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Abstract

In dataflow analysis of logic programs, information must be propagated according to the
control strategy of the language under consideration. However, for languages with top-down
control flow, naive top-down dataflow analyses may have problems guaranteeing completeness
and/or termination. What is required in the dataflow analysis is a bottom-up fixpoint computa-
tion, guided by the (possibly top-down) control strategy of the language. This paper describes
the application of the Magic Templates algorithm, originally devised as a technique for efficient
bottom-up computation of logic programs, to dataflow analysis of logic programs. It turns out
that a direct application of the Magic Templates algorithm can result in an undesirable loss
in precision, because connections between “calling patterns” and the corresponding “success
patterns” may be lost. We show how the original Magic Templates algorithm can be modified
to avoid this problem, and prove that the resulting analysis algorithm is at least as precise as
any other abstract interpretation that uses the same abstract domain and abstract operations.

*The work of S. Debray was supported in part by NSF grant CCR-8702939. The work of R. Ramakrishnan was
supported in part by an IBM Faculty Development Award, a David and Lucile Packard Foundation Fellowship in
Science and Engineering and NSF grant IRI-8804319.



1 Introduction

Abstract Interpretation has been proposed as a methodology for static analysis of programs [9].
Several frameworks based on abstract interpretation have been proposed for analysing Horn Clause
logic programs [4, 11, 17, 26, 28, 35]. The semantics of a Horn program is typically given as the least
fixpoint of a continuous function over an appropriate domain (e.g. the lattice of Herbrand interpre-
tations [38], or the cpo of substitution sequences [12, 16]); these proposals for abstract interpretation
are formulated, analogously, in terms of fixpoints of continuous functions over “simplified” domains,
called abstract domains. The computation of a least fixpoint is naturally modelled as the evaluation
of the limit of a Kleene chain, which is most naturally performed bottom-up. However, because
traditional approaches to abstract interpretation of logic programs usually proceed in a top-down
manner, ensuring completeness (i.e. that all computational paths have been explored) and termi-
nation is somewhat awkward, involving techniques such as memoization that are extraneous to the
operational behavior of the language under consideration. In simple terms, this means that while
the computation of an ordinary Prolog program over an abstract domain can be described simply by
replacing “concrete domain” operations by corresponding operations over the abstract domain, this
transformed program cannot be evaluated by an ordinary Prolog interpreter and still be guaranteed
to terminate.

This paper shows that abstract interpretation of languages with a top-down execution strategy
need not itself be top-down. We present a novel approach based on rewriting strategies originally
developed for evaluating queries in deductive databases [2, 3, 33]. These evaluation strategies rewrite
a given program in such a way that the fixpoint evaluation of the rewritten program is efficient, in
that unnecessary facts are not generated. The rewriting essentially modifies the rules in the original
program by adding literals that act as “filters”, preventing the generation of irrelevant facts. Further,
new rules defining the predicates in these literals are added to the program. These predicates in
effect compute the set of goals that are invoked a top-down (Prolog-style) evaluation of the original
program. When the fixpoint of the rewritten program is evaluated over an abstract domain, the
facts represent the calling patterns for the predicate together with the possible success patterns for
each such calling pattern. Thus, we obtain an elegant abstract interpretation technique based on a
fixpoint evaluation of the transformed program over the abstract domain. This technique results in
analyses that are at least as precise as the analogous top-down ones.

In effect, the program transformation phase of our approach captures at compile-time the binding
propagation aspects of a top-down control strategy, and allows us to understand this aspect of an
evaluation in terms of the least model of a logic program (the rewritten program). Many details of
the control strategy — for example, the exact order in which different rules are explored — are thus
abstracted away. The bottom-up fixpoint evaluation of the rewritten program also allows a clean
separation between two often intertwined issues, namely termination and completeness.

The principal technical contributions of this paper are as follows:

1. The application of bottom-up fixpoint computation techniques to dataflow analysis of top-
down languages is described. The resulting analysis is—in our opinion, at least—cleaner and
easier to implement than an analysis that uses a top-down control strategy augmented with
features such as memoization.

2. The precision of abstract interpretations is characterized. We show that the bottom-up analysis
is at least as precise as any corresponding top-down abstract interpretation using the same
abstract domain and abstract functions. Further, it terminates at least whenever the top-down



version does.

The rest of the paper is organized as follows. We present notation and basic definitions in Section
2. We describe the notion of binding propagation, formalized as sideways information passing graphs,
in Section 3. Section 4 contains an overview of the Magic Templates rewriting algorithm, and the
bottom-up evaluation approach. Sections 3 and 4, included to keep this paper self-contained, review
material from [3, 33] and can be skipped without loss of continuity by the reader who is familiar with
that work. We give an overview of abstract interpretation of logic programs, carefully distinguishing
the various components, in Section 5. Section 6 brings together concepts introduced in earlier
sections and describes how the Magic Templates rewriting followed by bottom-up evaluation can be
used for abstract interpretation of logic programs. We introduce a further program transformation
in order to make explicit various operations whose choice determines the domain of computation,
and to maintain precision in computations over abstract domains. We characterize the precision of
our analysis in Section 7, and present some examples to illustrate our approach in Section 8. We
conclude with a discussion of related work in Section 9.

2  Preliminaries

The language considered in this paper is essentially that of Horn logic. Such a language has a
countably infinite set of variables and countable sets of function and predicate symbols, these sets
being mutually disjoint. It is assumed, without loss of generality, that with each function symbol
f and each predicate symbol p, is associated a unique natural number n, referred to as the arity
of the symbol; f and p are then said to be n-ary symbols (written f/n and p/n respectively). A
0-ary function symbol is referred to as a constant. A term in a first order language is a variable, a
constant, or a compound term f(¢y,...,t,) where fis an n-ary function symbol and the ¢; are terms.
We shall find it convenient to consider a vector, or tuple, of terms to be a term. Thus, a vector of n
terms, t1,...,%,, is a term, denoted (¢1,...,%,). When the individual elements comprising a tuple
of terms are not significant, the tuple is sometimes denoted simply by the use of an overbar, e.g., 1.

A substitution is an idempotent mapping from the set of variables of the language under consid-
eration to the set of terms that is the identity mapping at all but finitely many points. The domain
of a substitution #, written dom(6), is the set of variables # such that 6(z) # z. A substitution ¢ is
more general than a substitution # if there is a substitution ¢ such that § = ¢ oo. Substitutions are
denoted by lower case Greek letters 8,0, ¢, ..., while sets of substitutions are denoted by upper case
Greek letters ©,®,.... The application of a substitution to a term can be expressed by defining a
predicate app_subst, such that given a substitution ¢ and a term t1, app_subst(6,t1,t2) if and only if
0(t1) = ta. Two terms ¢, and ¢z are said to be unifiable if there is a substitution ¢ such that ¢(¢;) =
o(ta); o is said to be a unifier of t; and 5. If two terms have a unifier, they have a most general uni-
fier that is unique upto renaming of variables. Operationally, logic programming languages typically
have the notion of unifying two terms in the context of a “current substitution”, representing the
substitution obtained in the process of solving the given query upto that point in the computation.
This can be expressed by defining a predicate unify, such that unify(0,¢1,ts, ) is true if and only
if 6(t1) and 6(t2) are unifiable with most general unifier ¢, and ¢ = ¢ o @; here, f represents the
“current substitution”. The primitive operations unify and app_subst are fundamental to most logic
programming languages.

A fact, or atom, is of the form p(t1,...,t,), where p is an n-ary predicate symbol and #1,..., 1,
are terms. We adopt the convention that an atom is to be constructed by applying an n-ary predicate
symbol to a single term (¢1,...,t,). Since each predicate symbol in a program is assumed to have



a unique arity, 1t is hoped that this sloppiness will not cause undue confusion.

A clause 1s the disjunction of a finite number of literals, and is said to be Horn if 1t has at most
one positive literal. A Horn clause with exactly one positive literal is referred to as a definite clause.
The positive literal in a definite clause is its head, and the remaining literals, if any, constitute
its body. A predicate definition consists of a set of definite clauses, whose heads all have the same
predicate symbol; a goal is a set of negative literals. We consider a logic program to be a pair (P, Q)
where P is a set of predicate definitions and @ is the input, which consists of a query, or goal, and
possibly a set of facts for “database relations” appearing in the program. We follow the convention
in deductive database literature of separating the set of rules with non-empty bodies (the set P)
from the set of facts, or unit clauses, which appear in ) and are called the database. P is referred to
as the program, or the set of rules. The motivation is that the rewriting algorithms to be discussed
are applied only to the program, and not to the database. This is important in the database context
since the set of facts can be very large. However, the distinction is artificial, and we may choose to
consider (a subset of) facts to be rules if we wish. The meaning of a logic program is the conjunction
of the meanings of its clauses, with the free variables of each clause implicitly universally quantified.

Following the syntax of Edinburgh Prolog, definite clauses (rules) are written as

P—4q1,---y4qn-

read declaratively as “q; and ... and q, implies p”. Names of variables begin with upper case letters,
while names of non-variable (i.e. function and predicate) symbols begin with lower case letters. In
addition, the following notation is used for lists: the empty list is written [ ], and a list with head H
and tail L is written [H|L].

We will use derivation trees in several proofs:

Definition 2.1 Given a program P and input (), derivation trees in (P, Q) are defined as follows:

e Every fact h in @) 1s a derivation tree for itself, consisting of a single node with label A.

e Let rbearule: h :— by,...,b;in P,let d;, i = 1...k be atoms with derivation trees ¢;, and
let 6 be the mgu of (by,...,b;) and (dy,...,d;). Then, the following is a derivation tree for
G(h): The root is a node labeled @(h), and each ¢;, i = 1...n, is a child of the root. Each arc
from the root to a child has the label r.

|
3 An Overview of the Magic Templates Evaluation Strategy
Consider the following program:

L osg{(X,Y)) = flat((X,Y).

2. sg({X,Y)) = up({X, Z1)),s9({Z1, Z2)), down({Z2,Y)).

? —sg({john, X))

This is the “same-generations” program, well-known in the deductive database community. We have
used (---) to emphasize that each predicate has a single argument, which is a tuple.



Given the query, the natural way to use the second rule is to solve the predicates in the indicated
order, using bindings from each predicate to solve the next predicate; this is what Prolog does. It is
desirable to achieve the same binding propagation in a bottom-up evaluation of this program, and
this can be achieved by first rewriting the program. We present a generalization of the Generalized
Magic Sets rewriting algorithm [2, 3], called the Magic Templates algorithm [33], to keep this paper
self-contained. The idea is to introduce a set of auxiliary clauses that compute, intuitively, subgoals
generated in the top-down execution. The rules in the original program are then modified by
attaching additional literals that act as filters and prevent the rule from generating irrelevant tuples.
We now present a simplified version of the Magic Templates algorithm, tailored to the case that
each rule is always evaluated left-to-right, as in Prolog. The rewriting algorithm can actually be
parametrized in terms of a sideways-information-passing strategy, or sip, that specifies a different
(perhaps partial) ordering for body literals. Further, it is possible to choose a different order for
different patterns of bound/free arguments (or “adornments”) of the head predicate. Our results
are orthogonal to these refinements of the basic algorithm, and we have therefore chosen to address
only the case of evaluation methods that always proceed left-to-right. It is straightforward to adapt
our results to the general case by following the same lines as in [3, 33] to deal with adornments and
Sips.

Definition 3.1 The Magic Templates Algorithm

1. Create a new unary predicate magic_p for each p in P.

2. For each rule in P, add the modified version of the rule to P™9. If rule r has head, say, p(t),
the modified version is obtained by adding the literal magic_p(f) to the body (at the leftmost
position).

3. For each rule 7 in P,and for each literal ¢;(Z;) in its body, add a magic rule to P™9. The head
is magic_q;(t;). The body consists of all literals to the left of the literal ¢;(¢;) in the modified
version of r.

4. Create a seed fact magic_q((c)) from the query.

Example 3.1 The Magic Templates algorithm rewrites the same-generation program into the fol-
lowing set of rules:

magic_sg({john,U)). /* Seed from the query rule */
magic_sg({Z1,72)) :—

magic_sg({(X,Y)), up({X, Z1}). /* From rule 2, 2nd body literal */
sg({(X,Y)) :—

magic_sg({(X,Y)), flat({X,Y)). /* Modified rule 1 */
sg({(X,Y)) :—

magic_sg((X,Y)), up({(X, Z1)), sg({Z1,72)), down({Z2,Y)).
/* Modified rule 2 */



4  Abstract Interpretation of Logic Programs
4.1 Basic Ideas

Let the program points of a clause for a given sip be the points between the literals in the clause
ordered according to the sip. The execution of a logic program with respect to some set of queries
S can be summarized by describing, at each program point, the set of substitutions, or variable
bindings, that may be encountered when execution reaches that point, over all possible executions
of the program starting from queries in .S. Such a description of the behavior of a program is referred
to as i1ts collecting semantics. The domain of the collecting semantics of the language, also referred
to as the concrete domain Deop., 18 thus the powerset of the set of substitutions; it forms a complete
lattice under set inclusion. In general, such sets of bindings may be arbitrarily large, making the
static inference of most interesting program properties undecidable in general. Since static analyses
are expected to always terminate, it is necessary to approximate the collecting semantics. This is
done by defining an abstract domain (Dgps, C) whose structure reflects that of the concrete domain
(Deone, C). The relationship between the two domains is given by two functions a: Deone — Dabs
and ¥: Dgps = Deonce, known as the abstraction and concretization functions respectively. To ensure
that Dgps and Deone have similar structure, the abstraction and concretization functions are required
to be monotone and satisfy the following adjointness requirement:

z Cy(a(z)) for all £ € Deone; and a(y(x)) = « for all & € Dgps.

In the context of logic programs, the concrete domain D,y 18 the powerset of the set of substitutions.
Equivalently, the concrete domain may be taken to consist of sets of tuples of terms. For each clause,
consider the tuple V of the variables occurring in that clause, and a tuple of terms V/ = 9(‘7), where
6 is a substitution: in one direction, V/ can be obtained as 9(‘7) given the substitution #, and in the
other direction the substitution @ can be obtained, given the tuple V’, as the most general unifier of
V and V', Similarly, a set of substitutions at a point within a clause can be represented equivalently
by a set of tuples of terms. As mentioned earlier, tuples of terms are themselves taken to be terms,
which means that the concrete domain can equivalently be considered to consist of sets of terms, as
we do in the discussion that follows. Analogously, we consider abstract domain elements to represent
sets of terms.

In addition to this, for each primitive operation f of the language, defined on the concrete
domain, there 1s a corresponding operation abs_f defined on the abstract domain that “mimics” the
execution of f. Soundness requirements specify that such an operation abs_f should always capture
everything that can actually happen at runtime when the “concrete operator” f is executed, though
in general abs_f may be conservative: in other words, for any element z of the concrete domain,

f(x) € ~(abs_f(a(x))). ()

In the context of logic programming, two primitive operations of interest are unify and app_subst,
discussed in Section 2, “lifted” to the collecting semantics. For example, whereas app_subst ordinarily
applies a single substitution to a term to yield another term, in the collecting semantics 1t must deal
with sets of substitutions. A set of substitutions, “applied” to a term, yields a set of terms, so 1t 1s
more natural to have app_subst apply a set of substitutions in the collecting semantics to a set of
terms, yielding a set of terms. Thus, given a set of substitutions @ and sets of terms 7} and 75,

app_subst(©,T1,T5) << To={ta |30 €0O,t; €Ty : app_subst(,t1,12)}.



Similarly, whereas unify ordinarily performs unification in the context of a single substitution and
returns a single substitution, the corresponding operation lifted to the collecting semantics performs
unification in the context of a set of substitutions and two sets of terms to yield a set of substitutions.
For any set of substitutions © and sets of terms 77 and 7%,

unify(0, 71,75, ®) < O ={p |3t €T1,t2 €To,0 €O :unify(d,t1,t2,9)}.

Recall that the set of terms is assumed to contain tuples of terms as well, which means that abs_unefy
is able to describe the effects of unifying two tuples of terms, e.g., in the context of a call to a predicate
or the return from one.

In semantic descriptions of logic programming languages that take their operational behavior into
account, the meaning of a predicate in a program is typically given as a function from substitutions
to sets, or sequences, of substitutions [12, 16]. Equivalently, by applying such substitutions to the
arguments appearing in calls, the meaning of a predicate p can be characterized as a mapping F, from
terms to sets, or sequences, of terms. For any given abstract interpretation, this can be abstracted
to obtain the meaning of a predicate p as a partial function p, that maps descriptions of tuples of
terms to sets of descriptions of tuples of terms:

Hp - Dabs — P(Dabs).

The idea is that descriptions appearing in dom (p,), the domain of y,, are “calling patterns”, and
indicate how the predicate p may be called; and for each such calling pattern a, the set p,(a) gives
its “success patterns”, i.e. describes how a call described by @ may succeed. Thus, for any given
abstract interpretation, p, provides a (presumably safe) approximation to the collecting semantics
specified by F,.

The class of abstract interpretations we consider are those that infer calling and success patterns.
This is assumed in the remainder of the paper, and references to “any abstract interpretation” or
“all abstract interpretations” are understood to be relative to this class. Thus, for example, the
development of Marriott and Sgndergaard [23], which computes descriptions of goals that succeed
and those that finitely fail, is not included; one can also imagine other developments that make
inferences about sets of goals that do or do not terminate, or — in the context of concurrent languages
— that deadlock (e.g. see [7]): these would be beyond the development in this paper. However, the
ideas in this paper can be reformulated to deal with such frameworks as well, and we expect that
theorems that are very similar to ours can also be proved for them.

The function F, giving the meaning of a predicate computing over the concrete domain is typ-
ically given as the least fixpoint of a continuous functional [12, 16]. This fixpoint is computed by
approximating F, from below, i.e. beginning at — and getting better and better approximations
to F,. The process of improving such approximations can be made explicit using a metalanguage
operation merge. Conceptually, merge is a functional that takes a function F;,, and a pair of tuples of
terms (¢,1') indicating that a call p(f) may succeed with its arguments bound to #', and updates F;,
to produce a new function F;,’ that additionally expresses the fact that the call p(f) can also succeed
with its arguments bound to #. This functional is abstracted in various ways for static analysis.
For example, some researchers collect the results obtained from different execution paths in a set
[14, 23], while others combine such results into a single piece of information that is essentially a
“worst case” approximation to them [5, 13]. Such abstractions can be described by an “abstract



merge” operation, denoted by abs_merge: in the case where results from different paths are collected
in a set, abs_merge is set union; in the case where results are combined to yield a worst case approx-
imation, abs_merge is the least upper bound operation in the abstract domain. We return to this
point in Section 6.

Abstract interpretations of logic programs can thus be characterized in terms of the following
parameters:

1. an abstract domain (Dgps, C);
2. abstraction and concretization functions a and +; and

3. functions abs_unify, abs_app_subst and abs_merge that simulate the primitive operations unify,
app_subst and merge, respectively, over the abstract domain.

Further, when the technique is used to analyze a program, it provides a summary of a family
of executions in which the literals in the body of each rule are solved in a given order (which is
necessary for us to have well-defined program points). Thus, there is another parameter to an
abstract interpretation of a program: a choice of sips for the rules of the program. In this paper,
we will assume that a left-to-right sip is always chosen, for simplicity. It is straightforward to apply
our method with any choice of sips.

4.2 Sound Abstract Interpretations

An abstract interpretation is intended to predict, or to summarize, the expected run-time behaviour
of the program. In order to be sound, we require that all run-time possibilities are included in
the summary. That 1s, an abstract interpretation must necessarily predict any calling and success
pattern that can arise at runtime from the execution of the program on the given input. Recall that
we assume that the meaning of a program is given by the set of input-output functions g, for the
predicates p in the program. Let the sets of calls for a predicate p in a program given by yu, be

calls(pp,) = U{’Y(El) | a € dom(pip)}

and let the set of successes for a predicate p for a call described by a, be

suces(pp(@) = (J{(@) | @ € pp(@)}.

This soundness criterion can be stated as follows: Given a program P and a set of sips for its clauses,
and a query @, let & be an evaluation strategy that evaluates P according to these sips. Then
1. if there is any computation of P according to 8, for the query @, such that p(¢) is a goal that
has to evaluated at some point in the computation, then p(t) € calls(p,); and

2. if the goal p(f) can succeed with its arguments bound to the tuple #', then there is some
a € dom(p,) such that ¢ € y(a) and ¥ € suces(pp(a)).

Any abstract interpretation must infer at least the information in calls and succs, since otherwise
goals and facts in an actual computation may not be covered by the analysis, and soundness is lost.
The abstract interpretation may in fact infer additional entries, and each such entry reduces the
precision of the analysis. (Loss of precision also arises from entries that are too “coarse” in their
approximation of the sets of calling and success patterns.)



4.3 The Scope of this Paper

Aspects of an abstract interpretation such as soundness, termination and precision of analysis are
implicit in the abstract domain Dgps and the various functions on 1t enumerated above. For example,
soundness is implicit in the requirement that abs_app_subst and abs_unify satisfy condition (*);
termination is usually addressed by restrictions on the structure of Dg,; and the precision of an
analysis depends partly on the abstract domain Dgps, which specifies what is expressible in the
analysis; partly on abs_unify, which specifies how precisely unification is to be modelled; and partly
on the operation abs_merge, which specifies how much information is lost in merging the results of
analysis over different execution paths. Such issues are not addressed explicitly in this paper. These
issues are implicit in the choice of the abstract domain and the abstract functions defined on it for
abstract interpretation. Intuitively, these choices represent a trade-off in precision versus the cost
of static analysis. Our main result will be to show that for any given choice of abstract domain and
abstract operations on it, the abstract interpretation can be carried out according to a bottom-up
strategy in such a way that, informally:

1. Tt is at least as precise as any corresponding top-down abstract interpretation using the same
abstract domain and abstract functions; and

2. It terminates at least whenever the top-down version does.

5 A Rewriting Approach to Abstract Interpretation
5.1 Explicated Programs: Making Primitive Operations Explicit

Consider the Magic Templates algorithm. For every predicate in the original program, the set of
facts computed by the fixpoint evaluation of the rewritten program must also be computed by any
evaluation of the original program that proceeds left-to-right (and only does subsumption checks up
to variable renaming) [3, 33]. An optimal evaluation is one that computes no other facts. Consider
any implementation strategy that evaluates a program optimally and that proceeds in a top-down
fashion by invoking subgoals. We make the following important observation: The set of goals, i.e.,
calls, arising during the execution of a program P is identical to the set of facts computed for the
magic predicates in P™9. Qur approach to abstract interpretation of logic programs rests upon this
property of P™9.

Abstract interpretation of a program consists essentially of “simulating” its execution over an
abstract domain. This is done by specifying, as part of the abstract interpretation, an “abstract
operation” abs_f for each primitive operation f of the language. To see how this should be done,
it is necessary to make the primitive operations of the language — in our case, unification and the
collection of results from different computation paths — explicit.

Consider the computation of a rule : p(Ty) :— q1(71),. .., ¢.(Ty). Initially, each variable in the
clause is uninstantiated. First, the arguments in the head of the clause are unified with those in the
call to yield a substitution fy. The first literal in the body is then evaluated in the context of this
substitution; if this succeeds yielding a new substitution #;, the next literal in the body is evaluated
in the context of 81, and so on. Finally, when all the literals in the body have been successfully
evaluated, yielding a substitution 8,,, the “return value” is obtained by applying #,, to the tuple of
arguments in the head of the clause.

This operational behavior can be made explicit by rewriting the corresponding modified rule in



P9, Recall that a k-ary predicate symbol is applied to a single term that is a tuple of £ terms. We
use this convention here also: each T;,7 = 0,...,n, is taken to be a single term. In the following,
Xy, X4, 15 and T34, ¢ = 1,. .. n, are distinct new variables, and id is the identity substitution. The
explicated version of rule r 1s:

p(Xi’ XT) cT B

magic_p(Xy), unify(id, X, Ty, 6y),

app-subst(@o s jjl, TLL)’ 91(T1¢, TlT)a umfy(@o, Tlia TlTa 91),

app-subst(@l s Tz, TQU, qo (TZia TQT), unify(91 s T2¢, TZT, 92),
app—SUbSt(gn—l ) Tn, Tn,L)a dn (Tn,L, TnT)a Unlfy(gn—l y Tnys Tats gn)a
app-subst(0, , Ty, X3).

Each k-ary (non-magic) predicate — which can be thought of a predicate that takes one argument
that is a k-tuple of terms — has been modified to have two arguments: the first, subscripted ‘|’,
representing the tuple of arguments at the call to the predicate, and the second, subscripted ‘17,
representing the tuple of arguments at the return from that call.

It is important that we maintain separate “calling” and “return” arguments. One reason for
doing this is to make explicit the operational aspects of a logic program computation (since this is
what an abstract interpretation tries to mimic). We note that it also has declarative virtues, since
the application of a substitution to a term is essentially a destructive operation, and it is better
to make such operations explicit. The most important reason behind this anticipates a technical
difficulty in abstract interpretation — certain kinds of static analyses require that the connection
between “calling” and “return” values be maintained explicitly during analysis in order that the
analysis be precise. (This point is illustrated in Example 7.1.)

Given that we maintain separate sets of calling and return arguments, it is possible to eliminate
the magic predicates. Consider rule r. Every tuple in the magic predicate magic_p corresponds to
a call, and an examination of the explicated version of r reveals that this tuple is also contained
in the first argument position of every tuple in p that is computed as an answer to this call. This
suggests that we can simply use the first argument position of the predicate p to play the role of the
magic predicate magic_p, by adopting the convention that — in the second argument indicates the
generation of a goal, for which an answer is not as yet known. The explicated version of the rule is
then:

p(Xy, Xp) = o
(X, ), umfy(l(!, Xi’TOaﬂO)L -
app_subst(6o, T1,11,), q1(Thy, T11), unify(0o, T1y, Tht, 61),
app-subst(@l s Tz, TQU, qo (TZia TQT), unify(91 s T2¢, TZT, 92),
app—SUbSt(gn—l ) Tn, Tni)a dn (Tn,[,, TnT)a Unlfy(gn—l ) Tn,[,, TnT, gn)a
app-subst(0,, , Ty, X3).

The corresponding abstract interpretation computation can now be described simply by replacing
each primitive operation by the corresponding operation over the abstract domain. The following
rule is called the abstract explicated version of rule r:

abs_p(Xy, Xt) -



P The original source program.

P™9 The magic program: Each clause in P has an additional “magic literal” added to it. This
magic literal acts as a filter during bottom-up evaluation, and prunes away provably useless
computation branches.

Pe® The explicated magic program: The primitive operations of the language, unification and substi-
tution application, are made explicit, and separate argument tuples for “calling” and “return”
values are added. Additional clauses and literals are added to act as filters during bottom-up
evaluation and prune away provably useless computation branches. The operation merge is to
be used in evaluating the fixpoint.

P The abstract explicated magic program: The concrete domain operations unify and app_subst
are replaced by corresponding operations abs_unify and abs_app_subst. The operation abs_merge
is to be used in evaluating the fixpoint.

Figure 1: Different kinds of rewritten programs

abs_p(Xy,_), abs_unify(a({id}), X|, Tp, Ao),

abs_app_subst(Ag, Ty, T1y), abs_q1(T1y, Tht), abs_unify(Ag, Ty, Tit, A1),
abs_app_subst(Ay, Ty, Ts), abs_qs(Tsy, Toy), abs_unify(Ay, Tsy, Toy, As),
abs_app_subst(An—1, Ty, Tny), abs_qn(Tay, Tnt), absunify(An—1,Tny, Tnt, An),
abs_app_subst( Ay, Ty, X1).

where a({id}) represents the abstract domain element corresponding to (the singleton set containing)
the 1dentity substitution. The A; are descriptions, over the abstract domain, of sets of substitutions.

We now describe how to construct the explicated magic program P, and the abstract explicated

magic program P, 1

Definition 5.1 The explicated magic program P¢* is obtained from the given program P by applying
the Magic Templates algorithm with the following modifications: In Step 2, construct the explicated

version of the rule. In Step 3, the head of the “magic” rule is ¢;(¢, —), and the body is constructed
using the explicated version of the rule. In Step 4, the seed is ¢({¢),—). m

Definition 5.2 The abstract explicated magic program P®* is obtained from the explicated program
P#7 by replacing every predicate, say p, by its abstract version, abs_p; replacing every operation by
the corresponding operation over the abstract domain; and replacing every set of concrete substitu-
tions by its abstract description. g

At this point, we have considered a number of different rewritings of programs. The different kinds
of rewritten programs are summarized in Figure 1.

IThis algorithm is presented as a simple modification to the Magic Templates algorithm presented earlier for the
case of left-to-right sips. For general sips, we must use the Magic algorithm presented in [3] and make essentially the
same modification.
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Example 5.1 Continuing our running example, the explicated magic program P°” is

sg({john,U),—). /* Seed from the query rule */
sg(Vay,—) 1—
sg(Uy, ), unify(id, U, (X, Y), 0y),
app-subst(0o, (X, Z1), V1), up(Viy, Vi), unify(6o, Vay, Vg, 61),
app-subst(01,(Z1, Z2), Vay). /* From rule 2, 2nd body literal */
Sg(Ul«’UT) T
sg(Uy, ), unify(id, U, (X, Y), 0y),
app-subst(0o, (X,Y), V1), flat(Viy, Viy), unify(fo, Vay, Vig, 01),
app-subst(01, (X, Y, Uy). /* Explicated rule 1 */
sg(Uy,Up) 1 —
sg(Uy, ), unify(id, Uy, (X,Y), o),
app-subst(0o, (X, Z1), V1), up(Viy, Vi), unify(6o, Vay, Vg, 61),
app-subst(01,({Z1, Z22),Vay), sg(Vay, Vap), unify(b1,Vay, Vor, 62),
app-subst(02,(Z2,Y),Va)), down(Vsy, Vay), unify(f2, Vay, Vay, 03),
app-subst(0s, (X,Y), Uy). /* Explicated rule 2 */

We now formalize the connection between the execution of a program and the explicated magic
program. This result is a straightforward extension of results in [3, 33], taking into account the
differences between P™9 and P°*.

Theorem 5.1 Consider a program P, an input @) containing a query ¢ = ¢°(t)-?, and a sip for
each rule of P, for each head adornment. Let P be the corresponding adorned program and P®
the explicated program. Let S be an evaluation strategy that evaluates (P, Q), proceeding left-to-right
wn each rule. Then:

1. The fact p*(¢,—) is in the least firpoint of (P*, Q) if and only if p*(¢)-? is a goal generated
by S.

2. Let p* be a predicate in P4, The fact p*(¢,5), s # —, is in the least firpoint of (P** Q) if
and only if p*(¢)-? is a goal generated by S and p®(s) is a solution to this goal.

Proof [Only if:] The proof is by induction on the height of derivation trees in (P**, Q). The only
tree of height 0 is the tree consisting of the single node g(¢, —), corresponding to the query ¢, and is
the basis of our induction. Let the claim hold for all facts that have a derivation tree of height less
than N. Consider a fact p(¢,_) that is the root of a tree of height N.

Let the children, from left to right, have labels Iy, {1, . .., g, ignoring unify and apply_subst literals.
(There is exactly one unify and one apply_subst literal between the node with label /; and the node
with label {;41.) By construction of P”, there is a rule, say r: ‘A :— by,...,b,", n =k, in P and
a substitution @ such that the following holds. Let h = p(#y) and b; = ¢;(¢;),# = 1...%k. Then,
lo = 0(p(to,_)), and l; = ¢;(¢i,5:),i = 1...k. By the induction hypothesis, [y is a goal generated
by 8, and each [;;7 = 1...k is a goal-solution pair. By definition of the predicates unify and
apply_subst, it follows that & must also generate the goal p(¢)_? if it proceeds according to the sip.
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[If:] It S generates a goal G, there is a chain of goals and solutions such that the following holds.
The first element is the given query ¢, the last element is goal (G, and there is a rule r in P such
that:

e This rule is invoked by a goal that is a predecessor of G in the chain, and there is a set of
predecessor goal-solution pairs that unify with the first k-1 body literals of ». The resulting
mgu, applied to the k’th body literal, generates goal G

If § generates an answer A to a goal (G, there is a chain of goals and solutions such that the
following holds. The first element is the given query ¢, the last element 18 A, and there is a rule r
in P such that:

e This rule is invoked by goal G, which is a predecessor of A in the chain, and there is a set
of predecessor goal-solution pairs that unify with the body literals of ». The resulting mgu,
applied to the head literal, generates solution A.

We prove that if a goal p(¢)_? is generated by S, a fact p(¢,_) is computed in P**, and that if a
solution p(s) is generated by S, a fact p(¢, 5) is computed in P”. The proof is by induction on the
length of the chain associated with the goal or solution. The basis is the chain of length 1, which
is the query ¢; the fact p(¢, —) is the seed in P®*. Let the claim hold for goals and solutions that
are generated by chains of length less than N. Consider a solution p(5) (to a goal p(¢)_7) generated
by a chain of length N, say from a rule r in P. Since, by the induction hypothesis, there are facts
in P°? corresponding to the goal that invoked rule r (this is a fact p(¢, _)), the goals obtained by
instantiating the body literals, and the solutions to these goals, we can instantiate the explicated
version of rule r to obtain the solution p(¢, 5). Consider a goal that is generated by a chain of length
N, say from the k’th body literal of a rule » in P. The claim is similarly established by considering
the magic rule that is generated from this body literal. O

The careful reader will have noticed that we assume that a set of all generated facts (modulo
variable renamings) is maintained. This corresponds to one particular choice for the merge operation.
The fixpoint computation can be refined by maintaining instead the irredundant version of this set
[21]. That is, we may discard a generated fact if it is “subsumed” by an existing fact.? This may
enable us to avoid some derivations of goals and facts, essentially because we know that more general
goals and facts are also derived. However, in the worst case — which 1s that for every version of
a generated fact, all generated versions that are more general are generated later — none of the
derivations discussed in the above proof can be avoided. The order of derivations is, of course,
dependent on the order in which rules (and facts) are considered, and is non-deterministic, as the
following example illustrates.

Example 5.2 Consider the following program:

ql = p(a)
gl = p(X).
p(X) — r(X).
?-ql.

2In an abstract interpretation, a fact A “subsumes” another fact B if the set of concrete facts represented by
A contains every concrete fact represented by B, l.e., if v(B) C ~v(A). This need not necessarily coincide with the
“usual” notion of subsumption of first order terms.

12



Assuming that the merge operation performs subsumption checks, is the goal r(a) generated?
This depends upon the order in which the rules defining q1 are considered, since if p(a)_7 is generated
after p(X)_7, it is simply discarded. O

The following example, given by Codish et al. [6] (who credit it to J. Gallagher), is a simple
variant of the previous program. It brings out a subtle problem associated with the Magic Templates
algorithm, vis-a-vis a Prolog-style top-down evaluation method.

Example 5.3 Consider the program:

ql = p(a), p(X), r(X).
p(X).
Query: ?- ql.

Again assuming that the merge operation performs subsumption checks, is the goal r(a) gen-
erated? Prolog will not generate this goal, but a bottom-up fixpoint evaluation of the program
generated by the Magic Templates rewriting will generate it. To understand why, we note that both
the goals p(a) and p(X) are generated (in Prolog as well as the bottom-up evaluation). These have,
respectively, the answers p(a) and p(X). The control strategy of the Prolog evaluation, which waits
for the answer to a goal before proceeding, ensures that only the answer p(X) is used for the goal
p(X). The Magic Templates approach, on the other hand, will use any generated fact that unifies
with a goal, and thus will use p(a) as an answer to the goal p(X) generated by the second p literal.
Therefore, the goal r(a) is generated (in addition, of course, to r(X)). We note that the explicated
version of the Magic Templates rewritten program does not suffer from this problem; it behaves like
Prolog on this example. O

Finally, we observe that if there is any evaluation method that generates all necessary goals and
solutions and halts (independently of the order of derivations), then so will the bottom-up evaluation
of P, Indeed, we must eventually generate all the goals and facts, given the completeness of bottom-
up evaluation, and we must then stop since the fixpoint has been reached. A similar observation
holds for the bottom-up evaluation of P**, discussed in the next section.

5.2  Evaluation of Abstract Explicated Programs

Our proposal is quite simple. Given a program P, a query, a choice of an abstract domain, abstract
operations over 1t, and sips, to do abstract interpretation:

1. Construct the abstract explicated program P®*.

2. Compute the fixpoint of P®* over the abstracted set of facts bottom-up, using the given set
of abstract operations.

Definition 5.3 Canonical Computation We refer to the computation of the fixpoint of P2 as
a canontcal computation. g

Note that P is evaluated over the abstracted set of facts, i.e., with each fact A replaced by
a(h). There are at least two options available when a new “abstract tuple” is inferred in the fixpoint
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computation of P** — it can either be added to the set of known facts, or the LUB can be taken of
this tuple and (some summary of) the set of known facts. The latter alternative, which essentially
computes a worst-case summary of the available information, is less precise (because information is
lost in taking the LUB) but more efficient (because fewer tuples have to be stored). To articulate
this, we introduced an abstract merge operation abs_merge in an earlier section. This is a parameter
of the bottom-up evaluation strategy that will usually be implicit in the discussion that follows.
Note that it does not appear in the explicated program; rather, it 1s part of the fixpoint evaluation
phase.

It 1s important to understand the role of the operator abs_merge: The “set of known facts” is
always represented in some form, either by explicitly listing all members, or by some summary that
1s a “safe” approximation in that the set of facts represented by the summary includes the set of
facts being summarized. The choice of abs_merge reflects this representation, and abs_merge can be
understood as a LUB operator over the representation domain. When sets are represented by listing
all elements, the LUB is a set union. If the set contains non-ground tuples, we may choose an irrset
representation (for irredundant set, in which no element is subsumed by another; see [21]). If so,
the LUB must include subsumption checks. If the set is represented by an element of the abstract
domain that is the LUB of the set of known (abstract) facts during an abstract interpretation, then
abs_merge 1s simply the LUB operator over the abstract domain.

In order for our analysis to be sound, the following must hold:

1. for every goal p({) generated at runtime in the computation of P on input @, there is a tuple
abs_p(@, b) computed in P%* such that ¢ € y(a); and

2. for every goal p(f) so generated that can succeed with its arguments bound to ¢, there is a
tuple abs_p(a, a') computed in P%®* such that ¢’ € y(a').

The following lemma establishes an important connection between P and P and is used to
show the soundness of our analysis.

Lemma 5.2 Consider a program P, input @, and a sip for each rule of P for each head adorn-
ment. Let P be the corresponding abstract explicated program, using abstract domain Dgps, ab-
straction and concretization functions a and v, and abstract operations abs_unify, abs_app_subst,
and abs_merge.

Let g be a fact in the least firpoint of (P Q). Then, there is a fact h in the least fizpoint of
(P a(Q)) such that g € y(h).

Proof (Sketch) There is a straightforward mapping of the derivation tree for g in (P°”, Q) into a
derivation tree for h in (P%* a(Q)) based on the correspondence between the explicated and the
abstract explicated versions of a rule in P. (The proof also utilizes Condition (*) on operators over
the abstract domain.) O

The following theorem shows that the results of the abstract interpretation that we propose is
sound, in that the goals and facts generated in a computation over the concrete domain are contained
in the set of goals and facts represented by the result of the abstract interpretation.

Theorem 5.3 Soundness
A Canonical Computation is a sound abstract interpretation.
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Proof Follows immediately from Theorem 6.1 and Lemma 6.2. O

Note that this result does not gnarantee termination of the evaluation of the least fixpoint of P
(i.e. the termination of the abstract interpretation). For this, we must rely upon other properties,
such as finiteness of the abstract domain. In general, results on the safety and termination of fixpoint
evaluation for logic programs are applicable here, e.g., [1, 19, 20]. As in the bottom-up evaluation of
Pe7 the existence of a terminating abstract interpretation strategy that generates all the abstract
“goals” and “facts” required by the sip definition and terminates assures that bottom-up evaluation
of P4 will also terminate. (Due to space constraints, we do not prove this formally, but the
development is straightforward.) Thus, while termination issues are not addressed in this paper, the
proposed method is at least no worse than any other abstract interpretation technique that uses the
same abstract domain and operations and mimics the same choice of sips.

6 On the Precision of Canonical Computations

We have shown that our analysis is sound in that anything that can happen at runtime is inferred
during analysis. It is desirable to also be able to go in the other direction, and reason about how
tightly the results of the analysis bound the runtime possibilities. In this section, we show that
the results of our analysis are at least as precise as those of any abstract interpretation that uses
the same abstract domain and operations—in other words, that no imprecision is introduced due to
rewriting and subsequent bottom-up fixpoint evaluation.

Theorem 6.1 Relative Precision

Consider a program P and input Q. Let P®* be the corresponding abstract explicated program, using
abstract domain Dy, abstraction and concretization functions « and v, and abstract operations
abs_unify, abs_app_subst, and abs_merge. For any abstract interpretation that uses the same abstract
domain and operations, and approximates the evaluation of (P, Q) proceeding left-to-right within
each rule, the following hold for every fact abs_p(a,b) in the least fizpoint of (P** a(Q)):

1 ~y(a) C calls(pp); and

2. let S={a'|(a,a') € abs_p}, then v(S) C suces(pp(a)).

Proof By induction on the heights of the derivation trees for the facts.

Consider a tuple (a, 13> in the relation abs_p that has a derivation tree of height 0. This means
that it must be the “seed fact” describing the query p(¢). Then, @ = «({t{}). Assuming that the
abstract interpretation is sound, it follows that @ must be in dom(p,), whence y(a) C calls(p).

Consider a fact abs_p(a, @’) whose derivation tree is of height 1. In this case, the original program
P has a fact p(u), corresponding to which there is a clause in the abstract explicated program P
of the form

abs_p(Xy, X3) :— abs_p(Xy,_),abs_unify(a({id}), X}, u, Ag), abs_app_subst(Aq, u, X4)

such that @ = A(X}), and @ = A(Xy), for some abstract substitution A such that
abs_unify(a({id}), X}, 4, A). For this to be true, there must be a fact abs_p(A(X}), A(_)) =
abs_p(a,b), for some b, in the least fixpoint of (P%* a(Q)), whose derivation tree is of height 0;

this, in turn, implies that the input contains a query p(?) such that @ = «(¢), and it follows from
the above that v(@) C calls(y,). Since the abstract interpretation under consideration is also using
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the abstract operations abs_unify and abs_app_subst, it must also infer that a call described by a can
have success pattern a’. It follows that @’ € u,(a), which implies that y(@') C suces(up,(a)).

Assume that the theorem holds for all facts that have derivation trees of height less than N.
Consider a fact abs_p(a,a’) whose smallest derivation tree is of height N: this must have been
derived from a clause in the explicated abstract program of the form

abs_qo(f/i,f/j) i— o

abs_qo(Vy, _), abs_unify(a({id}), V|, Ty, Ao),

abs_app_subst(Ag, T1,T1}), abs_qi* (T1y, Th1), abs_unify(Ag, Thy, Tit, A1),
abs_app_subst(An_1,T,,
abs_app_subst( A, T, U
abs_p(U,, Uy),

T )a abs—Qg (Tnl,a )a abs_ Umfy( n— 1,Tn,LaTnTaAn)a
1)

where Ay, ..., A, are abstract substitutions such that a = A, (Tp). In turn, this must have been
derived from a clause in the original program of the form

q0(To) :— qu(1h), .. qn(Th), p(T,), - -

Further, it must be the case that

1. abs_go(bo) is in the least fixpoint of (P* a(Q)), where by = A(V}) for some abstract substi-
tution A, such that abs_unify(a({id}),bo, Ty, Ao) holds; and

2. abs_q;i(Ai_1(T}), A;(T})), 1 < i < n, are in the least fixpoint of (P%* a(Q))

and each of these facts has a derivation tree whose height is less than N. We show, by induction on
1, that the abstract substitution A; safely describes the set of substitutions that may be obtained
at the program point immediately after the literal ¢;(7;), 0 < i < n, in any computation of this
clause starting with a call to gy described by b. Since the fact abs_qo(b) has a derivation tree of
height less than NV, it follows from the induction hypothesis of the theorem that v(bg) C calls(py, ),
whence from the soundness of abs_unify it follows that Ay safely describes the substitutions that
may be obtained after head unification for any call to ¢y described by by. Assume that a call
described by Tli can return with success pattern T1T~ From the induction hypothesis of the theorem,
v(T14) C suces(pg, (T1y)). Let abs_unify(Ag, Thy, Tip, A1) hold, then it follows, from the soundness
of abs_unify, that A, safely describes the set of substitutions that may be obtained at the point
immediately after the literal ¢;. Suppose the argument holds for all values of ¢ less than k&, and
consider the literal qk(Tk): since Ag_1 safely describes the set of substitutions that may be obtained
at the program point immediately before this literal, it follows from the soundness of abs_app_subst
that Tki safely describes all calls that can arise for this literal in this computation.

From the induction hypothesis of the theorem, TkT safely describes any success pattern that can
be obtained for such a call. From the soundness of abs_unify, it follows that Ay safely describes
the set of substitutions that can be obtained immediately after this literal. This establishes that
the abstract substitution A; safely describes the set of substitutions that may be obtained at the
program point immediately after the literal ¢;(7}), 0 < i < n. It follows that A, (7,,) safely describes
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all the calls to the literal p(7,,) that can arise here. This implies that v(A,(U)) C calls(u,). But
An(U) = @, so this implies that y(a) C calls(p,). O

What Theorem 6.1 shows is that a canonical computation is at least as precise as any other abstract
interpretation that uses the same abstract domain and abstract operations. To understand the
significance of this; 1t is useful to compare it to Theorem 5.1. Theorem 5.1 extends the sip-optimality
results of [3, 33] to the explicated programs considered in this paper; the extension is based on a
straightforward correspondence between the first argument of an explicated program predicate and
the argument (vector) of a “magic” predicate, and between the second argument of an explicated
program predicate and the argument of a (user) program predicate. The result is with respect to
computations over the concrete domain, and essentially the same result holds for the magic program
P™9. In contrast, Theorem 6.1 is a result about computations over the abstract domain. Note
that the analogous result does not hold for the magic program P"9; the explication of the program
(in particular, the introduction of “input” and “output” copies of the arguments of a predicate) is
crucial. Theorem 6.1 does not address the question of how much precision can be attained for a
given abstract domain. Clearly, the converse of Lemma 6.2, viz. “anything that is inferred during
analysis will happen at runtime”, may not hold. Even a more conservative statement, of the form
“for any given input () to the program, for any calling or success pattern inferred at analysis time,
there is some input described by «(Q) that causes that calling or success pattern to be realized at
runtime”, may not hold, because we assume that the abstract operations abs_app_subst, abs_unify
and abs_merge are given to us by the designer of the abstract interpretation, and it may happen
that these operations are very imprecise. The point, however, is that the rewriting and subsequent
bottom-up computation does not contribute, in any way, to loss of precision: for any given abstract
domain, any loss of precision during analysis is due only to various parameters of the abstract
interpretation, such as the abstract operations abs_app_subst, abs_unify and abs_merge.

The results of this section show that the canonical computations approach is as precise as any
top-down abstract interpreter with respect to sets of {call, success) pairs. However, suppose that
a predicate appears in two different clauses; then we cannot tell which pairs correspond to which
occurrence. Thus, we could potentially lose information at the program point level.> Fortunately,
it 1s easy to modify the transformation to retain information at the level of predicate occurrences
rather than predicates. We can distinguish between different occurrences of the same predicates by
introducing variants of predicates so that every predicate occurs in exactly one clause-body position
in the entire program. (Equivalently, we could use an extra argument position to distinguish between
these variants.) We omit the details of the modified transformation as they are straightforward; it
is sufficient to observe that since there are only a finite number of predicate occurrences in the
program, this process is guaranteed to terminate yielding a finite transformed program.

We have not compared the complexity of the bottom-up interpreter presented here with the com-
plexity of top-down interpreters. However, such a comparison should be similar to the comparison
in the case of the concrete domain. Evaluation over a finite abstract domain, which is common in
abstract interpretation, is very similar to the case of Datalog computation (i.e. all arguments are
restricted to be constants or variables). Further, for abstract interpretation, a top-down interpreter
must incorporate some form of memoing to insure termination. Ullman [37] has shown that for
the case of Datalog, a bottom-up computation using Magic “dominates”, asymptotically, under a
detailed cost model, any top-down memoing computation. This result is generalized to all Horn
clause logic programs in [36].

3We thank an anonymous referee for pointing this out.
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7 Examples
In this section, we present several detailed examples to illustrate the application of our technique.

Each example is chosen to illustrate an important aspect of the approach.

7.1 Precision

Our first example illustrates the need to maintain the connection between calling and return ar-
guments, by introducing separate “input” and “output” arguments in the explicated program, to
prevent an undesirable loss of precision.

Example 7.1 Consider an abstract interpretation that performs data dependency analysis of pro-
grams, e.g. as in [14, 15, 30]. Such analyses find applications in parallelization of logic programs.

Let the abstract representation of calls and returns to an n-ary predicate be as follows: each
argument is represented by a subset of {1,... ,n} that indicates which argument positions it can
possibly share variables with. For example, if two variables X and Y are possible aliases, then,
corresponding to the call ¢(f(X), ¢(Y,Z), Z), in the explicated abstract program, we have the fact

abs_q(({1,2},{1,2,3},{2,3}), -).
Consider the predicate p defined by the single clause

p(X, Y, Y)
First, consider a call where the first and second arguments are aliases: given the call
p({1,2},{1,2},{3}), the analysis infers that all arguments can be aliased together on success. Now

suppose that the connection between “calling” and “success” patterns is not maintained, but that
these are factored separately into relations call_abs_p and succ_abs_p. This results in the relations

call_abs_p({{1,2},{1,2},{3})).
succ_abs_p({{1,2,3},{1,2,3},{1,2,3})).

Then, if there is a subsequent call where only the second and third arguments are aliased, i.e. the
call is abs p({{1},{2, 3}, {2,3})), the computation generates the tuple

succ_abs_p({{1},{2,3},{2,3}))

but then discards this tuple because the tuple succ_abs_p({{1,2,3},{1,2,3},{1,2,3})), computed
earlier; is “more general” in the sense that

({1342, 31,{2,3}) € +(({1,2,3},{1,2,3},{1,2,3})).

Even if the tuple succ_abs_p({{1},{2,3},{2,3})) is not discarded, however, the connection between
the call abs_p({{1},{2,3},{2, 3})) and its success pattern succ_abs_p({{1},{2,3},{2,3})) is lost, since
if we have only the success patterns ({1},{2,3},{2,3}), and ({1,2,3},{1,2,3},{1,2,3}), the calling
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pattern call_abs_p(({1},{2,3},{2,3})) can “unify” with both success patterns, and we are forced
to conclude that it can succeed with all its arguments aliased together. This is a factor in the
imprecision in the mode analysis algorithm of Mellish [27]. This loss of precision can be avoided, in
general, only by maintaining explicit “calling” and “return” arguments to maintain the connection
between calling and corresponding success patterns. If this is done, the first call becomes

abs_p(({1,2},{1,2},{3}), X),
and it evaluates to the binding X = ({1,2,3},{1,2,3},{1,2,3}), with the resulting relation being

abs_p(({1,2},{1,2},{3}), ({1,2,3},{1,2,3},{1,2,3})).

The second call then computes the tuple

abs_p(({1},{2,3},{2,3}), ({1}, {2,3},{2,3})),

and since nothing in the relation abs_p computed so far is more general than this tuple, it is not
discarded, whence we can infer that the first argument of the call is independent of the other two
when the call returns.

The crux of the matter is also illustrated by Example 5.3. It is interesting to consider the question
of when this explicit connection between calling and success patterns need not be maintained without
any loss in the precision of the analysis, since in this case the dataflow information inferred can be
stored more compactly. The problem is the following. Suppose that the connection between calling
and success patterns is not maintained. In other words, we maintain two relations, one consisting of
all the calling patterns, and the other of all the success patterns, that have been encountered. In this
case, given an arbitrary calling pattern C' and an arbitrary success pattern S, if there i1s an abstract
substitution A such that S = A(C') then we have to assume that a call described by C' can succeed
with its bindings upon success described by S. Now consider a calling pattern C; for a predicate
p, whose success pattern is 57, and another calling pattern Cs for p with success pattern Ss: if the
connection between calling and success patterns is maintained explicitly, the tuples corresponding
to these are (C1,S51) and (C3, Sa). Clearly, there must be abstract substitutions A; and A such
that S; = A1 (Cy) and S2 = A2(C2). Assume that Cy is more precise than Cs, i.e. denotes a smaller
set of values, so ¥(C1) C 4(C2). From monotonicity considerations, it follows that v(51) C v(S2).
If the connection between calling and success patterns is not maintained, and there is an abstract
substitution A’ such that S; = A’(C1), then we must infer that the calling pattern C} can give rise
to the success pattern S». There is a loss of precision in this case if S5 1s less precise than S7; stated
differently, there is no loss of precision if S; is at least as precise as S, i.e. if ¥(S2) C v(S1). But
from monotonicity, we have v(S1) C v(S2), whence we have S; = Sy. Thus, in the general case,
there is no loss of precision if, whenever there is an abstract substitution A such that S, = A(Cy),
it 1s the case that Ss = S;. That is, whenever there are two different calling patterns C; and Cs for
a predicate, with one of them more precise than the other, there is no loss of precision in separating
calling and success patterns only if both C; and C5 have the same success pattern. This clearly
does not hold in general, so it 1s necessary to maintain the connection between calling and success
patterns explicitly. O

7.2 Depth Abstractions: Replacing Unification by Matching

We now consider an abstract interpretation described by Marriott and Sgndergaard [24], based on
a scheme proposed by Sato and Tamaki [34]. An application for this analysis is that of replacing
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unification by matching, which is significantly more efficient (e.g. see [22]): when two terms are
being unified, matching can be used if one of the terms is ground. Once the analysis has been
carried out for a program, if a relation abs_p is such that in each tuple {(a,a’) in abs_p, the elements
in positions Pos in a denote ground terms, then head unification for those argument positions in
the corresponding predicate p in the original program can be replaced by matching.

Another application, cited by Sato and Tamaki [34], is that of transforming nondeterministic
programs to deterministic ones, which are more efficient, based on the success patterns inferred.

The basic idea is to describe a term using a “depth abstraction” | i.e. where subterms at depths
greater than a specified bound are replaced by variables.* For example, the depth-1 abstraction of
the term f(g(a), h(X, (b, X)), Y) is f(¢(U), h(X,V),Y) (the principal functor is at depth 0). The
analysis of a program is carried out using depth-k abstractions, for some fixed k specified beforehand.
An abstract substitution at a point within a clause is maintained as a mapping from the variables
occurring in that clause to depth-k abstractions of terms. The application of an abstract substitution,
given by abs_app_subst, is essentially the same as the application of substitutions over the concrete
domain; unification over the abstract domain, given by abs_unify, is ordinary unification followed by
an abstraction of the resulting terms to depth k. Thus, let d;(¢) denote the depth-k abstraction of
a term ¢, and extend this to substitutions as follows: given a (idempotent) substitution #, &;(6) is
the depth-k abstraction of the image of each variable in the domain of 4, i.e.

35 (0) = {2 — 0, (0(x)) | x € dom(0)}.
Then, the abstract operations can be defined as follows:

abs_app_subst(A,t1,12) < app_subst(A,t1,t2), and
abs_umfy(A1 J 1,12, Az) <~ umfy(A1 J 1,12, All) ANAy = 6k (All)

Because subterms are discarded during depth abstraction, analysis using a depth-£ abstraction may
fail to detect any aliasing that occurs at depths greater than k. Because of this, a variable occurring
in a depth-k abstracted term may not necessarily correspond to a free variable at runtime. Soundness
therefore requires that such variables be interpreted as denoting all possible terms (i.e. a depth-k
abstracted term denotes the set of all its instances).

Example 7.2 Consider the “aliasing” example from [13]:

p(X, Y) = q(X, Y), r(X), s(Y).
9%, Z).

r(a).

r(b).

s(b).

s(c).

p(U, V).

Assume depth-2 abstraction, and consider a sip that follows Prolog’s left-to-right execution strat-
egy. The explicated abstract program is shown in Figure 2. When the rewritten explicated program

4If no restrictions are imposed, then a term may have, in general, a number of different “best” depth-k abstractions,
and so there may not be adjoint functions o and ~: a simple way around this is to ensure that depth abstractions are
linear, i.e. do not contain repeated variables [24].
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absp ((X},Y)), (X4, ¥3)) :—
abs p((X}, Y1), ),
abs_unify(id, (X Y)),(X,Y), A1),
abs_app_subst(A;, (X, V), (X1, Y1)),
abs_q(<X1 ) Y1>a <X2’ Y2>)’ abs—unifY(Ala <Xa Y>a <X2a Y2>a AZ),
abs_app_subst (A2, (X),(X3)), absxr({Xs),(X4)), absunify(As, (X),(X4), As),
abs_app_subst (As, (Y), (Y3)), abs_s((Y3),(Y4)), absunify(As, V), (Ya), A4),
abs_app_subst (A4, (X, Y), (X4, ¥3)).
abs q((Uy, V1), (Us, V4)) 1=
abs—q(<Ul«’ Vi>’—)’
abs_unify(id, (U,,V}),(Z,Z), A1), abs_appsubst(A,(Z,2Z), (Us, })).
abs £((X,), (X1))

abs_r((X}),_), absunify(id, (X), (a), A1), abs_app_subst (A4, (a), (X4)).
abs T((X),(X1)) :—

abs_r((X}),_), absunify(id, (X ), (b), A1), abs_app_subst(Aq, (b), (X3)).
abs s((X,), (X)) -

abs_s((X}),_), absunify(id, (X ), (b), A1), abs_app_subst (A, (b), (X)) .
abs s((X,), (X)) i~

abs_s((X}),_), absunify(id, (X ), (c), A1), abs_app_subst (A, {c), (X4)).

abs p((U, V), —).
abs q({U, V), —) -
abS—P(<X0’YO>’—)’
absunify(id, (Xo,Yo), (X, Y), A1),
abs_app_subst(Ay, (X, V), (U, V)).
abs r({U), —) -
abS—P(<X0’YO>’—)’
absunify(id, (Xo,Yo), (X, Y), A1),
abs_app_subst(A;, (X, V), (X1, Y1)),
abs_q(<X1 s Y1>, <X2, Y2>), abs_unify(Al, <X, Y>, <X2, Y2>, Az),
abs_app_subst (A2, (X),(U)).
abs_s({U),—) -
abs_p({Xo, Yo), ),
absunify(id, (Xo,Yo), (X, Y), A1),
abs_app_subst(A;, (X, V), (X1, Y1)),
abs_q(<X1 s Y1>, <X2, Y2>), abs_unify(Al, <X, Y>, <X2, Y2>, Az),
abs_app_subst (A2, (X),(X3)), absr({Xs),(X4)), absunify(As, (X)), {(X4), As),
abs_app_subst (A, (Y),(U)).
?—absp({(U,V),_).

Figure 2: The Explicated Abstract Program from Example 8.2
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is evaluated bottom-up, the (minimal) relations computed are as follows:

abs p({U, V), (b, b)).
abs q({U, V), (U, U)).
abs r({X), (a)).
abs_r({X), (b)).
abs_s({a), —).
abs_s({b), (b)).

As the reader will notice, the first argument of the relations abs_p, abs_q, abs_r and abs_s contain the
calling patterns to the respective predicates, while the second arguments contain the corresponding
success patterns. In particular, note that the relation abs_g captures clearly the aliasing behavior of
the predicate ¢/2.

On the other hand, consider a different abstract interpretation, where all constants are mapped
to a single abstract domain element ATOM, while compound terms are subjected to depth-2 abstrac-
tion, and the abstract functions abs_app_subst and abs_unify modified appropriately. The relations
computed in this case are

abs_p((U, V), (ATOM, ATOM)).
abs q({U, V),(U,U))
abs_r({X), (ATOM))

(

8 Related Work

Early work on abstract interpretation of logic programs was carried out by Mellish, who described
a framework for the abstract interpretation of Prolog programs [28]. His approach was to define a
set of dataflow equations defining relationships between dataflow information at different program
points, and then to solve these equations by computing a least fixpoint in a bottom-up manner.
This early approach, which is similar in spirit to ours, did not explicitly maintain the connection
between calling and success patterns, resulting in loss of precision (as seen in Example 8.1). There
is also a limitation in the class of sips that can be dealt with; a single linear sip is chosen for each
rule, and is fixed for all patterns of restricted arguments. (Although this is true of our method as
well, our approach rests upon the Magic Templates rewriting, for which the extension to general
sips is known.) No characterization was given of the precision of this approach.

At about the same time, Jones and Sgndergaard gave a somewhat different framework for the
abstract interpretation of Prolog programs, based on a denotational description of Prolog [17].
The meaning of a program is specified by a set of mutually recursive functions, with analogous
definitions specifying the abstract meaning. The least solution to the equations defines the abstract
semantics that gives the desired flow information. The connection between calling and success
patterns is implicit in the “logs” kept by the abstract computations. However, specific algorithms
for computing the least solution are not discussed, and no characterization is given of the precision
that may be achieved using this approach. Closely related to the Jones-Sgndergaard work is that of
Winsborough [39], who gives a minimal function graph semantics for logic programs. This also retains
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the connection between calling and return values. However, no attention is given to algorithmic
aspects of analyses.

Bruynooghe gives a framework for abstract interpretation of logic programs [4]. This is based on
a top-down execution model, where the computation over the abstract domain is represented by an
abstract AND-OR tree. Because of this, termination is somewhat awkward: when a recursive call is
encountered that has already been encountered earlier, the bottom element is assumed as the “success
value”, and the computation continued to a fixpoint; if the recursive call has not been encountered
earlier; things become more complicated. Debray discusses a family of abstract interpretations that
admit efficient analysis algorithms, using extension tables to guarantee termination [11]. A scheme
similar to Bruynooghe’s in many ways, involving the top-down construction of abstract AND-OR
trees, is described by Corsini and File [8]. In none of these cases is it possible to carry out the
abstract interpretation of a Prolog program using an ordinary Prolog interpreter and still be able
to guarantee termination, because “vanilla” top-down interpreters do not use a complete evaluation
strategy and do not explicitly compute a fixpoint (since they do not keep track of all solutions, but
compute only one solution at a time). This exemplifies the problems encountered when trying to
capture a bottom-up fixpoint computation within a top-down framework.

Marriott and Sgndergaard discuss a bottom-up approach to abstract interpretation [23]. How-
ever, this work differs from ours in several ways. The most significant difference is that they are
concerned with abstract interpretations that approximate the declarative semantics of logic pro-
grams, which is given in terms of the model theory of first order logic [38]; this is manifested in
their omission of the rewriting step that introduces auxiliary literals and clauses into the program.
Because of this, their approach cannot capture abstract interpretations that are based on the oper-
ational or denotational semantics of the language. Because of the rewriting to introduce auxiliary
literals and clauses that act as filters, our approach is able to capture abstract interpretations based
on operational and denotational semantics as well as those based on the declarative semantics.

The connection between top-down abstract interpretation and the Magic Sets transformation is
mentioned by Marriott and Sgndergaard [25]. Recent work by Mellish discusses the application of
Magic Sets evaluation techniques for the computation of fixpoints in mode analysis of logic programs
[29]. This work focusses on the application of partial evaluation techniques to derive efficient analysis
systems, and does not address issues of precision.

Some time after the writing of this paper, we became aware of independent and essentially
simultaneous work by a number of researchers on the application of the Magic Sets transformation
to dataflow analysis of logic programs [6, 18, 32]. While these papers are very similar to this
paper in spirit, the details of how the transformation is realized differ. For example, Kanamori
suggests augmenting the transformed program with indexes to relieve some inefficiencies associated
with a naive Magic Sets transformation [18]. Like us, both Nilsson [32] and Codish et al. [6] note
that a straightforward application of the Magic Sets transformation can result in a loss of precision
because the connection between calling and success patterns is not maintained. Codish et al. suggest
a modified transformation that, however, results in programs whose bottom-up semantics no longer
corresponds to the operational behavior of the original program. In contrast, the explicated programs
we consider retain the connection between calling and success patterns: as a result, precision is not
compromised despite the use of a straightforward Magic Sets rewriting.
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9 Conclusions

Dataflow analysis of logic programs requires a synthesis of top-down and bottom-up information
flow: a top-down component to mimic the control strategy of the language under consideration, and
a bottom-up component to compute fixpoints. In much of the literature on dataflow analysis of logic
programs, this synthesis is either not addressed, or is given using techniques such as memoization
or ad hoc termination rules that are extraneous to the operational semantics of the language under
consideration. This paper discusses the application of the magic templates algorithm, originally de-
vised as a technique for efficient bottom-up evaluation of logic programs, to dataflow analysis of logic
programs. The principal contributions of this work is to demonstrate how the fixpoint evaluation
algorithm can be decoupled from the control strategy of the language under consideration. It turns
out that a straightforward application of Magic Templates rewriting can lead to an undesirable loss
in the precision of analysis. We show how the original Magic Templates strategy can be modified
to avoid this problem, and prove that the resulting analysis algorithm is at least as precise as any
other abstract interpretation that uses the same abstract domain and abstract operations.
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