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1. Introduction

Two kinds of information that are of particular interest in the generation of efficient code for logic pro-

grams are mode information for predicates and data dependency information between literals in a clause.

This paper is concerned with the static inference of these properties.

In general, logic programs are not directed, in the sense that there is no concept of ‘‘input’’ and

‘‘output’’ arguments to procedures. An argument may be used as either an input or an output argument,

and programs may be executed in either a ‘‘forward’’ or a ‘‘backward’’ direction. However, it is often

the case that in a particular program, a predicate is executed in one direction only, i.e. it is always called

with a particular set of its arguments bound (the ‘‘input’’ arguments) and another set unbound (the ‘‘out-

put’’ arguments). Traditionally, this information has been supplied by the programmer using what are

called ‘‘mode declarations’’ [26].

Mode information finds many different applications in high performance logic programming sys-

tems. It can be used to generate specialized code for unification that is more efficient than the general

purpose routines because there are fewer cases to take care of [25, 26]. Mode information is important in

detecting deterministic and functional computations and reduce the program’s search effort [9, 17]. It can

be used to generate index structures for predicates more intelligently. In systems that support goal

suspension based on variable instantiations, e.g. MU-Prolog [19] and Sicstus Prolog [23], mode informa-

tion can be used to reduce the amount of testing required to determine whether a goal should be

suspended. Mode information is also important in integrating logic and functional programming

languages [21]. Data dependency information is useful in various optimizing transformations of logic

programs [7], in improving the backtracking behavior of programs [3] and parallelizing logic programs

[2, 27].

Early work on mode inference via static analysis was done by Mellish [16-18], who used dependen-

cies between variables to propagate information regarding their instantiation. This approach, however,

had the drawback that builtin predicates such as ‘=’/2 could not be handled very precisely; moreover,

since aliasing effects resulting from unification were not taken into account, the procedure sometimes

produced erroneous results [18]. A more syntactic approach to mode inference, based on the simple

mode set {in, out}, was proposed by Reddy in connection with work on transforming logic programs into

functional languages [21]. This approach, however, applied only to a restricted class of logic programs

and often tended to be very conservative. A more accurate treatment based on global flow analysis was

described by Debray and Warren [6]. Since then, mode inference procedures related to this have been

described by Bruynooghe et. al. [1, 13] and Mannila and Ukkonen [15]. Bruynooghe et al. discuss mode

inference as an abstract interpretation problem akin to type inference, and suggest keeping track of the

aliases of a variable using two sets of variables, the ‘‘sure aliases’’ and the ‘‘possible aliases’’; Mannilla

and Ukkonen use a simple mode set that is essentially the same as Reddy’s, but focus on the algorithmic

aspects of the analysis.

Static inference of data dependencies for Prolog programs has been investigated by Chang et al.

[2, 3], and by Warren et al. [27]. They describe how data dependency information can be used both to



parallelize Prolog programs, and also to improve its backtracking behavior without incurring significant

runtime overhead. Data dependency analysis has also been investigated by Mannilla and Ukkonen [15],

who discuss computational aspects of the algorithm; however, because their analysis does not take mode

information into account when propagating dependencies, it is quite conservative. Deransart and

Małuszynski have used the relationship between logic programs and attribute grammars to reason about

properties of logic programs, including the modelling of data dependencies and reduction of occur checks

[11]: their treatment, like Reddy’s, is also based on a mode set {input, output} containing only two ele-

ments. Debray has considered the incremental synthesis of control strategies for parallel logic programs

using mode and data dependency information [5]. Other related work includes flow analysis of logic pro-

grams to detect situations where cyclic terms can be created during unification, which involves reasoning

about the aliasing behavior of programs [20, 22].

The work described in this paper is based on the ideas introduced in [6], but with several important

innovations. The most significant of these is the treatment of aliasing introduced here: in retrospect, the

safety criteria used to handle aliasing in [6], while sound, were both ad hoc and overly conservative. This

paper describes a uniform treatment of aliasing that rectifies these problems. The worst case complexity

of the algorithm is analyzed based on this treatment. This suggests a variant of the basic algorithm that

has a significantly superior worst case performance, at the cost of a slight potential loss in precision for a

small class of programs. We also identify a class of programs, called programs of bounded variety, which

contains most programs encountered in practice, and for which these algorithms have a significantly

better worst case performance. A related treatment of aliasing is given by Bruynooghe et al., who pro-

pose that information about the aliases of a variable be maintained using sets of variables representing

‘‘sure aliases’’ and ‘‘possible aliases’’ [1, 13]. While such a treatment can lead to more precise analyses

in principle, the computational implications of having to maintain this additional information are unclear.

The remainder of the paper is organized as follows: Section 2 discusses some preliminary concepts.

Section 3 then discusses the flow analysis algorithm, Section 4 proves its soundness and discusses its

complexity. Section 5 sketches a variant of the basic algorithm that has a significantly better worst case

performance, though it may be less precise for predicates that are used with a number of different modes

and alias patterns. Section 6 discusses some applications of mode and data dependency information in

the efficient execution of logic programs. Section 7 concludes with a summary. A formalization of the

analysis as an abstract interpretation is given in the appendix.

2. Preliminaries

2.1. The Language

The language considered here is essentially that of first order predicate logic. It has countable sets of

variables, function symbols and predicate symbols, these sets being mutually disjoint. Each function and

predicate symbol is associated with a unique natural number called its arity; a (function or predicate)

symbol whose arity is n is said to be an n-ary symbol. A 0-ary function symbol is referred to as a con-

stant. A term is a variable, a constant, or a compound term f(t1, ..., tn) where f is an n-ary function symbol
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and the ti are terms, 1 ≤ i ≤ n. An atom is of the form p (t1, ..., tn), where p is an n-ary predicate symbol

and the ti are terms, 1 ≤ i ≤ n.

A clause in a logic program is a finite set (possibly ordered) of literals, which are either atoms or

negations of atoms. A clause is called definite if it has exactly one positive literal: the positive literal is

called the head of the clause, and the remaining literals, if any, constitute the body of the clause. A clause

with only negative literals is referred to as a goal. A predicate definition is assumed to consist of a finite

set (possibly ordered) of definite clauses, though the handling of other constructs such as negation is con-

sidered later. A logic program consists of a finite set of predicate definitions. The meaning of each

clause is the universal closure of the disjunction of its literals; that of the program is the conjunction of its

clauses. For the purposes of analysis, it is assumed that we are given a module of the form 〈P,

EXPORTS(P)〉 , where P is a set of predicate definitions, and EXPORTS(P) specifies the predicates in P that

are exported, i.e. that may be called from the outside. We adhere to the syntax of Edinburgh Prolog and

write clauses in the form

p :− q1, . . ., qn.

which can be read as ‘‘p if q1 and . . . and qn’’. The names of variables are written starting with upper

case letters, while predicate and function symbols are written starting with lower case letters. In addition,

a list with head H and tail Tl is written [H|Tl], while the empty list is written [].

While the meaning of logic programs is usually given declaratively in terms of the model theory of

first order logic, such programs can also be understood procedurally. In this view, each predicate is a pro-

cedure defined by its clauses. Each clause provides an alternate definition of the procedure body. The

terms in the head of the clause correspond to the formal parameters, and each literal in the body of the

clause corresponds to a procedure call. Parameter passing in such procedure calls is via a generalized pat-

tern matching procedure called unification. Briefly, two terms t1 and t2 are unifiable if there is some sub-

stitution θ of terms for the variables occurring in t1 and t2 such that θ(t1) = θ(t2). Such a substitution is

called a unifier. For example, the terms f(X, g(X, Y)) and f(a, Z) are unifiable with the unifier {X → a, Z

→ g(a, Y)}. Usually the most general unifier, i.e. one that does not make any unnecessary substitutions,

is used. It is a fundamental result of logic programming that if two terms are unifiable, then they have a

most general unifier that is unique upto variable renaming. The result of unifying two terms is the term

produced by applying their most general unifier to them. If the terms under consideration are not

unifiable, then unification is said to fail.

Implementations of logic programming languages typically impose some order of evaluation on the

clauses defining a predicate, and the literals within a clause. For example, the execution of a Prolog pro-

gram follows the textual order of clauses and literals. Execution begins with a goal, or query, from the

user, which is a sequence of literals processed from left to right. The processing of a literal proceeds as

follows: the clauses for its predicate are tried, in order, until one is found whose head unifies with the

literal. If there are any remaining clauses for that predicate whose heads might unify with that literal, a

backtrack point is created to remember this. After this, the literals in the body of the clause are executed
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in their textual left to right order. If unification fails at any point, execution backtracks to the most recent

backtrack point: any variables instantiated after the creation of that backtrack point have their instantia-

tions undone, and then the next clause is tried. This process continues recursively until either all the

literals have been processed completely, in which case execution is said to succeed, or when no alterna-

tives are left to try, in which case it is said to fail.

The remainder of the paper assumes Prolog’s control strategy, with its textual ordering of clauses

and literals. However, the techniques described here are not peculiar to Prolog, and can be adapted to

other control strategies in a straightforward manner. It is also assumed that the predicates in the program

are static, i.e. all executable code is available for analysis at compile time. Thus, the addition or deletion

of clauses at runtime through primitives such as assert or retract is precluded, as is the dynamic construc-

tion of goals to be executed via call/1 or not/1. The analysis of programs that are not static is

significantly more complicated because of the need to estimate the possible effects of dynamic code: this

issue is beyond the scope of this paper, but a detailed discussion is given in [10].

2.2. Modes

The mode of a predicate in a logic program is an assertion about which of its arguments are input argu-

ments, and which are output arguments, in any call to that predicate arising from that program. Different

researchers have considered different sets of modes, e.g. Edinburgh Prolog allows the user to specify the

mode of an argument as either bound (‘+’), unbound (‘−’) or unknown (‘?’) [26]; others consider only

the modes {ground, unknown} [15, 21]. Neither of these is precise enough for our purposes, so we

consider the set of modes ∆ = {c, d, e, f, nv}, where c (‘‘closed’’) denotes the set of ground terms of the

first order language under consideration; d (‘‘don’t-know’’) denotes the set of all terms; e denotes the

empty set; f (‘‘free’’) denotes the set of uninstantiated variables; and nv the set of nonvariable terms.

This set of modes is slightly larger than that considered in [6].

The set ∆ forms a complete lattice under inclusion:

g d

g e

g c

g nv

g f

The ordering on ∆ induced by inclusion will be denoted by $le , the corresponding join operation being

denoted by $lub .

Given any set of terms, it is necessary to specify how to find its instantiation, i.e. the element of ∆
that best ‘‘describes’’ it. This is given by the instantiation function ι , which is defined as follows:
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Definition: The instantiation ι (T) of a set of terms T is given by ι (T) = ∩ {δ ∈ ∆ | T ⊆ δ }. g

Thus, any set of terms containing only ground terms will have instantiation c, any set of terms containing

only uninstantiated variables will have instantiation f, and so on. Notice that ι is a closure operator, so

that for any set of terms T, T ⊆ ι (T).

2.3. Comparing Instantiations of Sets of Terms

During the execution of a logic program, terms become progressively more instantiated. The notion of

‘‘more instantiated than’’ is quite straightforward when dealing with individual terms: a term t2 is more

instantiated than another term t1 if t2 is a substitution instance of t1. However, during static analysis, vari-

ables are associated with sets of terms, which makes it necessary to ‘‘lift’’ this order to sets of terms.

Define unification over sets of terms, denoted by s_ unify, as follows:

Definition: Given sets of terms T1 and T2, s_ unify(T1, T2) is the least set of terms T such that for each pair

of unifiable terms t1 ∈ T1, t2 ∈ T2 with most general unifier θ, θ(t1) is in T. g

It can be seen that given two terms t1 and t2, t2 is more instantiated than t1 if and only if the result of uni-

fying t1 and t2 is the term t2. We define the instantiation order over sets of terms, denoted ≤|, as the natural

extension of this:

Definition: Given sets of terms T1 and T2, T1 ≤| T2 if and only if s_ unify(T1, T2) = T2. g

The reader may verify that ≤|, as defined above, is transitive. If the set of terms T under consideration is

closed under unification (i.e. for any t1 and t2 in T, if t1 and t2 are unifiable with most general unifier θ,

then θ(t1) is also in T), then ≤| is also reflexive, and hence a quasi-order, which is easily extended to a par-

tial order in the usual way: given sets of terms T1 and T2, let the relation ∼ be

T1 ∼ T2 ⇔ T1 ≤| T2 $and T2 ≤| T1.

∼ is an equivalence relation, and ≤|/∼ , the quotient of ≤| modulo ∼ , is a partial order. The discussion that

follows concerns itself only with this partial order. With this understanding, we will abuse notation

slightly and write the partial order as ≤|. Since each element of the mode set ∆ is closed under unification

and variable renaming, it follows that ≤| is a partial − indeed, a total − order over ∆:

f ≤| d ≤| nv ≤| c ≤| e

The join operation for this order will be written as ∇ .
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3. The Analysis Framework

The analysis procedure is based on the principles of abstract interpretation [4]. The essential idea behind

the analysis is to maintain information about variable bindings at each point in the program. Given some

information about the arguments in a call to a predicate, such information can be propagated across each

clause for that predicate to obtain a description of the bindings of the call when it returns. The dataflow

information is maintained in instantiation states, which are abstract representations that describe the

terms that each variable in a clause can be bound to at any given point in the clause, as well as possible

aliasing and sharing information between variables at that point.

To reason about a call and its return, it is necessary to propagate information about the arguments in

the call, from the caller to the callee at the time of the call, and from the callee to the caller at the time of

return. While instantiation states describe the bindings of different variables in a clause, it is not natural

to use variable names to pass information between clauses. This is because clauses have their variables

renamed before they are used in resolution. To handle this, a somewhat different representation, called an

instantiation pattern, is used to represent calls and returns. An instantiation pattern for a tuple of terms

describes the bindings of different elements in the tuple and possible dependencies between them, but

without any reference to variable names. Given an instantiation pattern describing a call, it is necessary

to specify how to compute the effects of unifying the arguments of the call with the head of a clause.

This is done by a procedure that takes an instantiation state A, an instantiation pattern Id and a tuple of

terms td, and updates A to produce a new instantiation state that incorporates the possible effects of unify-

ing td with any tuple of terms represented by Id. This computation proceeds by first considering only the

variables appearing in the tuple td, and then using information about dependencies between variables to

propagate the effects of unification to the other variables in the clause.

For the analysis, it is assumed that the user has specified which predicates may be called from the

outside; and for each such exported predicate, instantiation patterns that describe how it may be called.

The analysis begins with such ‘‘calling patterns’’ for the exported predicates. For each such predicate

and calling pattern, the clauses for the predicate are analyzed by propagating instantiation states across

the literals of each clause. This yields instantiation patterns describing how the clause may succeed. In

order to propagate instantiation states across these clauses, it becomes necessary to analyze predicates

called by the exported predicates, and so on. This is repeated until no new calling or success patterns can

be found for any predicate in the program, at which point the analysis terminates.

The remainder of this section is organized as follows: Section 3.1 defines the notion of instantiation

states. Section 3.2 discusses instantiation patterns. This is followed, in Section 3.3, by a description of

how unification is simulated over the abstract domain. Section 3.4 then describes the flow analysis pro-

cedure. Section 3.5 considers two examples in detail. Finally, Section 3.6 sketches how other control

constructs encountered in logic programming languages may be handled. A formal treatment of the

analysis procedure as an abstract interpretation appears in the appendix.
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3.1. Instantiation States

The execution of a logic program induces an association, at each point in a clause, between the variables

in that clause and the sets of terms they can be instantiated to at that point.† While such sets of terms can

be arbitrarily large, it is necessary to have finitely computable approximations to them for static analysis

purposes. This can be done by using elements of the mode set to describe these sets of terms. It turns out

that information about dependencies between variables also has to be maintained in order to handle

unification correctly in the analysis. The behavior of a program is therefore summarized by specifying, at

each program point, a description of the set of terms each variable in that clause can be instantiated to at

that point, together with the set of variables it can depend on. Such summaries are called ‘‘instantiation

states’’, or ι -states for short. The finite set of variable names VC appearing in a clause C are referred to as

the program variables of C. The ι -states of a clause C are defined on the program variables of C.

When a clause is selected for resolution against a goal, its variables are renamed so that it is

variable-disjoint with the goal. This means that the variables that are used at runtime are, in general, dif-

ferent from the program variables used at compile time. It therefore becomes necessary to ensure that the

static analysis takes into account all such possible renamings. This is done via the notion of σ-

activations: a use of clause C in a computation, where the variables of C have been renamed via a renam-

ing substitution σ before resolution, is referred to as a σ-activation of C. For any term t, let vars(t) be the

set of variables occurring in t. Then, we have the following definition:

Definition: An instantiation state AC at a point in a clause C is a mapping

AC : VC → ∆ × 2
VC

satisfying the following: if for any variable x in VC, AC(x) = <δ, V>, then for any σ-activation of C in the

computation,

(i) if σ(x) can be instantiated to a term t at that point, then t ∈ δ ; and

(ii) if for any variable y in VC, σ(y) can be instantiated to a term t ¢at that point such that vars(t) ∩

vars(t ¢) ≠ ∅ , then y ∈ V. g

The notion of ι -states extends to arbitrary terms in a straightforward manner: given an ι -state A and a term

t, if t is a constant, then A(t) = 〈c, ∅〉 ; and if t is a compound term f(t1, . . ., tn), let A(ti) = 〈δi, Di〉 , 1 ≤ i ≤

n. Then, A(t) = 〈δ, D〉 , where δ = c if δi = c, 1 ≤ i ≤ n, and nv otherwise; and D =
i =1
∪
n

Di.

The domain VC of the instantiation states of a clause C is fixed once C has been specified. When

there is no scope for confusion, therefore, the subscript C will be dropped from the name of the ι -state. If

a variable v maps to a pair <δ, V> in an ι -state A, then δ is said to be the instantiation of v in A, written
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† This is a straightforward abstraction of denotational semantics of such languages, e.g. see [8, 14].
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inst(A(v)), while V is its dependency set, written deps(A(v)). The instantiation component δ acts as a con-

straint on the terms a variable can be instantiated to at runtime, and the dependency set V acts as a further

constraint by allowing us to consider only those terms in δ that depend only on variables in V. Since vari-

ables in a clause C are uninstantiated before its head has been unified with the call, the corresponding

‘‘initial ι -state’’ for C, where each variable v in VC is mapped to the pair <f, {v}>, is denoted by AC
init.

Example 1: Consider the program:

p(X) :− q(X, Y), r(Y).

q(Z, Z).

r(a).

Assume that p is called with an uninstantiated argument. If the ι -state at the program point between the

literals q and r is A, then A(X) = <f, {X, Y}>, indicating that X is still uninstantiated at that point, but

may share a variable subterm with Y. Similarly, A(Y) = <f, {X, Y}>. g

3.2. Representing Calls and Returns

When describing how a predicate may be called, or how a call may return, it is necessary to specify not

only the instantiation of each argument, but also any sharing of variables between different arguments.

Since variables in a clause are renamed before its head is unified with a call, variable names cannot be

used in a natural way to propagate sharing information across calls and returns. Instead,a symbolic

representation called instantiation patterns, or ι -patterns, are used. These are defined as follows:

Definition: Given an ι -state A and an n-tuple of terms td = <t1, ..., tn>, let A(ti) = <δi, Vi> for 1 ≤ i ≤ n.

Then, the instantiation pattern (ι -pattern for short) of td induced by A is

i_ pat(td, A) = < <δ1, S1>, ..., <δn, Sn> >

where Si = { k | Vi ∩ Vk ≠ ∅ }. g

Example 2: Consider a call q(X, f(X), h(X, Y), Z) in an ι -state A:

A = {X → 〈f, {X}〉 , Y → 〈f, {Y, Z}〉 , Z → 〈nv, {Y, Z}〉}.

This call is represented by the ι -pattern

i_pat(〈X, f(X), h(X, Y), Z 〉 , A) = < <f, {1,2,3}>, <nv, {1,2,3}>, <nv, {1,2,3,4}>, <nv, {3,4}> >.

This indicates that the first argument of the call is a free variable that also shares variables with the

second and third arguments; the second argument is a non-variable term that shares variables with the first

and third arguments; and so on. g

For any n, instantiation patterns of length n can be ordered elementwise by inclusion in the obvious way.

The least upper bound of two ι -patterns is defined similarly, so that
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<<δ11, S11>, ..., <δ1n, S1n>> $lub <<δ21, S21>, ..., <δ2n, S2n>> = <<δ11 $lub δ21, S11 ∪ S21>, ..., <δ1n $lub δ2n, S1n ∪ S2n

The k th. element <δk, Sk> of an ι -pattern I = < <δ1, S1>, ..., <δn, Sn> >, is denoted by I[k]. The

share set of I[k], 1 ≤ k ≤ n, written share(I[k]), is the set Sk. The instantiation of the kth. element, written

inst(I[k]) where no confusion can arise, is δk. Thus, given a tuple of terms td = <t1, ..., tn> in an ι -state A,

if I is the ι -pattern i_ pat(td, A), then for 1 ≤ k ≤ n, inst(I[k]) describes the instantiation of tk, while

share(I[k]) gives the indices of other elements in td that tk shares variables with. The ι -pattern of a call to

a predicate is referred to as a calling pattern, while that at the return from a call is referred to as the suc-

cess pattern for that call. Finally, an ι -pattern is said to describe a tuple of terms if the instantiations of,

and sharing between, the elements of the tuple of terms are ‘‘consistent’’ with the ι -pattern:

Definition: An ι -pattern < <δ1, S1>, ..., <δn, Sn> > induced by an ι -state A describes a tuple of terms <t1,

..., tn> if inst(A(ti)) $le δi, 1 ≤ i ≤ n; and if deps(A(ti)) ∩ deps(A(tj)) ≠ ∅ , 1 ≤ i, j ≤ n, then j ∈ Si and i ∈ Sj.

g

3.3. Abstracting Unification

During static analysis, the bindings of variables at different points in a program clause are described by

ι -states. It is therefore necessary to specify how unification is to be simulated over ι -states. First, con-

sider a variable x occurring in a term t1, whose instantiation in the ι -state under consideration is δ1, and

assume that t1 is being unified with a term t2 whose instantiation is δ2. If aliasing effects are temporarily

ignored, then the instantiation of the resulting term is no larger than δ = δ1 ∇δ 2. If x is t1, then the instan-

tiation of x after unification must also be δ. If x is a proper subterm of t1, then as long as t2 is not a vari-

able (i.e. as long as δ2 ≠ f), x becomes instantiated to some proper subterm of the term resulting from the

unification; if t2 is a variable, however, then the instantiation of x does not change. Given a set of terms

T, let psubs(T) be the set of all proper subterms of all elements of T, and let sub_ inst(T) be the instantia-

tion ι (psubs(T)). Then, the instantiation ‘‘inherited’’ by a variable x occurring in a term during

unification is given by the function inherited_ inst, defined as follows:

Definition: Let t1 be a term in an ι -state A, with inst(A(t1)) = δ1, and let x be a variable occurring in t1.

The instantiation inherited by x when t1 is unified with a term whose instantiation is δ2 is given by

inherited_ inst(A, x, t1, δ2) ≡ if x = t1 then δ; else if δ2 = f then inst(A(x)); else sub_ inst(δ);

where δ = δ1 ∇δ 2. g

The function sub_ inst is given by the following table:
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

δ sub_ inst(δ)iiiiiiiiiiiiiiiiiiiiiiii

d diiiiiiiiiiiiiiiiiiiiiiii

nv diiiiiiiiiiiiiiiiiiiiiiii

c ciiiiiiiiiiiiiiiiiiiiiiii

f eiiiiiiiiiiiiiiiiiiiiiiii

e eiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

Example 3: Suppose a term f(X) is being unified with a ground term, where the variable X is uninstan-

tiated in the ι -state A under consideration. Then, ι (f(X)) = nv, and the value of inherited_ inst(A, X, f(X),

c) is sub_ inst(nv ∇ c) = sub_ inst(c) = c. This says that any term X could become instantiated to as a

result of this unification is in the set denoted by c. Notice that this is sound in the sense that if the

unification were to fail, the resulting instantiation of X would be e, which is contained in c. g

In general, of course, it is not enough to simply consider instantiations when describing the effects of

unification: dependencies between variables must be taken into account as well. Consider two ι -patterns

I1 and I2 representing two n-tuples of terms td1 and td2 that are being unified. Assume, for the sake of sim-

plicity, that these tuples of terms do not share variables. Consider the kth element t 1k of td1: before

unification, the elements of td1 that t 1k shares variables with is given by the share set share(I1[k]); the

share set for t 1k after unification is given by the transitive closure of the ‘‘may share with’’ relation, as

expressed by the share sets of the two ι -patterns, starting at the kth. elements. This is described by the

notion of ‘‘coupling closure’’, denoted by c_closure: the indices of elements of td1 that the kth. element

t 1k may share variables with after unification is given by c_closure(k, I1, I2). More formally, this can be

defined as follows:

Definition: Consider two ι -patterns I1 and I2, each of length n, and some k, 1 ≤ k ≤ n. The coupling clo-

sure of k in I1 induced by I2, written c_ closure(k, I1, I2), is defined to be the least set satisfying

(i) if m ∈ share(I1[ k ]) then m is in c_ closure(k, I1, I2); and

(ii) if n1 ∈ c_ closure(k, I1, I2), n2 ∈ share(I2[ n1 ]) and m ∈ c_ closure(n2, I1, I2), then m is in

c_ closure(k, I1, I2). g

Example 4: Consider the unification of the tuple of terms <X, f(Y), Y, Z> with the tuple <U, f(U), V,

W>, where each of the variables U, V, W, X, Y, Z is uninstantiated and not aliased to any other variable.

The ι -patterns for these tuples of terms are

I1 = < <f, {1}>, <nv, {2,3}>, <f, {2,3}>, <f, {4}> >, and
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I2 = < <f, {1,2}>, <nv, {1,2}>, <f, {3}>, <f, {4}> >

respectively. The value of c_ closure(1, I1, I2) is the set {1, 2, 3}, indicating that after unification, the first

three arguments can share variables. g

It is worth pointing out that if it is known exactly what the two tuples td1 and td2 being unified are, then it is

trivial to work out the dependencies resulting from unification: let θ be the most general unifier of td1 and

td2, then this information is easily obtained from the tuple of terms θ(td1). During analysis, however, one

of the tuples consists of the arguments of a call or a return, and is represented by an ι -pattern. Thus, the

precise form of one of the tuples of terms will not be known. Indeed, even for the other tuple of terms,

only partial information will be available, since substitutions obtained at various program points are

approximated by ι -states. It is for this reason that the computation of coupling closures is necessary when

reasoning about unification.

We are now in a position to describe ‘‘abstract unification’’. There are two contexts where

unification has to be dealt with during analysis: at the time of a call, when unifying the arguments of the

call with those in the head of the clause; and at the time of a return from the call, when ‘‘back-unifying’’

to propagate the effects of the return to the caller. Since calls and returns are represented by ι -patterns, in

each of these cases the structure of one of the tuples of terms being unified is known, but that of the other

is represented by an ι -pattern. The processing of unification in the abstract domain is carried out as fol-

lows: first, changes in variable instantiations resulting from the unification are derived without taking

dependencies between variables into account, using a function a_unify_init; these changes are then pro-

pagated to other variables, using two functions: propagate_deps, which propagates possible changes to

dependency sets, and propagate_inst, which propagates possible changes to the instantiations of vari-

ables; finally, dependency sets are ‘‘cleaned up’’ using information about variable groundness.

Let td = <t1, ..., tn>, and for any variable v, let occ(v, td) = {j | v ∈ vars(tj)} be the indices of the ele-

ments of td in which v occurs. Then, the function a_ unify_ init is defined as follows:

Definition: Consider an ι -state A0 for a clause C, an n-tuple of terms td = <t1, . . ., tn> and an ι -pattern Id =

<<δ1, S1>, . . ., <δn, Sn>>. Then, a_ unify_ init(A0, td, Id) = <A1, V1>, where A1 is an ι -state for C and V1

⊆ VC, is defined as follows:

b for any variable v in VC, if occ(v, td) ≠ ∅ then A1(v) = <δ, D>, where

δ = ∇ {inherited_ inst(A0, v, tj, δj) | j ∈ occ(v, td)}, and

D = ∪ {deps(A0(t j )) | j ∈ c_ closure(k, i_ pat(td, A 0), Id)}, for any k ∈ occ(v, td);

if occ(v, td) = ∅ then A1(v) = A0(v).

b V1 = {v ∈ VC | A0(v) ≠ A1(v)}. g
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The function a_ unify_ init returns a pair consisting of an ι -state and a set of program variables: the ι -state

reflects the effects of unification on variables in the clause, without taking into account any dependencies

that might exist between them. The set of variables returned consists of those variables whose instantia-

tions changed in this step. These changes can then be propagated to account for dependencies between

variables.

Let the ι -state returned by a_unify_init be A1, and for any program variable x in the clause under

consideration, let A1(x) = 〈δ, D〉 . δ is obtained by considering the instantiations inherited from each posi-

tion in which x occurs in the tuple of terms td: from the properties of unification, it follows that the result-

ing instantiation inherited by x must be the least upper bound of all of these with respect to the instantia-

tion order ≤|. It is possible that x is aliased to some other variable whose instantiation or dependency set

changes because of this unification: this is not taken into account at this point, but is handled in the next

step by the functions propagate_deps and propagate_inst. The dependency set D of x is computed as fol-

lows: first, the possible elements of td that x could share variables with after unification is obtained using

c_closure. If this indicates that x could share variables with the jth. element tj of td, and tj could have

depended on a variable y before unification, then it is inferred that x can depend on y after unification.

The dependency set D of x after unification is thus obtained by taking the union of the dependency sets of

all such elements t j . Notice that when computing the coupling closure in this case, it suffices to consider

the index of any one element tk of td in which x occurs: because c_closure computes a transitive closure

starting with the set of elements with which tk shares variables, and because the ‘‘shares a variable with’’

relation is symmetric, the value of the coupling closure does not depend on which particular k is picked.

The next step is to describe the propagation of changes to dependency sets and instantiations result-

ing from unification. To simplify the presentation, we decompose this step into two functions:

propagate_deps, which propagates changes to dependency sets, and propagate_inst, which propagates

changes to instantiations of variables. Changes to dependency sets are relatively easy to characterize: let

〈A1, V1〉 = a_unify_init(A0, td, Id) for some ι -state A0, tuple of terms td and ι -pattern Id. Consider a variable

x whose dependency set changes when a_unify_init is computed: there may be a variable y that depends

on x, and whose dependency set should also be updated. Any change to the dependency set of x can be

propagated to y by simply adding deps(A1(x)) to the dependency set of y. Since changes to dependency

sets during the computation of a_unify_init are obtained from coupling closures, which compute the tran-

sitive closure of the ‘‘may share with’’ relation, it suffices to repeat this once for each variable appearing

in the dependency set of y, i.e. it is not necessary to compute a transitive closure to compute the updated

dependency set for y. The function propagate_deps is thus defined as follows:

Definition: Let A0 be an ι -state defined on a set of program variables VC, and V0 ⊆ VC. Then,

propagate_deps(〈A0, V0〉) = 〈A1, V1〉 , where A1 is an ι -state defined on VC and V1 ⊆ VC, is defined as fol-

lows:
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b for each x in VC, if A0(x) = 〈δ, D〉 , then A1(x) = 〈δ, D ¢ 〉, where D ¢= ∪ {deps(A0(v)) | v ∈ D};

b V1 = V0 ∪ {v ∈ VC | A1(v) ≠ A0(v)}. g

The next step is to propagate changes in instantiations of variables by taking into account dependencies

between variables. Suppose the set of variables inferred to be affected by unification, in a_unify_init and

propagate_deps, is V. Let the ι -state obtained from propagate_deps be A, and consider a variable x with

A(x) = <δ, D>. Then, x depends on a subset (possibly empty) of D. There are five possibilities:

(1) If δ = e then execution cannot reach that point, so δ¢must also be e.

(2) If δ = f, there are three possibilities: (i) if x does not depend on any variable in V ∩ D at runtime,

then its instantiation is unaffected, and δ¢= f; (ii) if x actually depends only on some set of variables

D0 ⊆ D, but all of the variables in D0 are still uninstantiated after unification, then the instantiation

of x is unaffected by the unification, and δ¢= f; (iii) if x depends on some variable y ∈ V ∩ D, and

inst(A(y)) ≠ f, then some variable that x can depend on has become instantantiated to a nonvariable

term, so inst(A(y)) is either c, nv or d. Combining these cases, it follows from the structure of the

mode set ∆ that δ¢must be f $lub inst(A(y)), which works out to d.

(3) If δ = c then x is a ground term and cannot be affected by aliasing effects, so δ¢= c.

(4) If δ = nv then there are two possibilities: (i) if x does not depend on any variable in V ∩ D at run-

time, then its instantiation is unaffected, and δ¢= nv; (ii) if it does depend on variables in V ∩ D0,

then its instantiation changes only if all their instantiations change to c in which case δ¢= c. Com-

bining cases (i) and (ii), it follows that δ¢= nv $lub c = nv.

(5) If δ = d then, by an argument similar to the nv case, it follows that δ¢= d.

It does not come as a great surprise that the only case where aliasing and dependency effects make a

difference is when the variable under consideration is uninstantiated, and the instantiation of one of its

possible aliases changes. Based on the above case analysis, the function propagate_inst can be defined as

follows:

Definition: If A0 is an ι -state defined on a set of variables VC and V ⊆ VC, then A1 = propagate_inst(<A0,

V>) is an ι -state defined on VC, defined as follows: for every x in VC, if A0(x) = <f, D0> and there is a

variable y in V ∩ D0 such that inst(A0(y)) ≠ f, then A1(x) = <d, D0>; otherwise, A1(x) = A0(x). g

The final step is to ‘‘clean up’’ the dependency sets of variables. If a variable x has instantiation c, i.e. is

inferred to be ground, then it does not share variables with any other variable; thus, the dependency set of

x can be set to ∅ , and x can be deleted from the dependency set of any other variable in the clause. This

is described by a function normalize:
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Definition: Let A0 be an ι -state defined on a set of program variables VC, and let ground(A0) = {v ∈ VC |

inst(A(v)) = c}. Then, normalize(A) is an ι -state A1, with domain VC, defined as follows: for each x ∈

VC, if A0(x) = 〈δ, D〉 , then A1(x) = if x ∈ ground(A0) then 〈δ, ∅〉 ; else 〈δ, D − ground(A0)〉 . g

We can now define a function update_ i_ state that simulates unification in the ‘‘abstract domain’’: given

an ι -state, a tuple of terms td and an ι -pattern Id, it describes the ι -state resulting from the unification of td
with a tuple of terms described by Id:

Definition: If A0 is an ι -state defined on a set of variables VC, td is an n-tuple of terms all whose variables

are in VC, and Id is an ι -pattern of length n, then update_ i_ state(A0, td, Id ) is an ι -state defined on VC,

defined by

update_ i_ state(A0, td, Id ) = normalize(propagate_inst(propagate_deps(a_ unify_ init(A0, td, Id )))).

g

Note that the propagation of dependencies by propagate_deps does not depend on the instantiations of

variables, but the propagation of instantiations by propagate_inst depends on the dependency sets of vari-

ables. It is therefore necessary to ensure that dependency sets of variables have been properly updated

before applying propagate_inst. For this reason, it is necessary to apply propagate_deps before

propagate_inst.

3.4. Propagating Flow Information

The module being analyzed is assumed to be of the form 〈P, EXPORTS(P)〉 , where P is a set of predicate

definitions, and EXPORTS(P) is a set of pairs 〈p, cp〉 specifying the predicates p that are exported by the

program, i.e. that may be called from outside the program; and for each such predicate, a calling pattern

cp that it may be called with from outside the program. Note that EXPORTS(P) may contain more than

one entry for a predicate if it can be called with different calling patterns.

Given a class of queries that the user may ask of a program, as specified by EXPORTS(P), only some

of the possible calling patterns will in fact be encountered during computations. During static analysis,

therefore, not all calling patterns for a predicate will be ‘‘admissible’’. Similarly, given a calling pattern

for a predicate, only those success patterns will be considered admissible that might actually correspond

to computations for that predicate starting with a call described by that calling pattern. For n ≥ 0, let Γn

denote the set of pairs ∆ × 2{1, ..., n}. With each n-ary predicate p in a program we associate a set

CALLPAT(p) ⊆ (Γn)n, the set of admissible calling patterns, and a relation SUCCPAT(p) ⊆ (Γn)n × (Γn)n,

associating with each calling pattern an admissible success pattern. Given a module 〈P, EXPORTS(P)〉 ,
these sets are defined to be the smallest sets satisfying the following:

14



b If 〈 p, I〉 ∈ EXPORTS(P)〉 , then I is in CALLPAT(p).

b Let q0 be a predicate in the program, Ic ∈ CALLPAT(q0), and let there be a clause in the program of

the form

q0(Xdd0) :− q 1(Xdd1), ..., qn (Xddn ).

Let the ι -state at the point immediately after the literal qj (Xddj ), 0 ≤ j ≤ n, be Aj, where Ainit is the ini-

tial ι -state of the clause; A0 = update_ i_ state(Ainit, Xdd0, Ic); then, for 1 ≤ i ≤ n, cpi = i_pat(Xddi , Ai−1) is

in CALLPAT(qi ); and if <cpi, spi> is in SUCCPAT(qi ), then Ai = update_ i_ state(Ai−1, Xddi , spi).

The success pattern for the clause is given by Is = i_ pat(Xdd0, An), and <Ic, Is> is in SUCCPAT(q 0). g

Notice that no special provision is required for explicit unification via ‘=’/2: this predicate can be handled

simply by considering it to be defined as

‘=’(X, X).

and proceeding as above.

The global data structures maintained by the algorithm consist of a worklist, NEEDS_PROCESSING, of

predicates that have to be processed; and for each predicate p in the program, tables CALLPAT(p) and

SUCCPAT(p). Initially, NEEDS_PROCESSING contains the set of predicates appearing in EXPORTS(P). If p

is an exported predicate, then CALLPAT(p) contains the calling patterns for it that are specified in

EXPORTS(P), otherwise it is empty initially; and for each predicate p in the program, SUCCPAT(p) is ini-

tially empty. Before analysis begins, the call graph of the program is constructed, and this is used to

compute, for each predicate p, the set CALLERS(p) of the predicates that call p, i.e. those predicates q for

which there is a clause in the program of the form

q( ... ) :− . . ., p( ... ), . . .

The set CALLERS(p) is used to determine which predicates have to be reanalyzed when a new success pat-

tern is found for p.

The analysis begins with the calling patterns specified in EXPORTS(P), and proceeds as follows: first,

the predicates mentioned in EXPORTS(P) are analyzed. This, in turn, causes the predicates called by the

exported predicates to be analyzed, and so on. This is repeated until no new calling or success patterns

can be obtained for any predicate, at which point the analysis terminates. The algorithm is illustrated in

Figure 1.

The function create_i_state, given a set of variables V, returns the initial ι -state A over V, i.e. the ι -
state whose domain is V, such that for each v in V, A(v) = 〈f, {v}〉 . Given a calling pattern cp for a predi-

cate p, the clauses of p are analyzed by the procedure analyse_pred, which returns a set of success pat-

terns for p for that calling pattern. If cp not already present in CALLPAT(p), then it is a new calling pat-

tern: in this case it is added to CALLPAT(p), and each clause of p is analyzed via analyse_clause. The set

of success patterns so computed is returned by analyse_pred. If cp is found to be present in CALLPAT(p),
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Input: A program 〈P, EXPORTS(P)〉.

Output: Tables CALLPAT(p) and SUCCPAT(p) giving the admissible calling and success patterns for each predicate p

in the program, with respect to the set of exported predicates and external calling patterns specified in EXPORTS(P).

Method: Starting with the exported predicates, iterate over the program until no new calling or success patterns can

be inferred for any predicate.

(1) Construct the call graph for P. Hence determine, for each predicate p defined in P, the set CALLERS(p) of

predicates that call p.

(2) Initialization:

For each n-ary predicate p defined in P, create tables CALLPAT(p) and SUCCPAT(p), initialized to be empty.

For each predicate p mentioned in EXPORTS(P), add p to NEEDS_PROCESSING; for each 〈p, cp〉 in EXPORTS(P),

add cp to CALLPAT(p).

(3) Analysis:

while NEEDS_PROCESSING ≠ ∅ do

let p be an element of NEEDS_PROCESSING;

NEEDS_PROCESSING := NEEDS_PROCESSING − {p};

for each cp ∈ CALLPAT(p) do

analyse_pred(p, cp); /* results are in extension table, return value can be ignored */

od;

od. /* while */

Figure 1: Algorithm for mode and data dependency analysis

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

there are two possibilities:

(i) If a nonempty set S of success patterns for p, corresponding to the calling pattern cp, is found in

SUCCPAT(p), then they are not recomputed. Instead, the set S is returned directly.

(ii) If no success patterns can be found for p corresponding to the calling pattern cp, this indicates a cir-

cularity where no possibility for a successful execution of p can be established. In this case, the set

of success patterns returned is ∅ .

This strategy is essentially that of maintaining an extension table [12, 24], which is used to

‘‘remember’’ the success patterns computed for each calling pattern. It can be shown that the use of

extension tables leads to an execution strategy that is complete for finite domains, i.e. that all answers are

found for any computation [12]; in our case, this implies that all success patterns corresponding to any

given calling pattern for a predicate can be computed in finite time. Once a set of success patterns has

been computed for a given calling pattern for a predicate, it can be retrieved for future invocations with
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the same calling pattern in O(1) expected time, by hashing on the calling pattern.

A clause is analyzed by the procedure analyse_clause, which propagates ι -states across the clause

as described above, and returns the set of possible success patterns for the given calling pattern. The

actual propagation of sets of possible ι -states across the body of the clause is done by the procedure

analyse_body. This procedure takes a set of ι -states for the clause, and recursively processes the literals

in the body, until there are no more literals left to process, at which point it returns the resulting set of ι -
states. The processing of each literal consists of (i) using an ι -state just before the literal to compute a

calling pattern for it; (ii) using analyse_pred to compute the corresponding success patterns for this cal-

ling pattern; and (iii) using these success patterns to compute the ι -states just after that literal. The pro-

cedures analyse_pred, analyse_clause and analyse_body are given in Figure 2. Some observations on

these procedures are worth making:

(1) In the description of the function analyse_pred, every clause of a predicate is analyzed for every

calling pattern. If so desired, it is straightforward to add a third argument to this function, represent-

ing the tuple of arguments to the predicate, and analyse only those clauses whose heads unify with

this tuple. For example, consider the program

p(X, Y, Z) :− q([X | Y], Z).

q([ ], [ ]).

q([H | L], [H1 | L1]) :− . . .

When analyzing the literal q([X |Y], Z) in the body of the clause for the predicate p, such a scheme

would supply to analyse_pred a third argument 〈[X | Y], Z〉 , representing the tuple of parameters of

this literal. When analyzing the clauses for q, only those clauses whose head arguments unify with

this tuple − in this case, only the second clause − would be considered. In principle, this can

improve the precision of the analysis somewhat. From our experience with programs usually

encountered in practice, however, it is our opinion that the benefits actually accruing from such an

extension may not be very significant.

(2) Notice that in the description of analyse_clause, there is a call to the function create_i_state. This

is done primarily to simplify the presentation: in practice, there is no need to create the initial ι -state

for a clause repeatedly, each time it is analyzed. Instead, it can be created once, at the beginning of

analysis, and associated with the clause. Then, whenever a clause is processed, its initial ι -state can

be obtained by a simple lookup.

(3) The procedure analyse_clause returns all the success patterns computed for the particular calling

pattern. It is possible to consider a variant of the algorithm that returns only the new success pat-

terns found (obtained from the set NEW_SP in the pseudo-code for analyse_clause in Figure 2).

While this does not affect the correctness of the algorithm, a larger number of iterations may be

necessary to compute the fixpoint using this variant, leading to decreased efficiency [12].

(4) The correctness of the algorithm is independent of the order in which the elements of the set

NEEDS_PROCESSING are processed. However, it is usually more efficient to process them in depth-

first order, i.e. maintain NEEDS_PROCESSING as a stack.
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function analyse_pred(p, cp) /* p is the predicate to be analyzed; cp is a calling pattern */

begin

if cp ∈ CALLPAT(p) then return {sp | 〈cp, sp〉 ∈ SUCCPAT(p)}; /* use previously computed success patterns */

else

add cp to CALLPAT(p);

for each clause c
i
of p do S

i
:= analyse_clause(c

i
, cp) od;

return
i

∪ S
i
;

fi;

end.

function analyse_clause(cl, cp) /* cl is the clause to be analyzed; cp is its calling pattern */

begin

let cl be of the form ‘‘p(Xdd) :− Body’’;

Ainit := create_i_state(V), where V is the set of variables appearing in cl;

A
0

:= {update_i_state(Ainit, Xdd, cp)}; /* head unification */

A
n

:= analyse_body(Body, A
0
);

SP := {i_pat(Xdd, A
n
) | A

n
∈ A

n
}; /* success patterns for the clause */

NEW_SP := {〈cp, sp〉 | sp ∈ SP $and 〈cp, sp〉 $nomem SUCCPAT(p)}; /* new success patterns */

if NEW_SP ≠ ∅ then

add NEW_SP to SUCCPAT(p);

add CALLERS(p) to NEEDS_PROCESSING;

fi;

return SP;

end.

function analyse_body(Body, A) /* Body is the body of a clause C; A is a set of ι -states for C */

begin

if Body is empty then return A;

else

let Body be of the form ‘‘q(Xdd) , BodyTail’’;

A
1

:= ∅ ;

for each A ∈ A do

cp := i_pat(Xdd, A); /* a calling pattern for q(Xdd ) */

S := analyse_pred(q, cp); /* success patterns for q(Xdd ) */

for each sp ∈ S do add update_i_state(A, Xdd, sp) to A
1

od;

od;

return analyse_body(BodyTail, A
1
);

fi;

end.

Figure 2: the functions analyse_pred, analyse_clause and analyse_body.
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(5) A useful heuristic during analysis is to process the non-recursive clauses of a predicate before the

recursive ones, and to process facts, i.e. unit clauses, before rules. The recursive clauses can be

found by looking for cycles in the call graph of each clause: the time taken for this is proportional to

the size of the call graph. Processing clauses in this manner increases the likelihood of finding solu-

tions in the extension table when processing recursive calls, so that they need not be recomputed.

The mode of a predicate p can be computed easily from its set of calling patterns CALLPAT(p) as follows:

if $lub CALLPAT(p) is <<δ1, S1>, . . ., <δn, Sn>> then the mode of p is <δ1, . . ., δn>. To compute data

dependencies, it is necessary to maintain the ι -state at each program point. Then, two literals p(td1) and

q(td2) are independent in an ι -state A if for every variable x in vars(td1) it is the case that deps(A(x)) ∩
vars(td2) = ∅ . (The symmetry of the dependence relation between variables implies that this is equivalent

to saying that for every x in vars(td2), deps(A(x)) ∩ vars(td1) = ∅ .)

3.5. Examples

To illustrate the algorithm described above, we give two examples. The first is the usual append pro-

gram, and illustrates how recursion is handled using the extension table; the second, taken from [6], illus-

trates the handling of aliasing.

Example 5: Consider the program

append([H|L1], L2, [H|L3]) :− append(L1, L2, L3).

append([], L, L).

Assume that the user has specified the following calling pattern for this predicate:

Cp = <<c, ∅ >, <c, ∅ >, <f, {3}>>.

Initially, The table CALLPAT(append) contains only Cp, while SUCCPAT(append) is empty. Suppose the

clauses are processed according to the heuristic mentioned at the end of Section 3.4, i.e. facts before rules

and nonrecursive rules before recursive ones. Processing the unit clause, we have A init = {L → <f,

{L}>}. The ι -state A0 for this clause resulting from the unification of the head with the call is given by

update_ i_ state(A init , <[], L, L>, Cp)

where Cp is the calling pattern given above. To show how update_ i_ state works, we step through its

computation: let <A 0¢, V1> = a_ unify_ init(A init , <[], L, L>, Cp). Then, we have A 0¢= {L → <δ, D>},

where δ = ∇ {c, f} = c; and D = {L}. The set V1 of variables whose instantiations change in this step is

{L}. The functions propagate_deps and propagate_inst do not have any effect on this ι -state. Since the

instantiation of L is c, the dependency set of L in the ι -state resulting from normalize is ∅ . Thus, we

have A 0 = {L → <c, ∅ >}. The success pattern of this clause is therefore

Sp = i_ pat(<[], L, L>, A0) = <<c, ∅ >, <c, ∅ >, <c, ∅ >>.

The tuple <Cp, Sp> is therefore added to SUCCPAT(append), after which the recursive clause is pro-

cessed. For this, the ι -state resulting from the unification of the head with the call is
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A0 = {H → <c, ∅ >; L1 → <c, ∅ >; L2 → <c, ∅ >; L3 → <f, {L3}>}.

The calling pattern for the literal in the body is therefore

i_ pat(<L1, L2, L3>, A0) = <<c, ∅ >, <c, ∅ >, <f, {3}>>.

This calling pattern is found to be present in CALLPAT(append), and the success pattern for this is found

from SUCCPAT(append) to be the ι -pattern Sp given above. The ι -pattern Sp is therefore taken to be the

success pattern for the literal in the body, and the ι -state A1 after the return from it is given by

A1 = update_ i_ state(A0, <L1, L2, L3>, Sp).

The reader may verify that A1 = {H → <c, ∅ >; L1 → <c, ∅ >; L2 → <c, ∅ >; L3 → <c, ∅ >}. From

this, the success pattern of the second clause is obtained as

i_ pat(<[H|L1], L2, [H|L3]>, A1) = <<c, ∅ >, <c, ∅ >, <c, ∅ >>.

This is seen to be the same success pattern as for the first clause, with the appropriate entry already

present in SUCCPAT(append). The sets of calling and success patterns do not change further, and the

analysis terminates at the next iteration. From this, the mode of append is found to be <c, c, f>.

It is easy to verify that the same results are obtained even if the clauses are processed in the opposite

order, i.e. the recursive clause is processed first. When the recursive call is first encountered,

SUCCPAT(append) is empty, so the set of success patterns returned is ∅ . However, when the unit clause

is then processed, a success pattern is found and entered into SUCCPAT(append) by analyse_clause; this

also adds CALLERS(append), which in this case is just {append}, to the set NEEDS_PROCESSING. Because

of this, NEEDS_PROCESSING becomes nonempty, causing the top level loop to go through another itera-

tion. In the second iteration, the success pattern found for the unit clause is propagated through the recur-

sive clause: since no new success patterns are found in this iteration, NEEDS_PROCESSING remains empty

at the end of this iteration, and the algorithm terminates. Thus, the same results are obtained, but in this

case an additional iteration is necessary to propagate the success pattern computed for the unit clause into

the body of the recursive clause. g

Example 6: Consider the aliasing example from [6]: the program is

p(X, Y) :− q(X, Y), r(X), s(Y).

q(Z, Z).

r(a).

s(_ ).

Assume that p is the only exported predicate in this program, and that the user-specified calling pattern

for it is

<<f, {1}>, <f, {2}>>.

This ι -pattern is inserted into CALLPAT(p). Now consider the clause for p: let the ι -state after the kth.

literal (where the head counts as the 0th. literal) be Ak. The ι -state resulting from unification of the head
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with the call is A0 = {X → <f, {X}>, Y → <f, {Y}>}. The calling pattern for q is therefore <<f, {1}>,

<f, {2}>>, and is added to CALLPAT(q).

The clause for q is then analyzed: the ι -state Aq resulting from the unification of the head of the

clause for q with the call is given by Aq = {Z → <f, {Z}>} from which the success pattern of the call to q

is inferred to be <<f, {1, 2}>, <f, {1, 2}>>. The ι -state A1 after the literal q(X, Y) in the clause for p is

therefore

A1 = {X → <f, {X, Y}>, Y → <f, {X, Y}>}.

The calling pattern for the literal for r is therefore <f, {1}>, and the success pattern in this case is <c,

∅ >. The ι -state A2 after this literal is given by update_ i_ state(A1, <X>, <c, ∅ >). Let A2(X) = <δX,

DX>, and A2(Y) = <δY, DY>. Let <A 1¢, V1> = a_ unify_ init(A1, <X>, <c, ∅ >), then A 1¢= {X → <c, {X,

Y}>, Y → <f, {X, Y}>}, and V1 = {X}. The function propagate_deps has no effect on this ι -state, so

that propagate_deps(〈A 1¢, V1〉) = 〈A 1¢, V1〉 . Then, in the computation of propagate_inst(〈A 1¢, V1〉), since

X is in the dependency set of Y as well as in V1 and because its instantiation is not f, the instantiation of Y

is set to d. The dependency set of X is set to ∅ in the normalization phase. The ι -state A2 is therefore

A2 = {X → <c, ∅ >, Y → <d, {Y}>}.

The calling pattern for s is therefore inferred as <d, {1}>, and its success pattern is the same, so that the

ι -state A3 at the end of the clause is the same as A2. The success pattern of p is therefore <<c, ∅ >, <d,

{2}>>. This is conservative, but sound. g

3.6. Handling Other Control Constructs

The only connective considered so far for literals in the body of a clause has been sequential conjunction,

decoted by ‘,’. For analysis purposes, other connectives, such as disjunction (denoted by ‘;’), condition-

als (denoted by ‘→’) and negation, can be handled simply by a preprocessing phase that transforms

clauses to a form that contains only ‘,’. A clause of the form ‘‘p :− q, (r ; s), t’’ is transformed to

p :− q, r, t.

p :− q, s, t.

A clause of the form ‘‘p :− q, (r → s ; t), u’’ is transformed to

p :− q, r, s, u.

p :− q, t, u.

In handling negation, a naive transformation might take a clause of the form ‘‘p :− q, not( (r, s) ), t’’ and

yield

p :− q, r, s.

p :− q, t.

This simple transformation for negations is much too conservative, however, since success patterns for

the clause ‘‘p :− q, r, s’’ will be considered even though in reality, the calls to r and s, being within a
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negation, will not affect p’s success patterns in any way − the creation of this clause is necessary only to

ensure that calling patterns for r and s are obtained correctly. The analysis may be sharpened by observ-

ing that if a clause for a predicate is guaranteed to fail, then its success pattern set can be taken to be ∅ .

The clause ‘‘p :− q, not( (r, s) ), t’’ may therefore be transformed to

p :− q, r, s, fail.

p :− q, t.

In this case, the presence of fail in the first transformed clause ensures that this clause does not affect p’s

success patterns.

4. Soundness and Complexity

4.1. Soundness

This section discusses the soundness of the flow analysis algorithm discussed above. First, we show that

update_ i_ state safely describes the effects of unification for certain kinds of terms. This is followed by a

proof that the ι -states computed by the flow analysis procedure described above are sound.

As is evident from the previous section, update_ i_ state is used for only two purposes: for the

unification of the head of a clause with a call, and for back-unification of arguments at the return from a

call. When the head of a clause is being unified with a call, the two terms being unified are variable dis-

joint; in the case of back-unification at the return from a call, the returning argument tuple is an instance

of the calling argument tuple that does not contain any variable of the calling clause not present in the

calling argument tuples. The correctness proof below restricts itself to unification between terms that

satisfy these criteria, which are referred to as call-compatibility and return-compatibility. Two terms t1
and t2 are call compatible if and only if they are variable disjoint; t1 is return compatible with t2 with

respect to a set of variables V if and only if t2 is an instance of t1, and vars(t2) ∩ V ⊆ vars(t1).

If A is an ι -state defined on a set of variables V and, for a given substitution σ and set of variables V

⊆ V it is the case that for each v in V, (i) σ(v) ∈ inst(A(v)); and (ii) for any x ∈ V, vars(σ(x)) ∩
vars(σ(v)) ≠ ∅ implies x ∈ deps(A(v)) and v ∈ deps(A(x)), then σ is said to be V-consistent with A. If σ
is V-consistent with A, i.e. consistent on all the variables A is defined on, then σ is said to be consistent

with A. From this definition, we have:

Lemma 4.1: Let A be an ι -state defined on a set of variables V, and Td a tuple of terms all whose variables

are in V. If σ is a substitution consistent with A, then i_pat(Td, A) describes σ(Td ). $box

The following lemma shows that update_ i_ state correctly simulates unification in the abstract domain

for calls and returns:

Lemma 4.2: Let A0 be an ι -state defined over a set of variables V; td an n-tuple of terms all whose vari-

ables are in V; σ a substitution; Id an ι -pattern of length n; and td¢a tuple of terms described by Id such that
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either (i) σ(td) and td¢are call-compatible, or (ii) σ(td) is return-compatible with td¢with respect to V. If σ
is consistent with A0 and σ(td) and td¢are unifiable with most general unifier ψ, then ψ $comp σ is con-

sistent with update_ i_ state(A0, td, Id).

Proof: The lemma holds vacuously in the case where unification fails. Assume, therefore, that unification

succeeds. Since td¢is either call- or return-compatible with td, it suffices to consider the variables occur-

ring in td. Let

〈A ¢, V ¢> = a_ unify_ init(A0, td, Id);

〈A ¢¢, V ¢¢〉= propagate_deps(〈A ¢, V ¢〉);
A ¢¢¢= propagate_inst(〈A ¢¢, V ¢¢〉); and

A1 = normalize(A ¢¢¢) = update_ i_ state(A0, td, Id).

Let x be any variable in V, with A0(x) = <δ0, D0> and A1(x) = <δ1, D1>.

Clearly, if neither x nor any variable in D0 appears in td, then x is unaffected by the unification. In

this case, we have A1(x) = A0(x) and (ψ $comp σ)(x) = σ(x). Since σ is consistent with A0, ψ $comp σ is

trivially consistent with A1 in this case, and the lemma holds. Assume that either x or some variable in D0

occurs in td. If inst(A0(x)) = δ0 = c then, since σ is consistent with A0, σ(x) must be a ground term and

hence cannot be affected by a successful unification, nor can it share variables with any other variable y in

V. In this case, it follows from the definitions of update_i_state that δ1 = c and D1 = ∅ , and again the

lemma holds. Therefore, consider the case where δ0 ≠ c.

First, consider the dependency set of x. Let td = <t1, ..., tn>. If x occurs in tk, then the indices of the

elements of σ(td) that σ(x) can share variables with is contained in c_ closure(k, i_ pat(td, A0), Id). It fol-

lows that if, for some variable y ∈ V,

vars((ψ $comp σ)(x)) ∩ vars((ψ $comp σ)(y)) ≠ ∅

then y occurs in tj for some j ∈ c_ closure(k, i_ pat(td, A0), Id). Therefore, from the definition of

update_ i_ state, y must be in deps(A1(x)). If x does not occur in td and, for some variable y ∈ V,

vars((ψ $comp σ)(x)) ∩ vars((ψ $comp σ)(y)) ≠ ∅

then either (i) y ∈ D0; or (ii) y $nomem D0. In the former case, it is easy to verify from the definition of

update_ i_ state that since the result of unification is not a ground term, y is in D1. In the latter case, since

σ is consistent with A0, we must have vars(σ(x)) ∩ vars(σ(y)) = ∅ . It follows that for some variable z

occurring in td, z ∈ deps(A0(x)) and z becomes dependent on y as a result of unification. But in this case,

as argued above, y ∈ deps(A ¢(z)) and z ∈ V1. Then, from the definition of propagate_deps, we have y ∈

deps(A ¢¢(x)). Since propagate_inst does not affect the dependency set of any variable, y ∈ deps(A ¢¢¢(x)).

Next, consider the instantiation of the variable x. Recall that we are considering the case where

inst(A0(x)) = δ0 is not c. Since propagate_deps does not affect instantiations, inst(A ¢¢(x)) = inst(A ¢(x)).

From the first part of the proof of this lemma, it can be seen that if there is any other variable y that x can
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share a variable with, then y is in deps(A ¢¢(x)). From the case analysis before the definition of

propagate_inst, it can be seen that the only interesting case is where inst(A ¢¢(x)) = f and there is some v in

V ¢¢ ∩deps(A ¢¢(x)) for which inst(A ¢(v)) ≠ f. It follows from the definition of propagate_inst that in this

case, inst(A ¢¢¢(x)) = d, so that (ψ $comp σ)(x) ∈ inst(A ¢¢¢(x)).

Finally, it is necessary to take into account the effect of the function normalize. From its definition,

it can be seen that the only effect of normalize is the following: if inst(A ¢¢¢(v)) = c for a variable v then the

dependency set of v is set to ∅ , and v is deleted from the dependency set of the other variables. Since

there is no other effect on variables that are not ground, our earlier conclusions about such variables in

A ¢¢¢apply also to the ι -state A1 = normalize(A ¢¢¢) = update_ i_ state(A0, td, Id). This shows that for every

variable x in V,

(i) (ψ $comp σ)(x) ∈ inst(A1(x)); and

(ii) For any y ∈ V, if vars((ψ $comp σ)(x)) ∩ vars((ψ $comp σ)(y)) ≠ ∅ , then y ∈ deps(A1(x)).

Thus, ψ $comp σ is consistent with A1 = update_ i_ state(A0, td, Id), and the lemma follows. $box

When considering the unification of a tuple of terms td with a tuple td¢described by an ι -pattern Id, it has

been assumed that the effects of this unification can be described by first considering the effects on the

variables occurring in td, and then propagating these effects to the other variables in the ι -state under con-

sideration. This assumption does not hold if the compatibility requirements of Lemma 4.2 are violated.

To see this, consider td = 〈X, a〉 , and Id = 〈 〈 f, {1}〉 , 〈f, {2}〉 〉 . Let the ι -state A under consideration be A =

{X → 〈f, {X}〉}. Then, update_i_state(A, td, Id) = A. It is evident that while Id describes the tuple of terms

td¢≡ 〈Y, X 〉 , the result of unifying td and td¢is not reflected in update_i_state(A, td, Id). The reason for this is

that td and td¢are not call-compatible. Similarly, consider td ≡ 〈 X 〉 , td¢≡ 〈Y 〉 , and let Id = 〈 〈 f, {1}〉 〉 . Let the

ι -state A under consideration be

A = {X → 〈f, {X}〉; Y → 〈f, {Y}〉}.

Then, update_i_state(A, td, Id) = A. The unification of td and td¢aliases together the variables X and Y, and

even though Id describes td¢, this aliasing is not reflected in update_i_state(A, td, Id). The problem in this

case is that td and td¢are not return-compatible.

To establish that the analysis algorithm is sound, it is necessary to show that for any computation of

a ‘‘legitimate’’ call to an exported predicate in a module, any call to a predicate p that can arise is

described by a tuple in CALLPAT(p), and any return from such a call is described by a tuple in

SUCCPAT(p). This follows directly from the fact, established in Lemma 4.2, that unification in calls and

returns are handled correctly:

Theorem 4.3 (Soundness): Let CALLPAT(p) and SUCCPAT(p) represent the admissible calling and success

patterns for a predicate p in a module 〈P, EXPORTS(P)〉 , and let 〈q, cq〉 ∈ EXPORTS(P). In any computation

of q with calling pattern cq,
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(1) for any call Cp to p that can arise at runtime, there is a calling pattern Ic ∈ CALLPAT(p) such that Ic

describes Cp; and

(2) if the call Cp can succeed with its arguments bound to a tuple of terms Sp, i.e. with success pattern

ι (Sp), then there is a pair <Ic, Is> in SUCCPAT(p) such that Is describes Sp.

Proof: By induction on the number of resolution steps in the computation. Consider a call Cp ≡ p(Tdin )

obtained after k resolution steps.

Base case: If k = 0, then Cp must be the first literal in the user’s query, i.e. the query must be of the form

?- p(Tdin ), . . .

Since this is a user query, it has to conform to a calling pattern for p specified in EXPORTS(P), so there

must be a user-specified calling pattern Ic for the exported predicate p, such that Ic describes Cp. It fol-

lows from the definition of CALLPAT(p) that Ic is in CALLPAT(p).

For success patterns, the base case must be for one resolution step. In this case, the query must be

as above, and there must be a unit clause

U : p(Sd)

such that for some θ-activation of U, Tdin and θ(Sd) are unifiable with most general unifier σ. The argu-

ments of the call on success are therefore σ(Tdin ) ≡ (σ $comp θ)(Sd). The ι -state for U, after head-

unification, is given by A0 = update_i_state(Ainit, Sd, Ic). From Lemma 4.2, the substitution σ $comp θ is

consistent with A0. It follows from Lemma 4.1 that the success pattern Sp ≡ i_pat(Sd, A0) describes (σ

$comp θ)(Sd). Since σ(Tdin ) ≡ (σ $comp θ)(Sd), it follows that Sp describes σ(Tdin ), whence the theorem

holds.

Induction case: Assume that the theorem holds for k resolution steps, k < n. Consider a call p(Tdin ) that

arises after n steps. For this, there must be a clause for a predicate r,

r(Xdd0) :− q1(Xdd1), . . ., qm(Xddm ), p(Sd), . . ., qn(Xddn )

where r is called with arguments Tdr . Certainly this call to r is obtained in fewer than n resolution steps,

whence from the induction hypothesis there is an ι -pattern Ir ∈ CALLPAT(r) that describes Tdr . Because Ir

∈ CALLPAT(r), the analysis algorithm will have processed this clause with the calling pattern Ir.

Consider the analysis of a θ-activation of this clause for the calling pattern Ir. Let Ai be the ι -state

immediately after the ith. literal in the clause (the head counts as the 0th literal), and ψi any substitution for

the variables of the clause obtained at that point for this call using SLD-resolution. For simplicity of

notation, let σi = ψi $comp θ: the call to p being considered is thus p(Tdin ) ≡ p(σm(Sd)). We show, by

induction on i, that σi is consistent with Ai, 0 ≤ i ≤ m. Let ψ0 be the most general unifier of the arguments

Tdr in the call and θ(Xdd0) in the head, and A0 = update_i_state(Ainit, Xdd0, Ir ). In the base case, it follows

from Lemma 4.2 that σ0 is consistent with A 0. Suppose that σi is consistent with Ai for 1 ≤ i < j, and
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consider σj, where j ≤ m. Clearly, the call qj(Xddj ) is obtained in fewer than n resolution steps, as is the

return from this call. From the induction hypothesis for the theorem, therefore, there must be an ι -pattern

cp = i_pat(Xddj , Aj−1) in CALLPAT(qj) such that cp describes σj−1(Xddj ), and 〈cp, sp〉 ∈ SUCCPAT(qj) such that

sp describes σj(Xddj ). It follows, from Lemma 4.2, that σj is consistent with Aj = update_i_state(Aj−1, Xddj ,

sp). This implies that σi is consistent with Ai for 1 ≤ i ≤ m. Now the calling pattern inferred for p is Ic ≡

i_pat(Sd, Am), and since σm is consistent with Am, it follows from Lemma 4.1 that Ic describes σm(Sd),

whence part (1) of the theorem holds.

The inductive argument for part (2) of the theorem, involving success patterns, is similar. $box

That the algorithm terminates can be seen from the following: from the definition of update_ i_ state it

follows that for any ι -state A, n-tuple of terms td and ι -pattern Id of length n, if a variable x is in the domain

of A, then

inst(A(x)) ≤| inst(update_ i_ state(A, td, Id)(x)).

In other words, instantiations of variables are nondecreasing. Since the mode set ∆ is finite, this implies

that the instantiation of a variable can only increase through a finite number of values. Given this, and the

finite domains of ι -states, nontermination is possible only if the dependency set of some variable oscil-

lates, i.e. if a variable enters and leaves a dependency set repeatedly. It can be seen from the definition of

update_ i_ state that the only time a variable y leaves the dependency set of a variable x is in the normali-

zation step, if the instantiation of x or y is c. In this case, since instantiations of variables are nondecreas-

ing, y can never be reintroduced into the dependency set of x. Thus, oscillations are not possible, and the

algorithm terminates.

4.2. Complexity

Consider a program with p predicates of arity at most a, where each predicate has at most c clauses, and

each clause has at most l literals. Suppose there are at most V variables in any clause. For a tuple of size

a, computing the ι -pattern for that term in an ι -state involves computing the instantiation of each element

of that tuple, and determining sharing of variables, which involves determining whether two terms in the

tuple have intersecting variable sets. Determining the instantiation of a term may require the examination

of the instantiation of each variable occurring in that term, and may therefore take O(V) time in the worst

case;† determining the instantiations of the a terms in the tuple can therefore take O(aV) time. For each

pair of terms, determining whether their dependency sets have a nonempty intersection can take time

O(V). Since there are O(a2) such pairs, the total time complexity of i_ pat is O(aV + a2V) = O(a2V).

To compute the cost of update_ i_ state, it is necessary to determine the costs of a_ unify_ init,

propagate_deps, propagate_inst and normalize. The worst case cost a_ unify_ init can be obtained as
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† By representing sets of variables using bit vectors, and using appropriate data structures for ι -states, the instantiation of a

term can actually be determined using O(1) bit vector operations.
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follows: each computation of inherited_ inst takes O(1) time, and processing a variable in a_ unify_ init

can involve a computations of inherited_ inst and ∇ , and a union operations. Since each of these can be

done in time O(1), their cost is O(a). In computing the coupling closure, there is one i_ pat operation,

which has cost O(a2V); if coupling closures are computed using straightforward transitive closure

methods, then for ι -patterns of size n the time taken to compute the coupling closure of an argument posi-

tion is O(n3), with n = a in the worst case. The total cost of a_ unify_ init, which may involve the process-

ing of V variables, is therefore O((a3 + a2V)V) = O(a3V2). In propagate_deps, the dependency set of a

variable can be of size V in the worst case, necessitating O(V) union operations for each variable, or

O(V2) operations altogether. In propagate_inst, the dependency set of a variable may be of size V in the

worst case, so looking through this to determine whether any of them has instantiation ≠ f can cost O(V).

The total cost for processing V variables is therefore O(V2). In normalize, the processing of each variable

may involve O(V) unions, so the total cost of normalize can be O(V2) in the worst case. Thus, the worst

case time complexity of update_ i_ state is O(a3V2).

The processing of each clause involves O(l) applications of i_ pat and O(l) applications of

update_ i_ state. It can be seen from the above that the cost of i_ pat is dominated by that of

update_ i_ state. Thus, the complexity of processing each clause is O(la3V2). The cost of processing a

predicate, for each calling pattern, is therefore O(cla3V2).

Since |∆| = 5, for each argument position of a predicate there are 5 different instantiations possible,

so the total number of instantiations possible for a predicate of arity a is 5a. The number of possible share

sets for such a predicate is the number of partitions of the set {1, ..., a}. This is given by Bell’s number

Ba , with 2a < Ba < 2aloga. Thus, the total number of calling and success patterns possible is 5aBa . For

simplicity of notation, we write this quantity as Φ(a).

By using extension tables, each predicate is processed exactly once for any particular calling and

success pattern for it: once a success pattern for a predicate has been computed for a calling pattern, on

future invocations of that predicate with that calling pattern, this success pattern is not recomputed, but

rather is looked up in O(1) time. Thus, the total time complexity of the algorithm, given p predicates in

the program, is O(pcla3V2 Φ(a)).

Let the size of a term be the number of symbols in the term, i.e. the number of nodes in its tree

representation. If the size of the largest term in a clause is s, then the size of the clause is las, and the size

of the program is N = pclas. Since each variable in a clause must account for at least one node in the tree

representation of the clause, we have laV = O(las). The time complexity of the algorithm can therefore

be written as O((pclas)(a2V)Φ(a)) = O(Na2V Φ(a)).

This worst case complexity can be misleading, however, for two reasons. The first is that predicates

in a program very rarely exhibit all possible calling and success patterns. Typically, a predicate in a pro-

gram is used consistently with some of its arguments as input arguments and others as output arguments:

it is this sort of consistent usage that makes mode analysis meaningful at all. The second reason is that
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while the analysis above indicates that the algorithm can be worse than exponential in the maximum arity

a of a predicate in the program, the arities of predicates commonly encountered tend to be small, so that

this is often not a big problem in practice. Define a program to be of bounded variety if the number of

calling patterns for each predicate in the program can be bounded by a constant. Most programs encoun-

tered in practice are of bounded variety. For such programs, the number of calling patterns per predicate

is O(1) by definition, and the complexity of the algorithm reduces to O(Na2V).

In practice, the arity a and number of variables V per clause do not increase as the size of the pro-

gram increases. For practical purposes, therefore, the algorithm takes time linear in the size of the pro-

gram.

5. Trading Precision for Speed

While the flow analysis algorithm developed in the previous section is reasonably efficient for programs

that are likely to be encountered in practice, there may be occasions when it performs badly. This section

discusses how the algorithm may be modified to improve its worst case behavior. While this may involve

some loss in precision, our experience indicates that for most programs encountered in practice, this loss

in precision tends to be insignificant.

The modification proposed affects only how the tables CALLPAT and SUCCPAT are managed. Recall

that given two ι -patterns I1 = <<δ11, S11>, ..., <δ1n, S1n>> and I2 = <<δ21, S21>, ..., <δ2n, S2n>>, I1 $le

I2 if and only if δ1i $le δ2i and S1i ⊆ S2i, 1 ≤ i ≤ n. For any value of n ≥ 0, the set of ι -patterns form a

complete lattice under this ordering, so that for any two ι -patterns I1 and I2 of the same length, we can

find I1 $lub I2. In the modified algorithm, each of the tables CALLPAT and SUCCPAT contains only one

entry per predicate. Let I$bottom (n) = 〈 〈 e, ∅〉 , . . ., 〈e, ∅〉 〉 be the ‘‘bottom’’ ι -pattern of length n. Ini-

tially, the entry in CALLPAT(p) for an n-ary predicate p is I$bottom (n), and that in SUCCPAT(p) is

<I$bottom (n), I$bottom (n)>. When a call to a predicate p with calling pattern I is encountered, let the entry

in SUCCPAT(p) be < Ic , Is >. If I $le Ic, then the ι -pattern Is is returned as the success pattern for that call;

otherwise, the entry in CALLPAT(p) is replaced by the ι -pattern I $lub Ic; flow analysis is then carried out

as described, but for the calling pattern I $lub Ic. If the success pattern computed for this calling pattern

is Is ¢, then the entry in SUCCPAT(p) is replaced by <I $lub Ic, Is $lub Is ¢>.

The soundness of this algorithm follows from that of the algorithm described in the previous sec-

tion. Its worst case complexity can be computed as follows: the cost of update_ i_ state remains the same

as before, so that the cost of processing c clauses of a predicate, each containing l literals, is, as before,

O(cla3V2)). In this case, however, the number of different calling patterns for which the analysis will be

carried out will be far fewer: for each predicate with arity a, the number of different instantiations that

can be considered is 3a, since the height of 〈∆ , $le_triangle 〉 is 4 but flow analysis is not carried out for

the ‘‘bottom’’ ι -patterns I$bottom (a) initially in each CALLPAT and SUCCPAT tables; the number of different

share sets possible for such a predicate is a+1. Thus, the total number of calling patterns that may be con-

sidered for a predicate of arity a is now O(a2), down from 5aBa in the previous case. If there are p
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predicates in the program, then the total cost of the new algorithm, in the worst case, is therefore

O(Na4V), where N = pclas is the size of the program. For programs of bounded variety, the number of

calling patterns is O(1), and the complexity reduces, as before, to O(Na2V).

It is not difficult to set up an analysis system where the CALLPAT and SUCCPAT tables for some

predicates are managed according to the old algorithm, while those for others are managed according to

the new algorithm above, as directed by the user. This can yield a spectrum of analysis systems that are

intermediate in speed and precision between the two described here, and that can be tuned to an applica-

tion by simple hints from the user. A point to be noted in this case, however, is that the treatment of

unification via =/2 as the predicate defined as

=(X, X)

can lead to substantial loss in precision. Therefore, =/2 should be handled specially, in the same way as

head unification.

6. Applications

Information regarding predicate modes and data dependencies between literals finds many uses in the

static optimization of logic programs. The classic application of mode information is in the use of spe-

cialized unification routines that have fewer cases to test than the general unification algorithm, and hence

are more efficient [25, 26]. Mode information is important in detecting deterministic and functional com-

putations, information regarding which can be used to improve the search behavior of logic programs

[6, 17]. Mode information is important in the transformation of logic programs into functional languages

[21]. Mode information can also be used to improve the efficiency of programs in systems such as MU-

Prolog [19] and Sicstus Prolog [23], which permit the suspension of certain goals depending on the

instantiation of variables at runtime: if it can be ascertained that certain arguments of a predicate will

always be instantiated (or uninstantiated) at a call via mode analysis, the corresponding runtime tests can

be eliminated, thereby leading to faster code. Also, mode information can be used to generate index

structures for predicates more intelligently: for example, Prolog compilers typically generate an index on

the first argument of each predicate. However, if the mode of the predicate indicates that the first argu-

ment of calls to a predicate will always be uninstantiated but some other argument will be instantiated, an

intelligent compiler will be able to generate an index on the instantiated argument, thereby reducing the

amount of shallow backtracking required.

Another application of mode information is in clause fusion to reduce the amount of nondetermin-

ism in a predicate. In general, given two clauses with identical heads,

p(Xdd ) :− Body1.

and

p(Xdd ) :− Body2.

it is possible to merge them to produce the clause

p(Xdd ) :− Body1 ; Body2.
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Amongst the advantages of doing this are that if Body1 fails, then the arguments in the call will not have

to be restored from the choice point and unified again with the head of the second clause; if an index is

present on the clauses of the predicate, it will be slightly smaller; and finally, if Body1 and Body2 contain

literals in common, they may be factored to reduce the amount of redundant computation. In practice,

however, it is rarely the case that two clauses for a predicate have identical heads. Mode information can

sometimes be used in such cases to transform their heads in a manner that allows fusion to be carried out.

The basic idea is to take ‘‘output’’ arguments, i.e. those with mode f, and move their unification from the

head into the body of the clause. This is illustrated by the following example:

Example 7: Consider the following predicate:

part([],_ ,[],[]).

part([E|L], M, [E|U1], U2) :− E =< M, part(L, M, U1, U2).

part([E|L], M, U1, [E|U2]) :− E > M, part(L, M, U1, U2).

The second and third clauses for the predicate cannot be merged, since the arguments in their heads differ.

However, if we know that part has the mode <c, c, f, f> then the clauses can be transformed to produce

part([E|L], M, U1a, U2) :− E =< M, U1a = [E|U1], part(L, M, U1, U2).

part([E|L], M, U1, U2a) :− E > M, U2a = [E|U2], part(L, M, U1, U2).

At this point, it is possible to merge the two clauses. Moreover, noticing that the complementary literals

‘E =< M’ and ‘E > M’ imply that the two bodies are mutually exclusive [9], we can generate the

transformed predicate defined by

part([],_ ,[],[]).

part([E|L], M, U1a, U2a) :− E =< M →
(U1a = [E|U1], part(L, M, U1, U2)) ;

(U2a = [E|U2], part(L, M, U1, U2)).

The transformed predicate does not create a choice point for the predicate, since a type test on the first

argument suffices to discriminate between the two clauses, and an arithmetic comparison can be used to

discriminate between the two alternatives in the second clause. g

Knowledge of data dependencies can be used to devise semi-intelligent backtracking schemes for pro-

grams that do not incur the runtime overhead of intelligent backtracking [3]. They can also be used in the

parallelization of programs [2, 27]. A related algorithm can be used to synthesize control strategies for

parallel logic programs [5]. Data dependency information is also necessary for various optimizing

transformations of logic programs, e.g. recursion removal, loop fusion, code motion out of loops, etc. [7].

The following example illustrates one such application:

Example 8: Consider the following predicate to compute the maximum and minimum values in a binary

tree whose leaves are labelled by integers:
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maxmin(T, Max, Min) :− maxval(T, Max), minval(T, Min).

maxval(leaf(N), N).

maxval(tree(L, R), Max) :− maxval(L, M1), maxval(R, M2), max(M1, M2, Max).

minval(leaf(N), N).

minval(tree(L, R), Min) :− minval(L, M1), minval(R, M2), min(M1, M2, Min).

With this definition, the computation of maxmin(T, Max, Min) for any tree T requires two traversals of the

tree. Unfold/fold transformations can be used to ‘‘fuse’’ the two loops in this definition. The transforma-

tion begins by unfolding the literals for maxval and minval in the clause for maxmin, which yields

maxmin(leaf(N), N, N).

maxmin(tree(L, R), Max, Min) :−
maxval(L, Mx1), maxval(R, Mx2), max(Mx1, Mx2, Max),

minval(L, Mn1), minval(R, Mn2), min(Mn1, Mn2, Min).

Next, literals that can be shown to be independent using data dependency analysis may be rearranged

(provided that other relevant considerations, e.g. termination, are also satisfied). This yields

maxmin(leaf(N), N, N).

maxmin(tree(L, R), Max, Min) :−
maxval(L, Mx1), minval(L, Mn1),

maxval(R, Mx2), minval(R, Mn2),

max(Mx1, Mx2, Max), min(Mn1, Mn2, Min).

Finally, folding is carried out using the original definition of maxmin, which yields the definition

maxmin(leaf(N), N, N).

maxmin(tree(L, R), Max, Min) :−
maxmin(L, Mx1, Mn1),

maxmin(R, Mx2, Mn2),

max(Mx1, Mx2, Max), min(Mn1, Mn2, Min).

With this definition, the computation of maxmin(T, Max, Min) for any tree T requires only one traversal of

T. Further, if the predicates maxval and minval are not used elsewhere in the program, they may now be

discarded, leading to a decrease in code size. The crucial step in the transformation is the rearrangement

of literals, where data dependency information is necessary to ensure that the transformation does not

change the behavior of the program in unacceptable ways by altering producer-consumer relationships

between literals. g

7. Conclusions

Mode and data dependency information play an important role in the compilation of logic programs to

efficient executable code. This paper shows how the two analyses can be combined. It describes a

mechanism for managing dependencies between variables in a uniform manner, and uses it to describe a

flow analysis algorithm that is then proved sound. This yields an algorithm that is precise, yet efficient

31



for most programs encountered in practice. A variation on the algorithm is also described that offers

significantly superior worst-case performance while retaining precision and efficiency for most com-

monly encountered programs. Some applications of mode and data dependency information to logic pro-

grams are also described.
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Appendix: Mode and Data Dependency Analysis as an Abstract Interpretation

This appendix casts the mode and data dependency analysis presented in the paper as an abstract

interpretation. In an actual execution of a program, each program point has associated with it a set of

substitutions. If Subst be the set of all substitutions, the concrete domain is the set 2Subst, which forms

a complete lattice under inclusion. The abstract domain for a program is the disjoint sum of the abstract

domains for each of its clauses. The abstract domain for a clause C is its set of ι -states,

ι -StateC = VC → ∆ × 2
VC

where VC denotes the set of program variables of C, i.e. the variables appearing in the program text for C.

For simplicity of notation in the discussion that follows, we consider the abstraction and concretization

functions for only a single clause. The extension of this to the entire abstract domain is a tedious but

conceptually straightforward construction involving the usual injection and projection operations.

The set of ι -states ι -StateC for a clause C can be ordered as follows: for any A1 and A2 in ι -StateC,

A1 $le A2 if and only if for every variable x in VC, inst(A1(x)) $le inst(A2(x)) and deps(A1(x)) ⊆

deps(A2(x)), and forms a complete lattice under this ordering. Recall that if A is an ι -state defined on a set

of variables V, then a substitution σ is said to be consistent with A if and only if for every x in V, (i) σ(x)

∈ inst(A(x)); and (ii) if for any y ∈ V, vars(σ(x)) ∩ vars(σ(y)) ≠ ∅ , then y ∈ deps(A(x)). The abstraction

function α : 2Subst → ι -StateC is defined as follows:

Definition: Given a set of substitutions Θ at a point in a clause C, α(Θ) = A is the least ι -state in ι -StateC

such that every θ in Θ is consistent with A. g

The concretization function γ : ι -StateC → 2Subst is defined as follows:

Definition: Given an ι -state A in ι -StateC, γ(A) = {θ ∈ Subst | θ is consistent with A}. g

It is straightforward to show that α and γ are monotonic and adjoint. Consider sets of substitutions Θ1

and Θ2, with Θ1 ⊆ Θ 2. By definition, every member of Θ2 is consistent with α(Θ2), which implies that

every member of Θ1 is consistent with α(Θ2). Since α(Θ1) is the least ι -state that every member of Θ1 is

consistent with, it follows that α(Θ1) $le α(Θ2), i.e. that α is monotonic.

Let A1 and A2 be ι -states defined on a set of variables V, with A1 $le A2. Consider any substitution

σ consistent with A1: since A1 $le A2, inst(A1(x)) $le inst(A2(x)) for any x in V, and deps(A1(x)) ⊆

deps(A2(x)), whence it follows that σ is consistent with A2. This implies that if σ is in γ(A1) then σ is also

in γ(A2), i.e. γ(A1) ⊆ γ (A2). This establishes that γ is monotonic.
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By definition, α(Θ) is the least ι -state that every element of a set of substitutions Θ is consistent

with; it is easy to see that γ(A) is the largest set of substitutions all whose elements are consistent with the

ι -state A. It follows immediately that α(γ(A)) = A, and Θ ⊆ γ (α(Θ)), i.e. that α and γ are adjoint.

It remains only to show that ‘‘unification’’ in the abstract domain, as defined by update_ i_ state, is

faithful to unification in the concrete domain. This proof is essentially that of Lemma 4.2, and is not

repeated here. This completes the formalization of our mode and data dependency analysis as an abstract

interpretation. $box
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