
Abstract Interpretation of Logic Programs Using MagicTransformations �Saumya DebrayDepartment of Computer Science,University of Arizona-Tucson, AZ 85721, U.S.A.Raghu RamakrishnanDepartment of Computer Sciences,University of Wisconsin-Madison, WI 53706, U.S.A.AbstractIn data
ow analysis of logic programs, information must be propagated according to thecontrol strategy of the language under consideration. However, for languages with top-downcontrol 
ow, naive top-down data
ow analyses may have problems guaranteeing completenessand/or termination. What is required in the data
ow analysis is a bottom-up �xpoint computa-tion, guided by the (possibly top-down) control strategy of the language. This paper describesthe application of the Magic Templates algorithm, originally devised as a technique for e�cientbottom-up computation of logic programs, to data
ow analysis of logic programs. It turns outthat a direct application of the Magic Templates algorithm can result in an undesirable lossin precision, because connections between \calling patterns" and the corresponding \successpatterns" may be lost. We show how the original Magic Templates algorithm can be modi�edto avoid this problem, and prove that the resulting analysis algorithm is at least as precise asany other abstract interpretation that uses the same abstract domain and abstract operations.
�The work of S. Debray was supported in part by NSF grant CCR-8702939. The work of R. Ramakrishnan wassupported in part by an IBM Faculty Development Award, a David and Lucile Packard Foundation Fellowship inScience and Engineering and NSF grant IRI-8804319.



1 IntroductionAbstract Interpretation has been proposed as a methodology for static analysis of programs [9].Several frameworks based on abstract interpretation have been proposed for analysing Horn Clauselogic programs [4, 11, 17, 26, 28, 35]. The semantics of a Horn program is typically given as the least�xpoint of a continuous function over an appropriate domain (e.g. the lattice of Herbrand interpre-tations [38], or the cpo of substitution sequences [12, 16]); these proposals for abstract interpretationare formulated, analogously, in terms of �xpoints of continuous functions over \simpli�ed" domains,called abstract domains. The computation of a least �xpoint is naturally modelled as the evaluationof the limit of a Kleene chain, which is most naturally performed bottom-up. However, becausetraditional approaches to abstract interpretation of logic programs usually proceed in a top-downmanner, ensuring completeness (i.e. that all computational paths have been explored) and termi-nation is somewhat awkward, involving techniques such as memoization that are extraneous to theoperational behavior of the language under consideration. In simple terms, this means that whilethe computation of an ordinary Prolog program over an abstract domain can be described simply byreplacing \concrete domain" operations by corresponding operations over the abstract domain, thistransformed program cannot be evaluated by an ordinary Prolog interpreter and still be guaranteedto terminate.This paper shows that abstract interpretation of languages with a top-down execution strategyneed not itself be top-down. We present a novel approach based on rewriting strategies originallydeveloped for evaluating queries in deductive databases [2, 3, 33]. These evaluation strategies rewritea given program in such a way that the �xpoint evaluation of the rewritten program is e�cient, inthat unnecessary facts are not generated. The rewriting essentially modi�es the rules in the originalprogram by adding literals that act as \�lters", preventing the generation of irrelevant facts. Further,new rules de�ning the predicates in these literals are added to the program. These predicates ine�ect compute the set of goals that are invoked a top-down (Prolog-style) evaluation of the originalprogram. When the �xpoint of the rewritten program is evaluated over an abstract domain, thefacts represent the calling patterns for the predicate together with the possible success patterns foreach such calling pattern. Thus, we obtain an elegant abstract interpretation technique based on a�xpoint evaluation of the transformed program over the abstract domain. This technique results inanalyses that are at least as precise as the analogous top-down ones.In e�ect, the program transformation phase of our approach captures at compile-time the bindingpropagation aspects of a top-down control strategy, and allows us to understand this aspect of anevaluation in terms of the least model of a logic program (the rewritten program). Many details ofthe control strategy { for example, the exact order in which di�erent rules are explored { are thusabstracted away. The bottom-up �xpoint evaluation of the rewritten program also allows a cleanseparation between two often intertwined issues, namely termination and completeness.The principal technical contributions of this paper are as follows:1. The application of bottom-up �xpoint computation techniques to data
ow analysis of top-down languages is described. The resulting analysis is|in our opinion, at least|cleaner andeasier to implement than an analysis that uses a top-down control strategy augmented withfeatures such as memoization.2. The precision of abstract interpretations is characterized. We show that the bottom-up analysisis at least as precise as any corresponding top-down abstract interpretation using the sameabstract domain and abstract functions. Further, it terminates at least whenever the top-down1



version does.The rest of the paper is organized as follows. We present notation and basic de�nitions in Section2. We describe the notion of binding propagation, formalized as sideways information passing graphs,in Section 3. Section 4 contains an overview of the Magic Templates rewriting algorithm, and thebottom-up evaluation approach. Sections 3 and 4, included to keep this paper self-contained, reviewmaterial from [3, 33] and can be skipped without loss of continuity by the reader who is familiar withthat work. We give an overview of abstract interpretation of logic programs, carefully distinguishingthe various components, in Section 5. Section 6 brings together concepts introduced in earliersections and describes how the Magic Templates rewriting followed by bottom-up evaluation can beused for abstract interpretation of logic programs. We introduce a further program transformationin order to make explicit various operations whose choice determines the domain of computation,and to maintain precision in computations over abstract domains. We characterize the precision ofour analysis in Section 7, and present some examples to illustrate our approach in Section 8. Weconclude with a discussion of related work in Section 9.2 PreliminariesThe language considered in this paper is essentially that of Horn logic. Such a language has acountably in�nite set of variables and countable sets of function and predicate symbols, these setsbeing mutually disjoint. It is assumed, without loss of generality, that with each function symbolf and each predicate symbol p, is associated a unique natural number n, referred to as the arityof the symbol; f and p are then said to be n-ary symbols (written f/n and p/n respectively). A0-ary function symbol is referred to as a constant. A term in a �rst order language is a variable, aconstant, or a compound term f(t1; : : : ; tn) where f is an n-ary function symbol and the ti are terms.We shall �nd it convenient to consider a vector, or tuple, of terms to be a term. Thus, a vector of nterms, t1; : : : ; tn, is a term, denoted ht1; : : : ; tni. When the individual elements comprising a tupleof terms are not signi�cant, the tuple is sometimes denoted simply by the use of an overbar, e.g., �t.A substitution is an idempotent mapping from the set of variables of the language under consid-eration to the set of terms that is the identity mapping at all but �nitely many points. The domainof a substitution �, written dom(�), is the set of variables x such that �(x) 6= x. A substitution � ismore general than a substitution � if there is a substitution ' such that � = '��. Substitutions aredenoted by lower case Greek letters �; �; �; : : :, while sets of substitutions are denoted by upper caseGreek letters �;�; : : :. The application of a substitution to a term can be expressed by de�ning apredicate app subst, such that given a substitution � and a term t1, app subst(�; t1; t2) if and only if�(t1) = t2. Two terms t1 and t2 are said to be uni�able if there is a substitution � such that �(t1) =�(t2); � is said to be a uni�er of t1 and t2. If two terms have a uni�er, they have a most general uni-�er that is unique upto renaming of variables. Operationally, logic programming languages typicallyhave the notion of unifying two terms in the context of a \current substitution", representing thesubstitution obtained in the process of solving the given query upto that point in the computation.This can be expressed by de�ning a predicate unify, such that unify(�; t1; t2; �) is true if and onlyif �(t1) and �(t2) are uni�able with most general uni�er  , and � =  � �; here, � represents the\current substitution". The primitive operations unify and app subst are fundamental to most logicprogramming languages.A fact, or atom, is of the form p(t1; : : : ; tn), where p is an n-ary predicate symbol and t1; : : : ; tnare terms. We adopt the convention that an atom is to be constructed by applying an n-ary predicatesymbol to a single term ht1; : : : ; tni. Since each predicate symbol in a program is assumed to have2



a unique arity, it is hoped that this sloppiness will not cause undue confusion.A clause is the disjunction of a �nite number of literals, and is said to be Horn if it has at mostone positive literal. A Horn clause with exactly one positive literal is referred to as a de�nite clause.The positive literal in a de�nite clause is its head, and the remaining literals, if any, constituteits body. A predicate de�nition consists of a set of de�nite clauses, whose heads all have the samepredicate symbol; a goal is a set of negative literals. We consider a logic program to be a pair hP;Qiwhere P is a set of predicate de�nitions and Q is the input, which consists of a query, or goal, andpossibly a set of facts for \database relations" appearing in the program. We follow the conventionin deductive database literature of separating the set of rules with non-empty bodies (the set P )from the set of facts, or unit clauses, which appear in Q and are called the database. P is referred toas the program, or the set of rules. The motivation is that the rewriting algorithms to be discussedare applied only to the program, and not to the database. This is important in the database contextsince the set of facts can be very large. However, the distinction is arti�cial, and we may choose toconsider (a subset of) facts to be rules if we wish. The meaning of a logic program is the conjunctionof the meanings of its clauses, with the free variables of each clause implicitly universally quanti�ed.Following the syntax of Edinburgh Prolog, de�nite clauses (rules) are written asp :{ q1; : : : ; qn:read declaratively as \q1 and . . . and qn implies p". Names of variables begin with upper case letters,while names of non-variable (i.e. function and predicate) symbols begin with lower case letters. Inaddition, the following notation is used for lists: the empty list is written [ ], and a list with head Hand tail L is written [HjL].We will use derivation trees in several proofs:De�nition 2.1 Given a program P and input Q, derivation trees in hP;Qi are de�ned as follows:� Every fact h in Q is a derivation tree for itself, consisting of a single node with label h.� Let r be a rule: h :� b1; : : : ; bk in P , let di; i = 1 : : :k be atoms with derivation trees ti, andlet � be the mgu of (b1; : : : ; bk) and (d1; : : : ; dk). Then, the following is a derivation tree for�(h): The root is a node labeled �(h), and each ti; i = 1 : : :n, is a child of the root. Each arcfrom the root to a child has the label r.3 An Overview of the Magic Templates Evaluation StrategyConsider the following program:1: sg(hX;Y i) :� flat(hX;Y i):2: sg(hX;Y i) :� up(hX;Z1i); sg(hZ1; Z2i); down(hZ2; Y i):?� sg(hjohn;Xi)This is the \same-generations" program, well-known in the deductive database community. We haveused h� � �i to emphasize that each predicate has a single argument, which is a tuple.3



Given the query, the natural way to use the second rule is to solve the predicates in the indicatedorder, using bindings from each predicate to solve the next predicate; this is what Prolog does. It isdesirable to achieve the same binding propagation in a bottom-up evaluation of this program, andthis can be achieved by �rst rewriting the program. We present a generalization of the GeneralizedMagic Sets rewriting algorithm [2, 3], called the Magic Templates algorithm [33], to keep this paperself-contained. The idea is to introduce a set of auxiliary clauses that compute, intuitively, subgoalsgenerated in the top-down execution. The rules in the original program are then modi�ed byattaching additional literals that act as �lters and prevent the rule from generating irrelevant tuples.We now present a simpli�ed version of the Magic Templates algorithm, tailored to the case thateach rule is always evaluated left-to-right, as in Prolog. The rewriting algorithm can actually beparametrized in terms of a sideways-information-passing strategy, or sip, that speci�es a di�erent(perhaps partial) ordering for body literals. Further, it is possible to choose a di�erent order fordi�erent patterns of bound/free arguments (or \adornments") of the head predicate. Our resultsare orthogonal to these re�nements of the basic algorithm, and we have therefore chosen to addressonly the case of evaluation methods that always proceed left-to-right. It is straightforward to adaptour results to the general case by following the same lines as in [3, 33] to deal with adornments andsips.De�nition 3.1 The Magic Templates Algorithm1. Create a new unary predicate magic p for each p in P .2. For each rule in P , add the modi�ed version of the rule to Pmg. If rule r has head, say, p(�t),the modi�ed version is obtained by adding the literal magic p(�t) to the body (at the leftmostposition).3. For each rule r in P ,and for each literal qi(�ti) in its body, add a magic rule to Pmg. The headis magic qi(�ti). The body consists of all literals to the left of the literal qi(�ti) in the modi�edversion of r.4. Create a seed fact magic q(hci) from the query.Example 3.1 The Magic Templates algorithm rewrites the same-generation program into the fol-lowing set of rules:magic sg(hjohn; U i): /* Seed from the query rule */magic sg(hZ1; Z2i) :�magic sg(hX;Y i); up(hX;Z1i): /* From rule 2, 2nd body literal */sg(hX;Y i) :�magic sg(hX;Y i); flat(hX;Y i): /* Modified rule 1 */sg(hX;Y i) :�magic sg(hX;Y i); up(hX;Z1i); sg(hZ1; Z2i); down(hZ2; Y i):/* Modified rule 2 */2 4



4 Abstract Interpretation of Logic Programs4.1 Basic IdeasLet the program points of a clause for a given sip be the points between the literals in the clauseordered according to the sip. The execution of a logic program with respect to some set of queriesS can be summarized by describing, at each program point, the set of substitutions, or variablebindings, that may be encountered when execution reaches that point, over all possible executionsof the program starting from queries in S. Such a description of the behavior of a program is referredto as its collecting semantics. The domain of the collecting semantics of the language, also referredto as the concrete domain Dconc, is thus the powerset of the set of substitutions; it forms a completelattice under set inclusion. In general, such sets of bindings may be arbitrarily large, making thestatic inference of most interesting program properties undecidable in general. Since static analysesare expected to always terminate, it is necessary to approximate the collecting semantics. This isdone by de�ning an abstract domain hDabs;vi whose structure re
ects that of the concrete domainhDconc;�i. The relationship between the two domains is given by two functions �:Dconc ! Dabsand 
:Dabs ! Dconc, known as the abstraction and concretization functions respectively. To ensurethat Dabs and Dconc have similar structure, the abstraction and concretization functions are requiredto be monotone and satisfy the following adjointness requirement:x � 
(�(x)) for all x 2 Dconc; and �(
(x)) = x for all x 2 Dabs .In the context of logic programs, the concrete domainDconc is the powerset of the set of substitutions.Equivalently, the concrete domain may be taken to consist of sets of tuples of terms. For each clause,consider the tuple �V of the variables occurring in that clause, and a tuple of terms �V 0 = �( �V ), where� is a substitution: in one direction, �V 0 can be obtained as �( �V ) given the substitution �, and in theother direction the substitution � can be obtained, given the tuple �V 0, as the most general uni�er of�V and �V 0. Similarly, a set of substitutions at a point within a clause can be represented equivalentlyby a set of tuples of terms. As mentioned earlier, tuples of terms are themselves taken to be terms,which means that the concrete domain can equivalently be considered to consist of sets of terms, aswe do in the discussion that follows. Analogously, we consider abstract domain elements to representsets of terms.In addition to this, for each primitive operation f of the language, de�ned on the concretedomain, there is a corresponding operation abs f de�ned on the abstract domain that \mimics" theexecution of f . Soundness requirements specify that such an operation abs f should always captureeverything that can actually happen at runtime when the \concrete operator" f is executed, thoughin general abs f may be conservative: in other words, for any element x of the concrete domain,f(x) � 
(abs f(�(x))): (�)In the context of logic programming, two primitive operations of interest are unify and app subst,discussed in Section 2, \lifted" to the collecting semantics. For example, whereas app subst ordinarilyapplies a single substitution to a term to yield another term, in the collecting semantics it must dealwith sets of substitutions. A set of substitutions, \applied" to a term, yields a set of terms, so it ismore natural to have app subst apply a set of substitutions in the collecting semantics to a set ofterms, yielding a set of terms. Thus, given a set of substitutions � and sets of terms T1 and T2,app subst(�; T1; T2) , T2 = ft2 j 9� 2 �; t1 2 T1 : app subst(�; t1; t2)g:5



Similarly, whereas unify ordinarily performs uni�cation in the context of a single substitution andreturns a single substitution, the corresponding operation lifted to the collecting semantics performsuni�cation in the context of a set of substitutions and two sets of terms to yield a set of substitutions.For any set of substitutions � and sets of terms T1 and T2,unify(�; T1; T2;�) , � = f' j 9t1 2 T1; t2 2 T2; � 2 � : unify(�; t1; t2; ')g:Recall that the set of terms is assumed to contain tuples of terms as well, which means that abs unifyis able to describe the e�ects of unifying two tuples of terms, e.g., in the context of a call to a predicateor the return from one.In semantic descriptions of logic programming languages that take their operational behavior intoaccount, the meaning of a predicate in a program is typically given as a function from substitutionsto sets, or sequences, of substitutions [12, 16]. Equivalently, by applying such substitutions to thearguments appearing in calls, the meaning of a predicate p can be characterized as a mapping Fp fromterms to sets, or sequences, of terms. For any given abstract interpretation, this can be abstractedto obtain the meaning of a predicate p as a partial function �p that maps descriptions of tuples ofterms to sets of descriptions of tuples of terms:�p : Dabs ! P(Dabs):The idea is that descriptions appearing in dom(�p), the domain of �p, are \calling patterns", andindicate how the predicate p may be called; and for each such calling pattern �a, the set �p(�a) givesits \success patterns", i.e. describes how a call described by �a may succeed. Thus, for any givenabstract interpretation, �p provides a (presumably safe) approximation to the collecting semanticsspeci�ed by Fp.The class of abstract interpretations we consider are those that infer calling and success patterns.This is assumed in the remainder of the paper, and references to \any abstract interpretation" or\all abstract interpretations" are understood to be relative to this class. Thus, for example, thedevelopment of Marriott and S�ndergaard [23], which computes descriptions of goals that succeedand those that �nitely fail, is not included; one can also imagine other developments that makeinferences about sets of goals that do or do not terminate, or { in the context of concurrent languages{ that deadlock (e.g. see [7]): these would be beyond the development in this paper. However, theideas in this paper can be reformulated to deal with such frameworks as well, and we expect thattheorems that are very similar to ours can also be proved for them.The function Fp giving the meaning of a predicate computing over the concrete domain is typ-ically given as the least �xpoint of a continuous functional [12, 16]. This �xpoint is computed byapproximating Fp from below, i.e. beginning at ? and getting better and better approximationsto Fp. The process of improving such approximations can be made explicit using a metalanguageoperation merge. Conceptually, merge is a functional that takes a function F0p, and a pair of tuples ofterms h�t; �t0i indicating that a call p(�t) may succeed with its arguments bound to �t0, and updates F0pto produce a new function F00p that additionally expresses the fact that the call p(�t) can also succeedwith its arguments bound to �t0. This functional is abstracted in various ways for static analysis.For example, some researchers collect the results obtained from di�erent execution paths in a set[14, 23], while others combine such results into a single piece of information that is essentially a\worst case" approximation to them [5, 13]. Such abstractions can be described by an \abstract6



merge" operation, denoted by abs merge: in the case where results from di�erent paths are collectedin a set, abs merge is set union; in the case where results are combined to yield a worst case approx-imation, abs merge is the least upper bound operation in the abstract domain. We return to thispoint in Section 6.Abstract interpretations of logic programs can thus be characterized in terms of the followingparameters:1. an abstract domain hDabs;vi;2. abstraction and concretization functions � and 
; and3. functions abs unify, abs app subst and abs merge that simulate the primitive operations unify,app subst and merge, respectively, over the abstract domain.Further, when the technique is used to analyze a program, it provides a summary of a familyof executions in which the literals in the body of each rule are solved in a given order (which isnecessary for us to have well-de�ned program points). Thus, there is another parameter to anabstract interpretation of a program: a choice of sips for the rules of the program. In this paper,we will assume that a left-to-right sip is always chosen, for simplicity. It is straightforward to applyour method with any choice of sips.4.2 Sound Abstract InterpretationsAn abstract interpretation is intended to predict, or to summarize, the expected run-time behaviourof the program. In order to be sound, we require that all run-time possibilities are included inthe summary. That is, an abstract interpretation must necessarily predict any calling and successpattern that can arise at runtime from the execution of the program on the given input. Recall thatwe assume that the meaning of a program is given by the set of input-output functions �p for thepredicates p in the program. Let the sets of calls for a predicate p in a program given by �p becalls(�p) = [f
(�a) j �a 2 dom(�p)gand let the set of successes for a predicate p for a call described by �a, besuccs(�p(�a)) = [f
(�a0) j �a0 2 �p(�a)g:This soundness criterion can be stated as follows: Given a program P and a set of sips for its clauses,and a query Q, let S be an evaluation strategy that evaluates P according to these sips. Then1. if there is any computation of P according to S, for the query Q, such that p(�t) is a goal thathas to evaluated at some point in the computation, then p(�t) 2 calls(�p); and2. if the goal p(�t) can succeed with its arguments bound to the tuple �t0, then there is some�a 2 dom(�p) such that �t 2 
(�a) and �t0 2 succs(�p(�a)).Any abstract interpretation must infer at least the information in calls and succs, since otherwisegoals and facts in an actual computation may not be covered by the analysis, and soundness is lost.The abstract interpretation may in fact infer additional entries, and each such entry reduces theprecision of the analysis. (Loss of precision also arises from entries that are too \coarse" in theirapproximation of the sets of calling and success patterns.)7



4.3 The Scope of this PaperAspects of an abstract interpretation such as soundness, termination and precision of analysis areimplicit in the abstract domainDabs and the various functions on it enumerated above. For example,soundness is implicit in the requirement that abs app subst and abs unify satisfy condition (�);termination is usually addressed by restrictions on the structure of Dabs; and the precision of ananalysis depends partly on the abstract domain Dabs, which speci�es what is expressible in theanalysis; partly on abs unify , which speci�es how precisely uni�cation is to be modelled; and partlyon the operation abs merge, which speci�es how much information is lost in merging the results ofanalysis over di�erent execution paths. Such issues are not addressed explicitly in this paper. Theseissues are implicit in the choice of the abstract domain and the abstract functions de�ned on it forabstract interpretation. Intuitively, these choices represent a trade-o� in precision versus the costof static analysis. Our main result will be to show that for any given choice of abstract domain andabstract operations on it, the abstract interpretation can be carried out according to a bottom-upstrategy in such a way that, informally:1. It is at least as precise as any corresponding top-down abstract interpretation using the sameabstract domain and abstract functions; and2. It terminates at least whenever the top-down version does.5 A Rewriting Approach to Abstract Interpretation5.1 Explicated Programs: Making Primitive Operations ExplicitConsider the Magic Templates algorithm. For every predicate in the original program, the set offacts computed by the �xpoint evaluation of the rewritten program must also be computed by anyevaluation of the original program that proceeds left-to-right (and only does subsumption checks upto variable renaming) [3, 33]. An optimal evaluation is one that computes no other facts. Considerany implementation strategy that evaluates a program optimally and that proceeds in a top-downfashion by invoking subgoals. We make the following important observation: The set of goals, i.e.,calls, arising during the execution of a program P is identical to the set of facts computed for themagic predicates in Pmg. Our approach to abstract interpretation of logic programs rests upon thisproperty of Pmg .Abstract interpretation of a program consists essentially of \simulating" its execution over anabstract domain. This is done by specifying, as part of the abstract interpretation, an \abstractoperation" abs f for each primitive operation f of the language. To see how this should be done,it is necessary to make the primitive operations of the language { in our case, uni�cation and thecollection of results from di�erent computation paths { explicit.Consider the computation of a rule r: p( �T0) :� q1( �T1); : : : ; qn( �Tn). Initially, each variable in theclause is uninstantiated. First, the arguments in the head of the clause are uni�ed with those in thecall to yield a substitution �0. The �rst literal in the body is then evaluated in the context of thissubstitution; if this succeeds yielding a new substitution �1, the next literal in the body is evaluatedin the context of �1, and so on. Finally, when all the literals in the body have been successfullyevaluated, yielding a substitution �n, the \return value" is obtained by applying �n to the tuple ofarguments in the head of the clause.This operational behavior can be made explicit by rewriting the corresponding modi�ed rule in8



Pmg . Recall that a k-ary predicate symbol is applied to a single term that is a tuple of k terms. Weuse this convention here also: each Ti; i = 0; : : : ; n, is taken to be a single term. In the following,X#, X", Ti# and Ti", i = 1; : : : ; n, are distinct new variables, and id is the identity substitution. Theexplicated version of rule r is:p(X#, X") :�magic p(X#), unify(id; X#; �T0; �0),app subst(�0; �T1; T1#), q1(T1#; T1"); unify(�0; T1#; T1"; �1),app subst(�1; �T2; T2#), q2(T2#; T2"); unify(�1; T2#; T2"; �2),: : :,app subst(�n�1; �Tn; Tn#); qn(Tn#; Tn"); unify(�n�1; Tn#; Tn"; �n),app subst(�n; �T0; X").Each k-ary (non-magic) predicate | which can be thought of a predicate that takes one argumentthat is a k-tuple of terms | has been modi�ed to have two arguments: the �rst, subscripted `#',representing the tuple of arguments at the call to the predicate, and the second, subscripted `"',representing the tuple of arguments at the return from that call.It is important that we maintain separate \calling" and \return" arguments. One reason fordoing this is to make explicit the operational aspects of a logic program computation (since this iswhat an abstract interpretation tries to mimic). We note that it also has declarative virtues, sincethe application of a substitution to a term is essentially a destructive operation, and it is betterto make such operations explicit. The most important reason behind this anticipates a technicaldi�culty in abstract interpretation | certain kinds of static analyses require that the connectionbetween \calling" and \return" values be maintained explicitly during analysis in order that theanalysis be precise. (This point is illustrated in Example 7.1.)Given that we maintain separate sets of calling and return arguments, it is possible to eliminatethe magic predicates. Consider rule r. Every tuple in the magic predicate magic p corresponds toa call, and an examination of the explicated version of r reveals that this tuple is also containedin the �rst argument position of every tuple in p that is computed as an answer to this call. Thissuggests that we can simply use the �rst argument position of the predicate p to play the role of themagic predicate magic p, by adopting the convention that ? in the second argument indicates thegeneration of a goal, for which an answer is not as yet known. The explicated version of the rule isthen:p( �X#, �X") :-p( �X#; ), unify(id; �X#; �T0; �0),app subst(�0; �T1; �T1#), q1( �T1#; �T1"); unify(�0; �T1#; �T1"; �1),app subst(�1; �T2; �T2#), q2( �T2#; �T2"); unify(�1; �T2#; �T2"; �2),: : :,app subst(�n�1; �Tn; �Tn#); qn( �Tn#; �Tn"); unify(�n�1; �Tn#; �Tn"; �n),app subst(�n; �T0; �X").The corresponding abstract interpretation computation can now be described simply by replacingeach primitive operation by the corresponding operation over the abstract domain. The followingrule is called the abstract explicated version of rule r:abs p( �X#, �X") :- 9



P The original source program.Pmg The magic program: Each clause in P has an additional \magic literal" added to it. Thismagic literal acts as a �lter during bottom-up evaluation, and prunes away provably uselesscomputation branches.P ex The explicated magic program: The primitive operations of the language, uni�cation and substi-tution application, are made explicit, and separate argument tuples for \calling" and \return"values are added. Additional clauses and literals are added to act as �lters during bottom-upevaluation and prune away provably useless computation branches. The operation merge is tobe used in evaluating the �xpoint.P abs The abstract explicated magic program: The concrete domain operations unify and app substare replaced by corresponding operations abs unify and abs app subst. The operation abs mergeis to be used in evaluating the �xpoint.Figure 1: Di�erent kinds of rewritten programsabs p(X#; ), abs unify(�(fidg); �X#; �T0; A0),abs app subst(A0; �T1; �T1#), abs q1( �T1#; �T1"), abs unify(A0; �T1#; �T1"; A1),abs app subst(A1; �T2; �T2#), abs q2( �T2#; �T2"), abs unify(A1; �T2#; �T2"; A2),: : :,abs app subst(An�1; �Tn; �Tn#), abs qn( �Tn#; �Tn"), abs unify(An�1; �Tn#; �Tn"; An),abs app subst(An; �T0; �X").where �(fidg) represents the abstract domain element corresponding to (the singleton set containing)the identity substitution. The Ai are descriptions, over the abstract domain, of sets of substitutions.We now describe how to construct the explicated magic program P ex, and the abstract explicatedmagic program P abs. 1De�nition 5.1 The explicated magic programP ex is obtained from the given programP by applyingthe Magic Templates algorithm with the following modi�cations: In Step 2, construct the explicatedversion of the rule. In Step 3, the head of the \magic" rule is qi(�t;?), and the body is constructedusing the explicated version of the rule. In Step 4, the seed is q(h�ci;?).De�nition 5.2 The abstract explicated magic program P abs is obtained from the explicated programP ex by replacing every predicate, say p, by its abstract version, abs p; replacing every operation bythe corresponding operation over the abstract domain; and replacing every set of concrete substitu-tions by its abstract description.At this point, we have considered a number of di�erent rewritings of programs. The di�erent kindsof rewritten programs are summarized in Figure 1.1This algorithm is presented as a simple modi�cation to the Magic Templates algorithm presented earlier for thecase of left-to-right sips. For general sips, we must use the Magic algorithm presented in [3] and make essentially thesame modi�cation. 10



Example 5.1 Continuing our running example, the explicated magic program P ex is:sg(hjohn; U i;?): /* Seed from the query rule */sg(V2#;?) :�sg(U#; ); unify(id; U#; hX;Y i; �0);app subst(�0; hX;Z1i; V1#); up(V1#; V1"); unify(�0; V1#; V1"; �1);app subst(�1; hZ1; Z2i; V2#). /* From rule 2, 2nd body literal */sg(U# ; U") :�sg(U#; ); unify(id; U#; hX;Y i; �0);app subst(�0; hX;Y i; V1#); flat(V1#; V1"); unify(�0; V1#; V1"; �1);app subst(�1; hX;Y i; U"): /* Explicated rule 1 */sg(U# ; U") :�sg(U#; ); unify(id; U#; hX;Y i; �0);app subst(�0; hX;Z1i; V1#); up(V1#; V1"); unify(�0; V1#; V1"; �1);app subst(�1; hZ1; Z2i; V2#); sg(V2#; V2"); unify(�1; V2#; V2"; �2);app subst(�2; hZ2; Y i; V2#); down(V3#; V3"); unify(�2; V3#; V3"; �3);app subst(�3; hX;Y i; U"): /* Explicated rule 2 */2We now formalize the connection between the execution of a program and the explicated magicprogram. This result is a straightforward extension of results in [3, 33], taking into account thedi�erences between Pmg and P ex.Theorem 5.1 Consider a program P , an input Q containing a query q � ge(�t) ?, and a sip foreach rule of P , for each head adornment. Let P ad be the corresponding adorned program and P exthe explicated program. Let S be an evaluation strategy that evaluates hP;Qi, proceeding left-to-rightin each rule. Then:1. The fact pa(�c;?) is in the least �xpoint of hP ex; Qi if and only if pa(�c) ? is a goal generatedby S.2. Let pa be a predicate in P ad. The fact pa(�c; �s), s 6= ?, is in the least �xpoint of hP ex; Qi ifand only if pa(�c) ? is a goal generated by S and pa(�s) is a solution to this goal.Proof [Only if:] The proof is by induction on the height of derivation trees in hP ex; Qi. The onlytree of height 0 is the tree consisting of the single node g(�t;?), corresponding to the query q, and isthe basis of our induction. Let the claim hold for all facts that have a derivation tree of height lessthan N . Consider a fact p(�c; ) that is the root of a tree of height N .Let the children, from left to right, have labels l0; l1; : : : ; lk, ignoring unify and apply subst literals.(There is exactly one unify and one apply subst literal between the node with label li and the nodewith label li+1.) By construction of P ex, there is a rule, say r: `h :� b1; : : : ; bn', n = k, in P anda substitution � such that the following holds. Let h = p(�t0) and bi = qi(�ti); i = 1 : : :k. Then,l0 = �(p(�t0; )), and li = qi(�ci; �si); i = 1 : : :k. By the induction hypothesis, l0 is a goal generatedby S, and each li; i = 1 : : :k is a goal-solution pair. By de�nition of the predicates unify andapply subst, it follows that S must also generate the goal p(�c) ? if it proceeds according to the sip.11



[If:] If S generates a goal G, there is a chain of goals and solutions such that the following holds.The �rst element is the given query q, the last element is goal G, and there is a rule r in P suchthat:� This rule is invoked by a goal that is a predecessor of G in the chain, and there is a set ofpredecessor goal-solution pairs that unify with the �rst k-1 body literals of r. The resultingmgu, applied to the k'th body literal, generates goal G.If S generates an answer A to a goal G, there is a chain of goals and solutions such that thefollowing holds. The �rst element is the given query q, the last element is A, and there is a rule rin P such that:� This rule is invoked by goal G, which is a predecessor of A in the chain, and there is a setof predecessor goal-solution pairs that unify with the body literals of r. The resulting mgu,applied to the head literal, generates solution A.We prove that if a goal p(�c) ? is generated by S, a fact p(�c; ) is computed in P ex, and that if asolution p(�s) is generated by S, a fact p(�c; �s) is computed in P ex. The proof is by induction on thelength of the chain associated with the goal or solution. The basis is the chain of length 1, whichis the query q; the fact p(�c;?) is the seed in P ex. Let the claim hold for goals and solutions thatare generated by chains of length less than N. Consider a solution p(�s) (to a goal p(�c) ?) generatedby a chain of length N, say from a rule r in P . Since, by the induction hypothesis, there are factsin P ex corresponding to the goal that invoked rule r (this is a fact p(�c; )), the goals obtained byinstantiating the body literals, and the solutions to these goals, we can instantiate the explicatedversion of rule r to obtain the solution p(�c; �s). Consider a goal that is generated by a chain of lengthN, say from the k'th body literal of a rule r in P . The claim is similarly established by consideringthe magic rule that is generated from this body literal. 2The careful reader will have noticed that we assume that a set of all generated facts (modulovariable renamings) is maintained. This corresponds to one particular choice for the merge operation.The �xpoint computation can be re�ned by maintaining instead the irredundant version of this set[21]. That is, we may discard a generated fact if it is \subsumed" by an existing fact.2 This mayenable us to avoid some derivations of goals and facts, essentially because we know that more generalgoals and facts are also derived. However, in the worst case | which is that for every version ofa generated fact, all generated versions that are more general are generated later | none of thederivations discussed in the above proof can be avoided. The order of derivations is, of course,dependent on the order in which rules (and facts) are considered, and is non-deterministic, as thefollowing example illustrates.Example 5.2 Consider the following program:q1 :� p(a).q1 :� p(X).p(X) :� r(X).?- q1.2In an abstract interpretation, a fact A \subsumes" another fact B if the set of concrete facts represented byA contains every concrete fact represented by B, i.e., if 
(B) � 
(A). This need not necessarily coincide with the\usual" notion of subsumption of �rst order terms. 12



Assuming that the merge operation performs subsumption checks, is the goal r(a) generated?This depends upon the order in which the rules de�ning q1 are considered, since if p(a) ? is generatedafter p(X) ?, it is simply discarded. 2The following example, given by Codish et al. [6] (who credit it to J. Gallagher), is a simplevariant of the previous program. It brings out a subtle problem associated with the Magic Templatesalgorithm, vis-a-vis a Prolog-style top-down evaluation method.Example 5.3 Consider the program:q1 :� p(a), p(X), r(X).p(X).Query: ?- q1.Again assuming that the merge operation performs subsumption checks, is the goal r(a) gen-erated? Prolog will not generate this goal, but a bottom-up �xpoint evaluation of the programgenerated by the Magic Templates rewriting will generate it. To understand why, we note that boththe goals p(a) and p(X) are generated (in Prolog as well as the bottom-up evaluation). These have,respectively, the answers p(a) and p(X). The control strategy of the Prolog evaluation, which waitsfor the answer to a goal before proceeding, ensures that only the answer p(X) is used for the goalp(X). The Magic Templates approach, on the other hand, will use any generated fact that uni�eswith a goal, and thus will use p(a) as an answer to the goal p(X) generated by the second p literal.Therefore, the goal r(a) is generated (in addition, of course, to r(X)). We note that the explicatedversion of the Magic Templates rewritten program does not su�er from this problem; it behaves likeProlog on this example. 2Finally, we observe that if there is any evaluation method that generates all necessary goals andsolutions and halts (independently of the order of derivations), then so will the bottom-up evaluationof P ex. Indeed, we must eventually generate all the goals and facts, given the completeness of bottom-up evaluation, and we must then stop since the �xpoint has been reached. A similar observationholds for the bottom-up evaluation of P abs, discussed in the next section.5.2 Evaluation of Abstract Explicated ProgramsOur proposal is quite simple. Given a program P , a query, a choice of an abstract domain, abstractoperations over it, and sips, to do abstract interpretation:1. Construct the abstract explicated program P abs.2. Compute the �xpoint of P abs over the abstracted set of facts bottom-up, using the given setof abstract operations.De�nition 5.3 Canonical Computation We refer to the computation of the �xpoint of P abs asa canonical computation.Note that P abs is evaluated over the abstracted set of facts, i.e., with each fact h replaced by�(h). There are at least two options available when a new \abstract tuple" is inferred in the �xpoint13



computation of P abs | it can either be added to the set of known facts, or the LUB can be taken ofthis tuple and (some summary of) the set of known facts. The latter alternative, which essentiallycomputes a worst-case summary of the available information, is less precise (because information islost in taking the LUB) but more e�cient (because fewer tuples have to be stored). To articulatethis, we introduced an abstract merge operation abs merge in an earlier section. This is a parameterof the bottom-up evaluation strategy that will usually be implicit in the discussion that follows.Note that it does not appear in the explicated program; rather, it is part of the �xpoint evaluationphase.It is important to understand the role of the operator abs merge: The \set of known facts" isalways represented in some form, either by explicitly listing all members, or by some summary thatis a \safe" approximation in that the set of facts represented by the summary includes the set offacts being summarized. The choice of abs merge re
ects this representation, and abs merge can beunderstood as a LUB operator over the representation domain. When sets are represented by listingall elements, the LUB is a set union. If the set contains non-ground tuples, we may choose an irrsetrepresentation (for irredundant set, in which no element is subsumed by another; see [21]). If so,the LUB must include subsumption checks. If the set is represented by an element of the abstractdomain that is the LUB of the set of known (abstract) facts during an abstract interpretation, thenabs merge is simply the LUB operator over the abstract domain.In order for our analysis to be sound, the following must hold:1. for every goal p(�t) generated at runtime in the computation of P on input Q, there is a tupleabs p(�a;�b) computed in P abs such that �t 2 
(�a); and2. for every goal p(�t) so generated that can succeed with its arguments bound to �t0, there is atuple abs p(�a; �a0) computed in P abs such that �t0 2 
(�a0).The following lemma establishes an important connection between P ex and P abs, and is used toshow the soundness of our analysis.Lemma 5.2 Consider a program P , input Q, and a sip for each rule of P for each head adorn-ment. Let P abs be the corresponding abstract explicated program, using abstract domain Dabs, ab-straction and concretization functions � and 
, and abstract operations abs unify, abs app subst,and abs merge.Let g be a fact in the least �xpoint of hP ex; Qi. Then, there is a fact h in the least �xpoint ofhP abs; �(Q)i such that g 2 
(h).Proof (Sketch) There is a straightforward mapping of the derivation tree for g in hP ex; Qi into aderivation tree for h in hP abs; �(Q)i based on the correspondence between the explicated and theabstract explicated versions of a rule in P . (The proof also utilizes Condition (*) on operators overthe abstract domain.) 2The following theorem shows that the results of the abstract interpretation that we propose issound, in that the goals and facts generated in a computation over the concrete domain are containedin the set of goals and facts represented by the result of the abstract interpretation.Theorem 5.3 SoundnessA Canonical Computation is a sound abstract interpretation.14



Proof Follows immediately from Theorem 6.1 and Lemma 6.2. 2Note that this result does not guarantee termination of the evaluation of the least �xpoint of P abs(i.e. the termination of the abstract interpretation). For this, we must rely upon other properties,such as �niteness of the abstract domain. In general, results on the safety and termination of �xpointevaluation for logic programs are applicable here, e.g., [1, 19, 20]. As in the bottom-up evaluation ofP ex, the existence of a terminating abstract interpretation strategy that generates all the abstract\goals" and \facts" required by the sip de�nition and terminates assures that bottom-up evaluationof P abs will also terminate. (Due to space constraints, we do not prove this formally, but thedevelopment is straightforward.) Thus, while termination issues are not addressed in this paper, theproposed method is at least no worse than any other abstract interpretation technique that uses thesame abstract domain and operations and mimics the same choice of sips.6 On the Precision of Canonical ComputationsWe have shown that our analysis is sound in that anything that can happen at runtime is inferredduring analysis. It is desirable to also be able to go in the other direction, and reason about howtightly the results of the analysis bound the runtime possibilities. In this section, we show thatthe results of our analysis are at least as precise as those of any abstract interpretation that usesthe same abstract domain and operations|in other words, that no imprecision is introduced due torewriting and subsequent bottom-up �xpoint evaluation.Theorem 6.1 Relative PrecisionConsider a program P and input Q. Let P abs be the corresponding abstract explicated program, usingabstract domain Dabs, abstraction and concretization functions � and 
, and abstract operationsabs unify, abs app subst, and abs merge. For any abstract interpretation that uses the same abstractdomain and operations, and approximates the evaluation of hP;Qi proceeding left-to-right withineach rule, the following hold for every fact abs p(�a;�b) in the least �xpoint of hP abs; �(Q)i:1. 
(�a) � calls(�p); and2. let S = f�a0 j h�a; �a0i 2 abs pg, then 
(S) � succs(�p(�a)).Proof By induction on the heights of the derivation trees for the facts.Consider a tuple h�a;�bi in the relation abs p that has a derivation tree of height 0. This meansthat it must be the \seed fact" describing the query p(�t). Then, �a = �(f�tg). Assuming that theabstract interpretation is sound, it follows that �a must be in dom(�p), whence 
(�a) � calls(�p).Consider a fact abs p(�a; �a0) whose derivation tree is of height 1. In this case, the original programP has a fact p(�u), corresponding to which there is a clause in the abstract explicated program P absof the formabs p( �X#; �X") :� abs p( �X#; ); abs unify(�(fidg); �X#; �u;A0); abs app subst(A0; �u; �X")such that �a = A( �X#), and �a0 = A( �X"), for some abstract substitution A such thatabs unify(�(fidg); �X#; �u;A). For this to be true, there must be a fact abs p(A( �X#); A( )) �abs p(�a;�b), for some �b, in the least �xpoint of hP abs; �(Q)i, whose derivation tree is of height 0;this, in turn, implies that the input contains a query p(�t) such that �a = �(�t), and it follows fromthe above that 
(�a) � calls(�p). Since the abstract interpretation under consideration is also using15



the abstract operations abs unify and abs app subst, it must also infer that a call described by �a canhave success pattern �a0. It follows that �a0 2 �p(�a), which implies that 
(�a0) � succs(�p(�a)).Assume that the theorem holds for all facts that have derivation trees of height less than N .Consider a fact abs p(�a; �a0) whose smallest derivation tree is of height N : this must have beenderived from a clause in the explicated abstract program of the formabs q0( �V#; �V") :�abs q0( �V#; ), abs unify(�(fidg); �V#; �T0; A0),abs app subst(A0; �T1; �T1#), abs qa11 ( �T1#; �T1"), abs unify(A0; �T1#; �T1"; A1),: : :,abs app subst(An�1; �Tn; �Tn#), abs qann ( �Tn#; �Tn"), abs unify(An�1; �Tn#; �Tn"; An),abs app subst(An; �Tp; �U#),abs p( �U#; �U");: : :where A0; : : : ; An are abstract substitutions such that �a = An( �Tp). In turn, this must have beenderived from a clause in the original program of the formq0( �T0) :� q1( �T1); : : : ; qn( �Tn); p( �Tp); : : :Further, it must be the case that1. abs q0(�b0) is in the least �xpoint of hP abs; �(Q)i, where �b0 = A( �V#) for some abstract substi-tution A, such that abs unify(�(fidg);�b0; �T0; A0) holds; and2. abs qi(Ai�1( �Ti); Ai( �Ti)), 1 � i � n, are in the least �xpoint of hP abs; �(Q)iand each of these facts has a derivation tree whose height is less than N . We show, by induction oni, that the abstract substitution Ai safely describes the set of substitutions that may be obtainedat the program point immediately after the literal qi( �Ti), 0 � i � n, in any computation of thisclause starting with a call to q0 described by �b. Since the fact abs q0(�b) has a derivation tree ofheight less than N , it follows from the induction hypothesis of the theorem that 
(�b0) � calls(�q0 ),whence from the soundness of abs unify it follows that A0 safely describes the substitutions thatmay be obtained after head uni�cation for any call to q0 described by �b0. Assume that a calldescribed by �T1# can return with success pattern �T1". From the induction hypothesis of the theorem,
( �T1") � succs(�q1 ( �T1#)). Let abs unify(A0; �T1#; �T1"; A1) hold, then it follows, from the soundnessof abs unify, that A1 safely describes the set of substitutions that may be obtained at the pointimmediately after the literal q1. Suppose the argument holds for all values of i less than k, andconsider the literal qk( �Tk): since Ak�1 safely describes the set of substitutions that may be obtainedat the program point immediately before this literal, it follows from the soundness of abs app substthat �Tk# safely describes all calls that can arise for this literal in this computation.From the induction hypothesis of the theorem, �Tk" safely describes any success pattern that canbe obtained for such a call. From the soundness of abs unify, it follows that Ak safely describesthe set of substitutions that can be obtained immediately after this literal. This establishes thatthe abstract substitution Ai safely describes the set of substitutions that may be obtained at theprogram point immediately after the literal qi( �Ti), 0 � i � n. It follows that An( �Tp) safely describes16



all the calls to the literal p( �Tp) that can arise here. This implies that 
(An( �U )) � calls(�p). ButAn( �U ) = �a, so this implies that 
(�a) � calls(�p). 2What Theorem 6.1 shows is that a canonical computation is at least as precise as any other abstractinterpretation that uses the same abstract domain and abstract operations. To understand thesigni�cance of this, it is useful to compare it to Theorem 5.1. Theorem 5.1 extends the sip-optimalityresults of [3, 33] to the explicated programs considered in this paper; the extension is based on astraightforward correspondence between the �rst argument of an explicated program predicate andthe argument (vector) of a \magic" predicate, and between the second argument of an explicatedprogram predicate and the argument of a (user) program predicate. The result is with respect tocomputations over the concrete domain, and essentially the same result holds for the magic programPmg . In contrast, Theorem 6.1 is a result about computations over the abstract domain. Notethat the analogous result does not hold for the magic program Pmg; the explication of the program(in particular, the introduction of \input" and \output" copies of the arguments of a predicate) iscrucial. Theorem 6.1 does not address the question of how much precision can be attained for agiven abstract domain. Clearly, the converse of Lemma 6.2, viz. \anything that is inferred duringanalysis will happen at runtime", may not hold. Even a more conservative statement, of the form\for any given input Q to the program, for any calling or success pattern inferred at analysis time,there is some input described by �(Q) that causes that calling or success pattern to be realized atruntime", may not hold, because we assume that the abstract operations abs app subst, abs unifyand abs merge are given to us by the designer of the abstract interpretation, and it may happenthat these operations are very imprecise. The point, however, is that the rewriting and subsequentbottom-up computation does not contribute, in any way, to loss of precision: for any given abstractdomain, any loss of precision during analysis is due only to various parameters of the abstractinterpretation, such as the abstract operations abs app subst, abs unify and abs merge.The results of this section show that the canonical computations approach is as precise as anytop-down abstract interpreter with respect to sets of hcall ; successi pairs. However, suppose thata predicate appears in two di�erent clauses; then we cannot tell which pairs correspond to whichoccurrence. Thus, we could potentially lose information at the program point level.3 Fortunately,it is easy to modify the transformation to retain information at the level of predicate occurrencesrather than predicates. We can distinguish between di�erent occurrences of the same predicates byintroducing variants of predicates so that every predicate occurs in exactly one clause-body positionin the entire program. (Equivalently, we could use an extra argument position to distinguish betweenthese variants.) We omit the details of the modi�ed transformation as they are straightforward; itis su�cient to observe that since there are only a �nite number of predicate occurrences in theprogram, this process is guaranteed to terminate yielding a �nite transformed program.We have not compared the complexity of the bottom-up interpreter presented here with the com-plexity of top-down interpreters. However, such a comparison should be similar to the comparisonin the case of the concrete domain. Evaluation over a �nite abstract domain, which is common inabstract interpretation, is very similar to the case of Datalog computation (i.e. all arguments arerestricted to be constants or variables). Further, for abstract interpretation, a top-down interpretermust incorporate some form of memoing to insure termination. Ullman [37] has shown that forthe case of Datalog, a bottom-up computation using Magic \dominates", asymptotically, under adetailed cost model, any top-down memoing computation. This result is generalized to all Hornclause logic programs in [36].3We thank an anonymous referee for pointing this out.17



7 ExamplesIn this section, we present several detailed examples to illustrate the application of our technique.Each example is chosen to illustrate an important aspect of the approach.7.1 PrecisionOur �rst example illustrates the need to maintain the connection between calling and return ar-guments, by introducing separate \input" and \output" arguments in the explicated program, toprevent an undesirable loss of precision.Example 7.1 Consider an abstract interpretation that performs data dependency analysis of pro-grams, e.g. as in [14, 15, 30]. Such analyses �nd applications in parallelization of logic programs.Let the abstract representation of calls and returns to an n-ary predicate be as follows: eachargument is represented by a subset of f1; : : : ; ng that indicates which argument positions it canpossibly share variables with. For example, if two variables X and Y are possible aliases, then,corresponding to the call q(f(X); g(Y; Z); Z), in the explicated abstract program, we have the factabs q(hf1; 2g; f1; 2; 3g; f2; 3gi;?).Consider the predicate p de�ned by the single clausep(X, Y, Y).First, consider a call where the �rst and second arguments are aliases: given the callp(f1; 2g; f1; 2g;f3g), the analysis infers that all arguments can be aliased together on success. Nowsuppose that the connection between \calling" and \success" patterns is not maintained, but thatthese are factored separately into relations call abs p and succ abs p. This results in the relationscall abs p(hf1; 2g; f1; 2g; f3gi):succ abs p(hf1; 2; 3g; f1; 2; 3g; f1; 2;3gi):Then, if there is a subsequent call where only the second and third arguments are aliased, i.e. thecall is abs p(hf1g; f2; 3g; f2;3gi), the computation generates the tuplesucc abs p(hf1g; f2; 3g; f2;3gi)but then discards this tuple because the tuple succ abs p(hf1; 2; 3g; f1;2; 3g;f1;2; 3gi); computedearlier, is \more general" in the sense that
(hf1g; f2; 3g; f2; 3gi)� 
(hf1; 2; 3g; f1; 2;3g;f1;2;3gi):Even if the tuple succ abs p(hf1g; f2; 3g; f2;3gi) is not discarded, however, the connection betweenthe call abs p(hf1g; f2; 3g; f2; 3gi) and its success pattern succ abs p(hf1g; f2; 3g; f2;3gi) is lost, sinceif we have only the success patterns hf1g; f2; 3g; f2;3gi, and hf1; 2; 3g; f1; 2; 3g; f1; 2; 3gi; the calling18



pattern call abs p(hf1g; f2; 3g; f2;3gi) can \unify" with both success patterns, and we are forcedto conclude that it can succeed with all its arguments aliased together. This is a factor in theimprecision in the mode analysis algorithm of Mellish [27]. This loss of precision can be avoided, ingeneral, only by maintaining explicit \calling" and \return" arguments to maintain the connectionbetween calling and corresponding success patterns. If this is done, the �rst call becomesabs p(hf1; 2g; f1; 2g; f3gi; X),and it evaluates to the binding X = hf1; 2; 3g; f1; 2;3g;f1;2;3gi, with the resulting relation beingabs p(hf1; 2g; f1; 2g; f3gi; hf1; 2;3g; f1; 2;3g;f1;2;3gi):The second call then computes the tupleabs p(hf1g; f2; 3g; f2; 3gi; hf1g; f2;3g;f2;3gi),and since nothing in the relation abs p computed so far is more general than this tuple, it is notdiscarded, whence we can infer that the �rst argument of the call is independent of the other twowhen the call returns.The crux of the matter is also illustrated by Example 5.3. It is interesting to consider the questionof when this explicit connection between calling and success patterns need not be maintained withoutany loss in the precision of the analysis, since in this case the data
ow information inferred can bestored more compactly. The problem is the following. Suppose that the connection between callingand success patterns is not maintained. In other words, we maintain two relations, one consisting ofall the calling patterns, and the other of all the success patterns, that have been encountered. In thiscase, given an arbitrary calling pattern C and an arbitrary success pattern S, if there is an abstractsubstitution A such that S = A(C) then we have to assume that a call described by C can succeedwith its bindings upon success described by S. Now consider a calling pattern C1 for a predicatep, whose success pattern is S1, and another calling pattern C2 for p with success pattern S2: if theconnection between calling and success patterns is maintained explicitly, the tuples correspondingto these are hC1; S1i and hC2; S2i. Clearly, there must be abstract substitutions A1 and A2 suchthat S1 = A1(C1) and S2 = A2(C2). Assume that C1 is more precise than C2, i.e. denotes a smallerset of values, so 
(C1) � 
(C2). From monotonicity considerations, it follows that 
(S1) � 
(S2).If the connection between calling and success patterns is not maintained, and there is an abstractsubstitution A0 such that S2 = A0(C1), then we must infer that the calling pattern C1 can give riseto the success pattern S2. There is a loss of precision in this case if S2 is less precise than S1; stateddi�erently, there is no loss of precision if S2 is at least as precise as S1, i.e. if 
(S2) � 
(S1). Butfrom monotonicity, we have 
(S1) � 
(S2), whence we have S1 = S2. Thus, in the general case,there is no loss of precision if, whenever there is an abstract substitution A such that S2 = A(C1),it is the case that S2 = S1. That is, whenever there are two di�erent calling patterns C1 and C2 fora predicate, with one of them more precise than the other, there is no loss of precision in separatingcalling and success patterns only if both C1 and C2 have the same success pattern. This clearlydoes not hold in general, so it is necessary to maintain the connection between calling and successpatterns explicitly. 27.2 Depth Abstractions: Replacing Uni�cation by MatchingWe now consider an abstract interpretation described by Marriott and S�ndergaard [24], based ona scheme proposed by Sato and Tamaki [34]. An application for this analysis is that of replacing19



uni�cation by matching, which is signi�cantly more e�cient (e.g. see [22]): when two terms arebeing uni�ed, matching can be used if one of the terms is ground. Once the analysis has beencarried out for a program, if a relation abs p is such that in each tuple h�a; �a0i in abs p, the elementsin positions Pos in �a denote ground terms, then head uni�cation for those argument positions inthe corresponding predicate p in the original program can be replaced by matching.Another application, cited by Sato and Tamaki [34], is that of transforming nondeterministicprograms to deterministic ones, which are more e�cient, based on the success patterns inferred.The basic idea is to describe a term using a \depth abstraction", i.e. where subterms at depthsgreater than a speci�ed bound are replaced by variables.4 For example, the depth-1 abstraction ofthe term f(g(a); h(X; f(b;X)); Y ) is f(g(U ); h(X;V ); Y ) (the principal functor is at depth 0). Theanalysis of a program is carried out using depth-k abstractions, for some �xed k speci�ed beforehand.An abstract substitution at a point within a clause is maintained as a mapping from the variablesoccurring in that clause to depth-k abstractions of terms. The application of an abstract substitution,given by abs app subst, is essentially the same as the application of substitutions over the concretedomain; uni�cation over the abstract domain, given by abs unify, is ordinary uni�cation followed byan abstraction of the resulting terms to depth k. Thus, let �k(t) denote the depth-k abstraction ofa term t, and extend this to substitutions as follows: given a (idempotent) substitution �, �k(�) isthe depth-k abstraction of the image of each variable in the domain of �, i.e.�k(�) = fx 7! �k(�(x)) j x 2 dom(�)g:Then, the abstract operations can be de�ned as follows:abs app subst(A; t1; t2) , app subst(A; t1; t2), andabs unify(A1; t1; t2; A2) , unify(A1; t1; t2; A01) ^A2 = �k(A01):Because subterms are discarded during depth abstraction, analysis using a depth-k abstraction mayfail to detect any aliasing that occurs at depths greater than k. Because of this, a variable occurringin a depth-k abstracted term may not necessarily correspond to a free variable at runtime. Soundnesstherefore requires that such variables be interpreted as denoting all possible terms (i.e. a depth-kabstracted term denotes the set of all its instances).Example 7.2 Consider the \aliasing" example from [13]:p(X, Y) :� q(X, Y), r(X), s(Y).q(Z, Z).r(a).r(b).s(b).s(c).p(U, V).Assume depth-2 abstraction, and consider a sip that follows Prolog's left-to-right execution strat-egy. The explicated abstract program is shown in Figure 2. When the rewritten explicated program4If no restrictions are imposed, then a term may have, in general, a number of di�erent \best" depth-k abstractions,and so there may not be adjoint functions � and 
: a simple way around this is to ensure that depth abstractions arelinear, i.e. do not contain repeated variables [24]. 20



abs p (hX#; Y#i, hX"; Y"i) :�abs p(hX#; Y#i; ),abs unify(id, hX#; Y#i; hX;Y i; A1),abs app subst(A1; hX;Y i; hX1; Y1i),abs q(hX1; Y1i; hX2; Y2i); abs unify(A1; hX;Y i; hX2; Y2i; A2),abs app subst(A2; hXi; hX3i), abs r(hX3i; hX4i), abs unify(A2; hXi; hX4i; A3),abs app subst(A3; hY i; hY3i), abs s(hY3i; hY4i), abs unify(A3; hY i; hY4i; A4),abs app subst(A4; hX;Y i; hX"; Y"i).abs q(hU#; V#i; hU"; V"i) :�abs q(hU#; V#i; ),abs unify(id; hU#; V#i; hZ;Zi; A1), abs app subst(A1; hZ;Zi; hU"; V"i).abs r(hX#i; hX"i) :�abs r(hX#i; ), abs unify(id; hX#i; hai; A1), abs app subst(A1; hai; hX"i).abs r(hX#i; hX"i) :�abs r(hX#i; ), abs unify(id; hX#i; hbi; A1), abs app subst(A1; hbi; hX"i).abs s(hX#i; hX"i) :�abs s(hX#i; ), abs unify(id; hX#i; hbi; A1), abs app subst(A1; hbi; hX"i).abs s(hX#i; hX"i) :�abs s(hX#i; ), abs unify(id; hX#i; hci; A1), abs app subst(A1; hci; hX"i).abs p(hU; V i;?).abs q(hU; V i;?) :-abs p(hX0; Y0i; ),abs unify(id, hX0; Y0i; hX;Y i; A1),abs app subst(A1; hX;Y i; hU; V i).abs r(hU i;?) :-abs p(hX0; Y0i; ),abs unify(id, hX0; Y0i; hX;Y i; A1),abs app subst(A1; hX;Y i; hX1; Y1i),abs q(hX1; Y1i; hX2; Y2i), abs unify(A1; hX;Y i; hX2; Y2i; A2),abs app subst(A2; hXi; hU i).abs s(hU i;?) :-abs p(hX0; Y0i; ),abs unify(id, hX0; Y0i; hX;Y i; A1),abs app subst(A1; hX;Y i; hX1; Y1i),abs q(hX1; Y1i; hX2; Y2i); abs unify(A1; hX;Y i; hX2; Y2i; A2),abs app subst(A2; hXi; hX3i), abs r(hX3i; hX4i), abs unify(A2; hXi; hX4i; A3),abs app subst(A3; hY i; hU i).?� abs p(hU; V i; ).Figure 2: The Explicated Abstract Program from Example 8.221



is evaluated bottom-up, the (minimal) relations computed are as follows:abs p(hU; V i; hb; bi).abs q(hU; V i; hU;U i).abs r(hXi; hai).abs r(hXi; hbi).abs s(hai;?).abs s(hbi; hbi).As the reader will notice, the �rst argument of the relations abs p, abs q, abs r and abs s contain thecalling patterns to the respective predicates, while the second arguments contain the correspondingsuccess patterns. In particular, note that the relation abs q captures clearly the aliasing behavior ofthe predicate q/2.On the other hand, consider a di�erent abstract interpretation, where all constants are mappedto a single abstract domain element ATOM, while compound terms are subjected to depth-2 abstrac-tion, and the abstract functions abs app subst and abs unify modi�ed appropriately. The relationscomputed in this case areabs p(hU; V i; hATOM; ATOMi).abs q(hU; V i; hU;U i).abs r(hXi; hATOMi).abs s(hATOMi; hATOMi).28 Related WorkEarly work on abstract interpretation of logic programs was carried out by Mellish, who describeda framework for the abstract interpretation of Prolog programs [28]. His approach was to de�ne aset of data
ow equations de�ning relationships between data
ow information at di�erent programpoints, and then to solve these equations by computing a least �xpoint in a bottom-up manner.This early approach, which is similar in spirit to ours, did not explicitly maintain the connectionbetween calling and success patterns, resulting in loss of precision (as seen in Example 8.1). Thereis also a limitation in the class of sips that can be dealt with; a single linear sip is chosen for eachrule, and is �xed for all patterns of restricted arguments. (Although this is true of our method aswell, our approach rests upon the Magic Templates rewriting, for which the extension to generalsips is known.) No characterization was given of the precision of this approach.At about the same time, Jones and S�ndergaard gave a somewhat di�erent framework for theabstract interpretation of Prolog programs, based on a denotational description of Prolog [17].The meaning of a program is speci�ed by a set of mutually recursive functions, with analogousde�nitions specifying the abstract meaning. The least solution to the equations de�nes the abstractsemantics that gives the desired 
ow information. The connection between calling and successpatterns is implicit in the \logs" kept by the abstract computations. However, speci�c algorithmsfor computing the least solution are not discussed, and no characterization is given of the precisionthat may be achieved using this approach. Closely related to the Jones-S�ndergaard work is that ofWinsborough [39], who gives a minimal function graph semantics for logic programs. This also retains22



the connection between calling and return values. However, no attention is given to algorithmicaspects of analyses.Bruynooghe gives a framework for abstract interpretation of logic programs [4]. This is based ona top-down execution model, where the computation over the abstract domain is represented by anabstract AND-OR tree. Because of this, termination is somewhat awkward: when a recursive call isencountered that has already been encountered earlier, the bottom element is assumed as the \successvalue", and the computation continued to a �xpoint; if the recursive call has not been encounteredearlier, things become more complicated. Debray discusses a family of abstract interpretations thatadmit e�cient analysis algorithms, using extension tables to guarantee termination [11]. A schemesimilar to Bruynooghe's in many ways, involving the top-down construction of abstract AND-ORtrees, is described by Corsini and Fil�e [8]. In none of these cases is it possible to carry out theabstract interpretation of a Prolog program using an ordinary Prolog interpreter and still be ableto guarantee termination, because \vanilla" top-down interpreters do not use a complete evaluationstrategy and do not explicitly compute a �xpoint (since they do not keep track of all solutions, butcompute only one solution at a time). This exempli�es the problems encountered when trying tocapture a bottom-up �xpoint computation within a top-down framework.Marriott and S�ndergaard discuss a bottom-up approach to abstract interpretation [23]. How-ever, this work di�ers from ours in several ways. The most signi�cant di�erence is that they areconcerned with abstract interpretations that approximate the declarative semantics of logic pro-grams, which is given in terms of the model theory of �rst order logic [38]; this is manifested intheir omission of the rewriting step that introduces auxiliary literals and clauses into the program.Because of this, their approach cannot capture abstract interpretations that are based on the oper-ational or denotational semantics of the language. Because of the rewriting to introduce auxiliaryliterals and clauses that act as �lters, our approach is able to capture abstract interpretations basedon operational and denotational semantics as well as those based on the declarative semantics.The connection between top-down abstract interpretation and the Magic Sets transformation ismentioned by Marriott and S�ndergaard [25]. Recent work by Mellish discusses the application ofMagic Sets evaluation techniques for the computation of �xpoints in mode analysis of logic programs[29]. This work focusses on the application of partial evaluation techniques to derive e�cient analysissystems, and does not address issues of precision.Some time after the writing of this paper, we became aware of independent and essentiallysimultaneous work by a number of researchers on the application of the Magic Sets transformationto data
ow analysis of logic programs [6, 18, 32]. While these papers are very similar to thispaper in spirit, the details of how the transformation is realized di�er. For example, Kanamorisuggests augmenting the transformed program with indexes to relieve some ine�ciencies associatedwith a naive Magic Sets transformation [18]. Like us, both Nilsson [32] and Codish et al. [6] notethat a straightforward application of the Magic Sets transformation can result in a loss of precisionbecause the connection between calling and success patterns is not maintained. Codish et al. suggesta modi�ed transformation that, however, results in programs whose bottom-up semantics no longercorresponds to the operational behavior of the original program. In contrast, the explicated programswe consider retain the connection between calling and success patterns: as a result, precision is notcompromised despite the use of a straightforward Magic Sets rewriting.23



9 ConclusionsData
ow analysis of logic programs requires a synthesis of top-down and bottom-up information
ow: a top-down component to mimic the control strategy of the language under consideration, anda bottom-up component to compute �xpoints. In much of the literature on data
ow analysis of logicprograms, this synthesis is either not addressed, or is given using techniques such as memoizationor ad hoc termination rules that are extraneous to the operational semantics of the language underconsideration. This paper discusses the application of the magic templates algorithm, originally de-vised as a technique for e�cient bottom-up evaluation of logic programs, to data
ow analysis of logicprograms. The principal contributions of this work is to demonstrate how the �xpoint evaluationalgorithm can be decoupled from the control strategy of the language under consideration. It turnsout that a straightforward application of Magic Templates rewriting can lead to an undesirable lossin the precision of analysis. We show how the original Magic Templates strategy can be modi�edto avoid this problem, and prove that the resulting analysis algorithm is at least as precise as anyother abstract interpretation that uses the same abstract domain and abstract operations.References[1] Afrati, F., Papadimitriou, C., Papageorgiou, G., Roussou, A., Sagiv, Y. and Ullman, J.,D.\Convergence of Sideways Query Evaluation", Proc. 5th ACM SIGMOD-SIGACT Symposiumon Principles of Database Systems, 1986.[2] Bancilhon, F., Maier, D., Sagiv, Y. and Ullman, J.D., \ Magic sets and other strange ways toimplement logic programs", In Proceedings of the ACM Symposium on Principles of DatabaseSystems, pages 1{15, Boston, Massachusetts, March 1986.[3] Beeri, C. and Ramakrishnan, R. \ On the power of magic", In Proceedings of the ACM Sympo-sium on Principles of Database Systems, pages 269{283, San Diego, California, March 1987.[4] Bruynooghe, M., \A Framework for the Abstract Interpretation of Logic Programs", RsearchReport 62, Katholieke Universiteit Leuven, Belgium, Oct. 1987.[5] Chang, J.-H., Despain, A. M., and DeGroot, D., \AND-Parallelism of Logic Programs Based onA Static Data Dependency Analysis", Digest of Papers, Compcon 85, IEEE Computer Society,FEB 1985.[6] Codish, M., Dams, D., and Yardeni, E., \Bottom-up Abstract Interpretation of Logic Pro-grams", Technical Report CS90-24, Dept. of Applied Mathematics and Computer Science, TheWeizmann Institute of Science, Rehovot, Israel, Oct. 1990. (To appear in Theoretical ComputerScience.)[7] Codognet, C., Codognet, P., and Corsini, M., \Abstract Interpretation for Concurrent LogicLanguages", in Proc. NACLP-90, Austin, TX, Oct. 1990 (to appear).[8] Corsini, M. M., and Fil�e, G., \The Abstract Interpretation of Logic Programs: A GeneralAlgorithm and its Correctness", Research Report, Dept. of Pure and Applied Mathematics,University of Padova, Italy, Dec. 1988.[9] Cousot, P., and Cousot, R., \Abstract Interpretation: A Uni�ed Lattice Model for StaticAnalysis of Programs by Construction or Approximation of Fixpoints", Proc. Fourth ACMSymposium on Principles of Programming Languages, 1977, pp. 238-252.24



[10] Cousot, P., and Cousot, R., \Systematic Design of Program Analysis Frameworks", Proc. SixthACM Symposium on Principles of Programming Languages, 1979, pp. 269-282.[11] Debray, S. K., \E�cient Data
ow Analysis of Logic Programs", Proc. Fifteenth ACM Sympo-sium on Principles of Programming Languages, San Diego, CA, Jan. 1988.[12] Debray, S. K., and Mishra, P., \Denotational and Operational Semantics for Prolog", J. LogicProgramming vol. 5 no. 1, March 1988, pp. 61-91.[13] Debray, S. K., and Warren, D. S., \Automatic Mode Inference for Logic Programs", J. LogicProgramming vol. 5 no. 3, Sept. 1988, pp. 207-229.[14] Debray, S. K., \Static Inference of Modes and Data Dependencies in Logic Programs", ACMTransactions on Programming Languages and Systems vol. 11 no. 3, July 1989, pp. 418-450.[15] Jacobs, D., and Langen, A., \Accurate and E�cient Approximation of Variable Aliasing inLogic Programs", Proc. NACLP-89, Cleveland, OH, Oct. 1989.[16] Jones, N. D., and Mycroft, A., \Stepwise Development of Operational and Denotational Se-mantics for PROLOG", Proc. 1984 Int. Symposium on Logic Programming, Atlantic City, NewJersey, IEEE Computer Society, Feb. 1984. pp. 289-298.[17] Jones, N. D., and S�ndergaard, H., \A Semantics-Based Framework for the Abstract Interpre-tation of Prolog", in Abstract Interpretation of Declarative Languages, S. Abramsky and C.Hankin (eds.), Ellis Horwood, 1987.[18] Kanamori, T., \Abstract Interpretation based on Alexander Templates", Technical Report TR-549, ICOT, Tokyo, March 1990.[19] Kifer, M. and Lozinskii, E., \SYGRAF: Implementing Logic Programs in a Database Style",IEEE Trans. on Software Engineering, 1988.[20] Krishnamurthy, R., Ramakrishnan, R. and Shmueli, O., \A Framework for Testing Safety andE�ective Computability of Extended Datalog", Proc. SIGMOD 88, Chicago.[21] Maher, M., and Ramakrishnan, R., \D�ej�a Vu in Fixpoints of Logic Programs", Proc. NACLP-89, Cleveland, OH, Oct. 1989.[22] Ma luszynski, J., and Komorowski, H., \Uni�cation-free Execution of Logic Programs", Proc.1985 Symposium on Logic Programming, Boston, July 1985, pp. 78-86. IEEE Press.[23] Marriott, K., and S�ndergaard, H., \Bottom-up Abstract Interpretation of Logic Programs",Proc. Fifth International Conference on Logic Programming, Seattle, WA, August 1988. MITPress.[24] Marriott, K., and S�ndergaard, H., \On Describing Success Patterns of Logic Programs", Tech-nical Report 88/12, Department of Computer Science, University of Melbourne, Australia, May1988.[25] Marriott, K., and S�ndergaard, H., \Semantics-based Data
ow Analysis of Logic Programs",IFIP-89, pp. 601-609, 1989.[26] Marriott, K., S�ndergaard, H., and Jones, N. D., \Denotational Abstract Interpretation of LogicPrograms", Manuscript, Dept. of Computer Science, University of Melbourne, June 1990.25



[27] Mellish, C. S., \The Automatic Generation of Mode Declarations for Prolog Programs", DAIResearch Paper 163, Dept. of Arti�cial Intelligence, University of Edinburgh, Aug 1981.[28] Mellish, C. S., \Abstract Interpretation of Prolog Programs", Proc. Third International Con-ference on Logic Programming, London, July 1986 (Springer-Verlag LNCS vol. 225).[29] Mellish, C. S., \Using Specialisation to Reconstruct Two Mode Inference Systems", Manuscript,Department of Arti�cial Intelligence, University of Edinburgh, June 1990.[30] Muthukumar, K., and Hermenegildo, M., \Determination of Variable Dependence Informationat Compile Time Through Abstract Interpretation", In Proceedings of the North AmericanConference on Logic Programming, Cleveland, OH, Oct. 1989.[31] F. Nielson, \Strictness Analysis and Denotational Abstract Interpretation", Information andComputation 76, 29-92 (1988).[32] Nilsson, U., \Abstract Interpretation: A Kind of Magic", Technical Report, Dept. of ComputerScience, Link�oping University, Sweden, 1990. (To appear in Theoretical Computer Science.)[33] Raghu Ramakrishnan. Magic templates: A spellbinding approach to logic programs. Journalof Logic Programming, 11(3):189{216, 1991.[34] Sato, T., and Tamaki, H., \Enumeration of Success Patterns in Logic Programs", TheoreticalComputer Science 34, (1984), pp. 227-240.[35] S�ndergaard, H., \Semantics-Based Analysis and Transformation of Logic Programs", DoctoralDissertation, Dept. of Computer Science, University of Copenhagen, Denmark, Dec. 1989. (Alsoavailable as Technical Report 89/21, Dept. of Computer Science, University of Melbourne,Australia.)[36] S. Sudarshan and Raghu Ramakrishnan. Optimizations of bottom-up evaluation with non-ground terms. In Proceedings of the International Logic Programming Symposium, 1993.[37] Ullman, J.D., \Bottom-Up Beats Top-Down for Datalog", In Proceedings of the ACM Sympo-sium on Principles of Database Systems, pages 140-150, Philadelphia, PA, 1989.[38] van Emden, M., and Kowalski, R., \The Semantics of Predicate Logic as a ProgrammingLanguage", JACM 28, no. 4, Oct. 1976, pp. 733-742.[39] Winsborough, W., \A Minimal Function Graph Semantics for Logic Programs", TechnicalReport No. 711, Dept. of Computer Science, The University of Wisconsin-Madison, August1987.
26


