no variables, and therefore cannot

be affected by aliasing. If it is d then aliasing can only change its instantiation to c. Since c

$le d, the instantiation is safe.

(2) In order that an instantiation become unsafe, it is necessary that (i) aliasing occurs; and (ii)

an aliased variable is then instantiated. For condition (i) to be satisfied, some predecessor

qk1 to the goal qj under consideration (with the head of the clause counting as a predecessor

14

as well) must have had a non-ground output argument Tdk1↓m1; for condition (ii) to be

satisfied, there must have been a goal qk2 between qk1 and qj, such that for some variable Z

∈ vars(Tdk1↓m1), Z occurs in an input argument to qk2. Therefore, if these conditions are

not satisfied, then the instantiation must be safe. $always

Since the second condition of the lemma includes the head of the clause as a predecessor literal,

the lemma holds for both call- and return-aliasing. However, while this lemma gives sound cri-

teria for inferring safety, it is very conservative: case (2) of the lemma essentially says ‘‘if a

literal takes a non-ground input and returns a non-ground output, assume that it can cause alias-

ing’’. It is possible to improve the analysis by considering more extensive examinations of the

program for aliasing. Several global analysis algorithms for the detection of aliasing, in dif-

ferent contexts, have been proposed, e.g. see [4, 6, 8]. However, these are fairly elaborate algo-

rithms that tend to be quite expensive. Our emphasis is on practically useful algorithms that are

efficient to use, yet reasonably precise. We outline below two algorithms for the detection of

aliasing that represent, we feel, a reasonable compromise between precision and speed. With

each predicate p is associated a bit aliasp, which we call its alias bit. The idea is to determine by

static analysis whether or not a predicate can cause return-aliasing, i.e. alias together distinct

variables in a call to it, and accordingly set the value of its alias bit. Algorithm I sets the alias bit

of a predicate to 1 if that predicate either has a clause with repeated variables in the head, or can

call a predicate with such a clause. Algorithm II, which is more discriminating, requires addi-

tionally that a predicate must be able to succeed with non-ground output arguments in order to

set its alias bit. The algorithms are outlined in Figure 2.

That each of the algorithms terminates follows from the fact that since a program can have

only finitely many predicates, the number of alias bits must be finite, and each alias bit can only

go from 0 to 1, never vice versa. Soundness can be established by showing that if a predicate

can alias together distinct variables in a call to it, then its alias bit is set to 1 by either algorithm.

It is evident that whenever the alias bit for a predicate is set to 1 by Algotithm II, it is also set to

1 by Algorithm I, so that the soundness of Algorithm II implies that of Algorithm I. The sound-

ness of Algorithm II is given by the following:

Theorem 4.1: Let {X1, ..., Xn} be all the variables of an n-tuple of terms Td, such that each of the

variables Xi, 1 ≤ i ≤ n, occurs exactly once in Td, and let ‘p(Td)’ be a call to an n-ary predicate p in

a program. If the call can succeed with two distinct variables Xj and Xk, 1 ≤ j, k ≤ n, aliased

together, then aliasp = 1.

15

Algorithm I:

begin

for each predicate p in the program do

if there is a clause for p with repeated variables in the head

then aliasp := 1

else aliasp := 0;

repeat

for each predicate p with aliasp = 0 do

if a clause for p has a literal ‘q(...)’ in its body such that aliasq = 1 then

aliasp := 1;

until there is no change in any alias bit;

end.

Algorithm II:

begin

for each predicate p in the program do

if there is a clause for p with repeated variables in the head

and $exists IC ∈ CALLPAT(p) such that $exists $langle IC, IS$rangle ∈ SUCCPAT(p)

and for some j, 1 ≤ j ≤ arity(p), IS↓ j ≠ c

then aliasp := 1

else aliasp := 0;

repeat

for each predicate p with aliasp = 0 do

if a clause for p has a literal ‘q(...)’ in its body such that aliasq = 1

and $exists IC ∈ CALLPAT(p) such that $exists $langle IC, IS$rangle ∈ SUCCPAT(p)

and for some j, 1 ≤ j ≤ arity(p), IS↓ j ≠ c then

aliasp := 1;

until there is no change in any alias bit;

end.

Figure 2 : Two Simple Algorithms for Detecting Potential Sources of Aliasing

16

Proof: By induction on the number of steps N in the deduction.

In the base case, consider N = 1. For the call to succeed in one step of deduction, there

must have been a unit clause p(Td0) which unifies with p(Td). In this case, distinct variables in the

call can become aliased together only if there are repeated variables in Td0, and if the call can

succeed with a non-ground argument. In this case, it follows from the definition that there will

be a success pattern IS for p such that $langle ι (Td), IS$rangle is in SUCCPAT(p), and for some j, 1

≤ j ≤ n, IS↓ j ≠ c. It follows, from the description of Algorithm II above, that aliasp will be set to

1.

Assume that the theorem holds for calls involving fewer than k steps of deduction, and con-

sider a call that requires k steps to succeed. Clearly, in order to return aliased variables, the call

must have succeeded with at least one non-ground argument. Let the actual arguments at the

return from the call be Tdout , and let the inferred success pattern be IS. Since the call succeeds

with some non-ground argument, there is a j, 1 ≤ j ≤ n, such that ι (Tdout)↓ j ≠ c. Aliasing and

subsequent instantiation of aliased variables can only cause them to become more instantiated

than might be evident from a straightforward propagation of instantiation patterns. This implies

that IS ≤J ι (Tdout), and therefore that IS↓ j ≠ c.

There are two possibilities, in the inductive case, regarding where the aliasing occurs: if it

occurs in the head, this must be due to the occurrence of repeated variables in the head, and in

this case it follows immediately from the description of the algorithm that aliasp is set to 1; if it

occurs in a call to a predicate q arising from a literal in the body of the clause, the call to q must

have required fewer than k steps of deduction to succeed, and must have succeeded with a non-

ground argument. It follows from the induction hypothesis that aliasq = 1, so that the algorithm

sets aliasp to 1 as well. $always

The condition for safety can now be improved to the following:

Lemma 4.2: Consider a clause q0(Td0) :− q1(Td1), . . ., qj(Tdj), . . ., qn(Tdn) with calling pattern I0,

and let ζj be the ι -state after the literal qj. In the absence of call-aliasing, the input instantiation

of a term Tdj ↓k, given by Ij↓k = ζj−1(Tdj ↓k), is safe if there are no indices k1, k2, m1, m2, with k1

< k2 < j, such that

(i) aliasqk 1
= 1;

(ii) vars(Tdk1↓m1) ∩ vars(Tdk2↓m2) ≠ ∅ ; and

(iii) ζk1(Tdk1↓m1) ≠ c.

17

Proof: As before, in order for an instantiation to become unsafe it is necessary both that aliasing

occur and that an aliased variable become instantiated. Since we assume that there is no call-

aliasing, we need concern ourselves only with return-aliasing. For return-aliasing to have

occurred, it is necessary that there be some predecessor qk1 to the literal qj under consideration

which could have caused aliasing, i.e. whose alias bit aliasqk 1
has value 1, and which had a non-

ground output argument Tdk1↓m1; for an aliased variable to have then become instantiated, there

must have been a goal qk2 between qk1 and qj, such that for some variable Z ∈ vars(Tdk1↓m1), Z

occurs in an input argument to qk2. Therefore, if these conditions are not satisfied, then the

instantiation must be safe. $always

This lemma gives us conditions for the safety of instantiations in the absence of call-

aliasing. At this point, it is not difficult to see how call-aliasing can be handled: consider the

program

p :− q(X, Y), r(X, Y), s(f(Z), Z).

q(X, X).

r(a, Y) :− r1(Y).

s(f(a), X) :− s1(X).

In the clause defining p, call-aliasing occurs both for r and s: in the case of r, this is because of

return-aliasing caused by the earlier literal q, while for s the cause is the repetition of variables in

the call. In the former case, the alias bit for q would have been set to 1 by the algorithms above;

the latter case can be detected simply by checking for repeated variables in a literal in the source

program. The mechanism we propose for handling call-aliasing is simple: with each literal L in

the body of a clause ‘‘p(...) :− Body’’ is associated a bit, its call-alias bit. This bit is set to 1 if

either (i) the alias bit of the predicate for any of the literals to its left is set to 1; or (ii) for some

literal L ¢in the program with predicate symbol p, the call-alias bit of L ¢is 1; or (iii) if there are

repeated occurrences of a variable in the literal L; otherwise, it is set to 0. When determining the

ι -state at the point in a clause between the head and the body, i.e. immediately after unification

of the arguments in the call with the arguments in the head of the clause, the value of the call-

alias bit of the literal from which the call arose is taken into account to see if call-aliasing might

have occurred:

Lemma 4.3: Consider a clause q0(Td0) :− q1(Td1), . . ., qn(Tdn) with calling pattern I0, and let the

call-alias bit of the literal from which the call arose be c-alias. Let ζ0 be the ι -state at the point

in the clause between the head and the body. The instantiation of a term Td0↓ k at this point,

18

given by ζ0(Td0↓ k), is safe if c-alias = 0.

Proof: By induction on the number of steps N in the deduction, similar to that of Theorem 4.1.

$always

Calling patterns can be constrained to be safe by replacing the instantiation of any term

whose instantiation cannot be inferred to be safe, e.g. from Lemmas 4.1, 4.2 or 4.3, by d, which

is the top element in the lattice $langle ∆, lerangle . This can be thought of as asserting that

we know nothing about the actual instantiation of any term that is not safe. Clearly, instantia-

tions so obtained are guaranteed to be safe. Such calling patterns will be referred to as safe cal-

ling patterns.

Returning to the example of aliasing given earlier,

p :− q(X, Y), r(X), s(Y).

q(Z, Z).

r(a).

s(W).

we find that though the variable Y in the call to s appears to be free, the predecessor q has a

non-closed output argument X which is an input to r, and further that aliasq = 1 because of the

repeated variables in the head of the clause for q. This instantiation of Y is therefore not safe,

and a safe calling pattern is obtained by replacing it by d. Alternatively, Bruynooghe et. al. have

recently proposed a strategy for handling return-aliasing with greater precision, by duplicating

literals in the body of the clause [5]. Using this strategy, the program above might be

transformed to

p :− q(X, Y), r(X), q(X, Y), s(Y).

q(Z, Z).

r(a).

s(W).

This would enable us to infer the mode $langle c$rangle for the predicate s, rather than

$langle d$rangle , as one might by simply replacing all unsafe instantiations by d. This strategy

could be used in conjunction with that for handling call-aliasing suggested by Lemma 4.3. One

potential problem is that uncontrolled duplication of literals could adversely affect the efficiency

of the algorithm: this could be ameliorated by only duplicating those literals capable of causing

aliasing, i.e. whose alias bits had been set to 1. Also, this strategy may not work if the program

contains metalanguage constructs like var/1 and nonvar/1.

19

4.2. Soundness

It is not difficult to show that a mode inference strategy based on the previous section, but

constrained to work with safe calling patterns, is sound:

Theorem 4.2: {c,d,e,f }-Mode inference over safe calling patterns is sound for static pro-

grams.

Proof: Similar to Theorem 1. Since inferred calling patterns are constrained to be safe, if Ii is an

inferred calling pattern for a literal and Ia an actual calling pattern for that literal at runtime, then

Ia $le Ii. Therefore, if CALLPAT(safe) is the set of all safe calling patterns inferred for the predi-

cate, then Ia $le $lub CALLPAT(safe). $always

5. Computing Modes : Implementation Issues

Conceptually, there are two phases to mode inference: computation of the admissible suc-

cess pattern relation, and computation of the calling pattern set. From the definition of the suc-

cess pattern relation, it can be seen that there is a direct correspondence between a program

clause C and a Horn clause C ¢defining the admissible success pattern relation defined by C. Let

‘‘st_ trans(Tdd,I,S0,S1)’’ be the state transition relation denoting δ(Td,I,S0) = S1, and let

‘‘project(S,Tdd,I)’’ denote π
Td

(S) = I. Then, given a clause

p(Td0) :− q1(Td1), . . ., qn(Tdn), n ≥ 0,

the admissible success pattern relation defined by this clause is specified by the clause in Figure

3. By executing this clause it is possible to obtain the admissible success patterns resulting from

the corresponding clause in the original program. Note that if processing begins with the user’s

query, then for any predicate p, the set of first arguments for the corresponding predicate succ_ p

is precisely the set of admissible calling patterns for p, so that these can be computed and

recorded at the same time (the extension to safe calling patterns is straightforward). We will

refer to such a program which, when executed, will compute the calling and success patterns for

a given program, as a mode interpreter for that program.

Obtaining the mode interpreter for a program is not difficult. However, a naive implemen-

tation tends to be inefficient for three reasons:

(1) Since ultimately a least upper bound is taken when computing the mode of a predicate from

its set of calling patterns, most calling patterns do not contribute useful information.

(2) A large number of success patterns are computed, but only a small subset of them are con-

sidered when computing calling patterns.

20

hh

succ_ p(IC, IS) :−

st_ trans(Td0,IC,Sinit,S0),

project(S0,Td1,IC1), succ_ q1(IC1, I1), st_ trans(Td1,I1,S0,S1),

. . .,

project(Sj−1,Tdj ,ICj), succ_ qj(ICj, Ij), st_ trans(Tdj ,Ij,Sj−1,Sj),

. . .,

project(Sn−1,Tdn ,ICn), succ_ qn(ICn, In), st_ trans(Tdn ,In,Sn−1,Sn),

project(Sn,Td0,IS).

Figure 3

hh

(3) Two levels of interpretation are involved, since the mode inference essentially involves an

abstract interpretation of the program by the compiler, which, in turn, is interpreted by the

underlying system.

We will consider how these problems might be better handled, to make for a more efficient

mode inference algorithm.

5.1. Eliminating Redundant Success Patterns

Since the mode of a predicate is ultimately computed as the least upper bound of the set of

its calling patterns, it suffices to maintain, for any given calling pattern, only the least upper

bound of the corresponding admissible success patterns. This serves to control the combinatorial

explosion that could otherwise arise. Also, rather than compute the entire admissible success

pattern relation beforehand, it is significantly more efficient to combine the computations of cal-

ling and success patterns into one phase, so that only relevant success patterns are computed.

5.2. Efficient Computation of Fixpoints

A mode interpreter generated directly via a naive transformation of the user’s program can

very well loop forever because of circular dependencies set up by recursion. However, since the

fixpoints being computed are finite, there are finite computations that will obtain the sets we

21

seek. This problem has been investigated extensively by database researchers (see, for example,

[1]).

We compute these fixpoints iteratively, in a bottom-up manner, using an extension table

[12] to avoid repetitions of the same computation. The essential idea here is to maintain a table

of $langle Call, Return$rangle pairs, where Return is the set of solutions corresponding to the

call Call, so that these need not be recomputed, but can be returned by looking up the table. The

amount of redundant computation may be reduced still further by maintaining the least upper

bound of calling and success patterns, and terminating computations that will clearly not

improve this bound.

A point to take into account is the tradeoff between the cost of redundant computation and

the cost of additional bookeeping to avoid redundant computation, since it may not always be

apparent, in advance, which will be predominant in a specific situation. In addition, we have to

take into account the cost of generating the mode interpreter, which tends to increase with the

complexity of the program being generated.

5.3. Structure of Mode Interpreters

A mode interpreter for a predicate consists of two components: the the ι -pattern propaga-

tion component and the extension table component. When a literal is being processed, its calling

pattern is sent to the extension table component of the corresponding predicate. This checks the

extension table, and if necessary calls its propagation component to compute success patterns.

Initially, each predicate has the empty mode. The user has to specify which predicates in a file

are exported and what instantiation patterns these exported predicates may be called with. This

information is used to start the inference process.

The propagation component contains a clause for each clause of the original program. Its

function is to approximate the execution of the corresponding clause in the user’s program by

propagating the calling pattern through the body and finally projecting the instantiation state on

the terms in the head to produce a success pattern. This is essentially an optimized version of

the mode interpreter clause in Figure 3, modified so that entire ι -states are not passed around

explicitly. Instead, a series of variables is used to maintain the instantiation of each term at dif-

ferent points in the program, so that only the terms involved in a call to a literal need be passed

into the corresponding call in the mode interpreter. Since each clause of the user program has to

be processed, the order in which they are processed is not important for mode inference. There-

fore, for greater efficiency in the processing of recursive programs, the clauses in the mode inter-

preter are ordered so that those corresponding to facts in the user program precede those

corresponding to rules.

22

Each literal in the body of a clause in the original program corresponds, in general, to a

three-literal sequence in the corresponding clause in the mode interpreter: a projection literal

(corresponding to the operator π), a call to the extension table manager corresponding to the

called literal, and a state-transition literal (corresponding to the operator δ). The projection and

state-transition literals are used only to relate the instantiations of compound terms to the instan-

tiations of their subterms, and can therefore be optimized away in calls not having any non-

closed compound term as an argument. The extension table manager for a predicate, when

called with a calling pattern, records this pattern in its table, evaluates the propagator clauses if

necessary, and returns the least upper bound, with respect to $le , of the resulting success pat-

terns. An example of the mode interpreter (excluding the extension table manager, details of

which may be found in [12], and the various alias bits) for the quicksort predicate, defined

below, is given in Figure 4.

qsort([M |L], R) :−
part(M,L,U1,U2),

qsort(U1,V1),

qsort(U2,V2),

append(V1,[M |V2],R).

qsort([],[]).

The discussion so far has not concerned itself with clauses that contain disjunctions (via the

connective ‘;’) or negation. These constructs can be handled simply by preprocessing the

clauses to yield clauses of the form already discussed: a clause of the form

p :− q, (r ; s), t.

is transformed to the clauses

p :− q, r, t.

p :− q, s, t.

A clause of the form

p :− q, not((r, s)), t.

may be transformed, for mode inference purposes, to

p :− q, r, s.

p :− q, t.

Given this straightforward transformation for negations, the inferred success pattern for p may

be overly conservative, since success patterns for the clause ‘‘p :− q, r, s’’ will be considered

even though in reality, the calls to r and s, being within a negation, will not affect p’s success

23

hh

mode_ qsort(1, _ , _ , [c, c]).

mode_ qsort(2, [X1, Y1], ExtTbl, [X2, Y2]) :−

project(X1, [M1, L1]),

safe_ instance(M1, M1s),

safe_ instance(L1, L1s),

safe_ instance(Y1, Y1s),

mode_ part([M1s, L1s, f, f], ExtTbl, [M2, L2, U1, U2]),

mode_ qsort([U1, f], ExtTbl, [U1a, V1]),

safe_ instance(U2, U2s),

mode_ qsort([U2s, f], ExtTbl, [U2a, V2]),

safe_ instance(M2, M2s),

safe_ instance(V1, V1s),

safe_ instance(V2, V2s),

safe_ instance(Y1s, Y1t),

st_ trans([M1s, V2s], W),

mode_ append([V1s, W, Y1t], ExtTbl, [V1a, W1, Y2]),

safe_ instance(M2s, M2t),

safe_ instance(L2, L2s),

st_ trans([M2t, L2s], X2).

Figure 4: Mode Interpreter for qsort/2.

hh

patterns in any way − the creation of this clause is necessary only to ensure that calling patterns

for r and s are obtained correctly. The analysis may be shrapened by observing that if a clause is

guaranteed to fail, then the success pattern resulting from it may be taken to be the most instan-

tiated possible, consisting only of e’s and denoting the empty set of terms. Then, the clause

p :− q, not((r, s)), t.

may be transformed to

24

p :− q, r, s, fail.

p :− q, t.

In this case, the presence of fail in the first transformed clause can be used to ensure that this

clause does not affect p’s success patterns.

6. Applications

Knowledge of modes enables a compiler to make various optimizations to the program.

We briefly list some of these in this section.

Mode information can be used in a structure-sharing implementation to decrease the space

requirements of a program by allocating more variables on the local stack [2, 21]. Another

application of mode information is in the use of special-purpose unification routines where

appropriate [20]. These have fewer cases to test than the general-purpose routine, and therefore

are faster. In implementations that permit delaying of goals, e.g. MU-Prolog (see [16]), mode

information may also be used to reduce the number of tests necessary at runtime, thereby

improving efficiency.

Mode information is also useful in further analysis of the program. For example, it may be

used to infer determinacy and functionality of predicates, which enables earlier reclamation of

space on the local stack, insertion of cuts where appropriate to control backtracking, and pro-

gram transformations that depend on functionality. The reader is referred to [11] for details.

Another application of mode information is in clause fusion to reduce the amount of non-

determinism in a predicate. In general, given two clauses with identical heads,

p(Xdd) :− Body1.

and

p(Xdd) :− Body2.

it is possible to merge them to produce the clause

p(Xdd) :− Body1 ; Body2.

Among the advantages of doing this are that if Body1 fails, then the arguments in the call will not

have to be restored from the choice point and unified again with the head of the second clause; if

an index is present on the clauses of the predicate, it will be slightly smaller; and finally, if Body1

and Body2 contain literals in common, they may be factored to reduce the amount of redundant

computation. In practice, however, it is rarely the case that two clauses for a predicate have

identical heads. Mode information can sometimes be used in such cases to transform their heads

in a manner that allows fusion to be carried out. The basic idea is to take ‘‘output’’ arguments,

25

i.e. those with mode f, and move their unification from the head into the body of the clause. This

is illustrated by the following example:

Example: Consider the following predicate:

part([],_ ,[],[]).

part([E|L], M, [E|U1], U2) :− E =< M, part(L, M, U1, U2).

part([E|L], M, U1, [E|U2]) :− E > M, part(L, M, U1, U2).

The second and third clauses for the predicate cannot be merged, since the arguments in their

heads differ. However, if we know that part has the mode $langle c, c, f, f$rangle then the

clauses can be transformed to produce

part([E|L], M, U1a, U2) :− E =< M, U1a = [E|U1], part(L, M, U1, U2).

part([E|L], M, U1, U2a) :− E > M, U2a = [E|U2], part(L, M, U1, U2).

At this point, it is possible to merge the two clauses. Moreover, noticing that the complementary

literals ‘E =< M’ and ‘E > M’ imply that the two bodies are mutually exclusive [11], we can

generate the transformed predicate defined by

part([],_ ,[],[]).

part([E|L], M, U1a, U2a) :− E =< M →
(U1a = [E|U1], part(L, M, U1, U2)) ;

(U2a = [E|U2], part(L, M, U1, U2)).

The transformed predicate does not create a choice point for the predicate, since a type test on

the first argument suffices to discriminate between the two clauses, and an arithmetic comparison

can be used to discriminate between the two disjuncts in the second clause. g

A transformation system based on the principles illustrated in the example above has been

implemented in a prototype compiler for SB-Prolog [9]. The code produced by the compiler for

the transformed program of the example above executes more than 30% faster than the original

program.

7. Performance

The mode inference procedure turns out to be about an order of magnitude faster with the

program generation approach than with interpretation on top of the compiler. Typically, the

time taken for mode inference, which includes the generation, execution and clean-up of the

mode interpreter, is roughly equal to the time taken to then compile the program. This makes it

a practical and useful option during compilation.

26

The precision of analysis will inevitably depend on the richness of the approximation

domain. Even with the very simple approximation domain ∆, the precision of mode inference

was quite acceptable. For example, even {c, d, e}-mode inference, over large fragments of our

Prolog compiler, typically inferred 60% to 70% of the ‘‘interesting’’ modes (in this case, the c

modes) correctly.

8. Conclusions

We present a procedure for the automatic inference of modes for Prolog programs and

proved its soundness. Our approach differs from previous ones in that (i) it gives a sound and

efficient treatment of aliasing; (ii) uses a notion of state transformations by literals to obtain

greater precision in the treatment of unification via predicates such as =/2; and (iii) rather than

have the compiler interpret the user program, it indicates how to dynamically generate another

program which, when executed, yields the modes for the original program. This program uses

extension tables to efficiently compute its results bottom-up and guarantee termination. This

approach enables us to eliminate an extra level of interpretation between the underlying system

and the mode interpreter, yielding a significant performance improvement which makes the

inference procedure a practical option in a Prolog compiler.

9. Acknowledgements

Thanks are due to Chris Mellish and Harald Sφndergaard for many helpful comments on an ear-

lier draft of this paper.

References

1. F. Bancilhon and R. Ramakrishnan, An Amateur’s Introduction to Recursive Query

Processing Strategies, MCC Tech. Report No. DB-091-86, Microelectronics and

Computer Tehnology Corp., Austin, TX, Mar. 1986.

2. M. Bruynooghe, The Memory Management of PROLOG Implementations, in Logic

Programming, K. L. Clark and S. Tarnlund (ed.), Academic Press, London, 1982.

A.P.I.C. Studies in Data Processing No. 16.

3. M. Bruynooghe, Adding Redundancy to Obtain More Reliable and More Readable Prolog

Programs, in Proc. 1st. Int. Logic Programming Conference, Marseille, France, 1982.

4. M. Bruynooghe, Compile time Garbage Collection, in Proc. IFIP Working Conference on

Program Transformation and Verification, Elsevier-North Holland, 1986.

27

5. M. Bruynooghe, B. Demoen, A. Callebaut and G. Janssens, Abstract Interpretation:

Towards the Global Optimization of Prolog Programs, in Proc. Fourth IEEE Symposium

on Logic Programming, San Francisco, CA, Sep. 1987.

6. J. Chang, A. M. Despain and D. DeGroot, AND-Parallelism of Logic Programs Based on

A Static Data Dependency Analysis, in Digest of Papers, Compcon 85, IEEE Computer

Society, Feb. 1985.

7. P. Cousot and R. Cousot, Abstract Interpretation: A Unified Lattice Model for Static

Analysis of Programs by Construction or Approximation of Fixpoints, in Proc. Fourth

Annual ACM Symposium on Principles of Programming Languages, 1977, pp. 238-252.

8. S. K. Debray, Global Optimization of Logic Programs, Ph.D. Thesis, SUNY at Stony

Brook, NY 11794, Aug. 1986.

9. S. K. Debray, The SB-Prolog System, Version 2.3.2: A User Manual, Tech. Rep. 87-15,

Department of Computer Science, University of Arizona, Tucson, AZ, Dec. 1987.

(Revised March 1988).

10. S. K. Debray, Efficient Dataflow Analysis of Logic Programs, in Proc. Fifteenth Annual

ACM Symposium on Principles of Programming Languages, San Diego, CA, Jan. 1988.

11. S. K. Debray and D. S. Warren, Functional Computations in Logic Programs, ACM

Transactions on Programming Languages and Systems 11, 3 (July 1989), pp. 451-481.

12. S. W. Dietrich, Extension Tables: Memo Relations in Logic Programming, in Proc.

Fourth IEEE Symposium on Logic Programming, San Francisco, CA, Sep. 1987, pp. 264-

272.

13. H. Mannila and E. Ukkonen, Flow Analysis of Prolog Programs, in Proc. Fourth IEEE

Symposium on Logic Programming, San Francisco, CA, Sep. 1987.

14. C. S. Mellish, The Automatic Generation of Mode Declarations for Prolog Programs, DAI

Research Paper 163, Dept. of Artificial Intelligence, University of Edinburgh, Aug. 1981.

15. C. S. Mellish, Some Global Optimizations for a Prolog Compiler, J. Logic Programming

2, 1 (Apr. 1985), 43-66.

16. L. Naish, Negation and Control in Prolog, Springer-Verlag, 1986. LNCS vol. 238.

17. R. O’Keefe, Mode Error Diagnosis in Interpreted Code − a Prolog Debugging Aid,

Internal Note, Dept. of Artificial Intelligence, University of Edinburgh, 1981.

18. U. S. Reddy, Transformation of Logic Programs into Functional Programs, in Proc. 1984

Int. Symposium on Logic Programming, IEEE Computer Society, Atlantic City, New

Jersey, Feb. 1984, pp. 187-196.

28

19. G. Smolka, Making Control and Data Flow in Logic Programs Explicit, in Proc. 1984

Symposium on LISP and Functional Programming, Austin, TX, Aug. 1984.

20. P. Van Roy, B. Demoen and Y. D. Willems, Improving the Execution Speed of Compiled

Prolog with Modes, Clause Selection and Determinism, in Proc. TAPSOFT 1987, Pisa,

Italy, Mar. 1987.

21. D. H. D. Warren, Implementing Prolog − Compiling Predicate Logic Programs, Research

Reports 39 and 40, Dept. of Artificial Intelligence, University of Edinburgh, 1977.

29

