Efficient Dataflow Analysis of Logic Programs

SAUMYA K. DEBRAY

The University of Arizona, Tucson, Arizona

Abstract. We investigate a framework for efficient dataflow analyses of logic programs. A number
of problems arise in this context: aliasing effects can make analysis computationally expensive
for sequential logic programming languages; synchronization issues can complicate the analysis
of parallel logic programming languages; and finiteness restrictions to guarantee termination can
limit the expressive power of such analyses. Our main result is to give a simple characterization of
a family of flow analyses where these issues can be ignored without compromising soundness. This
results in algorithms that are simple to verify and implement, and efficient in execution. Based
on this approach, we describe an efficient algorithm for flow analysis of sequential logic programs,
extend this approach to handle parallel executions, and finally describe how infinite chains in the
analysis domain can be accommodated without compromising termination.

Categories and Subject Descriptors: D.1.6 [Programming Techniques]: Logic Programming;
D.3.4 [Programming Languages]: Processes—compilers, optimization

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Program Analysis, PROLOG

1. Introduction

Despite the numerous attractive features offered by logic programming languages,
they can often be dismayingly inefficient in execution. This has given rise to a great
deal of research in the analysis and optimization of logic programs (see Section 8).
This work has addressed some of the issues raised by the presence of features, such
as unification and nondeterminism, that are not found in traditional languages.
However, there are a number of significant problems that appear to not have been
addressed adequately in much of this work: the computational issues raised by
aliasing, and by synchronization considerations for parallel logic programming lan-
guages; and issues of expressiveness of flow analysis systems arising out of finiteness
constraints that are imposed to guarantee termination of analyses. The purpose
of this paper is to address these issues by developing a framework for a class of

Preliminary versions of parts of this work have appeared in Proceedings of the Fifteenth ACM
Symposium on Principles of Programming Languages, San Diego, Jan. 1988; and Proceedings of
the Fifth International Conference on Logic Programming, Seattle, Aug. 1988.

This work was supported in part by the National Science Foundation under grant number CCR-
8702939.

Author’s address: Department of Computer Science, The University of Arizona, Tucson, AZ
85721; email: debray@Qcs.arizona.edu.

Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

©1992 ACM 0004-5411/92/1000-0949 $01.50

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992, pp. 949-984.

950 : SAUMYA K. DEBRAY

dataflow analysis problems commonly encountered in logic programming.

In the analysis of logic programs, unification and the presence of “logical vari-
ables” can give rise to aliasing, and dependencies between variables, whose effects
can be difficult to predict, making the task of validating such analyses a nontriv-
ial one (see [17; 34]). Moreover, in order to handle aliasing effects correctly, it
i1s necessary in general to maintain information regarding dependencies between
variables—a task that can seriously affect the efficiency of the analysis algorithms
(for example, a number of flow analysis problems for traditional languages become
intractable in the presence of recursion and aliasing [51]). Ideally, we would like
to carry out our analyses ignoring aliasing effects, in the interests of efficiency, and
still be guaranteed soundness. This raises the question of characterizing the class
of flow analysis problems for logic programs for which aliasing effects can safely be
ignored. Analysis algorithms for such problems can be greatly simplified, resulting
in significant gains in efficiency. We give a simple characterization of the class of
flow analysis problems for which aliasing effects can safely be ignored, and develop
a general framework for such analyses. Our strategy in doing this is to develop
a framework for the flow analyses of general logic programs that ignores aliasing
effects, and then describing the conditions under which the analyses are sound;
the soundness criterion then serves to characterize the class of flow analyses that
can be safely carried out without worrying about aliasing. We show that alias-
ing effects can safely be ignored as long as the analysis domains satisfy a simple
substitution-closure property.

In the analysis of parallel logic programs, a similar problem arises with regard
to synchronization. In most AND-parallel logic programming models, processes
communicate via shared variables [10; 11; 28; 37; 59; 63]. It is possible to devise
analysis algorithms for such languages given a significant amount of information
about the synchronization primitives of the language [8; 23; 62]. The problem with
this 1s that such analyses become language-specific, making it difficult to generalize
them across languages and execution models. On the other hand, if few assumptions
are made about the execution model, it becomes difficult to predict the variable
bindings seen by a process at any point in the execution without making further
assumptions about the runtime system, e.g. the scheduler. Ideally, we would like to
carry out our analyses ignoring such issues of synchronization, resulting in simpler
and more efficient algorithms, and still be guaranteed soundness. This raises the
question of characterizing the class of flow analysis problems for logic programs for
which synchronization issues can be safely ignored. As with aliasing, we address this
by initially ignoring synchronization issues, then describing the conditions under
which such analyses are sound. It turns out that this soundness criterion is exactly
the same as that for the aliasing case: the analysis domains have to be substitution-
closed.

Finally, there is the issue of the expressive power of a flow analysis system. Since
static analyses are expected to be uniformly terminating, finiteness constraints are
usually imposed on analysis domains. For example, they are required to be of finite
height, or satisfy the finite chain property. However, the a priori imposition of
such finiteness constraints can result in a loss of expressive power and precision.
We describe an approach that enables us to work with analysis domains containing
infinite chains, and yet be guaranteed termination. In considering soundness criteria

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 951

for such analyses, it turns out that substitution-closure is a necessary property.

Based on these results, we argue that substitution-closed analyses constitute an
important family of dataflow analysis problems for logic programs. The utility of
such analyses 1s illustrated with a number of example applications.

2. Preliminaries

Most logic programming languages are based on a subset of the first order predicate
calculus known as Horn clause logic. Such a language has a countably infinite set
of variables, and countable sets of function and predicate symbols, these sets being
mutually disjoint. Without loss of generality, we assume that with each function
symbol f and each predicate symbol p is associated a unique natural number n,
referred to as the arity of the symbol; f and p are said to be n-ary symbols, and
written f/n and p/n respectively. A 0O-ary function symbol is referred to as a
constant.

A term in such a language is either a variable, or a constant, or a compound term
f(t1,...,tn) where f is an n-ary function symbol and the #; are terms. A literal
is either an atom p(ty,...,t,), where p is an n-ary predicate symbol and ¢, ... ¢,
are terms, or the negation of an atom; in the first case the literal is said to be
positive, in the second case it is negative. A clause is the disjunction of a finite
number of literals, and is said to be Horn if it has at most one positive literal. A
Horn clause with exactly one positive literal is referred to as a definite clause. The
positive literal in a definite clause is its head, and the remaining literals constitute
its body. A predicate definition consists of a finite number of definite clauses, all
whose heads have the same predicate symbol; a goal is a set of negative literals.
A logic program consists of a finite set of predicate definitions. For the purposes
of analysis, it is assumed that we are given a module of the form (P, EXPORTS(P)),
where P is a set of predicate definitions and EXPORTS(P) specifies the predicates in
P that are exported, i.e. that may be called from the outside. EXPORTS(P) is a set
of pairs (p, ep), specifying that a predicate p may be called from the outside with
arguments described by ¢p. There may be more than one entry for a predicate if it
can be called in different ways.

In this paper, we adhere to the syntax of Edinburgh Prolog and write a definite
clause as

P = 41, -, qn-

read declaratively as “p if ¢1 and ... and ¢q,”. Names of variables begin with upper
case letters, while names of non-variable (i.e. function and predicate) symbols begin
with lower case letters. To simplify some aspects of the discussion that follows, we
assume that each argument in the head of a clause is a variable: this does not lose
any generality, since a clause

p(t1,...,tn) :— Body

where t1,...,t, are arbitrary terms, can always be transformed to satisfy this as-
sumption by rewriting it as

p(X1,...,Xpn) :— X1 =t1,..., X, =tp, Body
where X3, ..., X, are distinct variables not appearing in the original clause.

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

952 : SAUMYA K. DEBRAY

A substitution is a mapping from variables to terms that is the identity mapping
at all but finitely many points. A substitution oy is said to be more general than a
substitution o5 if there 1s a substitution @ such that o5 = 6o o;. Two terms ¢; and
to are said to be unifiable if there exists a substitution o such that o(¢1) = o(f2); in
this case, o is said to be a unifier for the terms. If two terms ¢; and ¢, have a unifier,
then they have a most general unifier that is unique up to variable renaming. To
denote the term obtained as a result of unifying two given terms, we define the
function unify as follows: given two terms ¢; and %2,

6(t1) if t; and t5 are unifiable with most general unifier ¢
undefined otherwise.

unify(ty, ta) = {

Note that because most general unifiers are unique only upto variable renaming,
this function is not well-defined unless terms are considered modulo renaming. In
the discussion that follows, therefore, we will not distinguish between alphabetic
variants of a term, unless explicitly mentioned.

The operational behavior of logic programs can be described by means of
SLD-derwations. An SLD-derivation for a goal G with respect to a program
P is a sequence of goals Gy,...,G;,Giq1, ... such that Gy = G, and if G; =

‘ar,...,an’, then Giy1 = 0(ar, ..., ai—1,b1, ..., bm,aiq1,...,a,) such that 1 < i<
n; b :— by,..., by 1s an alphabetic variant of a clause in P and has no variable
in common with any of the goals Gy, ..., ;; and 6 is the most general unifier of

a; and b. The goal G;41 is said to be obtained from G; by means of a resolution
step, and a; 1s said to be the resolved atom. Intuitively, each resolution step cor-
responds to a procedure call. Let Gy,..., G, be an SLD-derivation for a goal G
in a program P, and let #; be the unifier obtained when resolving the goal G; to
obtain G;41, 0 <7 < n; if this derivation is finite and maximal, i.e. one in which
it 1s not possible to resolve the goal (,, with any of the clauses in P, then this
corresponds to a terminating computation for G: in this case, if (G, is the empty
goal then the computation is said to succeed with answer substitution 8, where 6 is
the substitution obtained by restricting the substitution 8, o---0#8; to the variables
occurring in G. If GG, 1s not the empty goal, then the computation is said to fal.
If the derivation is infinite, then the computation does not terminate.

Let p(f) be the resolved atom in some SLD-derivation of a goal G in a program P,
then we say that p(f) is a call that arises in the computation of G in the program.
If the goal p(¢) can succeed with answer substitution 8, then we also say that it can
succeed with its arguments bound to 6(¢).

We assume that the predicates in the program are static, i.e. do not have code
created and executed dynamically at runtime, e.g. via Prolog primitives such as call,
assert or retract. Somewhat more limited analyses can be performed for dynamic
programs using the techniques described in [19].

3. A Flow Analysis Framework for Logic Programs

This section develops a framework for flow analysis of logic programs. We begin by
discussing some fundamental notions and results in Section 3.1. This is followed, in
Section 3.2, by a discussion of abstraction structures, which define the abstract do-
main for any analysis. Section 3.3 then considers how unification, the fundamental
primitive operation of logic programming languages, can be abstracted.

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 953

3.1 Comparing Instantiations of Sets of Terms

During the execution of a logic program, terms become progressively more instan-
tiated. The notion of a term being “less general” than another is quite straight-
forward when dealing with individual terms: a term ¢; is less general than another
term to, written ¢y C o, if {1 18 a substitution instance of ¢5. The ordering C
is called the subsumption order on terms, and is a partial order modulo variable
renaming. However, the analyses we consider associate variables with sets of terms,
so 1t becomes necessary to “lift” this order to sets of terms. Define unification over
sets of terms, denoted by s_unify, as follows:

DEFINITION 3.1. Given sets of terms 77 and 7%, s_unify(7y,75) is the least set
of terms T such that unify(t;,¢2) is in T for each pair of unifiable terms ¢; € T}
and ¢ € T5. 1

LEMMA 3.1. (Plotkin [54], Reynolds [56]) The set of all terms of a first order
language, augmented by a distinguished symbol — such that — C t for any term t,
forms a complete lattice when ordered by C. For any two unifiable terms t, and t,,
unify(ty,ta) = t1 Mta, where N is the meet operation of this lattice. O

Given two terms ¢; and s, {5 is more general than ¢; if and only if ¢; M. = 14,
i.e. if and only if unify(t1,%2) = t1. We define the instantiation order over sets of

terms, denoted by <, as the natural extension of this:

DEFINITION 3.2. Given sets of terms T} and 15, T) is less general than T,
written 77 <0 75, if and only if s_unify(71,72) = T31. 1

The reader may verify that <, as defined above, is transitive. If a set of terms T'
is closed under unification, i.e. for any t; and t5 in 7', if £; and t; are unifiable
then unify(t1,t2) is also in T, then s_unify(T,T) = T. If we only consider sets of
terms that are closed under unification, therefore, <1 is also reflexive, and hence a
preorder. It is straightforward to show that 77 < 75 and 75 < 7T) for any sets of
terms 77 and 75 if and only if 7T} and 75 are alphabetic variants. Thus, for sets
of terms that are closed under unification, the relation < is a partial order modulo
variable renaming. The meet operation for this partial order, when it exists, will be
written A. Let U (Term) C p(Term) denote the set of sets of terms that are closed
under unification, then we have:

PROPOSITION 3.2. For any two sets of terms Ty and Ts in U(Term),
s_unify(71,T) = Ty A Ty, and is closed under unification.

Proof Consider any two sets of terms 7T} and 75 that are closed under unification.
Then,

s_unify (s_unify (71, 7%), T1)
={tnt' |t €sunify(Ty,Ts),t € Th}
= {(tl |_|t2) n | t1 €Ty, € Tz,t/ € Tl}
by definition of s_unify (7}, T%)
= {(tl |_|t/) Mo | t1 €Ty, € Tz,t/ € Tl}
since M 1s associative and commutative
={tMNty |t €Ty, ls €T}
where t = ¢; M1’, since T} is closed under unification

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

954 : SAUMYA K. DEBRAY

= s_unify(T1, 7).

This establishes that s_unify(71,7%) < 7. A similar argument establishes that
s_unify(71,72) < Ta. Thus, s_unify(71,7%) is a lower bound on 77 and 73 with
respect to <.

Now consider any set of terms 7' that is closed under unification and is also a
lower bound on 77 and 7% with respect to <, i.e. T <17} and T' < T5. We show
that T < s_unify (77, T32). By definition, T' < Ty implies that s_unify(T,T1) = T, i.e.
{tNt, |t €Tty €Ty} =T. Similarly, T < T implies {t Mty [t €Tty € To} =1T.
Then, we have

s_unify (T, s_unify (71, T3))
={nt |te Tt €sunify(Ty,T2)}
={{NtNty) |t €Tty €Ty, ty €To}
by definition of s_unify
= {(tﬂtl) I (t|_|t2) |t el ity €1y,ty € Tz}
since M 1s associative, commutative and idempotent
= {U1|_|U2 |U1 €T us ET}
where u; = t Mty ug =t Mty since T < Ty and T <715
=T since T 1s closed under unification.

It follows that T < s_unify(71,7%). This establishes that s_unify(7,7%) is the
greatest lower bound of 77 and 75 for any two sets of terms 77 and 75 that are
closed under unification, i.e. s_unify(71,7%) = 71 A Ts.

To see that s_unify(71,7%) is closed under unification, consider any two elements
w, v in s_unify (71, T3). By definition, u € s_unify(71, T%) implies that there are terms
uy € T, ug € Ty such that « = wy Mug. Similarly, v € s_unify(7T7,7%) implies that
there are terms vy € T, vy € Ty such that v = vy Mwvy. Then,

unify(u,v) = ulwv from Lemma 3.1

= (w1 Mug) M (vy Nwvsg) since u = uy Musg, v = vy MNuvs

= (uy Moy) N (uz M) since MM is associative and commutative
= {1 Mty where t; = uy Mwy, and t9 = us Mg,

Since u; and vy are both in 77, and T is closed under unification, it follows that
t1 = uy Moy 1sin T7. Similarly, t3 = us Muws 1s in T5. It follows, from the definition
of s_unify, that unify(u,v) = ¢, Mtz is in s_unify (71, 7%). Since this holds for any
u, v € s_unify (T, Ts), it follows that s_unify(77,7%) is closed under unification. O

COROLLARY 3.3. (U(Term), <) is a meet-semilattice. O

3=

Defining the order < essentially involves “lifting” the partial order C from terms
to sets of terms. It 1s therefore natural to consider relationships with powerdomain
orderings that have been proposed in the literature (see, for example, [60]). The
following proposition gives a partial connection in this regard.

ProposiTION 3.4. Given sets of terms Ty,T5 € U(Term),
T <715 implies (th S Tl)(atz S Tz)[t1 Cis]

Proof Assume that 77 < 75 but there is some term ¢ € T} such that no term
t' € Ty satisfies t £ /. Since Ty < Ty, it follows that s_unify(71,7%) = 71, whence
t € s_unify(71,T2). This implies that ¢ = unify(t1,2) for some t; € T1,t2 € To.

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 955

From Lemma 3.1 it follows that ¢ = ¢, Mt5. This means that there is a term ¢, € T
such that ¢ C t5, which is a contradiction. It follows that if 77 < T3, then for every
t1 € T} there is a term t5 € 15 such that t; Ct,. O

The converse, however, does not hold. To see this, consider the sets of terms 7] =
{f(V,Y)} and To = {f(a, X), Z}. Tt is easy to see that both 7} and T3 are closed
under unification, and for each ¢; in 7} there is a t5 € T5 such that ¢; C ¢2 (the only
candidate ¢, is the term f(Y,Y), and the variable Z € T5 satisfies f(Y,Y) C 7).
However, f(a,a) = unify(f(Y,Y), f(a, X)) is not in T3, so s_unify(71,T2) # T1.

3.2 Abstraction Structures

Let Term be the set of all terms of a given first order language. As a first step
in the development of a general framework for the flow analysis of logic programs,
we define a family of approximation domains P C U(Term) whose elements are
“canonical” sets of terms for compile-time analyses. It seems reasonable to require
that the empty set §# and the set of all terms Term, representing the two extremes
of information that we can have regarding a computation, should be in D. In order
that < be a partial order over D, elements of D must be closed under unification.
Analyses will typically assume that variables in a clause are uninstantiated, i.e. in
their most general state, when its execution begins: for this, D must have a greatest
element T, with respect to <. Moreover, in order that unification of sets of terms
during static analysis be well defined, it is necessary that for any two elements d;
and ds in D, their meet dy A dy also be in D.

A set D satisfying these properties is called an instantiation set. In referring to
instantiation sets, the set of all terms Term will also be denoted by any. Then, we
have the following definition:

DEFINITION 3.3. An instantiation set is a finite set D C U (Term) satisfying the
following properties:

(1) The empty set § and the set of all terms any are in D.
(2) There is a greatest element T,ns in D with respect to <.
(3) For any two elements d; and ds in (D, <), their meet d; A dg is in D.

Note that because alphabetic variants of terms are not distinguished, each element
of an instantiation set is closed under variable renaming.

Strictly speaking, item (3) above is stronger than necessary, since it suffices to
have a least element in D, with respect to set inclusion, that contains dq A ds. For
the purposes of this paper, we use the stronger definition given above because it
simplifies the notation and proofs slightly. Our results extend in a straightforward
way to the more general case.

Instantiation sets turn out to be relatively straightforward to construct:

PROPOSITION 3.5. Any finite set of sets of terms S C p(Term) can be extended
to an instantiation set Dg.

Proof Let var be the set of variables of the language under consideration. Given
any finite set of sets of terms S, let S = S U {0, any,var}. Given any set of terms

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

956 : SAUMYA K. DEBRAY

T, let T denote its closure under unification, and consider the sequence of sets
S<is, >0, defined as follows:

S<0> = {SO | S E g}a a‘nd
Sci> = {S1 A S5 | S1,8 €Scizis}, i>0.

Finally, define the set Ds as Ds = U;»08«;». Clearly, each element of Sy 1is
closed under unification, whence from Proposition 3.2, so is each element of S,
for each 7 > 0, and therefore, so is each element of Dg. Since ° = (}, any® = any,
and var® = var, it follows that the elements @), any, and var are in S+, and hence in
Dyg; it 18 trivial to show that var € Dg is the greatest element of Dg with respect to
<1. By construction, for any pair of elements dq, ds € Dg, their meet dy A ds is also
in Dg. Thus, to show that Dg is an instantiation set, it remains only to establish
that it is finite. For this, we show that for any n > 0, any element S € S,
can be represented as S = AX for some X C S.gs. The base case for this, with
n = 0, is trivial. Assume that the claim holds for all n < k, and consider S € S
From the definition, S = S; A Sy where both S; and Sy are in Scg_15. From the
inductive hypothesis, we can write S; = AA and S; = AB, where AJB C S
Thus, S = (AA) A (AB). Since Scgs is finite, both A and B must be finite: let
these sets be A = {A;,...,A,} and B={By,...,Bs}. Then,

S={A A ... AA}YA{B A ... A B}
={A, A ... AA AB A...A B}, from the associativity of A
= A(AUB)

and since both A and B are subsets of Scgs, so1s AUB, so the claim holds for all
n > 0. It follows that any element d of Dg can be represented as d = AX for some
X C Sco>. This implies that the size of Dg cannot exceed the size of the powerset
of Sc¢p>. Since S is finite, and | Scos | =] S |, the powerset of Scos is also finite,
whence Dy is finite. The proposition follows. O

A notion of considerable importance in the development that follows is that of
substitution-closure:

DEFINITION 3.4. An instantiation set D is said to be substitution-closed if, for
every d € D, if tis a term in d and ¢ is any substitution, then o(¢) is also in d. 1

Given a complete lattice (L, C) and a € L, the set L(a) = {x € L | « E a} is called
a principal ideal of L. Then, it is not difficult to see that the following holds:

PROPOSITION 3.6. An instantiation set D 1is substitution-closed if and only if
every nonempty element of D is a principal ideal of the term lattice (Term,C). O

ProrosiTION 3.7. If D is substitution-closed, then for any dy and ds in D,
dy < ds if and only of dy C ds.

Proof [if] Let D be substitution-closed, and consider d; and ds in D such
that d; C ds. Since every element of dj is, trivially, an instance of itself, this
implies that every element of d; is an instance of some element of ds. Suppose
s_unify(dy, d2) # dy: in this case, either (7) there is some element 1 in s_unify(dy, da)
that is not in dy; or (47) there is some element { in dy that is not in s_unify(dy, da).
In case (i), it follows from the definition of s_unify that ¢; must be an instance of
some element of di, and since D is substitution-closed, ¢; must be in dy, which is

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 957

a contradiction. In case (i7), since d; C da, #} is also in da; since unify(t),t)) = t,
it follows that t{ is also in s_unify(dy, d2), which is again a contradiction. This
establishes that if d; C da then s_unify(dy, ds) = dy, i.e. dy < da.

[only if] Let D be substitution-closed, and consider dy, dy € D such that d; < dy,
i.e. s_unify(dy,ds) = dy. Suppose dy € ds: then, there must be some element ¢ in
dy that is not in dy. But s_unify(dy, d2) = dy, so tis in s_unify(dy, d2), which means
that ¢ must be an instance of some element of ds. Since D is substitution-closed, it
follows that ¢t must also be in ds, which i1s a contradiction. Hence d; C d5. O

Recall that a Moore family of subsets of a set S is a family of subsets of S that
contains S and is closed under intersection [4]. Moore families are important in the
context of abstract interpretation because they admit “best” descriptions for sets
of values [13].

ProPOSITION 3.8. A substitution-closed instantiation set forms a Moore family.

Proof Let D be a substitution-closed instantiation set. By definition, the set of
all terms 1s an element of D. From Propositions 3.2 and 3.7, it follows that for any
dy and dz in D, s_unify(dy, d3) = di A da = dy Nda. By definition, dy A dy is in D,
whence D is closed under intersection. Thus D forms a Moore family. O

Given any set of terms, it is necessary to specify how to find its instantiation, i.e.
the element of D that “describes” it best. This is given by the instantiation function
t. Recall that a closure operator fon a set is one that is extensive (i.e. C f(x)),
monotonic (i.e. # C y implies f(z) C f(y)) and idempotent (i.e. f(f(z)) = f(x)).
Then, we have:

DEFINITION 3.5. An abstraction structure is a pair (D,¢), where D C @(Term)
is an instantiation set, and ¢ : p(Term) — D is a closure operator on {{p(Term), C).

The requirement that ¢ be a closure operator with respect to set inclusion follows
from considerations of abstract interpretation [12]. If D is also closed under in-
tersection, the instantiation function ¢ can be formulated in an especially simple
way:

PRrROPOSITION 3.9. If the wnstantiation set D 1is closed under intersection, then
the function i, defined by

Ty = {deD|T Cd}

is a closure operator on {p(Term), C). O

)=

ExAMPLE 3.1. Consider the abstraction structure (D,¢), where D =
{0, int, ¢, clist, list, intlist, nv, any }, where int represents the set of integers, ¢ the
set of ground terms, list the set of lists, clist the set of ground lists, intlist the
set of lists of integers, nv the set of nonvariable terms and any the set of all terms.
Since D is substitution-closed and closed under intersection, the instantiation func-
tion ¢ can be defined as «(T) = N{d € D | T C d}, and s_unify(dy, d3) can be defined
as d1 N dz. O

The execution of a logic program induces an association, at each program point
in a clause, between the variables in the clause and the sets of terms they can
be instantiated to at that point. The behavior of a program may therefore be

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

958 : SAUMYA K. DEBRAY

summarized by specifying, for each such program point, the set of terms each
variable in that clause can be instantiated to at when execution reaches that point.
However, while the set of terms a variable can be instantiated to at any point
in a program at runtime can be arbitrarily large, compile-time representations of
program behavior must be finite. We therefore use the elements of instantiation
sets to describe the set of terms a variable can be instantiated to at runtime.

When a clause is selected for resolution against a goal, its variables are renamed so
that it is variable-disjoint with the goal. Consider a use of clause C'in a computation
where the variables of C' have been renamed via a renaming substitution o: we refer
to this as a o-activation of C'. The finite set of variable names V& appearing in a
clause C' are referred to as the program variables of C'. The set of terms a variable
can be instantiated to at any point in a program is described using instantiation
states (“i-states” for short):

DEFINITION 3.6. An instantiation state Ac at a program point in a clause C'is
a mapping

A01VC — D

such that for any variable v in V¢, if ¢(v) can be bound to a term ¢ at that program
point in any c-activation of C' in any execution of the program, then t € Ac(v). 1

Note that because of the assumption that each argument in the head of a clause
is a variable, the set of variables occurring in a clause is always nonempty, whence
the domain of the instantiation states of any clause is also always nonempty. The
domain V¢ of the instantiation states of a clause C' 1s fixed once C' has been
specified. When there is no scope for confusion, therefore, we drop the subscript '
from the names of i-states. If the i-state at a point in a clause is A, and A(v) = d
for some program variable v of the clause, then d is referred to as the instantiation
of v at that point. Since each variable in a clause C' is in its least instantiated,
i.e. most general, state at the beginning of execution of that clause, before its head
has been unified with the arguments in the call, the corresponding “initial i-state”
for C', where each variable v in V¢ is mapped to Ty, is denoted by A%, The
mapping defined by an i1-state A extends naturally to arbitrary terms and tuples of
terms ¢:

(1) if ¢ is a constant ¢, then A(t) = ¢«({c});

(2) if t is a compound term f(t1,...,t,), then A(t) = ({f(u1,...,un) | w €
A(ti)a 1<i< n}),

(3) if ¢t is a tuple (t1,...,%,) then A(t) = (A(t1), ..., A(ta))-

The instantiation of a tuple of terms is referred to as its instantiation pattern, or
“i-pattern” for short. The instantiation pattern of the arguments of a call to a
predicate is referred to as the calling pattern for the call, while that at the return
from a call is referred to as the success pattern for the call. An i-pattern (dy,...,d,)
describes a tuple of terms (t1,...,t,) if and only if ¢; € d;, 1 < i < n.

The set of i-states of a clause inherits the semilattice structure of the instantiation
set (D,), and is itself a meet-semilattice, where the ordering <1 on D is extended
to i-states in the obvious way: for any two i-states A;, As for a clause C';, A; < A,
if and only if A;(v) < Aa(v) for every program variable of C. The set of i-states,

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 959

ordered in this manner, is referred to as the abstract domain of the clause. The
abstract domain of a program is given by the disjoint sum of the abstract domains
for 1ts clauses. For simplicity in the discussion that follows, we typically consider
abstract domains for individual clauses: the extension to the abstract domain for
the entire program is a straightforward construction involving the usual injection
and projection operators.

3.8 Abstracting Unafication

Consider a variable z occurring in a term ¢;, whose instantiation in the i-state
under consideration is dy, and assume that ¢; is being unified with a term ¢» whose
instantiation is do. Consider the effect of this unification on the instantiation of
z. The instantiation of the resulting term is d = d; A ds. If @ = ¢, then the
instantiation of z after unification must also be d; on the other hand, if x is a proper
subterm of ¢1, then it will have become instantiated to some proper subterm of the
term resulting from the unification; this can be expressed using the following:

DEFINITION 3.7. Given a set of terms ¢, let ST be the set of all proper subterms
of all elements of ¢, then, sub_inst(T) is defined to be the instantiation +(ST') of
ST. 1

The instantiation “inherited” by a variable z occurring in a term during unification
is given by the function nherited_inst, which can be defined as follows:

DEFINITION 3.8. Let t; be a term whose instantiation is dy, and let = be a
variable occurring in ¢;. The instantiation inherited by & when #; 1s unified with a
term whose instantiation is ds is given by

inherited _inst(x,t1,dy,ds) = if © =t; then d else sub_inst(d),
where d = d;| A\ d-.

Since instantiation sets are finite by definition, the function sub_inst can be repre-
sented as a finite table.

ExaMPLE 3.2. Consider the abstraction structure of Example 3.1. The function
sub_inst 1s defined as follows:

sub_inst = {f — 0,int — 0, c — ¢, list — any, clist — c, intlist — c,
nv — any, any — any}.

Suppose a term f(X) is being unified with a ground term, where the variable X
is uninstantiated in the i-state A under consideration, i.e. A(X) = any. The
instantiation of the term f(X) is nv. The instantiation of x after unification is
given by

inherited _inst(X, f(X),nv,c)
= sub_inst(nv A ¢)
= sub_inst(c
=c.
Thus, we infer that becomes ground after the unification. O

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

960 : SAUMYA K. DEBRAY

This definition has to be engineered slightly to deal more precisely with prede-
fined recursive types such as lists: for example, 1t should be possible to infer that
the tail of a list is also a list. The modifications necessary to build knowledge
about the structure of such recursive types into inherited_inst are conceptually
straightforward: e.g., to deal with the element intlist in Example 3.1, the function
wnherited_inst can be extended as follows:

inherited _inst(x,t1,dy,ds) = let d = dy A dy in
if x = ¢, then d,;
else if (is_list(t1) A (d1 = intlist V d» = intlist)) then
list _inherited _inst(x, 11, dy, da);
else sub_inst(d).

Here, listainherited_inst is used to express knowledge about the structure of terms
in intlist:

list inherited _inst(x,t1,dy, d2) =
let d} = if d; = intlist then if hd_sublerm(z,t;) then int else intlist;
else sub_inst(dy);
dy = if d2 = intlist then if hd_subterm(z,t1) then int else intlist;

else sub_inst(d»);
ind| Ad,.

hd _subterm(x,t) =
if ¢ is a variable then false;
else if © = head(t) then true else hd_subterm(z, tail(t)).

Now consider a tuple of terms ¢ = {¢1,...,¢,) in an i-state Ag for a clause C'. Let
Ag(t) be {di1,...,d1,). Consider the unification of ¢ with another n-tuple of terms
described by an i-pattern I = (da1,...,dan). Let z be a variable in V. If x
occurs in the k'* element ¢ of ¢, then the instantiation d’ of x resulting from the
unification of ¢, with the term represented by the corresponding element dsy, of I is
given by d’ = inherited _inst(x, 1y, dix, dog). Suppose x occurs in the m'? element t,,
of ¢ as well: arguing as above, the instantiation of x resulting from the unification
of the m*" elements of the two tuples is d” = inherited_inst(z,tm, dim, d2m). The
resulting instantiation of * must therefore be d’ A d”’. Extending this argument
to multiple occurrences of a variable is straightforward. Further, if the resulting
instantiation of any variable is (), then this indicates that unification has failed, so
the instantiation of every variable in Vo can be taken to be (). For any variable
v, let occ(v,t) = {j | v occurs in t;} be the indices of the elements of ¢ in which
v occurs. Then, given an i-state A, a tuple of terms ¢ and an i-pattern I, we can
define a function update_i_state that gives the i-state resulting from unifying ¢ with
any tuple of terms described by I, as follows:

DEFINITION 3.9. Let A be an i-state defined on a set of variables V| and let
t = (t1,...,t,) be a tuple of terms all whose variables are in V. Let I = (dy, ..., d,)
be an i-pattern, and let A” be the intermediate i-state defined as follows: for every
variable v in V,

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 961

A"(v) = ifocc(v,t) = 0 then A(v)
else A{inherited_inst(v,t;, A(t;),d;) | j € occ(v,1)}.

Then, A’ = update_i_state(A,t,I) is defined as follows: for every variable v in V,

Aw) = if A”(v) =0 for any variable in V then {
else A"(v).

ExaMPLE 3.3. Consider the abstraction structure of Example 3.1, and the i-
state

Ao : {M v any, E + any, L+ any, Ul + any, U2 > any}.
Let ¢ = (M,[E|L],[E|U1],U2) and I = (int,intlist,any,any). Then, A; =

update _i _state(Ap,t,I) is obtained as follows: The variable M occurs only in the
first position of ¢, i.e. occ(M,t) = {1}, so

AL(M) = inherited _inst(M, M, any, int) = any A int = int.

Since oce(E,t) = {2, 3}, A1(F) = A{dy,ds}, where

dy = inherited _inst(E, [F|L], nv, intlist) = int; and
dy = inherited_inst(E, [F|U1],nv, any) = any.

Thus, A(E) = int A any = int. Similarly,
A1 (L) = inherited_inst(L, [F|L], nv, intlist) = intlist.

Notice that in inferring the updated instantiations of F and L in this example,
we have implicitly assumed that inherited_inst has been extended to handle list
structures, as discussed above. The instantiations of the remaining variables can
be worked out in a similar manner. The i-state A; 1s then obtained as

Ay {M v int, E — int, L — intlist, U1 — any, U2 + any}.
O

4. Analysis of Sequential Logic Programs
4.1 Propagating Flow Information

Given a class of queries that the user may ask of a program, not all the different
calling patterns that are possible for a predicate may in fact be encountered during
computations. Similarly, given a calling pattern for a predicate, only certain success
patterns actually correspond to computations in the program starting with a call
described by that calling pattern. With each predicate p in a program, therefore,
we associate sets of admissible calling and success patterns, defined as follows:

DEFINITION 4.1. Given a predicate p in a program P, the set of admissible call-
ing patterns CALLPAT(p) C D™, and the set of admissible success patterns SUCCPAT(p)
C D" x D, are defined to be the smallest sets satisfying the following:

—If p is an exported predicate and [/ is a calling pattern for p in the class of queries
specified by the user, then Iis in CALLPAT(p).

—Let ¢g be a predicate in the program, I, € CALLPAT(qq), and let there be a clause
in the program of the form

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

962 : SAUMYA K. DEBRAY

qo(to) 1= qu(t1), .., qn(tn).

Let the i-state at the point immediately after the literal ¢;(;),0 < j < n, be 4;,
where
— Ay = update_i_state(A g, I.), where A" is the initial i-state of the clause;
—cp;i = Aij—1(4;) is in CALLPAT(¢;), 1 <7 < n; and
—if {epi, sp;) is in SUCCPAT(g;), then A; = update_i_state(A;_1,u;, sp;); if there

is no such tuple then A; maps each variable in the clause to .
The success pattern for the clause is given by I, = Ap(4g), and (I, I;) is in
SUCCPAT(q0).

An algorithm to compute the CALLPAT and SUCCPAT sets is given in Figure 1. The
global data structures maintained by the program consist of a list WORKLIST of
predicates that have to be processed; and for each predicate p in the program, tables
CALLPAT(p) and SUCCPAT(p). Given a program P, WORKLIST initially contains the
set of predicates appearing in EXPORTS(P). If p is an exported predicate, CALLPAT(p)
contains the calling patterns for it that are specified in EXPORTS(P), otherwise it
is empty initially; and for each predicate p in the program, SUCCPAT(p) is initially
empty. Before analysis begins, the call graph of the program is constructed, and
this is used to compute, for each predicate p, the set CALLERS(p) of predicates that
call p, i.e. those predicates ¢ for which there 1s a clause in the program of the form

(o) = o, p(L),

The set CALLERS(p) is used to determine which predicates have to be reanalyzed
when a new success pattern is found for p.

The analysis begins with the calling patterns specified by the user for the ex-
ported predicates. Given an admissible calling pattern for a predicate, i-states are
propagated across each clause for that predicate as shown in Figure 2. When all
the literals in the body have been processed the success pattern for that clause is
obtained by determining the instantiation of the arguments in the head in the i-
state after the last literal in the body. The success pattern for the predicate is then
determined from the success patterns of the clauses defining it. This is repeated
until no new calling or success patterns can be obtained for any predicate, at which
point the analysis terminates.

In order to avoid repeatedly computing the success pattern of a predicate for
a given calling pattern, an extension table can be used [22; 61]. This is a memo
structure that maintains, for each predicate, a set of pairs (Call, RetVals) where
Call is a tuple of arguments in a call and RetVals is a list of solutions that have
been found for that (or a subsuming) call to that predicate. At the time of a
call, the extension table is first consulted to see if any solutions have already been
computed for it: if any such solutions are found, these are returned directly instead
of repeating the computation. If the extension table indicates that the call has
been made earlier but no solutions have been returned, then the second call is
suspended until solutions are returned for the first one. The extension table idea
can be modified in a straightforward way to deal with calling and success patterns
rather than actual calls and returns. In this way, once a success pattern has been
computed for a given calling pattern for a predicate, success patterns for future

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 963

Input:. A program (P, EXPORTS(P)).

Output:. Tables CALLPAT(p) and SUCCPAT(p) giving the admissible calling and success patterns for
each predicate in the program, with respect to the set of exported predicates and external calling
patterns specified in EXPORTS(P).

Method:. Starting with the exported predicates, iterate over the program as indicated below until
no new calling or success patterns can be inferred for any predicate:

(1) Construct the call graph for P. Hence determine, for each predicate p defined in P, the set
CALLERS(p) of predicates that call p.
(2) Initialization: For each n-ary predicate p defined in P, create tables CALLPAT(p) and
SUCCPAT(p), initialized to be empty.
For each predicate p mentioned in EXPORTS(P), add p to WORKLIST; for each (p,cp) in
EXPORTS(P), add cp to CALLPAT(p).
(3) Analysis:
while WORKLIST not empty do
let p be an element of WORKLIST;
WORKLIST := WORKLIST \ {p};
for each cp € CALLPAT(p) do
for each clause C of p do
analyse_clause(C, cp) /* see Figure 2 */
od
od
od;

Fig. 1. Algorithm for dataflow analysis

invocations of that predicate with the same calling pattern can be obtained via
table lookup. Alternatively, magic sets techniques may be used to compute these

sets [21; 47].

4.2 Soundness

The development above has consistently ignored the possibility of variable aliasing.
We now characterize the class of dataflow analyses for which this can be safely
done. First we define the notion of unification-soundness, which intuitively de-
scribes when unification simulated over an instantiation set D correctly reflects the
possible effects of actual unification at runtime:

DEFINITION 4.2. Given an abstraction structure (D,¢), let A be any i-state
whose domain is V, #; any n-tuple of terms all whose variables are in V, and
15 any n-tuple of terms described by an i-pattern I. Let # be any substitution such
that for every variable vin V, 8(v) € A(v). Then, an abstract unification procedure
update_i_state is unification-sound if and only if the following holds: if (¢1) and 5
are unifiable with most general unifier ¢, then A’ = update_i_state(A,t,, I) is such
that for every v in V, ¢(6(v)) € A'(v). 1

LEMMA 4.1. Given an abstraction structure (D,), the abstract unification pro-
cedure update_i_state is unification-sound if and only if D is substitution-closed.

Proof Consider an i-state A with domain V, and let ¢; = (uy,...,u,) be any
tuple of terms whose variables are in V. Let t5 be any n-tuple of terms described
by I = (dy,...,d,), and @ any substitution such that for any v € V,0(v) € A(v). If
0(t1) and t5 are not unifiable, the lemma holds vacuously. Assume, therefore, that

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

964 : SAUMYA K. DEBRAY

function analyse_pred(p,cp) /* p is the predicate to be analyzed; cp is the calling pattern */
begin
if cp € CALLPAT(p) then return {sp | (cp, sp) € SUCCPAT(p)};
else
add cp to CALLPAT(p);
for each clause ¢; of p do S; := analyse_clause(c;, cp) od;
return U;S;;
fi
end.
function analyse_clause(cl, cp) /* cl is the clause to be analyzed; cp is its calling pattern */
begin

let ¢l be of the form ‘p(¥) :— Body’;
Ay = {update_i_state(A’C'l”t,f, ep)}s /* head unification */
A, := analyse_body(Body, Ag);
SP:={A(X) | A € An}; /* success patterns for the clause */
NEW_SP := {{cp,sp) | sp € SP A {cp, sp) & SUCCPAT(p)};
if NEW _SP # (then
add NEW_SP to SUCCPAT(p);
add CALLERS(p) to WORKLIST;

fi;
return SP;
end.
function analyse_body(Body, A) /* Body is the body of a clause C'; A is a set of i-states of C' */
begin
if Body is empty then return A;
else
let Body be of the form ‘q(@), BodyTail’;
Al =)
for each A € A do
cp := A(u); /* a calling pattern for g(u); */
S := analyse_pred(q, cp); /* success patterns for g(u) */
for each sp € S do A’ := A’ U update_i_state(A, @, sp) od
od;
return analyse_body(BodyTail, A');
fi;
end.

Fig. 2. The functions analyse_pred, analyse_clause, and analyse_body.

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 965

6(t1) and ¢, are unifiable with most general unifier 1.

[if] Suppose that D is substitution-closed. Let @ be any variable in V, then the
binding of x after unification is given by ¥(8(z)). Let A’ = update i _state(A, 1, 1).
There are two possibilities:

(1) If = does not occur in t;, then A’(z) = A(z). Since 6(z) € A(x), and D
is substitution-closed, it follows that o(6(x)) € A(x) for any substitution o,
whence ¢(0(z)) € A'(x).

(2) If & occurs in 1, let occ(z,t1) be the indices of the elements of ¢; in which
it occurs. From the definition of inherited_inst, it follows that there is some
term s; € inherited_inst(x, u;, A(w;), d;) such that ¢(0(z)) C s;, for each ¢
in occ(z,t1), where C is the subsumption order on terms. This implies that
{p(0(x))} < inherited_inst(x,u;, A(ui),d;). In other words, {¢(6(x))} is a
lower bound on inherited _inst(x, u;, A(u;), d;), for each ¢ in occ(x,?1). Since

A(x) = Dicoce(w,ry) inherited inst (z, u;, Au;), d;)
is their greatest lower bound, we have
{¥(0(2))} 9 Dicoce(w,ry)inherited inst(z, u;, Au;), d;).
Since D 1s substitution-closed, it follows, from Proposition 3.7, that

{(0(2))} € A'(2), ie. ¥(0()) € A'(2).

[only if]: Assume that D is not substitution-closed. This means that there is
some element d € D, and some term ¢ € d, such that for some substitution o, t' =
o(t) ¢ d. Consider V = {z,y}, where neither & nor y occur in ¢; let t; = (x,z,y)
and I = (d’, Tinst, Tinst) such that ¢’ € d’, where d’ € D. Consider the tuple #5 =
(t',v,v), where v is a variable not occurring in #: clearly, I describes 5. Let A be
an i-state such that A(y) = d, and let @ be the substitution § = {y — t}. Consider
the substitution o’ : { — {,v + }. The reader may easily verify that ¢ o ¢’ is the
most general unifier of the tuples 8(¢;) and t5. Let A’ = update_i_state(A,t1,1),
then

Ally) = AiEOcc(yygl)inherited_mst(y,ti,A(ti), d;)
= wnherited_inst(y,y, d, Tinst)
=dA Tinst
=d.

However, (oo o')(0(y)) = o(0(y)) = o(t) = #', which is not in d. It follows that
update_i_state is not unification-sound. 0O

This result can be strengthened if further restrictions are placed on the class
of programs being considered, e.g. if we assume, as in the case of deductive
database programs, that calls always succeed with all arguments instantiated to
ground terms.

Define a flow analysis procedure to be any algorithm that computes the sets
CALLPAT and SUCCPAT defined above, and call such an analysis procedure complete
if, for any user-specified calling pattern, every computation that can arise from a
goal described by that calling pattern is considered for analysis by the flow analysis
procedure. We now show that complete flow analysis procedures are sound for
approximation domains that are substitution-closed. To this end, we show that for
any predicate p in a program, if p can be called with arguments C,, then there is

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

966 : SAUMYA K. DEBRAY

some calling pattern I. in CALLPAT(p) that “describes” C), (possibly conservatively),
i.e. ¢(Cp) C I, and similarly for success patterns:

DeFINITION 4.3. A flow analysis procedure over an abstraction structure (D, ¢)
i1s sound 1f and only if, for every program P, the sets of calling and success pat-
terns CALLPAT and SUCCPAT inferred by the analysis satisfy the following: for every
exported predicate p, if ¢p is a calling pattern for an external query, then

(1) if q(%) is a call that arises in some computation in the program starting from
a query described by p(cp), then there is a tuple I. in CALLPAT(q) such that
«({t}) C I.;; and

(2) if the call ¢(f) can succeed with its arguments bound to a tuple ¢, then there
is a pair (I, I;) in SUCCPAT(g) such that «({t}) C I. and ({t'}) C I;.

THEOREM 4.2. A flow analysts procedure is sound if and only if it is complete
and the abstract unification procedure update_i_state is unification-sound.

Proof [only if] If the flow analysis procedure is not complete, then some executions
that arise at runtime are not considered during analysis, and it is easy to see that
such execution paths can give rise to calling and success patterns that do not appear
in the CALLPAT and SUCCPAT tables. If update_i_state is not unification-sound then
there exists a tuple of terms ¢, and a tuple of terms ¢’ described by an i-pattern
I, such that update_i_state does not correctly describe the unification of ¢ and #'.
It follows that given the program consisting of the single clause ‘p(¢)” and user-
specified calling pattern I, the SUCCPAT relation computed by the flow analysis
procedure will not be sound.

[if] The proof is by induction on the number of resolution steps n in the com-
putation. Let p be a predicate in a program. Consider a call to p with arguments
t.. In the base case, n = 0, and {. must be a query from the user. By definition,
there is a calling pattern I. in CALLPAT(p) such that ¢. € I, i.e. «({.}) C I.. The
base case for success pattern requires at least one resolution step, and occurs when
there is a unit clause p(u) for p such that ¢, unifies with @ resulting in the tuple of
terms ¢,. In this case, the i-state after unification of the call with the head is given
by Ag = update_i_state(A" wu,1({t.})) and the success pattern I is Ag(u). From
Lemma 4.1, it follows that «({¢s}) C I, and that (I,) is in SUCCPAT(p).

For the inductive step, assume that the theorem holds for n < &, and consider a
call p(t.) derived in k resolution steps, k > 0. It must be the case that the program
contains a clause

(o) = q1(t),...,q;(85), ..., qa(tn)

where ¢; is p, and there is a call r(¢,) in that computation for the predicate r.
Clearly, the call 7(f,) must have taken fewer than k steps of computation, whence
from the induction hypothesis, there is a calling pattern I, in CALLPAT(r) such
that ¢({t,}) C I,. For each of the literals ¢;(u;),1 < i < j, the call and return
require fewer than & steps of computation, so that if the calls and corresponding
returns are given by ¢, and fﬁh, then there is some cp,, € CALLPAT(g;) such that
t({te.}) € cpy,, and some (cp, , sp,,) in SUCCPAT(¢;) such that «({t],}) C sp,,. Let

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 967

A; be the i-state immediately before the literal ¢;(%;), 1 < ¢ < j, then it is an
easy induction on ¢, using Lemma 4.1, to show that A; gives a sound description
of variable instantiations at the corresponding program point. From Lemma 4.1, it
follows that there is a calling pattern cp, in CALLPAT(p) such that «({{.}) C cp,,.
A similar argument holds for success patterns. O

COoROLLARY 4.3. A flow analysis procedure over an abstraction structure (D,)
1s sound if and only if it 1s complete and D 1is substitution-closed.

Proof From Lemma 4.1 and Theorem 4.2. O

That terminating flow analysis procedures exist follows from the fact that from
the definition of update_i_state, the generality of variables is always nonincreasing.
Since D is by definition finite, any variable can have only finitely many different
instantiations during analysis, so each predicate can have only finitely many calling
and success patterns, and it is easy to see that these can be computed in finite time.

A consequence of the substitution-closure requirement, however, is that the in-
stantiation set can no longer have any element representing only uninstantiated
variables: these must be represented by the set of all terms, any. In other words,
the top element Tipse in (D, <) will necessarily be any. This has the disadvantage
of losing some expressive power, e.g. we can no longer reason about dependencies
between literals. This can lead to a loss of precision in some cases.

4.3 Complexity

Before discussing the worst case complexity of computing the sets CALLPAT and
SUCCPAT, it is necessary to consider how much time it takes to determine whether
two elements of the instantiation set D are “equal”. Given an instantiation set D,
let (D) denote the time required, in the worst case, to determine whether two
arbitrary elements of D are equal. For example, if the elements of D are atomic
constants, as in [15; 40; 44], then ¥(D) = O(1); if they are trees of size at most
n and equality is modulo variable renaming, as in [58], then ¥(D) = O(n); if they
are rational terms, i.e. terms that may contain “back edges”, then ¥(D) = O(n)
if equality refers to isomorphism, while ¥(D) = O(na(n)), where « is the slow-
growing pseudo-inverse of Ackermann’s function, if two rational terms are consid-
ered equal if they denote the same infinite tree [33]; if they are regular expressions,
and two expressions are considered equal if they denote the same language, then
U (D) is likely to be exponential (since the problem of deciding whether two regular
expressions do not denote the same language is PSPACE-complete [25]).

Let the size of a term be the total number of symbols in the term, i.e. the
number of nodes in the tree representation of the term. Consider a program with
p predicates of arity at most a, where each predicate has at most ¢ clauses, and
each clause has at most [literals. Let the number of variables in any clause be
at most V. Suppose that the number of calling patterns for any predicate, and
the number of success patterns for any given calling pattern, is at most K. The
initial preprocessing to construct the call graph of the program and determine the
sets CALLERS(p) for each predicate p can be done in time linear in the size of the
program.

First, consider the processing of a single clause for a single calling pattern for
a predicate p. This involves (1) looking up CALLPAT(p) to determine if the calling

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

968 : SAUMYA K. DEBRAY

pattern has been processed already; (2) if it has, returning the associated success
patterns; and (3) if it has not been processed before, propagating dataflow in-
formation across the body of the clause, evaluating the possible success patterns,
installing them into SUCCPAT(p), and returning these success patterns. The cost
of accessing CALLPAT(p) in step (1) requires O(log K') comparisons of tuples of size
a (but note that hashing can be used to give O(1) comparisons on the average).
Since each such comparison costs (D), elementwise comparisons of tuples of size
a costs a¥(D), and the cost of looking up each calling pattern is O(log K - a¥(D)).
To facilitate efficient access, SUCCPAT(p) can be maintained as a data structure that
associates a collection of success patterns with each calling pattern (so that, con-
ceptually, SUCCPAT(p) for an n-ary predicate p is a mapping from D" to p(D")),
and each calling pattern in CALLPAT(p) can have an associated pointer into the
corresponding success patterns in SUCCPAT(p), whence Step (2) can be performed
in O(1) time by simply returning this pointer.

We now consider the cost of Step (3), the propagation of dataflow information
across the body of a clause. Let the size of any argument to a literal be at most
s. The cost of computing the instantiation of a term from an i-state may involve
computing the instantiation of each subterm, and hence in the worst case is O(s).
To update an i-state to reflect the unification of a clause head with a call or the
return from a call, it is necessary to consider as many variables as occur in the
tuple of terms involved, which can be O(V). Since each literal in the body of a
clause can give rise to at most K success patterns, the processing of each clause
involves at most O({K) computations of i-patterns, whose cost is O({K - as), and
O(IK) applications of update_i_state, whose cost is O(IK - V). For each body literal,
the cost of actually computing and returning the success patterns corresponding to
each of its calling patterns will be charged to the predicate for that literal. The cost
of evaluating the body of the clause, therefore, is O({K (as + V)). After the body
has been evaluated, each success pattern generated for the clause must be added to
SUCCPAT(p) if it is not already there: as in the case of Step (2), the relevant entries
in SUCCPAT(p) can be found in O(1) time, after which each success pattern can be
looked up and installed (if necessary) in time logarithmic in the number of success
patterns associated with the calling pattern under consideration. Since the clause
can give rise to at most O(K) success patterns, each of size a, the total cost of
installing success patterns into SUCCPAT(p) is O(K log K - a¥(D)). Thus, the total
cost of processing a clause for a single calling pattern is

O(K -a¥(D) + 1K - (as+ V) + K log K - a¥(D))
= O(IK(as + V) + K log K - a¥(D)).

By using extension tables; each calling pattern is processed exactly once, and each
success pattern for a calling pattern is computed exactly once. The cost of process-
ing a clause K calling patterns, therefore, is O({K?(as + V) + K%log K - a¥(D)).
If the program contains p predicate definitions, each consisting of no more than
¢ clauses, then the total cost of processing the program is O(pclK?(as + V) +
peK?log K - a¥ (D)) = O(pcla(s + V)K?log K - a¥(D)). Let N = pela - max(s, V)
be the size of the program, then the time complexity of the algorithm is O(N -
Y(D) - K?log K).

Let d = | D | be the size of the instantiation set, then the number of calling and

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 969

success patterns for any predicate, in the worst case, may be O(d?), giving a worst
case time complexity of O(N - (D) - d**logd®). This worst case complexity can
be misleading, however, for two reasons. The first is that predicates in a program
very rarely exhibit all possible calling and success patterns: typically, predicates in
a program are used with specific sets of arguments consistently instantiated in one
way; indeed, the plausibility of flow analysis rests on this fact. The second reason
is that the arities of predicates in a program usually do not increase as the size of
the program increases. For most programs encountered in practice, therefore, the
number of calling and success patterns for any predicate can usually be bounded
by a (small) constant, i.e., K = O(1). For such programs, or for dataflow analysis
problems where the size of D is fixed beforehand and hence O(1), the complexity of
the algorithm reduces to O(N - ¥(D)). The procedure is therefore asymptotically
optimal for most programs encountered in practice.

The role played by substitution-closure i1s that by allowing aliasing effects to be
ignored, it allows i-patterns to be computed in time O(as), and update_i_state to
be applied in time O(V). This does not preclude the possibility of having analyses
that do not use substitution-closed abstraction structures, but maintain sharing and
dependency information between variables in a way that allows them to obtain the
same asymptotic complexities for computing i-patterns and applying update_i_state:
such analyses would attain the same overall complexity as the procedure discussed
here. It follows that substitution-closure is sufficient for obtaining analysis algo-
rithms whose time complexity is usually linear in program size, but it is not clear
whether it 18 a necessary condition.

5. Analysis of Parallel Logic Programs

The discussion so far has focussed on sequential control strategies. Since orderings
between the clauses of a predicate are ignored, pure OR-parallel execution strategies
can be accommodated in this framework without any problems. The situation is
different for AND-parallel programs, where the body literals in clauses are no longer
totally ordered. This section extends the approach of the previous section to deal
with an arbitrary partial order <, called the control order, on the body literals of
a clause:

DEFINITION 5.1. A control order for a clause H :— B 1s a partial order < over
its literals such that H < L for every literal L occurring in the body B. 1

Intuitively, given literals L; and L, in the body of a clause, a control order rela-
tion L; < L2 can be understood as specifying that the execution of L; precedes
that of Lo, i.e. the execution of Ly begins after that of L; has finished. A control
strategy for a program specifies a control ordering for each clause in the program.
In general, a control strategy may associate different control orders with different
calling patterns to a clause. We assume that the control strategy is specified be-
forehand to the flow analysis system. This is not entirely unreasonable, because
compilers for parallel logic programming languages usually have some expectation
of how execution may proceed. In independent AND-parallel systems [11; 28; 37],
the order of execution is determined statically using a data dependency analysis of
the program, while in various committed choice languages [10; 59; 63], it is pos-
sible to infer something about the relative order of execution of literals within a

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

970 : SAUMYA K. DEBRAY

clause, based on annotations, guards, etc. Of course, when applied to programs
of a particular language, additional knowledge about the language can be used to
augment the analysis presented here and improve its precision [8; 23; 62]. We make
no assumptions regarding program annotations, about whether or not the language
1s committed-choice, or regarding the independence of literals executing in parallel.

Because of the few assumptions made, it is possible to handle different execution
models within one framework. For example, programs dealing with large databases
that combine top-down and bottom-up execution can be handled, as can programs
that use stream parallelism, where “producer” and “consumer” goals share variables
and execute in parallel. However, this complicates matters, because in addition
to aliasing, communication and synchronization between goals becomes an issue.
Synchronization in parallel logic programming languages is accomplished primarily
by specifying mechanisms for goals to suspend when unification attempts to bind
certain kinds of uninstantiated variables. Our main result here is to show that
in analyses where the instantiation set is substitution-closed, communication and
synchronization issues can be ignored without compromising soundness.

Given a calling pattern for a clause, the possible success patterns for it do not de-
pend on the order in which the body literals are executed. The admissible success
pattern relation SUCCPAT(p) for a predicate p can therefore be computed as de-
scribed in the previous section, using (for example) Prolog’s left-to-right ordering
on literals. However, admissible calling patterns depend on the particular control
order. Now consider a situation where two literals p and ¢ execute concurrently,
and both these literals precede a third literal r. If we know the 1-states before p and
g, we can compute their calling patterns. Since admissible success patterns are in-
dependent of the control order, we can compute their success patterns as described
in Section 4, and thus the i1-state that would be obtained after each of the literals
p and q of it were executing alone. Our task, therefore, is to compose these i-states
to obtain an i-state that gives a sound description of the variable bindings seen by
the literal » whose execution follows those of p and gq.

To deal with control orders that may not be total orders, two i-states are asso-
ciated with each literal L in a clause: Z(_y(L), called the pre-state of L, gives the
i-state immediately before [is evaluated; Z(4)(L), called the post-state of L, gives
the i-state that would be obtained immediately after the execution of L if there
were no other literals executing concurrently. The definitions of admissible calling
and success patterns are analogous to the sequential case:

DEFINITION 5.2. Given a predicate p in a program P, the set of admissible call-
ing patterns CALLPAT(p) C D™ and the set of admissible success patterns SUCCPAT(p)
C D" x D, are defined to be the smallest sets satisfying the following:

—If p is an exported predicate and [/ is a calling pattern for p in the class of queries
specified by the user, then Iis in CALLPAT(p).

—Let ¢g be a predicate in the program, I, € CALLPAT(qq), and let there be a clause
C' in the program of the form

qo(to) = qu(u1), ..., qgn(tn).
Let the initial i-state of C' be A, The pre-state of the head of €' 1s At while
its post-state is given by Z(4y(q(uo)) = update_i_state(A" ug, I.).

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 971

The pre- and post-states for the literals in the body of ' are obtained as follows:

for any literal L = p(¢) in the body of C, let pred(L) be the set of immediate

predecessors of L with respect to the control order < associated with the clause

C corresponding to the calling pattern .. Then,

—the pre-state Z(_y(L) is given by Z_y(L) = Avepreacr)Z(+)(r);

—the calling pattern for L is ep = Z(_y(L)(t), and cp is in CALLPAT(p); and

—if (cp, sp) € SUCCPAT(p), then Z(4 (L) = update_i_state(Z(_y(L),1, sp); if there
is no such tuple then Z(; (L) maps each variable in the clause to 0.

Given the control ordering < for C' associated with the calling pattern I., let

fin(C) denote the set of literals L that have no “successors” with respect to <,

i.e. for which there is no L’ such that L < L’. Let Ag, denote the i-state

Afin = Drefin(c)Z(4)(r). The success pattern for C' is given by I, = Ag,(uo),

and (I, I;) is in SUCCPAT(qq).

The computation of the sets CALLPAT and SUCCPAT proceeds iteratively, as before,
until there is no change to either set. The soundness of this approach hinges on
the soundness of using the meet operation A on i-states to compose the i-states
obtained individually from a set of literals that may have executed concurrently.
To reason about this, it is necessary to formalize the notion of executing one literal
“by itself”. Given a control order < for a clause C' and a literal L in its body, let
L™ denote the reflexive transitive closure of the predecessor relation over the body
of C' with respect to <: LT gives the set of literals in the body of C that have to
be executed in order to enable the execution of L to finish. This extends to sets of
literals as follows: given a set of literals L, LT = U;{LT | L € L}.

DEFINITION 5.3. Given a clause C and a set of literals S occurring in its body,
C'|s, the restriction of C' to S, is a clause defined as follows: the head of Clg is
the head of C; the body of Cls is the set of literals S; and if the control order
for €' associated with a calling pattern is <, then the control order <g for C|s
associated with that calling pattern given by the following: s; <g so for any two
literals s1,s9 € S if and only if 51 < s5. 1

The following lemma states that given a set of literals {Lq,..., L,}, if the post-
states Z(4y(L;) give sound descriptions variable instantiations after the execution
of L; “by itself”, 1 < ¢ < n, then A7, A; gives a sound description of variable
bindings resulting from executing {Li,...,L,} concurrently if the instantiation
set D is substitution-closed; in other words, that the composition of i-states re-
sulting from individual executions using A is sound when the instantiation set is
substitution-closed. Since synchronization has not been considered anywhere in
this development, this gives a broad characterization of analyses for which synchro-
nization issues can be ignored without compromising soundness.

LEMMA 5.1. Consider the analysis of a clause C', with control order <, over
an instantiation set D. Let {Ly,..., Ly} be any set of literals in the body of C'.
Corresponding to each L;, 1 < i < n, let A; be an i-state such that for every program
variable v of C, if o(v) can be bound to a termt after the execution of L; for some
o-activation of C|, 4, then t € A;(v). Let A = A7_| A; and IV = {Ly,..., L}

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

972 : SAUMYA K. DEBRAY

If D is substitution-closed, then for any v € V¢, if o(v) can be bound to a term t
after some o-activation of C|p+, thent € A(v).

Proof From the fact that the bindings of any variable obtained by executing a set
of goals is independent of the order in which goals are executed. O
The notion of soundness 1s as in the sequential case. Then, we have:

THEOREM 5.2. A flow analysis procedure over an instantiation set D is sound
of and only if it is complete and D s substitution-closed.

Proof Similar to that of Theorem 4.2. O

Termination follows from the facts that (¢) since D is finite, each predicate can
have only finitely many calling and success patterns; (é¢) the instantiations of vari-
ables is nondecreasing, so that each program variable in a clause can pass through
only finitely many different instantiations during analysis; and (¢4¢) since each clause
has a finite number of literals, there can be only finitely many control orders for
each clause. The asymptotic worst case complexity for this case 1s the same as for
the sequential case, since given an instantiation set D of size d, both cases involve
at most d® possible calling and success patterns. This implies, in particular, that
for most programs the complexity of the analysis is O(N - ¥(D)), where N is the
size of the program and ¥(D) the worst case time complexity of comparing two
elements of D.

It is interesting to compare this approach to other proposals for dataflow anal-
ysis of parallel logic programs. Schemes for data dependency analysis to detect
AND-parallelism have been proposed by Chang et al. [7], Jacobs and Langen [31],
and Muthukumar and Hermenegildo [50]. These analyses have to explicitly keep
track of dependencies between variables, and therefore are liable to be less effi-
cient than the approach proposed here. They also presuppose Prolog’s left-to-right
ordering on literals within a clause, and restrict themselves to independent AND-
parallelism, and are therefore less flexible than our approach. On the other hand,
our assumption of substitution-closure means that we are unable to reason about
dependencies between variables, rendering our instantiation sets less expressive in
some cases. Gallagher et al. consider the static analysis of concurrent logic pro-
grams ignoring synchronization issues [24]. Codognet et al. describe two analysis
algorithms for concurrent logic programs that take synchronization into account
explicitly [8]: one of these considers every possible sequential interleaving of a set
of concurrently executing agents, while the other uses a monotonicity property of
the abstract domain to avoid considering every possible interleaving. However, the
authors do not discuss the complexity of either algorithm.

6. Non-Noetherian Abstract Domains

An important requirement of static analyses i1s that they are expected to termi-
nate, regardless of whether or not the program being analyzed would terminate
when executed. Unfortunately, concrete computational domains are usually infi-
nite, and static inference of nontrivial program properties recursively unsolvable,
making it necessary to give some kind of finitely computable approximation to the
desired information. This i1s usually done by imposing finiteness requirements on
the abstract domain. The simplest — and strongest — such requirement is that the

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 973

abstract domain contain only finitely many elements. Many commonly encountered
static analyses for logic programs impose this requirement. This requirement can
be weakened to allow an abstract domain to be infinite, provided that it is of finite
hetght, 1.e. its height is finite and bounded; that it satisfies the finite chain property,
1.e. every chain in the abstract domain is finite; or that it is Noetherian, 1.e. there
are no infinite descending chains.!

There 1s, in general, a correlation in static analyses between the size of the ab-
stract domain and the precision of analysis: in particular, the lengths of chains
determine the “gaps” between successive approximations computed as an analy-
sis iterates to a fixpoint. The larger the abstract domain, the more precise the
analyses tend to be; in the limit, when the abstract domain coincides with the con-
crete domain, the analysis gives exact results. Thus, one would expect an analysis
working with an abstract domain containing infinite chains to be more precise than
analyses using the finite abstract domains considered in the previous sections. The
problem, of course, is ensuring termination. This section takes a step towards ac-
commodating infinite chains in the abstract domain without compromising uniform
termination. It uses depth abstraction to ensure that at most finitely many points
in the abstract domain are considered during analysis.

The elements of an instantiation set can be given names: e.g. in Example 3.1
above, ‘¢’ is the name of the set of ground terms of the language under consideration.
Let d be any such name for an element in an i-set, and let u(d) stand for the
denotation of d, i.e. the element of the instantiation set that d names. Where
there is no scope for confusion in the discussion that follows, we will sometimes not
distinguish between a name d and its denotation p(d). Tt is possible to consider
a set of such names N for the elements of a instantiation set D as the constants
of a first order language. Then, given a set of function symbols F, ground terms
over F and N can be interpreted as denoting sets of terms. Extending the notion
of denotations u in the natural way, we have

p(fdr, . odn)) = {f (s tn) [6 € pldi), 1 < i <n}

for any n-ary function symbol f in F. This leads us to the notion of extended
instantiation sets:

DEFINITION 6.1. Suppose that F is the set of function symbols of the language
under consideration. Given an instantiation set D, the extended instantiation set
D*(F) is defined to be the least set satisfying the following:

(1) if d € D then d € D*(F);

(2) if f is an n-ary function symbol in F, n > 0, and dy, ..., d,, € D*(F) such that
d; # 0,1 <i<n, then f(dy,...,d,) € D*(F).

D 1s said to be the underlying instantiation set of the extended instantiation set

D*(F). 1

Where it is not necessary to refer explicitly to the set of function symbols F
involved, the extended instantiation set will sometimes be written simply as D*.

ISome developments of dataflow analyses are based on the dual characterization of join-
semilattices, in which case no infinite ascending chains are permitted.

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

974 : SAUMYA K. DEBRAY

The ordering < on the elements of an instantiation set, together with the meet
A, extend in the natural way to extended instantiation sets, which therefore form
meet-semilattices under this ordering.

ExaMPLE 6.1. Let D be as in Example 3.1, and let F = {a/0, f/1,9/1}. Then,
D™ is the set

DU {a, f(int), g(int), f(f(int)), f(g(int)), ..., f(c),g(c), F(f(c)), ..}

O

If the set of function symbols F contains any symbol with arity greater than 0,
then for any instantiation set D, (D*(F), <) contains infinite descending chains.
To see this, suppose F contains a unary function symbol ¢g. Then, the extended
instantiation set, ordered by <, contains the infinite chain

any, g(any), g(g(any)), g(g(g(any))),...

It is possible to consider abstractions of extended instantiation sets, i.e., homomor-
phic images where a (possibly infinite) number of different elements are identified.
Extended instantiation sets can contain infinite chains even when subjected to such
abstractions, e.g. consider an instantiation set D, and let the set of function symbols
contain the empty list nil/0 and the list constructor ‘’/2. For any such extended
instantiation set, consider a homomorphism that identifies lists of the same type,
i.e. maps the elements

{nil, x-nil, x-x-nil, ..}
for each x € D, into a single point list(x). In this case the “abstracted” extended
instantiation set still contains infinite chains of the form

any, list(any), list(list(any)),...

Though not considered explicitly, the techniques and results of this paper apply to
such “abstracted” extended instantiation sets as well.

The analysis schemes described in Sections 4 and 5 can be guaranteed to termi-
nate if the abstract domain contains no infinite chains. In this case, straightforward
bottom-up fixpoint computations, possibly augmented by memo structures to avoid
redundant computation [22; 61], suffice to compute the sets CALLPAT and SUCCPAT
in finite time. However, if the abstract domain contains infinite chains, this ap-
proach can no longer be guaranteed to terminate. As an example, consider the
program

p(X) 1= p([X]).
?— p(0).

This generates an infinite sequence of pairwise incomparable calling patterns
(int), (list(int)), (list(list(int))),...

Thus, the sets of admissible calling and success patterns cannot be computed in a

finite amount of time. Extended instantiation sets contain infinite chains whenever

the program contains function symbols of nonzero arity — a situation that holds in

all but the simplest of cases. Stronger measures are therefore necessary to guarantee

termination. To this end, we consider the notion of “depth abstractions” of elements

of D*:

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 975

DEFINITION 6.2. Given an abstraction structure (D, ¢) and set of function sym-

bols F, the depth-k abstraction of an element d in the extended instantiation set
D*(F), written Ay (d), is defined as follows:

Ao (d) = o(d);
Ai(d) = if d € D then d; else f(Ag_1(d1),..., Ap—1(dy))
where d = f(dy,...,d,). [k >0]

]
In the second clause of this definition, note that if d is not in D, then from the defini-
tion of extended instantiation sets, it must be of the form f(dy,...,d,). The notion

of depth abstractions extends in the natural way to i-patterns: if 7 = (dy,...,dy)
is an i-pattern, then Ag(I) = (Ai(dy), ..., Ax(dn)).

PROPOSITION 6.1. For any abstraction structure (D,) and any k > 0, the depth
abstraction function Ay is a closure operator. O

EXAMPLE 6.2. Given the extended instantiation set of Example 6.1, with un-
derlying instantiation set D as in Example 3.1, we have

Ax(f(g(f(g(any)))))

A1 (g(f(g(any)))))
(f(g(any)))))

g(b(f)()g(any)))))

The depth of an element of D* is defined in the natural way. Consider an extended
instantiation set D*, with underlying instantiation set D. For any d in D*, we have

depth(d) =if d € D then 0; else 1 + max{depth(dy), ..., depth(d,)}
where d = f(dy,...,dy).

As before, if d is not in D, then it must be of the form f(dy,...,d,). This notion
extends to i-patterns as follows: if [= (dy,...,dy) is an i-pattern, then depth(I) =
max{depth(dy), ..., depth(d,)}.

The idea behind depth abstraction is to provide a finite approximation to an
infinite set of instantiation patterns that may arise during analysis. Since there
are only finitely many literals in a program, only recursive calls can give rise to an
infinite number of instantiation patterns at a program point. It suffices, therefore,
to consider depth abstraction for recursive calls only. For this, the program must
be preprocessed to identify recursive calls. Define the relation calls over predicates
in a program as follows: p calls ¢ if and only if either (i) there is a clause in the
program of the form

plo.) = g,

or (¢%) if there is a predicate r such that p calls » and r calls ¢. Fach literal in the
body of a clause in the program is associated with a bit, called the “recursion bit”,
that says whether or not it is a recursive call: given a clause

p(ﬂ) i Q1(a1)a sy QH(an)
Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

976 : SAUMYA K. DEBRAY

the recursion bit of the i® body literal ¢;(%;), denoted by p;, is set to true if ¢;
calls p, and to false otherwise.

The definitions of the admissible calling and success pattern sets are very similar
to those in Sections 4 and 5, except for the incorporation of depth abstraction
functions d- and §s that operate on the CALLPAT and SUCCPAT tables respectively.
Thus, for the sequential case we have

DEFINITION 6.3. Given a predicate p in a program P, the set of admissible call-
ing patterns CALLPAT(p) C D™ and the set of admissible success patterns SUCCPAT(p)
C D" x D, are defined to be the smallest sets satisfying the following:

—If p is an exported predicate and [/ is a calling pattern for p in the class of queries
specified by the user, then Iis in CALLPAT(p).

—Let ¢g be a predicate in the program, I, € CALLPAT(qq), and let there be a clause
in the program of the form
qo(to) 1= qu(t1), .., qn(tn).
Let the i-state at the point immediately after the literal ¢;(;),0 < j < n, be 4;,
where
— A ig the initial i-state of the clause;
—Ag = update_i_state(A g, I.);
—for 1 < i< n, ep; = d¢(qs, Ai—1(s), p;) is in CALLPAT(g;);
—and if {ep;, sp;) is in SUCCPAT(g¢;), then A; = update_i_state(A;_1,4;, sp;); if
there is no such tuple then A; maps each variable in the clause to .
The success pattern for the clause is given by Iy = dg(qo, e, An(to), p), where
p =V pi, and (I, I;) is in SUCCPAT(qq).

The definition for the case of parallel execution strategies is analogous, and is not
considered separately. The depth abstraction function d- is defined as follows:

60 (pa Ca p) =
if (p = true A CALLPAT(p) # 0) then A, (C)
where n = max{depth(cp) | cp € CALLPAT(p)};
else C.

In other words, whenever a recursive call is encountered for a predicate p that has
been called already (i.e. CALLPAT(p) is nonempty), the calling pattern is subjected
to a depth-k abstraction, where &k 1s the depth of the deepest calling pattern in
CALLPAT(p); nonrecursive calls are not subjected to such depth abstractions. Fur-
ther, it is easy to see that if, given a calling pattern C', we have depth(C) < k,
then A (C) = C, so that the only calling patterns actually affected by this depth
abstraction are those that are deeper than any currently in CALLPAT(p).
The depth abstraction function dg is defined analogously:

ds(p, C, S, p) = let Succ = {sp | (C,sp) € SUCCPAT(p)} in
if (p = true A Succ # 0)) then A, (5)
where n = max{depth(sp) | sp € Succ};
else S.

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 977

Note that whereas the calling pattern for a literal is subjected to depth abstraction
via §¢c if it is a recursive call, the success pattern for a clause is subjected to depth
abstraction via dg if any of the literals in the body of that clause is recursive. The
basic idea is similar to Cousot’s notion of widening [14]. In Cousot’s development,
however, any given widening operator is fixed for all programs, whereas our ap-
proach allows different programs to be treated differently. The following lemma
shows that depth abstractions provide safe approximations to i-patterns:

LEMMA 6.2. For any i-pattern I and natural number k, p(I) C p(Ax(I)).

Proof By induction on k. The base case uses the fact that the instantiation
function ¢ is a closure operator, and hence extensive. O

THEOREM 6.3. A flow analysis procedure over an extended instantiation set D*
1s sound if and only if it 1s complete and D 1is substitution-closed.

Proof The proof of the if part follows the lines of Theorems 4.2 and 5.2, using
Lemma 6.2 to show that replacing a calling or success pattern by a depth abstraction
preserves soundness. The only if part is based on two observations: first, the
analysis described above does not keep track of aliasing in the sequential case, and
synchronization in the parallel case, so the arguments of Lemma 4.1 or Lemma 5.1,
as appropriate, apply; and second, even if aliasing or synchronization information
1s maintained, information can be lost when depth abstraction is performed. O
We next show that the analysis terminates:

LEMMA 6.4. For any finite set of function symbols F and wnstantiation set D,
the set {d € D*(F) | depth(d) < n} is finite for any finite n.

Proof By induction on n. In the base case, the instantiation set D 1s finite by
definition. The inductive case then follows from the finiteness of F. O

THEOREM 6.5. For any predicate p in a program, the sets CALLPAT(p) and
SUCCPAT(p) contain at most finitely many elements.

Proof Consider the first calling pattern ¢p encountered for an n-ary predicate p
during analysis: it must have a finite depth n. It can be seen, from the algorithm
for managing CALLPAT(p), that for any calling pattern ¢p’ that corresponds to a
recursive call and is later added to CALLPAT(p), depth(ep’) < n. Tt follows from
Lemma 6.4 that CALLPAT(p) contains at most finitely many calling patterns arising
from recursive calls. Since the programs being analyzed are finite, it follows that
CALLPAT(p) has at most finitely many entries. The argument for SUCCPAT(p) is
similar. O

COROLLARY 6.6. The analysis terminates. O

7. Applications

This section describes applications of the dataflow analysis framework developed in
the previous sections to two families of analyses that have attracted a significant
amount of attention in the literature.

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

978 : SAUMYA K. DEBRAY

7.1 Mode Inference

Mode inference involves dataflow analysis to determine which parameters of a pred-
icate are used as input parameters in a particular program, and which are used as
output parameters. Modes can be thought of as representing prespecified sets of
terms, the set of modes therefore comprising an instantiation set. Specific mode
inference algorithms are described by, among others; Mellish [44; 45], Mannila and
Ukkonen [40], Debray [15; 17], and Janssens and Bruynooghe [6; 34]. The algorithm
given by Mellish [44; 45] uses an instantiation set that is not substitution-closed.
However, this algorithm does not take aliasing into account, leading to loss of sound-
ness [46]. The treatments given by Debray [17] and Janssens and Bruynooghe [34]
take dependencies between variables into account explicitly, but this results in com-
plex and cumbersome algorithms.

An alternative instantiation set, described in [66], is {#, ¢,nv,any} where any
denotes the set of all terms; nv denotes the set of nonvariable terms; and ¢ denotes
the set of ground terms. The mode inference algorithm is given by Mannila and
Ukkonen [40] is similar, except that it restricts itself to the instantiation set {c, any}.
In either case, ¥(D) = O(1), and the complexity of the analysis, for most programs,
is linear in the size of the program.

Mode information finds many applications in the optimization of logic programs.
For example, mode information can be used to generate specialized unification
instructions where permissible [64; 65]; to detect determinacy and functionality of
programs [18; 45]; to generate index structures more intelligently [29]; to reduce
the amount of runtime tests in systems that support goal suspension [52]; to guide
program transformation systems [16]; and in the integration of logic and functional
languages [55].

7.2 Type Inference

Intuitively, types for functors and predicates represent sets of “values”, which in our
case are terms. Therefore, by appropriately defining the abstraction structure, it
is possible to obtain various type systems for logic programming languages. There
are two principal approaches to typing such languages: these describe, respectively,
the sets of terms a predicate may be called with (its calling type), and those it
may succeed with (its success type). Type inference systems of either kind can be
obtained as instances of the flow analysis system described. Type inference of logic
programs has been considered by, among others, Heintze and Jaffar [27], Janssens
and Bruynooghe [34], Mishra [48], and Yardeni and Shapiro [69].

As an example, consider a type inference system based on a scheme due to Sato
and Tamaki, which uses depth abstractions to provide finite descriptions of possi-
bly infinite sets of terms [568]. The depth of a subterm in a term is defined to be
the length of the path from the root of the term, in its tree representation, to the
root of the subterm under consideration. The idea behind depth abstraction is the
following: given some fixed k& > 0, the depth-k abstraction of a term ¢, denoted by
5 (1), is the term obtained by replacing subterms of ¢ occurring at depth & by vari-
ables. For example, the depth-2 abstraction of the term f(g(a), h(X, f(b, X)),Y)
is f(g(U),h(X,V),Y). The analysis of a program is carried out using depth-k ab-
stractions, for some fixed k specified beforehand. Because subterms whose depths

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 979

exceed the bound k are discarded during depth abstraction, analysis using a depth-%
abstraction may fail to detect aliasing at depths occurring at depths greater than &.
Because of this, a variable occurring in a depth-abstracted term may not correspond
to a free variable at runtime. Soundness therefore requires that such variables be
interpreted as denoting all possible terms.

Given a program where the maximum arity of any functor is m, the depth-n
abstraction of a term is a tree whose size can be O(m"). Thus, ¥(D) = O(m")
in this case, and the complexity of the algorithm is O(N -m™). As argued earlier,
however, the maximum arity m is unlikely to grow as the program size increases,
so that in practice, if n 1s fixed, the analysis usually takes time proportional to the
size of the program.

A problem with using depth abstraction to provide type information is that
recursive types cannot be expressed. This problem can be handled by representing
types as rational terms, 1.e. terms with “back edges”. A scheme along these lines
has been proposed by Janssens and Bruynooghe [34; 35]. One of the type systems
considered here, and referred to as rigid types, uses substitution-closed elements.
To obtain abstract domains of finite height, Janssens and Bruynooghe impose the
restriction that any acyclic path starting at the root of such a rational term should
contain no more than k& occurrences of any particular functor, where the multiplicity
bound k is a parameter that is fixed beforehand. For a multiplicity bound of &, if
there are f function symbols, and the maximum arity of any function symbol in
the program is m, the maximum length of any acyclic path is fk, so each element
of the instantiation is a rational term containing at most m/* nodes. Comparing
two such terms of size n for equality takes time O(na(n)), where a is the pseudo-
inverse of Ackermann’s function [33]. It follows that ¥(D) = O(m*a(m/*)). As
before, the arity m does not usually grow with the size of the program, so if £ and
f are fixed then the analysis takes time proportional to the size of the program
in most cases. Note also that for rigid types, the techniques of Section 6 can be
applied to obtain terminating analysis even when the abstract domain contains
infinite chains. Because of this, the restriction on the multiplicity of functors can
be removed, allowing for a more expressive type system.

Type information finds numerous applications in the optimization of logic pro-
grams, of which we list a few. In the literature on compiler optimization for tra-
ditional languages, “dead code” refers to code whose results are never used, while
“unreachable code” refers to code that is never executed [1]. Detection of dead and
unreachable code is straightforward using type information. To detect code that is
never called, or that which execution can never succeed through, we perform a type
analysis of the program. Analysis proceeds as described earlier: when it terminates,
any clause whose set of calling patterns is either empty, or contains the null ele-
ment) in one or more positions, is never called and can safely be deleted from the
program. Any clause with whose success pattern set is empty or contains the null
element) in one or more positions is one that execution cannot succeed through,
and 1s a candidate for elimination as dead code. If it can be shown that none of
the reachable clauses of the predicates called by this clause have any side effects,
then the clause can be deleted without affecting the semantics of the program. A
related use for type information is in functor propagation, which can be thought of
as a bidirectional generalization of the notion of “constant propagation” in tradi-

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

980 : SAUMYA K. DEBRAY

tional languages, can reduce the amount of nondeterminism in programs and lead
to more compact code. Sato and Tamaki also give an example where descriptions of
success patterns obtained using a depth-abstraction analysis is used to transform
a nondeterministic parser for a context-free language into a deterministic parser
[68]. Type information can also be used to analyze “dynamic” logic programs, i.e.
programs where code can be created and executed dynamically, e.g. via the use of
constructs like Prolog’s assert, retract and call, and thereby allow dataflow analy-
sis techniques developed for “static” logic programs to programs that are dynamic
[19]. The application of type information to code optimization in logic programs is

discussed in [6; 20; 35; 67].

8. Related Work

There is a large body of work in static analysis of logic programs, see for example [2;
6;7; 8; 15; 17; 18; 19; 23; 26; 27; 32; 34; 35; 44; 47; 49; 50; 57; 58; 69]. Frameworks
for abstract interpretation of logic programs have been proposed by, among others,
Barbuti et. al. [3], Bruynooghe [5], Corsini and Filé [9], Jones and Sgndergaard [36],
Kanamori and Kawamura [38], Marriott and Sgndergaard [41; 42; 43], Mellish [46],
Nilsson [53], and Winsborough [68]. The work of Barbuti et al. [3] and Marriott and
Sgndergaard [41] are fundamentally different from that presented here in that they
propose “bottom-up” dataflow analyses based on various model-theoretic semantics
of logic programs, whereas the development given here is a “top-down” analysis that
relies on the operational behavior of programs. The developments of Bruynooghe
[5], Jones and Sgndergaard [36], Kanamori and Kawamura [38], and Mellish [46]
resemble ours in that they, too, are concerned with “top-down” analyses. The work
of Mellish, which first proposed a framework for flow analysis of logic programs,
was developed in the context of an operational semantics for Prolog given in terms
of execution traces. It did not associate success patterns with the corresponding
call patterns, making for some loss in precision. Bruynooghe’s framework is given
in the context of an operational semantics for logic programs based on AND/OR
trees. The framework of Kanamori and Kawamura is based on OLDT-resolution,
which is essentially SLD-resolution augmented with extension tables. In contrast
to these, the treatments of Jones and Sgndergaard [36] and Winsborough [68] are
based on denotational semantics for logic programs. Marriott and Sgndergaard [42;
43] give a uniform presentation of top-down and bottop-up analyses by expressing
both in terms of operations on lattices of substitutions. Bruynooghe [5], Corsini
and Filé [9], Kanamori and Kawamura [38] and Nilsson [53] give algorithms for
abstract interpretation of logic programs.

The fundamental difference between the various approaches given above and that
described in this paper is that while most of the abovementioned research 1s con-
cerned with general frameworks for a variety of dataflow analyses for logic programs,
our primary concern 1s with analyses that are of more than theoretical interest, i.e.
those that can be carried out efficiently. Thus, while most of the abovementioned
works focus on various formal and semantic aspects of abstract interpretation, we
strive to identify properties of flow analyses that guarantee efficient algorithms. Be-
cause of this, our analyses are not as expressive as some that have been described
in the literature: for example, they are unable to reason about aliasing behaviors.
This is not surprising, because 1t is well-known that there is a tradeoff between the

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 981

computational cost of an analysis and its precision. What is significant, however, is
that we can show that our algorithms are asymptotically optimal for most programs
encountered in practice, and are also useful in a reasonably wide variety of contexts.
Because of this, we expect these analyses to be both practically implementable, and
practically useful. A work similar in spirit to ours is that of Le Charlier et al. [39],
which gives a careful complexity analysis for an algorithm for static analysis of logic
programs, and discusses a number of optimizations for improving its efficiency.

The tradeoff between precision and efficiency can be seen by contrasting our
linear-time mode analysis algorithm with one proposed by Marriott, Sendergaard
and Jones [43]. The algorithm of Marriott et al. is based on a notion called down-
ward closure that is closely related to the notion of substitution closure discussed in
this paper, but less restrictive: e.g. unlike our approach, it allows reasoning about
certain kinds of aliasing and sharing. The algorithm of Marriott et al manipulates
propositional formulae constructed from variable names appearing in the program
using only the connectives <>, A, and V. The abstract domain is the (finite) set
of such formulae, modulo logical equivalence, which is ordered by implication (=)
and forms a complete distributive lattice. The analysis iteratively computes a se-
quence of formulae until a fixpoint is reached, i.e. until two formulae ¢ and s
are obtained on successive iterations such that ¢ is equivalent to ¢». However,
the equivalence problem for monotone propositional formulae is known to be co-
NP-complete [30], so that unless P = NP, the parameter ¥ (D) for this algorithm is
exponential in the number of variables in a clause. This implies that each iteration
of the analysis of Marriott et al. can, in the worst case, take time exponential in the
maximum number of variables in a clause, unless P = NP. Further, the height of
their abstract domain—and hence, the number of iterations that may be necessary
to attain a fixpoint—also grows (faster than linearly) with the number of variables
being considered. Thus, while the analysis of Marriott et al. is more precise than
ours, 1t is significantly more expensive.

9. Conclusions

Despite the conceptual elegance of logic programming languages, good optimizing
compilers capable of sophisticated analysis and optimization are necessary if such
languages are to be competitive with more traditional languages. Moreover, in order
that the analysis and optimization of large programs be possible, it is necessary
that such analysis algorithms be efficient. A number of problems arise in this
context: aliasing effects can make analysis computationally expensive for sequential
logic programming languages; synchronization problems can complicate the analysis
of parallel logic programming languages; and finiteness restrictions to guarantee
termination can limit the expressive power of such analyses. Our main result is to
give a simple characterization of a family of flow analyses where these issues can be
ignored without compromising soundness. This results in algorithms that are simple
to verify and implement, and efficient in execution. Based on this approach, we
describe an efficient algorithm for flow analysis of sequential logic programs, extend
this approach to handle parallel executions, and finally describe how infinite chains
in the analysis domain can be accommodated without losing uniform termination.

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

982 : SAUMYA K. DEBRAY

10. Acknowledgements

The observation that depth abstraction need be applied only at recursive calls
in abstract domains that are not Noetherian, rather than at every call, is due to
Maurice Bruynooghe; for this, and many other valuable suggestions, we are grateful.
Niels Jorgensen made several very helpful comments on the material of this paper.
Comments by the anonymous referees helped improve the contents and presentation
of the paper substantially.

REFERENCES

A. V. Aho, R. Sethiand J. D. Ullman, Compilers — Principles, Techniques and Tools, Addison-
Wesley, 1986.

A. K. Bansal and L. Sterling, “An Abstract Interpretation Scheme for Logic Programs Based
on Type Expression”, Proc. International Conference on Fifth Generation Computer Systems,
ICOT, Tokyo, 1988, pp. 422-429.

R. Barbuti, R. Giacobazzi and G. Levi, “A Declarative Approach to Abstract Interpretation of
Logic Programs”, TR-20/89, Dept. of Computer Science, University of Pisa, 1989.

G. Birkhoff, Lattice Theory, AMS Colloquium Publications vol. 25, 1940.

M. Bruynooghe, “A Framework for the Abstract Interpretation of Logic Programs”, Research
Report CW 62, Dept. of Computer Science, Katholieke Universiteit Leuven, Oct. 1987.

M. Bruynooghe, B. Demoen, A. Callebaut and G. Janssens, “Abstract Interpretation: Towards
the Global Optimization of Prolog Programs”, Proc. Fourth IEEE Symposium on Logic Pro-
gramming, San Francisco, CA, Sept. 1987.

J.-H. Chang, A. M. Despain and D. DeGroot, “AND-Parallelism of Logic Programs Based on
A Static Data Dependency Analysis”, Digest of Papers, Compcon 85, IEEE, Feb. 1985.

C. Codognet, P. Codognet and M. Corsini, “Abstract Interpretation of Concurrent Logic Lan-
guages”, Proc. North American Conference on Logic Programming, Austin, TX, Oct. 1990.
M. Corsini and G. Filé, “The Abstract Interpretation of Logic Programs: A General Algorithm
and its Correctness”, Research Report, Dept. of Mathematics, University of Padova, Sept. 1988.
K. Clark and S. Gregory, “PARLOG: Parallel Programming in Logic”, ACM Transactions on
Programming Languages and Systems 8, 1 (Jan. 1986), pp. 1-49.

J. S. Conery, Parallel Ezxecution of Logic Programs, Kluwer, 1987.

P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Apporoximation of Fixpoints”, Proc. Fourth ACM Symposium
on Principles of Programming Languages, 1977, pp. 238-252.

P. Cousot, and R. Cousot, “Systematic Design of Program Analysis Frameworks”, Proc. Sixth
ACM Symposium on Principles of Programming Languages, 1979, pp. 269-282.

P. Cousot, “Semantic Foundations of Program Analysis”, in Program Flow Analysis: Theory
and Applications, eds. S. S. Muchnick and N. D. Jones, Prentice-Hall, 1981.

S. K. Debray and D. S. Warren, “Automatic Mode Inference for Logic Programs”, J. Logic
Programming vol. 5 no. 3 (Sept. 1988), pp. 207-229.

S. K. Debray, “Unfold/Fold Transformations and Loop Optimization of Logic Programs”, Proc.
SIGPLAN-88 Conference on Programming Language Design and Implementation, Atlanta,
Georgia, June 1988, pp. 297-307.

S. K. Debray, “Static Inference of Modes and Data Dependencies in Logic Programs”, ACM
Transactions on Programming Languages and Systems vol. 11, no. 3, June 1989, pp. 419-450.
S. K. Debray and D. S. Warren, “Functional Computations in Logic Programs”, ACM Trans-
actions on Programming Languages and Systems vol 11 no. 3, June 1989, pp. 451-481.

S. K. Debray, “Flow Analysis of Dynamic Logic Programs”, J. Logic Programming vol. 7 no. 2,
Sept. 1989, pp. 149-176.

S. K. Debray, “A Simple Code Improvement Scheme for Prolog”, J. Logic Programming (to
appear). (Preliminary version appeared in Proc. Siwth International Conference on Logic Pro-
gramming, Lisbon, June 1988.)

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 983

S. K. Debray and R. Ramakrishnan, “Canonical Computations of Logic Programs”, unpublished
manuscript, Dept. of Computer Science, University of Arizona, Tucson, July 1990.

S. W. Dietrich, “Extension Tables: Memo Relations in Logic Programming”, Proc. Fourth IEEE
Symposium on Logic Programmaing, San Francisco, CA, Sept. 1987, pp. 264-272.

J. Gallagher and E. Shapiro, “Using Safe Approximations of Fixed Points for Analysis of Logic
Programs”, Proc. META88, Workshop on Meta-programmaing in Logic Programmaing, Bristol,
June 1988.

J. Gallagher, M. Codish, and E. Shapiro, “Specialization of Prolog and FCP Programs using
Abstract Interpretation”, New Generation Computing vol. 6, pp. 159-186, 1988.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, New York, 1979.

R. Giacobazzi and L. Ricci, “Pipeline Optimizations in AND-Parallelism by Abstract Inter-
pretation”, Proc. Seventh International Conference on Logic Programming, Jerusalem, Israel,
June 1990, pp. 291-305.

N. Heintze and J. Jaffar, “A Finite Presentation Theorem for Approximating Logic Programs”,
Proc. Seventeenth ACM Symposium on Principles of Programming Languages, San Francisco,
Jan 1990, pp. 197-209.

M. V. Hermenegildo, “An Abstract Machine for Restricted AND-Parallel Execution of Logic
Programs”, Proc. Third International Conference on Logic Programming, London, July 1986.
Springer-Verlag LNCS vol. 225, pp. 25-39.

T. Hickey and S. Mudambi, “Global Compilation of Prolog”, J. Logic Programming vol. 7 no.
3, Nov. 1989, pp. 193-230.

H. B. Hunt III and R. E. Stearns, “Monotone Boolean Formulas, Distributive Lattices, and
the Complexities of Logics, Algebraic Structures, and Computation Structures (Preliminary
Report)”, Proc. Third Symposium on Theoretical Aspects of Computer Science, Orsay, France,
Jan. 1986, pp. 277-287. Springer-Verlag LNCS vol. 210.

D. Jacobs and A. Langen, “Compilation for Restricted AND-Parallelism”, Proc. Furopean Sym-
posium on Programmaing 1988, Springer-Verlag LNCS vol. 300.

D. Jacobs and A. Langen, “Accurate and Efficient Approximation of Variable Aliasing in Logic
Programs”, Proc. North American Conference on Logic Programmaing, Cleveland, Ohio, Oct.
1989, pp. 154-165.

J. Jaffar, “Efficient Unification over Infinite Terms”, New Generation Computing vol. 2 no. 3,
1984, pp. 207-219.

G. Janssens and M. Bruynooghe, “An Instance of Abstract Interpretation Integrating Type and
Mode Inferencing”, Proc. Fifth International Conference on Logic Programming, Seattle, Aug.
1988, pp. 669-683. MIT Press.

G. Janssens, “Deriving Run-time Properties of Logic Programs by means of Abstract Interpreta-
tion”, PhD Dissertation, Dept. of Computer Science, Katholieke Universiteit Leuven, Belgium,
March 1990.

N. D. Jones and H. Sgndergaard, “A Semantics-Based Framework for the Abstract Interpre-
tation of Prolog”, in Abstract Interpretation of Declarative Languages, S. Abramsky and C.
Hankin (eds.), Ellis Horwood, 1987.

L. V. Kale, “The REDUCE-OR Process Model for Parallel Evaluation of Logic Programs”, Proc.
Fourth International Conference on Logic Programming, Melbourne, May 1987, pp. 616-632.
MIT Press.

T. Kanamori and T. Kawamura, “Analyzing Success Patterns of Logic Programs by Abstract
Hybrid Interpretation”, Draft Report, Mitsubishi Electric Corp., Japan, 1987.

B. Le Charlier, K. Musumbu, and P. Van Hentenryck, “A Generic Abstract Interpretation
Algorithm and its Complexity Analysis”, Research Paper RP-90/9, Institut d’'Informatique,
Univ. of Namur, Belgium, 1990. To appear in Proc. Eighth International Conference on Logic
Programmang, Paris, June 1991.

H. Mannila and E. Ukkonen, “Flow Analysis of Prolog Programs”, Proc. Fourth IEEE Sympo-
sium on Logic Programming, San Francisco, CA, Sept. 1987.

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

984 : SAUMYA K. DEBRAY

K. Marriott and H. Sgndergaard, “Bottom-Up Abstract Interpretation of Logic Programs”,
Proc. Fifth International Conference on Logic Programmaing, Seattle, Aug 1988, pp. 733-748.
MIT Press.

K. Marriott and H. Sgndergaard, “Semantics-based Dataflow Analysis of Logic Programs”,
Information Processing 89, ed. G. Ritter, North Holland, 1989, pp. 601-606.

K. Marriott, H. Sgndergaard and N. D. Jones, “Denotational Abstract Interpretation of Logic
Programs”, Manuscript, Dept. of Computer Science, University of Melbourne, May 1990.

C. S. Mellish, “The Automatic Generation of Mode Declarations for Prolog Programs”, DAI
Research Paper 163, Dept. of Artificial Intelligence, University of Edinburgh, Aug. 1981.

C. S. Mellish, “Some Global Optimizations for a Prolog Compiler”, J. Logic Programming vol.
2 no. 1 (Apr. 1985), pp. 43-66.

C. S. Mellish, “Abstract Interpretation of Prolog Programs”, Proc. Third International Con-
ference on Logic Programming, London, July 1986. Springer-Verlag LNCS vol. 225.

C. S. Mellish, “Using Specialization to Reconstruct Two Mode Inference Systems”, Manuscript,
Dept. of Artificial Intelligence, University of Edinburgh, Feb. 1990.

P. Mishra, “Toward a Theory of Types in Prolog”, Proc. 1984 IEEE Symposium on Logic
Programming, Atlantic City, 1984, pp. 289-298.

A. Mulkers, W. Winsborough and M. Bruynooghe, “Analysis of Shared Data Structures for
Compile-Time Garbage Collection in Logic Programs”, Proc. Seventh International Conference
on Logic Programming, Jerusalem, Israel, June 1990, pp. 747-764.

K. Muthukumar and M. Hermenegildo, “Determination of Variable Dependence Information at
Compile Time through Abstract Interpretation”, Proc. North American Conference on Logic
Programming, Cleveland, Ohio, Oct. 1989 (to appear).

E. W. Myers, “A Precise Inter-procedural Data Flow Algorithm”, Proc. Eighth ACM Sympo-
sium on Principles of Programming Languages, 1981, pp. 219-230.

L. Naish, Negation and Control in Prolog, Springer-Verlag LNCS vol. 238, 1986.

U. Nilsson, “A Systematic Approach to Abstract Interpretation of Logic Programs”, PhD Dis-
sertation, Dept. of Computer and Information Science, Linképing University, Sweden, 1989.
G. D. Plotkin, “A Note on Inductive Generalization”, Machine Intelligence 5, B. Meltzer and
D. Michie (eds.), Elsevier, New York, 1970, pp. 153-162.

U. S. Reddy, “Transformation of Logic Programs into Functional Programs”, Proc. 1984 Inter-
national Symposium on Logic Programming, Atlantic City, NJ, Feb. 1984, pp. 187-196. IEEE
Press.

J. C. Reynolds, “Transformational Systems and the Algebraic Structure of Atomic Formulas”,
Machine Intelligence 5, B. Meltzer and D. Michie (eds.), Elsevier, New York, 1970, pp. 135-151.
H. Sgndergaard, “An Application of Abstract Interpretation of Logic Programs: Occur Check
Reduction”, Proc. European Symposium on Programming 86, Saarbrucken, Mar. 1986.

T. Sato and H. Tamaki, “Enumeration of Success Patterns in Logic Programs”, Theoretical
Computer Science 34 (1984), pp. 227-240.

E. Y. Shapiro, “A Subset of Concurrent Prolog and its Interpreter”, Technical Report CS83-
06, Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, Feb.
1983.

M. Smythe, “Powerdomains”, J. Computer and System Sciences 16, 1 (1978), 23-36.

H. Tamaki and T. Sato, “OLD-Resolution with Tabulation”, Proc. Third International Con-
ference on Logic Programming, London, July 1986. Springer-Verlag LNCS vol. 225, pp. 84-98.
S. Taylor, Parallel Logic Programming Techniques, Prentice-hall, 1989.

K. Ueda, Guarded Horn Clauses, D. Eng. Thesis, University of Tokyo, 1986.

P. Van Roy, B. Demoen and Y. D. Willems, “Improving the Execution Speed of Compiled
Prolog with Modes, Clause Selection and Determinism”, Proc. TAPSOFT 1987, Pisa, Italy,
Mar. 1987.

D. H. D. Warren, “Implementing Prolog — Compiling Predicate Logic Programs”, Research
Reports 39 and 40, Dept. of Artificial Intelligence, University of Edinburgh, 1977.

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

Efficient Dataflow Analysis of Logic Programs . 985

R. Warren, M. Hermenegildo and S. K. Debray, “On the Practicality of Global Flow Analysis
of Logic Programs”, Proc. Fifth International Conference on Logic Programming, Seattle, Aug.
1988, pp. 684-699. MIT Press.

J. L. Weiner and S. Ramakrishnan, “A Piggy-back Compiler for Prolog”, Proc. SIGPLAN-88
Conference on Programming Language Design and Implementation, Atlanta, Georgia, June
1988, pp. 288-296.

W. Winsborough, “Automatic, Transparent Parallelization of Logic Programs at Compile
Time”, PhD Dissertation, Dept. of Computer Science, University of Wisconsin, Madison, 1988.
E. Yardeni and E. Y. Shapiro, “A Type System for Logic Programs”, in Concurrent Prolog:
Collected Papers vol. 2, MIT Press, 1987, pp. 211-244.

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

