
E�cient Data
ow Analysis of Logic ProgramsSAUMYA K. DEBRAYThe University of Arizona, Tucson, ArizonaAbstract. We investigate a framework for e�cient data
ow analyses of logic programs. A numberof problems arise in this context: aliasing e�ects can make analysis computationally expensivefor sequential logic programming languages; synchronization issues can complicate the analysisof parallel logic programming languages; and �niteness restrictions to guarantee termination canlimit the expressive power of such analyses. Our main result is to give a simple characterization ofa family of
ow analyses where these issues can be ignored without compromising soundness. Thisresults in algorithms that are simple to verify and implement, and e�cient in execution. Basedon this approach, we describe an e�cient algorithm for
ow analysis of sequential logic programs,extend this approach to handle parallel executions, and �nally describe how in�nite chains in theanalysis domain can be accommodated without compromising termination.Categories and Subject Descriptors: D.1.6 [Programming Techniques]: Logic Programming;D.3.4 [Programming Languages]: Processes|compilers, optimizationGeneral Terms: Algorithms, Languages, PerformanceAdditional Key Words and Phrases: Program Analysis, PROLOG1. IntroductionDespite the numerous attractive features o�ered by logic programming languages,they can often be dismayingly ine�cient in execution. This has given rise to a greatdeal of research in the analysis and optimization of logic programs (see Section 8).This work has addressed some of the issues raised by the presence of features, suchas uni�cation and nondeterminism, that are not found in traditional languages.However, there are a number of signi�cant problems that appear to not have beenaddressed adequately in much of this work: the computational issues raised byaliasing, and by synchronization considerations for parallel logic programming lan-guages; and issues of expressiveness of
ow analysis systems arising out of �nitenessconstraints that are imposed to guarantee termination of analyses. The purposeof this paper is to address these issues by developing a framework for a class ofPreliminary versions of parts of this work have appeared in Proceedings of the Fifteenth ACMSymposium on Principles of Programming Languages, San Diego, Jan. 1988; and Proceedings ofthe Fifth International Conference on Logic Programming, Seattle, Aug. 1988.This work was supported in part by the National Science Foundation under grant number CCR-8702939.Author's address: Department of Computer Science, The University of Arizona, Tucson, AZ85721; email: debray@cs.arizona.edu.Permission to make digital/hard copy of all or part of this material without fee is grantedprovided that the copies are not made or distributed for pro�t or commercial advantage, theACM copyright/server notice, the title of the publication, and its date appear, and notice is giventhat copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copyotherwise, to republish, to post on servers, or to redistribute to lists requires prior speci�cpermission and/or a fee.c
1992 ACM 0004-5411/92/1000-0949 $01.50Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992, pp. 949{984.

950 � SAUMYA K. DEBRAYdata
ow analysis problems commonly encountered in logic programming.In the analysis of logic programs, uni�cation and the presence of \logical vari-ables" can give rise to aliasing, and dependencies between variables, whose e�ectscan be di�cult to predict, making the task of validating such analyses a nontriv-ial one (see [17; 34]). Moreover, in order to handle aliasing e�ects correctly, itis necessary in general to maintain information regarding dependencies betweenvariables|a task that can seriously a�ect the e�ciency of the analysis algorithms(for example, a number of
ow analysis problems for traditional languages becomeintractable in the presence of recursion and aliasing [51]). Ideally, we would liketo carry out our analyses ignoring aliasing e�ects, in the interests of e�ciency, andstill be guaranteed soundness. This raises the question of characterizing the classof
ow analysis problems for logic programs for which aliasing e�ects can safely beignored. Analysis algorithms for such problems can be greatly simpli�ed, resultingin signi�cant gains in e�ciency. We give a simple characterization of the class of
ow analysis problems for which aliasing e�ects can safely be ignored, and developa general framework for such analyses. Our strategy in doing this is to developa framework for the
ow analyses of general logic programs that ignores aliasinge�ects, and then describing the conditions under which the analyses are sound;the soundness criterion then serves to characterize the class of
ow analyses thatcan be safely carried out without worrying about aliasing. We show that alias-ing e�ects can safely be ignored as long as the analysis domains satisfy a simplesubstitution-closure property.In the analysis of parallel logic programs, a similar problem arises with regardto synchronization. In most AND-parallel logic programming models, processescommunicate via shared variables [10; 11; 28; 37; 59; 63]. It is possible to deviseanalysis algorithms for such languages given a signi�cant amount of informationabout the synchronization primitives of the language [8; 23; 62]. The problem withthis is that such analyses become language-speci�c, making it di�cult to generalizethem across languages and execution models. On the other hand, if few assumptionsare made about the execution model, it becomes di�cult to predict the variablebindings seen by a process at any point in the execution without making furtherassumptions about the runtime system, e.g. the scheduler. Ideally, we would like tocarry out our analyses ignoring such issues of synchronization, resulting in simplerand more e�cient algorithms, and still be guaranteed soundness. This raises thequestion of characterizing the class of
ow analysis problems for logic programs forwhich synchronization issues can be safely ignored. As with aliasing, we address thisby initially ignoring synchronization issues, then describing the conditions underwhich such analyses are sound. It turns out that this soundness criterion is exactlythe same as that for the aliasing case: the analysis domains have to be substitution-closed.Finally, there is the issue of the expressive power of a
ow analysis system. Sincestatic analyses are expected to be uniformly terminating, �niteness constraints areusually imposed on analysis domains. For example, they are required to be of �niteheight, or satisfy the �nite chain property. However, the a priori imposition ofsuch �niteness constraints can result in a loss of expressive power and precision.We describe an approach that enables us to work with analysis domains containingin�nite chains, and yet be guaranteed termination. In considering soundness criteriaJournal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 951for such analyses, it turns out that substitution-closure is a necessary property.Based on these results, we argue that substitution-closed analyses constitute animportant family of data
ow analysis problems for logic programs. The utility ofsuch analyses is illustrated with a number of example applications.2. PreliminariesMost logic programming languages are based on a subset of the �rst order predicatecalculus known as Horn clause logic. Such a language has a countably in�nite setof variables, and countable sets of function and predicate symbols, these sets beingmutually disjoint. Without loss of generality, we assume that with each functionsymbol f and each predicate symbol p is associated a unique natural number n,referred to as the arity of the symbol; f and p are said to be n-ary symbols, andwritten f=n and p=n respectively. A 0-ary function symbol is referred to as aconstant.A term in such a language is either a variable, or a constant, or a compound termf(t1; : : : ; tn) where f is an n-ary function symbol and the ti are terms. A literalis either an atom p(t1; : : : ; tn), where p is an n-ary predicate symbol and t1; : : : ; tnare terms, or the negation of an atom; in the �rst case the literal is said to bepositive, in the second case it is negative. A clause is the disjunction of a �nitenumber of literals, and is said to be Horn if it has at most one positive literal. AHorn clause with exactly one positive literal is referred to as a de�nite clause. Thepositive literal in a de�nite clause is its head, and the remaining literals constituteits body. A predicate de�nition consists of a �nite number of de�nite clauses, allwhose heads have the same predicate symbol; a goal is a set of negative literals.A logic program consists of a �nite set of predicate de�nitions. For the purposesof analysis, it is assumed that we are given a module of the form hP; EXPORTS(P)i,where P is a set of predicate de�nitions and EXPORTS(P) speci�es the predicates inP that are exported, i.e. that may be called from the outside. EXPORTS(P) is a setof pairs hp; cpi, specifying that a predicate p may be called from the outside witharguments described by cp. There may be more than one entry for a predicate if itcan be called in di�erent ways.In this paper, we adhere to the syntax of Edinburgh Prolog and write a de�niteclause asp :� q1; : : : ; qn:read declaratively as \p if q1 and : : : and qn". Names of variables begin with uppercase letters, while names of non-variable (i.e. function and predicate) symbols beginwith lower case letters. To simplify some aspects of the discussion that follows, weassume that each argument in the head of a clause is a variable: this does not loseany generality, since a clausep(t1; : : : ; tn) :� Bodywhere t1; : : : ; tn are arbitrary terms, can always be transformed to satisfy this as-sumption by rewriting it asp(X1; : : : ; Xn) :� X1 = t1; : : : ; Xn = tn;Bodywhere X1; : : : ; Xn are distinct variables not appearing in the original clause.Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

952 � SAUMYA K. DEBRAYA substitution is a mapping from variables to terms that is the identity mappingat all but �nitely many points. A substitution �1 is said to be more general than asubstitution �2 if there is a substitution � such that �2 = � ��1. Two terms t1 andt2 are said to be uni�able if there exists a substitution � such that �(t1) = �(t2); inthis case, � is said to be a uni�er for the terms. If two terms t1 and t2 have a uni�er,then they have a most general uni�er that is unique up to variable renaming. Todenote the term obtained as a result of unifying two given terms, we de�ne thefunction unify as follows: given two terms t1 and t2,unify(t1; t2) = � �(t1) if t1 and t2 are uni�able with most general uni�er �unde�ned otherwise:Note that because most general uni�ers are unique only upto variable renaming,this function is not well-de�ned unless terms are considered modulo renaming. Inthe discussion that follows, therefore, we will not distinguish between alphabeticvariants of a term, unless explicitly mentioned.The operational behavior of logic programs can be described by means ofSLD-derivations. An SLD-derivation for a goal G with respect to a programP is a sequence of goals G0; : : : ; Gi; Gi+1; : : : such that G0 = G, and if Gi =`a1; : : : ; an', then Gi+1 = �(a1; : : : ; ai�1; b1; : : : ; bm; ai+1; : : : ; an) such that 1 � i �n; b :� b1; : : : ; bm is an alphabetic variant of a clause in P and has no variablein common with any of the goals G0; : : : ; Gi; and � is the most general uni�er ofai and b. The goal Gi+1 is said to be obtained from Gi by means of a resolutionstep, and ai is said to be the resolved atom. Intuitively, each resolution step cor-responds to a procedure call. Let G0; : : : ; Gn be an SLD-derivation for a goal Gin a program P , and let �i be the uni�er obtained when resolving the goal Gi toobtain Gi+1, 0 � i < n; if this derivation is �nite and maximal, i.e. one in whichit is not possible to resolve the goal Gn with any of the clauses in P , then thiscorresponds to a terminating computation for G: in this case, if Gn is the emptygoal then the computation is said to succeed with answer substitution �, where � isthe substitution obtained by restricting the substitution �n � � � ���0 to the variablesoccurring in G. If Gn is not the empty goal, then the computation is said to fail.If the derivation is in�nite, then the computation does not terminate.Let p(�t) be the resolved atom in some SLD-derivation of a goal G in a program P ,then we say that p(�t) is a call that arises in the computation of G in the program.If the goal p(�t) can succeed with answer substitution �, then we also say that it cansucceed with its arguments bound to �(�t).We assume that the predicates in the program are static, i.e. do not have codecreated and executed dynamically at runtime, e.g. via Prolog primitives such as call,assert or retract. Somewhat more limited analyses can be performed for dynamicprograms using the techniques described in [19].3. A Flow Analysis Framework for Logic ProgramsThis section develops a framework for
ow analysis of logic programs. We begin bydiscussing some fundamental notions and results in Section 3.1. This is followed, inSection 3.2, by a discussion of abstraction structures, which de�ne the abstract do-main for any analysis. Section 3.3 then considers how uni�cation, the fundamentalprimitive operation of logic programming languages, can be abstracted.Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 9533.1 Comparing Instantiations of Sets of TermsDuring the execution of a logic program, terms become progressively more instan-tiated. The notion of a term being \less general" than another is quite straight-forward when dealing with individual terms: a term t1 is less general than anotherterm t2, written t1 v t2, if t1 is a substitution instance of t2. The ordering vis called the subsumption order on terms, and is a partial order modulo variablerenaming. However, the analyses we consider associate variables with sets of terms,so it becomes necessary to \lift" this order to sets of terms. De�ne uni�cation oversets of terms, denoted by s unify, as follows:Definition 3.1. Given sets of terms T1 and T2, s unify(T1; T2) is the least setof terms T such that unify(t1; t2) is in T for each pair of uni�able terms t1 2 T1and t2 2 T2.Lemma 3.1. (Plotkin [54], Reynolds [56]) The set of all terms of a �rst orderlanguage, augmented by a distinguished symbol ? such that ? v t for any term t,forms a complete lattice when ordered by v. For any two uni�able terms t1 and t2,unify(t1; t2) = t1 u t2, where u is the meet operation of this lattice. 2Given two terms t1 and t2, t2 is more general than t1 if and only if t1 u t2 = t1,i.e. if and only if unify(t1; t2) = t1. We de�ne the instantiation order over sets ofterms, denoted by �, as the natural extension of this:Definition 3.2. Given sets of terms T1 and T2, T1 is less general than T2,written T1 � T2, if and only if s unify(T1; T2) = T1.The reader may verify that �, as de�ned above, is transitive. If a set of terms Tis closed under uni�cation, i.e. for any t1 and t2 in T , if t1 and t2 are uni�ablethen unify(t1; t2) is also in T , then s unify(T; T) = T . If we only consider sets ofterms that are closed under uni�cation, therefore, � is also re
exive, and hence apreorder. It is straightforward to show that T1 � T2 and T2 � T1 for any sets ofterms T1 and T2 if and only if T1 and T2 are alphabetic variants. Thus, for setsof terms that are closed under uni�cation, the relation � is a partial order modulovariable renaming. The meet operation for this partial order, when it exists, will bewritten 4. Let U(Term) � }(Term) denote the set of sets of terms that are closedunder uni�cation, then we have:Proposition 3.2. For any two sets of terms T1 and T2 in U(Term),s unify(T1; T2) = T14 T2, and is closed under uni�cation.Proof Consider any two sets of terms T1 and T2 that are closed under uni�cation.Then,s unify(s unify(T1; T2); T1)= ft u t0 j t 2 s unify(T1; T2); t0 2 T1g= f(t1 u t2) u t0 j t1 2 T1; t2 2 T2; t0 2 T1gby de�nition of s unify(T1; T2)= f(t1 u t0) u t2 j t1 2 T1; t2 2 T2; t0 2 T1gsince u is associative and commutative= ft u t2 j t 2 T1; t2 2 T2gwhere t = t1 u t0, since T1 is closed under uni�cationJournal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

954 � SAUMYA K. DEBRAY= s unify(T1; T2).This establishes that s unify(T1; T2) � T1. A similar argument establishes thats unify(T1; T2) � T2. Thus, s unify(T1; T2) is a lower bound on T1 and T2 withrespect to �.Now consider any set of terms T that is closed under uni�cation and is also alower bound on T1 and T2 with respect to �, i.e. T � T1 and T � T2. We showthat T � s unify(T1; T2). By de�nition, T � T1 implies that s unify(T; T1) = T , i.e.ftu t1 j t 2 T; t1 2 T1g = T . Similarly, T � T2 implies ftu t2 j t 2 T; t2 2 T2g = T .Then, we haves unify(T; s unify(T1; T2))= ft u t0 j t 2 T; t0 2 s unify(T1; T2)g= ft u (t1 u t2) j t 2 T; t1 2 T1; t2 2 T2gby de�nition of s unify= f(t u t1) u (t u t2) j t 2 T; t1 2 T1; t2 2 T2gsince u is associative, commutative and idempotent= fu1 u u2 j u1 2 T; u2 2 Tgwhere u1 = t u t1; u2 = t u t2, since T � T1 and T � T2= T since T is closed under uni�cation.It follows that T � s unify(T1; T2). This establishes that s unify(T1; T2) is thegreatest lower bound of T1 and T2 for any two sets of terms T1 and T2 that areclosed under uni�cation, i.e. s unify(T1; T2) = T14 T2.To see that s unify(T1; T2) is closed under uni�cation, consider any two elementsu; v in s unify(T1; T2). By de�nition, u 2 s unify(T1; T2) implies that there are termsu1 2 T1, u2 2 T2 such that u = u1 u u2. Similarly, v 2 s unify(T1; T2) implies thatthere are terms v1 2 T1, v2 2 T2 such that v = v1 u v2. Then,unify(u; v) = u u v from Lemma 3.1= (u1 u u2) u (v1 u v2) since u = u1 u u2; v = v1 u v2= (u1 u v1) u (u2 u v2) since u is associative and commutative= t1 u t2 where t1 = u1 u v1, and t2 = u2 u v2.Since u1 and v1 are both in T1, and T1 is closed under uni�cation, it follows thatt1 = u1 u v1 is in T1. Similarly, t2 = u2 u v2 is in T2. It follows, from the de�nitionof s unify, that unify(u; v) = t1 u t2 is in s unify(T1; T2). Since this holds for anyu; v 2 s unify(T1; T2), it follows that s unify(T1; T2) is closed under uni�cation. 2Corollary 3.3. hU(Term);�i is a meet-semilattice. 2De�ning the order � essentially involves \lifting" the partial order v from termsto sets of terms. It is therefore natural to consider relationships with powerdomainorderings that have been proposed in the literature (see, for example, [60]). Thefollowing proposition gives a partial connection in this regard.Proposition 3.4. Given sets of terms T1; T2 2 U(Term),T1 � T2 implies (8t1 2 T1)(9t2 2 T2)[t1 v t2]:Proof Assume that T1 � T2 but there is some term t 2 T1 such that no termt0 2 T2 satis�es t v t0. Since T1 � T2, it follows that s unify(T1; T2) = T1, whencet 2 s unify(T1; T2). This implies that t = unify(t1; t2) for some t1 2 T1; t2 2 T2.Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 955From Lemma 3.1 it follows that t = t1u t2. This means that there is a term t2 2 T2such that t v t2, which is a contradiction. It follows that if T1 � T2, then for everyt1 2 T1 there is a term t2 2 T2 such that t1 v t2. 2The converse, however, does not hold. To see this, consider the sets of terms T1 =ff(Y; Y)g and T2 = ff(a;X); Zg. It is easy to see that both T1 and T2 are closedunder uni�cation, and for each t1 in T1 there is a t2 2 T2 such that t1 v t2 (the onlycandidate t1 is the term f(Y; Y), and the variable Z 2 T2 satis�es f(Y; Y) v Z).However, f(a; a) = unify(f(Y; Y); f(a;X)) is not in T1, so s unify(T1; T2) 6= T1.3.2 Abstraction StructuresLet Term be the set of all terms of a given �rst order language. As a �rst stepin the development of a general framework for the
ow analysis of logic programs,we de�ne a family of approximation domains D � U(Term) whose elements are\canonical" sets of terms for compile-time analyses. It seems reasonable to requirethat the empty set ; and the set of all terms Term, representing the two extremesof information that we can have regarding a computation, should be in D. In orderthat � be a partial order over D, elements of D must be closed under uni�cation.Analyses will typically assume that variables in a clause are uninstantiated, i.e. intheir most general state, when its execution begins: for this, D must have a greatestelement >inst with respect to �. Moreover, in order that uni�cation of sets of termsduring static analysis be well de�ned, it is necessary that for any two elements d1and d2 in D, their meet d14 d2 also be in D.A set D satisfying these properties is called an instantiation set. In referring toinstantiation sets, the set of all terms Term will also be denoted by any. Then, wehave the following de�nition:Definition 3.3. An instantiation set is a �nite set D � U(Term) satisfying thefollowing properties:(1) The empty set ; and the set of all terms any are in D.(2) There is a greatest element >inst in D with respect to �.(3) For any two elements d1 and d2 in hD;�i, their meet d14 d2 is in D.Note that because alphabetic variants of terms are not distinguished, each elementof an instantiation set is closed under variable renaming.Strictly speaking, item (3) above is stronger than necessary, since it su�ces tohave a least element in D, with respect to set inclusion, that contains d14 d2. Forthe purposes of this paper, we use the stronger de�nition given above because itsimpli�es the notation and proofs slightly. Our results extend in a straightforwardway to the more general case.Instantiation sets turn out to be relatively straightforward to construct:Proposition 3.5. Any �nite set of sets of terms S � }(Term) can be extendedto an instantiation set DS .Proof Let var be the set of variables of the language under consideration. Givenany �nite set of sets of terms S, let bS = S [f;; any; varg. Given any set of termsJournal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

956 � SAUMYA K. DEBRAYT , let T � denote its closure under uni�cation, and consider the sequence of setsS<i>; i � 0, de�ned as follows:S<0> = fS� j S 2 bSg; andS<i> = fS14 S2 j S1; S2 2 S<i�1>g; i > 0.Finally, de�ne the set DS as DS = [i�0S<i>. Clearly, each element of S<0> isclosed under uni�cation, whence from Proposition 3.2, so is each element of S<i>for each i � 0, and therefore, so is each element of DS . Since ;� = ;, any� = any,and var� = var, it follows that the elements ;; any, and var are in S<0>, and hence inDS ; it is trivial to show that var 2 DS is the greatest element of DS with respect to�. By construction, for any pair of elements d1; d2 2 DS , their meet d14 d2 is alsoin DS . Thus, to show that DS is an instantiation set, it remains only to establishthat it is �nite. For this, we show that for any n � 0, any element S 2 S<n>can be represented as S = 4X for some X � S<0>. The base case for this, withn = 0, is trivial. Assume that the claim holds for all n < k, and consider S 2 S<k>.From the de�nition, S = S1 4 S2 where both S1 and S2 are in S<k�1>. From theinductive hypothesis, we can write S1 = 4A and S2 = 4B; where A;B � S<0>:Thus, S = (4A)4 (4B). Since S<0> is �nite, both A and B must be �nite: letthese sets be A = fA1; : : : ; Arg and B = fB1; : : : ; Bsg. Then,S = fA14 : : :4Arg 4 fB14 : : :4Bsg= fA14 : : :4Ar 4B14 : : :4Bsg; from the associativity of 4= 4(A [B)and since both A and B are subsets of S<0>, so is A[B, so the claim holds for alln � 0. It follows that any element d of DS can be represented as d = 4X for someX � S<0>. This implies that the size of DS cannot exceed the size of the powersetof S<0>. Since bS is �nite, and j S<0> j = j bS j, the powerset of S<0> is also �nite,whence DS is �nite. The proposition follows. 2A notion of considerable importance in the development that follows is that ofsubstitution-closure:Definition 3.4. An instantiation set D is said to be substitution-closed if, forevery d 2 D, if t is a term in d and � is any substitution, then �(t) is also in d.Given a complete lattice hL;vi and a 2 L, the set L(a) = fx 2 L j x v ag is calleda principal ideal of L. Then, it is not di�cult to see that the following holds:Proposition 3.6. An instantiation set D is substitution-closed if and only ifevery nonempty element of D is a principal ideal of the term lattice hTerm;vi. 2Proposition 3.7. If D is substitution-closed, then for any d1 and d2 in D,d1 � d2 if and only if d1 � d2.Proof [if] Let D be substitution-closed, and consider d1 and d2 in D suchthat d1 � d2. Since every element of d1 is, trivially, an instance of itself, thisimplies that every element of d1 is an instance of some element of d2. Supposes unify(d1; d2) 6= d1: in this case, either (i) there is some element t1 in s unify(d1; d2)that is not in d1; or (ii) there is some element t01 in d1 that is not in s unify(d1; d2).In case (i), it follows from the de�nition of s unify that t1 must be an instance ofsome element of d1, and since D is substitution-closed, t1 must be in d1, which isJournal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 957a contradiction. In case (ii), since d1 � d2, t01 is also in d2; since unify(t01; t01) = t01,it follows that t01 is also in s unify(d1; d2), which is again a contradiction. Thisestablishes that if d1 � d2 then s unify(d1; d2) = d1, i.e. d1 � d2.[only if] Let D be substitution-closed, and consider d1; d2 2 D such that d1 � d2,i.e. s unify(d1; d2) = d1. Suppose d1 6� d2: then, there must be some element t ind1 that is not in d2. But s unify(d1; d2) = d1, so t is in s unify(d1; d2), which meansthat t must be an instance of some element of d2. Since D is substitution-closed, itfollows that t must also be in d2, which is a contradiction. Hence d1 � d2. 2Recall that a Moore family of subsets of a set S is a family of subsets of S thatcontains S and is closed under intersection [4]. Moore families are important in thecontext of abstract interpretation because they admit \best" descriptions for setsof values [13].Proposition 3.8. A substitution-closed instantiation set forms a Moore family.Proof Let D be a substitution-closed instantiation set. By de�nition, the set ofall terms is an element of D. From Propositions 3.2 and 3.7, it follows that for anyd1 and d2 in D, s unify(d1; d2) = d14 d2 = d1 \ d2. By de�nition, d14 d2 is in D,whence D is closed under intersection. Thus D forms a Moore family. 2Given any set of terms, it is necessary to specify how to �nd its instantiation, i.e.the element ofD that \describes" it best. This is given by the instantiation function�. Recall that a closure operator f on a set is one that is extensive (i.e. x � f(x)),monotonic (i.e. x � y implies f(x) � f(y)) and idempotent (i.e. f(f(x)) = f(x)).Then, we have:Definition 3.5. An abstraction structure is a pair hD; �i, where D � }(Term)is an instantiation set, and � : }(Term) �! D is a closure operator on h}(Term);�i.The requirement that � be a closure operator with respect to set inclusion followsfrom considerations of abstract interpretation [12]. If D is also closed under in-tersection, the instantiation function � can be formulated in an especially simpleway:Proposition 3.9. If the instantiation set D is closed under intersection, thenthe function �, de�ned by�(T) = \fd 2 D j T � dgis a closure operator on h}(Term);�i. 2Example 3.1. Consider the abstraction structure hD; �i, where D =f;; int; c; clist; list; intlist;nv; anyg, where int represents the set of integers, c theset of ground terms, list the set of lists, clist the set of ground lists, intlist theset of lists of integers, nv the set of nonvariable terms and any the set of all terms.Since D is substitution-closed and closed under intersection, the instantiation func-tion � can be de�ned as �(T) = \fd 2 D j T � dg, and s unify(d1; d2) can be de�nedas d1 \ d2. 2The execution of a logic program induces an association, at each program pointin a clause, between the variables in the clause and the sets of terms they canbe instantiated to at that point. The behavior of a program may therefore beJournal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

958 � SAUMYA K. DEBRAYsummarized by specifying, for each such program point, the set of terms eachvariable in that clause can be instantiated to at when execution reaches that point.However, while the set of terms a variable can be instantiated to at any pointin a program at runtime can be arbitrarily large, compile-time representations ofprogram behavior must be �nite. We therefore use the elements of instantiationsets to describe the set of terms a variable can be instantiated to at runtime.When a clause is selected for resolution against a goal, its variables are renamed sothat it is variable-disjointwith the goal. Consider a use of clause C in a computationwhere the variables of C have been renamed via a renaming substitution �: we referto this as a �-activation of C. The �nite set of variable names VC appearing in aclause C are referred to as the program variables of C. The set of terms a variablecan be instantiated to at any point in a program is described using instantiationstates (\i-states" for short):Definition 3.6. An instantiation state AC at a program point in a clause C isa mappingAC : VC �! Dsuch that for any variable v inVC , if �(v) can be bound to a term t at that programpoint in any �-activation of C in any execution of the program, then t 2 AC(v).Note that because of the assumption that each argument in the head of a clauseis a variable, the set of variables occurring in a clause is always nonempty, whencethe domain of the instantiation states of any clause is also always nonempty. Thedomain VC of the instantiation states of a clause C is �xed once C has beenspeci�ed. When there is no scope for confusion, therefore, we drop the subscript Cfrom the names of i-states. If the i-state at a point in a clause is A, and A(v) = dfor some program variable v of the clause, then d is referred to as the instantiationof v at that point. Since each variable in a clause C is in its least instantiated,i.e. most general, state at the beginning of execution of that clause, before its headhas been uni�ed with the arguments in the call, the corresponding \initial i-state"for C, where each variable v in VC is mapped to >inst, is denoted by AinitC . Themapping de�ned by an i-state A extends naturally to arbitrary terms and tuples ofterms t:(1) if t is a constant c, then A(t) = �(fcg);(2) if t is a compound term f(t1; : : : ; tn), then A(t) = �(ff(u1; : : : ; un) j ui 2A(ti); 1 � i � ng);(3) if t is a tuple ht1; : : : ; tni then A(t) = hA(t1); : : : ; A(tn)i.The instantiation of a tuple of terms is referred to as its instantiation pattern, or\i-pattern" for short. The instantiation pattern of the arguments of a call to apredicate is referred to as the calling pattern for the call, while that at the returnfrom a call is referred to as the success pattern for the call. An i-pattern hd1; : : : ; dnidescribes a tuple of terms ht1; : : : ; tni if and only if ti 2 di; 1 � i � n.The set of i-states of a clause inherits the semilattice structure of the instantiationset hD;�i, and is itself a meet-semilattice, where the ordering � on D is extendedto i-states in the obvious way: for any two i-states A1; A2 for a clause C, A1 � A2if and only if A1(v) � A2(v) for every program variable of C. The set of i-states,Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 959ordered in this manner, is referred to as the abstract domain of the clause. Theabstract domain of a program is given by the disjoint sum of the abstract domainsfor its clauses. For simplicity in the discussion that follows, we typically considerabstract domains for individual clauses: the extension to the abstract domain forthe entire program is a straightforward construction involving the usual injectionand projection operators.3.3 Abstracting Uni�cationConsider a variable x occurring in a term t1, whose instantiation in the i-stateunder consideration is d1, and assume that t1 is being uni�ed with a term t2 whoseinstantiation is d2. Consider the e�ect of this uni�cation on the instantiation ofx. The instantiation of the resulting term is d = d1 4 d2. If x � t1, then theinstantiation of x after uni�cation must also be d; on the other hand, if x is a propersubterm of t1, then it will have become instantiated to some proper subterm of theterm resulting from the uni�cation; this can be expressed using the following:Definition 3.7. Given a set of terms t, let ST be the set of all proper subtermsof all elements of t, then, sub inst(T) is de�ned to be the instantiation �(ST) ofST.The instantiation \inherited" by a variable x occurring in a term during uni�cationis given by the function inherited inst, which can be de�ned as follows:Definition 3.8. Let t1 be a term whose instantiation is d1, and let x be avariable occurring in t1. The instantiation inherited by x when t1 is uni�ed with aterm whose instantiation is d2 is given byinherited inst(x; t1; d1; d2) = if x � t1 then d else sub inst(d);where d = d14 d2:Since instantiation sets are �nite by de�nition, the function sub inst can be repre-sented as a �nite table.Example 3.2. Consider the abstraction structure of Example 3.1. The functionsub inst is de�ned as follows:sub inst = f; 7! ;; int 7! ;; c 7! c; list 7! any; clist 7! c; intlist 7! c;nv 7! any; any 7! anyg:Suppose a term f(X) is being uni�ed with a ground term, where the variable Xis uninstantiated in the i-state A under consideration, i.e. A(X) = any. Theinstantiation of the term f(X) is nv. The instantiation of x after uni�cation isgiven byinherited inst(X; f(X);nv; c)= sub inst(nv4 c)= sub inst(c)= c.Thus, we infer that x becomes ground after the uni�cation. 2Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

960 � SAUMYA K. DEBRAYThis de�nition has to be engineered slightly to deal more precisely with prede-�ned recursive types such as lists: for example, it should be possible to infer thatthe tail of a list is also a list. The modi�cations necessary to build knowledgeabout the structure of such recursive types into inherited inst are conceptuallystraightforward: e.g., to deal with the element intlist in Example 3.1, the functioninherited inst can be extended as follows:inherited inst(x; t1; d1; d2) = let d = d14 d2 inif x � t1 then d;else if (is list(t1) ^ (d1 = intlist_ d2 = intlist)) thenlist inherited inst(x; t1; d1; d2);else sub inst(d).Here, list inherited inst is used to express knowledge about the structure of termsin intlist:list inherited inst(x; t1; d1; d2) =let d01 = if d1 = intlist then if hd subterm(x; t1) then int else intlist;else sub inst(d1);d02 = if d2 = intlist then if hd subterm(x; t1) then int else intlist;else sub inst(d2);in d014 d02.hd subterm(x; t) =if t is a variable then false;else if x = head (t) then true else hd subterm(x; tail(t)).Now consider a tuple of terms �t = ht1; : : : ; tni in an i-state A0 for a clause C. LetA0(�t) be hd11; : : : ; d1ni. Consider the uni�cation of �t with another n-tuple of termsdescribed by an i-pattern �I � hd21; : : : ; d2ni. Let x be a variable in VC . If xoccurs in the kth element tk of �t, then the instantiation d0 of x resulting from theuni�cation of tk with the term represented by the corresponding element d2k of �I isgiven by d0 = inherited inst(x; tk; d1k; d2k): Suppose x occurs in the mth element tmof �t as well: arguing as above, the instantiation of x resulting from the uni�cationof the mth elements of the two tuples is d00 = inherited inst(x; tm; d1m; d2m): Theresulting instantiation of x must therefore be d0 4 d00. Extending this argumentto multiple occurrences of a variable is straightforward. Further, if the resultinginstantiation of any variable is ;, then this indicates that uni�cation has failed, sothe instantiation of every variable in VC can be taken to be ;. For any variablev, let occ(v; �t) = fj j v occurs in tjg be the indices of the elements of �t in whichv occurs. Then, given an i-state A, a tuple of terms �t and an i-pattern �I, we cande�ne a function update i state that gives the i-state resulting from unifying �t withany tuple of terms described by �I, as follows:Definition 3.9. Let A be an i-state de�ned on a set of variables V, and let�t = ht1; : : : ; tni be a tuple of terms all whose variables are inV. Let �I = hd1; : : : ; dnibe an i-pattern, and let A00 be the intermediate i-state de�ned as follows: for everyvariable v in V,Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 961A00(v) = if occ(v; �t) = ; then A(v)else 4finherited inst(v; tj ; A(tj); dj) j j 2 occ(v; �t)g.Then, A0 = update i state(A; �t; �I) is de�ned as follows: for every variable v in V,A0(v) = if A00(v) = ; for any variable in V then ;else A00(v).Example 3.3. Consider the abstraction structure of Example 3.1, and the i-state A0 : fM 7! any; E 7! any; L 7! any; U1 7! any; U2 7! anyg.Let �t = hM; [EjL]; [EjU1];U2i and �I = hint; intlist; any; anyi. Then, A1 =update i state(A0; �t; �I) is obtained as follows: The variable M occurs only in the�rst position of �t, i.e. occ(M; �t) = f1g, soA1(M) = inherited inst(M;M; any; int) = any4 int = int:Since occ(E; �t) = f2, 3g, A1(E) = 4fd1; d2g, whered1 = inherited inst(E; [EjL];nv; intlist) = int; andd2 = inherited inst(E; [EjU1];nv; any) = any.Thus, A1(E) = int 4 any = int. Similarly,A1(L) = inherited inst(L; [EjL];nv; intlist) = intlist.Notice that in inferring the updated instantiations of E and L in this example,we have implicitly assumed that inherited inst has been extended to handle liststructures, as discussed above. The instantiations of the remaining variables canbe worked out in a similar manner. The i-state A1 is then obtained asA1 : fM 7! int; E 7! int; L 7! intlist; U1 7! any; U2 7! anyg:24. Analysis of Sequential Logic Programs4.1 Propagating Flow InformationGiven a class of queries that the user may ask of a program, not all the di�erentcalling patterns that are possible for a predicate may in fact be encountered duringcomputations. Similarly, given a calling pattern for a predicate, only certain successpatterns actually correspond to computations in the program starting with a calldescribed by that calling pattern. With each predicate p in a program, therefore,we associate sets of admissible calling and success patterns, de�ned as follows:Definition 4.1. Given a predicate p in a program P , the set of admissible call-ing patterns CALLPAT(p)� Dn, and the set of admissible success patterns SUCCPAT(p)� Dn �Dn, are de�ned to be the smallest sets satisfying the following:|If p is an exported predicate and I is a calling pattern for p in the class of queriesspeci�ed by the user, then I is in CALLPAT(p).|Let q0 be a predicate in the program, Ic 2 CALLPAT(q0), and let there be a clausein the program of the formJournal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

962 � SAUMYA K. DEBRAYq0(�u0) :� q1(�u1); : : : ; qn(�un):Let the i-state at the point immediately after the literal qj(�uj); 0 � j � n, be Aj ,where|A0 = update i state(Ainit; �u0; Ic), where Ainit is the initial i-state of the clause;|cpi = Ai�1(�ui) is in CALLPAT(qi), 1 � i � n; and|if hcpi; spii is in SUCCPAT(qi), then Ai = update i state(Ai�1; �ui; spi); if thereis no such tuple then Ai maps each variable in the clause to ;.The success pattern for the clause is given by Is = An(�u0), and hIc; Isi is inSUCCPAT(q0).An algorithm to compute the CALLPAT and SUCCPAT sets is given in Figure 1. Theglobal data structures maintained by the program consist of a list WORKLIST ofpredicates that have to be processed; and for each predicate p in the program, tablesCALLPAT(p) and SUCCPAT(p). Given a programP , WORKLIST initially contains theset of predicates appearing in EXPORTS(P). If p is an exported predicate, CALLPAT(p)contains the calling patterns for it that are speci�ed in EXPORTS(P), otherwise itis empty initially; and for each predicate p in the program, SUCCPAT(p) is initiallyempty. Before analysis begins, the call graph of the program is constructed, andthis is used to compute, for each predicate p, the set CALLERS(p) of predicates thatcall p, i.e. those predicates q for which there is a clause in the program of the formq(: : :) :� : : : ; p(: : :); : : :The set CALLERS(p) is used to determine which predicates have to be reanalyzedwhen a new success pattern is found for p.The analysis begins with the calling patterns speci�ed by the user for the ex-ported predicates. Given an admissible calling pattern for a predicate, i-states arepropagated across each clause for that predicate as shown in Figure 2. When allthe literals in the body have been processed the success pattern for that clause isobtained by determining the instantiation of the arguments in the head in the i-state after the last literal in the body. The success pattern for the predicate is thendetermined from the success patterns of the clauses de�ning it. This is repeateduntil no new calling or success patterns can be obtained for any predicate, at whichpoint the analysis terminates.In order to avoid repeatedly computing the success pattern of a predicate fora given calling pattern, an extension table can be used [22; 61]. This is a memostructure that maintains, for each predicate, a set of pairs hCall, RetValsi whereCall is a tuple of arguments in a call and RetVals is a list of solutions that havebeen found for that (or a subsuming) call to that predicate. At the time of acall, the extension table is �rst consulted to see if any solutions have already beencomputed for it: if any such solutions are found, these are returned directly insteadof repeating the computation. If the extension table indicates that the call hasbeen made earlier but no solutions have been returned, then the second call issuspended until solutions are returned for the �rst one. The extension table ideacan be modi�ed in a straightforward way to deal with calling and success patternsrather than actual calls and returns. In this way, once a success pattern has beencomputed for a given calling pattern for a predicate, success patterns for futureJournal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 963Input:. A program hP; EXPORTS(P)i.Output:. Tables CALLPAT(p) and SUCCPAT(p) giving the admissible calling and success patterns foreach predicate in the program, with respect to the set of exported predicates and external callingpatterns speci�ed in EXPORTS(P).Method:. Starting with the exported predicates, iterate over the program as indicated below untilno new calling or success patterns can be inferred for any predicate:(1) Construct the call graph for P . Hence determine, for each predicate p de�ned in P , the setCALLERS(p) of predicates that call p.(2) Initialization: For each n-ary predicate p de�ned in P , create tables CALLPAT(p) andSUCCPAT(p), initialized to be empty.For each predicate p mentioned in EXPORTS(P), add p to WORKLIST; for each hp; cpi inEXPORTS(P), add cp to CALLPAT(p).(3) Analysis:while WORKLIST not empty dolet p be an element of WORKLIST;WORKLIST := WORKLIST n fpg;for each cp 2 CALLPAT(p) dofor each clause C of p doanalyse clause(C; cp) /* see Figure 2 */ododod; Fig. 1. Algorithm for data
ow analysisinvocations of that predicate with the same calling pattern can be obtained viatable lookup. Alternatively, magic sets techniques may be used to compute thesesets [21; 47].4.2 SoundnessThe development above has consistently ignored the possibility of variable aliasing.We now characterize the class of data
ow analyses for which this can be safelydone. First we de�ne the notion of uni�cation-soundness, which intuitively de-scribes when uni�cation simulated over an instantiation set D correctly re
ects thepossible e�ects of actual uni�cation at runtime:Definition 4.2. Given an abstraction structure hD; �i, let A be any i-statewhose domain is V, �t1 any n-tuple of terms all whose variables are in V, and�t2 any n-tuple of terms described by an i-pattern �I. Let � be any substitution suchthat for every variable v in V, �(v) 2 A(v). Then, an abstract uni�cation procedureupdate i state is uni�cation-sound if and only if the following holds: if �(�t1) and �t2are uni�able with most general uni�er , then A0 = update i state(A; �t1; �I) is suchthat for every v in V, (�(v)) 2 A0(v).Lemma 4.1. Given an abstraction structure hD; �i, the abstract uni�cation pro-cedure update i state is uni�cation-sound if and only if D is substitution-closed.Proof Consider an i-state A with domain V, and let �t1 = hu1; : : : ; uni be anytuple of terms whose variables are in V. Let �t2 be any n-tuple of terms describedby �I = hd1; : : : ; dni, and � any substitution such that for any v 2 V; �(v) 2 A(v). If�(�t1) and �t2 are not uni�able, the lemma holds vacuously. Assume, therefore, thatJournal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

964 � SAUMYA K. DEBRAYfunction analyse pred(p;cp) /* p is the predicate to be analyzed; cp is the calling pattern */beginif cp 2 CALLPAT(p) then return fsp j hcp; spi 2 SUCCPAT(p)g;elseadd cp to CALLPAT(p);for each clause ci of p do Si := analyse clause(ci; cp) od;return [iSi;�end.function analyse clause(cl, cp) /* cl is the clause to be analyzed; cp is its calling pattern */beginlet cl be of the form `p(�t) :� Body ';A0 := fupdate i state(Ainitcl ; �t; cp)g; /* head uni�cation */An := analyse body(Body, A0);SP := fA(�t) j A 2Ang; /* success patterns for the clause */NEW SP := fhcp; spi j sp 2 SP ^ hcp; spi 62 SUCCPAT(p)g;if NEW SP 6= ; thenadd NEW SP to SUCCPAT(p);add CALLERS(p) to WORKLIST;�;return SP;end.function analyse body(Body, A) /* Body is the body of a clause C; A is a set of i-states of C */beginif Body is empty then return A;elselet Body be of the form `q(�u);BodyTail ';A0 := ;;for each A 2A docp := A(�u); /* a calling pattern for q(�u); */S := analyse pred(q; cp); /* success patterns for q(�u) */for each sp 2 S do A0 := A0 [update i state(A; �u; sp) odod;return analyse body(BodyTail;A0);�;end. Fig. 2. The functions analyse pred, analyse clause, and analyse body.Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 965�(�t1) and �t2 are uni�able with most general uni�er .[if] Suppose that D is substitution-closed. Let x be any variable in V, then thebinding of x after uni�cation is given by (�(x)). Let A0 = update i state(A; �t1; �I).There are two possibilities:(1) If x does not occur in �t1, then A0(x) = A(x). Since �(x) 2 A(x), and Dis substitution-closed, it follows that �(�(x)) 2 A(x) for any substitution �,whence (�(x)) 2 A0(x).(2) If x occurs in �t1, let occ(x; �t1) be the indices of the elements of �t1 in whichit occurs. From the de�nition of inherited inst, it follows that there is someterm si 2 inherited inst(x; ui; A(ui); di) such that (�(x)) v si, for each iin occ(x; �t1), where v is the subsumption order on terms. This implies thatf (�(x))g � inherited inst(x; ui; A(ui); di). In other words, f (�(x))g is alower bound on inherited inst(x; ui; A(ui); di), for each i in occ(x; �t1). SinceA0(x) = 4i2occ(x;�t1)inherited inst(x; ui; A(ui); di)is their greatest lower bound, we havef (�(x))g � 4i2occ(x;�t1)inherited inst(x; ui; A(ui); di):Since D is substitution-closed, it follows, from Proposition 3.7, thatf (�(x))g � A0(x), i.e. (�(x)) 2 A0(x).[only if]: Assume that D is not substitution-closed. This means that there issome element d 2 D, and some term t̂ 2 d, such that for some substitution �, t̂0 ��(t̂) 62 d. Consider V = fx; yg, where neither x nor y occur in t̂; let �t1 = hx; x; yiand �I = hd0;>inst;>insti such that t0 2 d0, where d0 2 D. Consider the tuple �t2 =ht̂0; v; vi, where v is a variable not occurring in t̂: clearly, �I describes �t2. Let A bean i-state such that A(y) = d, and let � be the substitution � = fy 7! t̂g. Considerthe substitution �0 : fx 7! t̂; v 7! t̂g. The reader may easily verify that � � �0 is themost general uni�er of the tuples �(�t1) and �t2. Let A0 = update i state(A; �t1; �I),then A0(y) = 4i2occ(y;�t1)inherited inst(y; ti; A(ti); di)= inherited inst(y; y; d;>inst)= d4>inst= d.However, (� � �0)(�(y)) = �(�(y)) = �(t̂) = t̂0, which is not in d. It follows thatupdate i state is not uni�cation-sound. 2This result can be strengthened if further restrictions are placed on the classof programs being considered, e.g. if we assume, as in the case of deductivedatabase programs, that calls always succeed with all arguments instantiated toground terms.De�ne a
ow analysis procedure to be any algorithm that computes the setsCALLPAT and SUCCPAT de�ned above, and call such an analysis procedure completeif, for any user-speci�ed calling pattern, every computation that can arise from agoal described by that calling pattern is considered for analysis by the
ow analysisprocedure. We now show that complete
ow analysis procedures are sound forapproximation domains that are substitution-closed. To this end, we show that forany predicate p in a program, if p can be called with arguments Cp, then there isJournal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

966 � SAUMYA K. DEBRAYsome calling pattern Ic in CALLPAT(p) that \describes" Cp (possibly conservatively),i.e. �(Cp) � Ic, and similarly for success patterns:Definition 4.3. A
ow analysis procedure over an abstraction structure hD; �iis sound if and only if, for every program P , the sets of calling and success pat-terns CALLPAT and SUCCPAT inferred by the analysis satisfy the following: for everyexported predicate p, if �cp is a calling pattern for an external query, then(1) if q(�t) is a call that arises in some computation in the program starting froma query described by p(�cp), then there is a tuple Ic in CALLPAT(q) such that�(f�tg) � Ic; and(2) if the call q(�t) can succeed with its arguments bound to a tuple �t0, then thereis a pair hIc; Isi in SUCCPAT(q) such that �(f�tg) � Ic and �(f�t0g) � Is.Theorem 4.2. A
ow analysis procedure is sound if and only if it is completeand the abstract uni�cation procedure update i state is uni�cation-sound.Proof [only if:] If the
ow analysis procedure is not complete, then some executionsthat arise at runtime are not considered during analysis, and it is easy to see thatsuch execution paths can give rise to calling and success patterns that do not appearin the CALLPAT and SUCCPAT tables. If update i state is not uni�cation-sound thenthere exists a tuple of terms �t, and a tuple of terms �t0 described by an i-pattern�I , such that update i state does not correctly describe the uni�cation of �t and �t0.It follows that given the program consisting of the single clause `p(�t)' and user-speci�ed calling pattern �I, the SUCCPAT relation computed by the
ow analysisprocedure will not be sound.[if:] The proof is by induction on the number of resolution steps n in the com-putation. Let p be a predicate in a program. Consider a call to p with arguments�tc. In the base case, n = 0, and �tc must be a query from the user. By de�nition,there is a calling pattern Ic in CALLPAT(p) such that �tc 2 Ic, i.e. �(f�tcg) � Ic. Thebase case for success pattern requires at least one resolution step, and occurs whenthere is a unit clause p(�u) for p such that �tc uni�es with �u resulting in the tuple ofterms �ts. In this case, the i-state after uni�cation of the call with the head is givenby A0 = update i state(Ainit; �u; �(f�tcg)) and the success pattern Is is A0(�u). FromLemma 4.1, it follows that �(f�tsg) � Is, and that hIc; Isi is in SUCCPAT(p).For the inductive step, assume that the theorem holds for n < k, and consider acall p(�tc) derived in k resolution steps, k > 0. It must be the case that the programcontains a clauser(�u0) :� q1(�u1); : : : ; qj(�uj); : : : ; qn(�un)where qj is p, and there is a call r(�tr) in that computation for the predicate r.Clearly, the call r(�tr) must have taken fewer than k steps of computation, whencefrom the induction hypothesis, there is a calling pattern Ir in CALLPAT(r) suchthat �(f�trg) � Ir . For each of the literals qi(�ui); 1 � i < j, the call and returnrequire fewer than k steps of computation, so that if the calls and correspondingreturns are given by �tqi and �t0qi , then there is some cpqi 2 CALLPAT(qi) such that�(f�tqig) � cpqi , and some hcpqi ; spqii in SUCCPAT(qi) such that �(f�t0qig) � spqi . LetJournal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 967Ai be the i-state immediately before the literal qi(�ui), 1 � i � j, then it is aneasy induction on i, using Lemma 4.1, to show that Ai gives a sound descriptionof variable instantiations at the corresponding program point. From Lemma 4.1, itfollows that there is a calling pattern cpp in CALLPAT(p) such that �(f�tcg) � cpp.A similar argument holds for success patterns. 2Corollary 4.3. A
ow analysis procedure over an abstraction structure hD; �iis sound if and only if it is complete and D is substitution-closed.Proof From Lemma 4.1 and Theorem 4.2. 2That terminating
ow analysis procedures exist follows from the fact that fromthe de�nition of update i state, the generality of variables is always nonincreasing.Since D is by de�nition �nite, any variable can have only �nitely many di�erentinstantiations during analysis, so each predicate can have only �nitely many callingand success patterns, and it is easy to see that these can be computed in �nite time.A consequence of the substitution-closure requirement, however, is that the in-stantiation set can no longer have any element representing only uninstantiatedvariables: these must be represented by the set of all terms, any. In other words,the top element >inst in hD;�i will necessarily be any. This has the disadvantageof losing some expressive power, e.g. we can no longer reason about dependenciesbetween literals. This can lead to a loss of precision in some cases.4.3 ComplexityBefore discussing the worst case complexity of computing the sets CALLPAT andSUCCPAT, it is necessary to consider how much time it takes to determine whethertwo elements of the instantiation set D are \equal". Given an instantiation set D,let 	(D) denote the time required, in the worst case, to determine whether twoarbitrary elements of D are equal. For example, if the elements of D are atomicconstants, as in [15; 40; 44], then 	(D) = O(1); if they are trees of size at mostn and equality is modulo variable renaming, as in [58], then 	(D) = O(n); if theyare rational terms, i.e. terms that may contain \back edges", then 	(D) = O(n)if equality refers to isomorphism, while 	(D) = O(n�(n)), where � is the slow-growing pseudo-inverse of Ackermann's function, if two rational terms are consid-ered equal if they denote the same in�nite tree [33]; if they are regular expressions,and two expressions are considered equal if they denote the same language, then	(D) is likely to be exponential (since the problem of deciding whether two regularexpressions do not denote the same language is PSPACE-complete [25]).Let the size of a term be the total number of symbols in the term, i.e. thenumber of nodes in the tree representation of the term. Consider a program withp predicates of arity at most a, where each predicate has at most c clauses, andeach clause has at most l literals. Let the number of variables in any clause beat most V . Suppose that the number of calling patterns for any predicate, andthe number of success patterns for any given calling pattern, is at most K. Theinitial preprocessing to construct the call graph of the program and determine thesets CALLERS(p) for each predicate p can be done in time linear in the size of theprogram.First, consider the processing of a single clause for a single calling pattern fora predicate p. This involves (1) looking up CALLPAT(p) to determine if the callingJournal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

968 � SAUMYA K. DEBRAYpattern has been processed already; (2) if it has, returning the associated successpatterns; and (3) if it has not been processed before, propagating data
ow in-formation across the body of the clause, evaluating the possible success patterns,installing them into SUCCPAT(p), and returning these success patterns. The costof accessing CALLPAT(p) in step (1) requires O(logK) comparisons of tuples of sizea (but note that hashing can be used to give O(1) comparisons on the average).Since each such comparison costs 	(D), elementwise comparisons of tuples of sizea costs a	(D), and the cost of looking up each calling pattern is O(logK � a	(D)).To facilitate e�cient access, SUCCPAT(p) can be maintained as a data structure thatassociates a collection of success patterns with each calling pattern (so that, con-ceptually, SUCCPAT(p) for an n-ary predicate p is a mapping from Dn to }(Dn)),and each calling pattern in CALLPAT(p) can have an associated pointer into thecorresponding success patterns in SUCCPAT(p), whence Step (2) can be performedin O(1) time by simply returning this pointer.We now consider the cost of Step (3), the propagation of data
ow informationacross the body of a clause. Let the size of any argument to a literal be at mosts. The cost of computing the instantiation of a term from an i-state may involvecomputing the instantiation of each subterm, and hence in the worst case is O(s).To update an i-state to re
ect the uni�cation of a clause head with a call or thereturn from a call, it is necessary to consider as many variables as occur in thetuple of terms involved, which can be O(V). Since each literal in the body of aclause can give rise to at most K success patterns, the processing of each clauseinvolves at most O(lK) computations of i-patterns, whose cost is O(lK � as), andO(lK) applications of update i state, whose cost is O(lK �V). For each body literal,the cost of actually computing and returning the success patterns corresponding toeach of its calling patterns will be charged to the predicate for that literal. The costof evaluating the body of the clause, therefore, is O(lK(as + V)). After the bodyhas been evaluated, each success pattern generated for the clause must be added toSUCCPAT(p) if it is not already there: as in the case of Step (2), the relevant entriesin SUCCPAT(p) can be found in O(1) time, after which each success pattern can belooked up and installed (if necessary) in time logarithmic in the number of successpatterns associated with the calling pattern under consideration. Since the clausecan give rise to at most O(K) success patterns, each of size a, the total cost ofinstalling success patterns into SUCCPAT(p) is O(K logK � a	(D)). Thus, the totalcost of processing a clause for a single calling pattern isO(K � a	(D) + lK � (as+ V) +K logK � a	(D))= O(lK(as + V) +K logK � a	(D)).By using extension tables, each calling pattern is processed exactly once, and eachsuccess pattern for a calling pattern is computed exactly once. The cost of process-ing a clause K calling patterns, therefore, is O(lK2(as + V) +K2 logK � a	(D)).If the program contains p predicate de�nitions, each consisting of no more thanc clauses, then the total cost of processing the program is O(pclK2(as + V) +pcK2 logK � a	(D)) = O(pcla(s + V)K2 logK � a	(D)). Let N = pcla �max(s; V)be the size of the program, then the time complexity of the algorithm is O(N �	(D) �K2 logK).Let d = j D j be the size of the instantiation set, then the number of calling andJournal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 969success patterns for any predicate, in the worst case, may be O(da), giving a worstcase time complexity of O(N � 	(D) � d2a logda). This worst case complexity canbe misleading, however, for two reasons. The �rst is that predicates in a programvery rarely exhibit all possible calling and success patterns: typically, predicates ina program are used with speci�c sets of arguments consistently instantiated in oneway; indeed, the plausibility of
ow analysis rests on this fact. The second reasonis that the arities of predicates in a program usually do not increase as the size ofthe program increases. For most programs encountered in practice, therefore, thenumber of calling and success patterns for any predicate can usually be boundedby a (small) constant, i.e., K = O(1). For such programs, or for data
ow analysisproblems where the size of D is �xed beforehand and hence O(1), the complexity ofthe algorithm reduces to O(N � 	(D)). The procedure is therefore asymptoticallyoptimal for most programs encountered in practice.The role played by substitution-closure is that by allowing aliasing e�ects to beignored, it allows i-patterns to be computed in time O(as), and update i state tobe applied in time O(V). This does not preclude the possibility of having analysesthat do not use substitution-closed abstraction structures, but maintain sharing anddependency information between variables in a way that allows them to obtain thesame asymptotic complexities for computing i-patterns and applying update i state:such analyses would attain the same overall complexity as the procedure discussedhere. It follows that substitution-closure is su�cient for obtaining analysis algo-rithms whose time complexity is usually linear in program size, but it is not clearwhether it is a necessary condition.5. Analysis of Parallel Logic ProgramsThe discussion so far has focussed on sequential control strategies. Since orderingsbetween the clauses of a predicate are ignored, pure OR-parallel execution strategiescan be accommodated in this framework without any problems. The situation isdi�erent for AND-parallel programs, where the body literals in clauses are no longertotally ordered. This section extends the approach of the previous section to dealwith an arbitrary partial order �, called the control order, on the body literals ofa clause:Definition 5.1. A control order for a clause H :� B is a partial order � overits literals such that H � L for every literal L occurring in the body B.Intuitively, given literals L1 and L2 in the body of a clause, a control order rela-tion L1 � L2 can be understood as specifying that the execution of L1 precedesthat of L2, i.e. the execution of L2 begins after that of L1 has �nished. A controlstrategy for a program speci�es a control ordering for each clause in the program.In general, a control strategy may associate di�erent control orders with di�erentcalling patterns to a clause. We assume that the control strategy is speci�ed be-forehand to the
ow analysis system. This is not entirely unreasonable, becausecompilers for parallel logic programming languages usually have some expectationof how execution may proceed. In independent AND-parallel systems [11; 28; 37],the order of execution is determined statically using a data dependency analysis ofthe program, while in various committed choice languages [10; 59; 63], it is pos-sible to infer something about the relative order of execution of literals within aJournal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

970 � SAUMYA K. DEBRAYclause, based on annotations, guards, etc. Of course, when applied to programsof a particular language, additional knowledge about the language can be used toaugment the analysis presented here and improve its precision [8; 23; 62]. We makeno assumptions regarding program annotations, about whether or not the languageis committed-choice, or regarding the independence of literals executing in parallel.Because of the few assumptions made, it is possible to handle di�erent executionmodels within one framework. For example, programs dealing with large databasesthat combine top-down and bottom-up execution can be handled, as can programsthat use stream parallelism, where \producer" and \consumer" goals share variablesand execute in parallel. However, this complicates matters, because in additionto aliasing, communication and synchronization between goals becomes an issue.Synchronization in parallel logic programming languages is accomplished primarilyby specifying mechanisms for goals to suspend when uni�cation attempts to bindcertain kinds of uninstantiated variables. Our main result here is to show thatin analyses where the instantiation set is substitution-closed, communication andsynchronization issues can be ignored without compromising soundness.Given a calling pattern for a clause, the possible success patterns for it do not de-pend on the order in which the body literals are executed. The admissible successpattern relation SUCCPAT(p) for a predicate p can therefore be computed as de-scribed in the previous section, using (for example) Prolog's left-to-right orderingon literals. However, admissible calling patterns depend on the particular controlorder. Now consider a situation where two literals p and q execute concurrently,and both these literals precede a third literal r. If we know the i-states before p andq, we can compute their calling patterns. Since admissible success patterns are in-dependent of the control order, we can compute their success patterns as describedin Section 4, and thus the i-state that would be obtained after each of the literalsp and q if it were executing alone. Our task, therefore, is to compose these i-statesto obtain an i-state that gives a sound description of the variable bindings seen bythe literal r whose execution follows those of p and q.To deal with control orders that may not be total orders, two i-states are asso-ciated with each literal L in a clause: I(�)(L), called the pre-state of L, gives thei-state immediately before L is evaluated; I(+)(L), called the post-state of L, givesthe i-state that would be obtained immediately after the execution of L if therewere no other literals executing concurrently. The de�nitions of admissible callingand success patterns are analogous to the sequential case:Definition 5.2. Given a predicate p in a program P , the set of admissible call-ing patterns CALLPAT(p)� Dn and the set of admissible success patterns SUCCPAT(p)� Dn �Dn, are de�ned to be the smallest sets satisfying the following:|If p is an exported predicate and I is a calling pattern for p in the class of queriesspeci�ed by the user, then I is in CALLPAT(p).|Let q0 be a predicate in the program, Ic 2 CALLPAT(q0), and let there be a clauseC in the program of the formq0(�u0) :� q1(�u1); : : : ; qn(�un):Let the initial i-state of C be Ainit. The pre-state of the head of C is Ainit, whileits post-state is given by I(+)(q(�u0)) = update i state(Ainit; �u0; Ic):Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 971The pre- and post-states for the literals in the body of C are obtained as follows:for any literal L � p(�t) in the body of C, let pred(L) be the set of immediatepredecessors of L with respect to the control order � associated with the clauseC corresponding to the calling pattern Ic. Then,|the pre-state I(�)(L) is given by I(�)(L) = 4r2pred(L)I(+)(r);|the calling pattern for L is cp = I(�)(L)(�t), and cp is in CALLPAT(p); and|if hcp; spi 2 SUCCPAT(p), then I(+)(L) = update i state(I(�)(L); �t; sp); if thereis no such tuple then I(+)(L) maps each variable in the clause to ;.Given the control ordering � for C associated with the calling pattern Ic, let�n(C) denote the set of literals L that have no \successors" with respect to �,i.e. for which there is no L0 such that L � L0. Let A�n denote the i-stateA�n = 4r2�n(C)I(+)(r): The success pattern for C is given by Is = A�n(�u0),and hIc; Isi is in SUCCPAT(q0).The computation of the sets CALLPAT and SUCCPAT proceeds iteratively, as before,until there is no change to either set. The soundness of this approach hinges onthe soundness of using the meet operation 4 on i-states to compose the i-statesobtained individually from a set of literals that may have executed concurrently.To reason about this, it is necessary to formalize the notion of executing one literal\by itself". Given a control order � for a clause C and a literal L in its body, letL* denote the re
exive transitive closure of the predecessor relation over the bodyof C with respect to �: L* gives the set of literals in the body of C that have tobe executed in order to enable the execution of L to �nish. This extends to sets ofliterals as follows: given a set of literals L, L* = [ifL*i j L 2 Lg.Definition 5.3. Given a clause C and a set of literals S occurring in its body,CjS, the restriction of C to S, is a clause de�ned as follows: the head of CjS isthe head of C; the body of CjS is the set of literals S; and if the control orderfor C associated with a calling pattern is �, then the control order �S for CjSassociated with that calling pattern given by the following: s1 �S s2 for any twoliterals s1; s2 2 S if and only if s1 � s2.The following lemma states that given a set of literals fL1; : : : ; Lng, if the post-states I(+)(Li) give sound descriptions variable instantiations after the executionof Li \by itself", 1 � i � n, then 4ni=1Ai gives a sound description of variablebindings resulting from executing fL1; : : : ; Lng concurrently if the instantiationset D is substitution-closed; in other words, that the composition of i-states re-sulting from individual executions using 4 is sound when the instantiation set issubstitution-closed. Since synchronization has not been considered anywhere inthis development, this gives a broad characterization of analyses for which synchro-nization issues can be ignored without compromising soundness.Lemma 5.1. Consider the analysis of a clause C, with control order �, overan instantiation set D. Let fL1; : : : ; Lng be any set of literals in the body of C.Corresponding to each Li; 1 � i � n, let Ai be an i-state such that for every programvariable v of C, if �(v) can be bound to a term t after the execution of Li for some�-activation of CjL*i , then t 2 Ai(v). Let A = 4ni=1Ai and L* = fL1; : : : ; Lng*.Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

972 � SAUMYA K. DEBRAYIf D is substitution-closed, then for any v 2 VC , if �(v) can be bound to a term tafter some �-activation of CjL*, then t 2 A(v).Proof From the fact that the bindings of any variable obtained by executing a setof goals is independent of the order in which goals are executed. 2The notion of soundness is as in the sequential case. Then, we have:Theorem 5.2. A
ow analysis procedure over an instantiation set D is soundif and only if it is complete and D is substitution-closed.Proof Similar to that of Theorem 4.2. 2Termination follows from the facts that (i) since D is �nite, each predicate canhave only �nitely many calling and success patterns; (ii) the instantiations of vari-ables is nondecreasing, so that each program variable in a clause can pass throughonly �nitely many di�erent instantiations during analysis; and (iii) since each clausehas a �nite number of literals, there can be only �nitely many control orders foreach clause. The asymptotic worst case complexity for this case is the same as forthe sequential case, since given an instantiation set D of size d, both cases involveat most da possible calling and success patterns. This implies, in particular, thatfor most programs the complexity of the analysis is O(N � 	(D)), where N is thesize of the program and 	(D) the worst case time complexity of comparing twoelements of D.It is interesting to compare this approach to other proposals for data
ow anal-ysis of parallel logic programs. Schemes for data dependency analysis to detectAND-parallelism have been proposed by Chang et al. [7], Jacobs and Langen [31],and Muthukumar and Hermenegildo [50]. These analyses have to explicitly keeptrack of dependencies between variables, and therefore are liable to be less e�-cient than the approach proposed here. They also presuppose Prolog's left-to-rightordering on literals within a clause, and restrict themselves to independent AND-parallelism, and are therefore less
exible than our approach. On the other hand,our assumption of substitution-closure means that we are unable to reason aboutdependencies between variables, rendering our instantiation sets less expressive insome cases. Gallagher et al. consider the static analysis of concurrent logic pro-grams ignoring synchronization issues [24]. Codognet et al. describe two analysisalgorithms for concurrent logic programs that take synchronization into accountexplicitly [8]: one of these considers every possible sequential interleaving of a setof concurrently executing agents, while the other uses a monotonicity property ofthe abstract domain to avoid considering every possible interleaving. However, theauthors do not discuss the complexity of either algorithm.6. Non-Noetherian Abstract DomainsAn important requirement of static analyses is that they are expected to termi-nate, regardless of whether or not the program being analyzed would terminatewhen executed. Unfortunately, concrete computational domains are usually in�-nite, and static inference of nontrivial program properties recursively unsolvable,making it necessary to give some kind of �nitely computable approximation to thedesired information. This is usually done by imposing �niteness requirements onthe abstract domain. The simplest { and strongest { such requirement is that theJournal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 973abstract domain contain only �nitely many elements. Many commonly encounteredstatic analyses for logic programs impose this requirement. This requirement canbe weakened to allow an abstract domain to be in�nite, provided that it is of �niteheight, i.e. its height is �nite and bounded; that it satis�es the �nite chain property,i.e. every chain in the abstract domain is �nite; or that it is Noetherian, i.e. thereare no in�nite descending chains.1There is, in general, a correlation in static analyses between the size of the ab-stract domain and the precision of analysis: in particular, the lengths of chainsdetermine the \gaps" between successive approximations computed as an analy-sis iterates to a �xpoint. The larger the abstract domain, the more precise theanalyses tend to be; in the limit, when the abstract domain coincides with the con-crete domain, the analysis gives exact results. Thus, one would expect an analysisworking with an abstract domain containing in�nite chains to be more precise thananalyses using the �nite abstract domains considered in the previous sections. Theproblem, of course, is ensuring termination. This section takes a step towards ac-commodating in�nite chains in the abstract domain without compromising uniformtermination. It uses depth abstraction to ensure that at most �nitely many pointsin the abstract domain are considered during analysis.The elements of an instantiation set can be given names: e.g. in Example 3.1above, `c' is the name of the set of ground terms of the language under consideration.Let d be any such name for an element in an i-set, and let �(d) stand for thedenotation of d, i.e. the element of the instantiation set that d names. Wherethere is no scope for confusion in the discussion that follows, we will sometimes notdistinguish between a name d and its denotation �(d). It is possible to considera set of such names N for the elements of a instantiation set D as the constantsof a �rst order language. Then, given a set of function symbols F, ground termsover F and N can be interpreted as denoting sets of terms. Extending the notionof denotations � in the natural way, we have�(f(d1; : : : ; dn)) = ff(t1; : : : ; tn) j ti 2 �(di); 1 � i � ngfor any n-ary function symbol f in F. This leads us to the notion of extendedinstantiation sets:Definition 6.1. Suppose that F is the set of function symbols of the languageunder consideration. Given an instantiation set D, the extended instantiation setD?(F) is de�ned to be the least set satisfying the following:(1) if d 2 D then d 2 D?(F);(2) if f is an n-ary function symbol in F, n � 0, and d1; : : : ; dn 2 D?(F) such thatdi 6= ;; 1 � i � n, then f(d1; : : : ; dn) 2 D?(F).D is said to be the underlying instantiation set of the extended instantiation setD?(F).Where it is not necessary to refer explicitly to the set of function symbols Finvolved, the extended instantiation set will sometimes be written simply as D?.1Some developments of data
ow analyses are based on the dual characterization of join-semilattices, in which case no in�nite ascending chains are permitted.Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

974 � SAUMYA K. DEBRAYThe ordering � on the elements of an instantiation set, together with the meet4, extend in the natural way to extended instantiation sets, which therefore formmeet-semilattices under this ordering.Example 6.1. Let D be as in Example 3.1, and let F = fa=0; f=1; g=1g. Then,D? is the setD [fa; f(int); g(int); f(f(int)); f(g(int)); : : : ; f(c); g(c); f(f(c)); : : :g2If the set of function symbols F contains any symbol with arity greater than 0,then for any instantiation set D, hD?(F);�i contains in�nite descending chains.To see this, suppose F contains a unary function symbol g. Then, the extendedinstantiation set, ordered by �, contains the in�nite chainany; g(any); g(g(any)); g(g(g(any))); : : :It is possible to consider abstractions of extended instantiation sets, i.e., homomor-phic images where a (possibly in�nite) number of di�erent elements are identi�ed.Extended instantiation sets can contain in�nite chains even when subjected to suchabstractions, e.g. consider an instantiation set D, and let the set of function symbolscontain the empty list nil/0 and the list constructor `�'/2. For any such extendedinstantiation set, consider a homomorphism that identi�es lists of the same type,i.e. maps the elementsfnil; � � nil ; � � � � nil ; : : :gfor each � 2 D, into a single point list(�). In this case the \abstracted" extendedinstantiation set still contains in�nite chains of the formany; list(any); list(list(any)); : : :Though not considered explicitly, the techniques and results of this paper apply tosuch \abstracted" extended instantiation sets as well.The analysis schemes described in Sections 4 and 5 can be guaranteed to termi-nate if the abstract domain contains no in�nite chains. In this case, straightforwardbottom-up �xpoint computations, possibly augmented by memo structures to avoidredundant computation [22; 61], su�ce to compute the sets CALLPAT and SUCCPATin �nite time. However, if the abstract domain contains in�nite chains, this ap-proach can no longer be guaranteed to terminate. As an example, consider theprogramp(X) :� p([X]):?� p(0):This generates an in�nite sequence of pairwise incomparable calling patternshinti; hlist(int)i; hlist(list(int))i; : : :Thus, the sets of admissible calling and success patterns cannot be computed in a�nite amount of time. Extended instantiation sets contain in�nite chains wheneverthe program contains function symbols of nonzero arity { a situation that holds inall but the simplest of cases. Stronger measures are therefore necessary to guaranteetermination. To this end, we consider the notion of \depth abstractions" of elementsof D?:Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 975Definition 6.2. Given an abstraction structure hD; �i and set of function sym-bols F, the depth-k abstraction of an element d in the extended instantiation setD?(F), written Ak(d), is de�ned as follows:A0(d) = �(d);Ak(d) = if d 2 D then d; else f(Ak�1(d1); : : : ;Ak�1(dn))where d = f(d1; : : : ; dn). [k > 0]In the second clause of this de�nition, note that if d is not in D, then from the de�ni-tion of extended instantiation sets, it must be of the form f(d1; : : : ; dn). The notionof depth abstractions extends in the natural way to i-patterns: if I = hd1; : : : ; dniis an i-pattern, then Ak(I) = hAk(d1); : : : ;Ak(dn)i.Proposition 6.1. For any abstraction structure hD; �i and any k � 0, the depthabstraction function Ak is a closure operator. 2Example 6.2. Given the extended instantiation set of Example 6.1, with un-derlying instantiation set D as in Example 3.1, we haveA2(f(g(f(g(any)))))= f(A1(g(f(g(any)))))= f(g(A0(f(g(any)))))= f(g(�(f(g(any)))))= f(g(nv)).2The depth of an element ofD? is de�ned in the natural way. Consider an extendedinstantiation set D?, with underlying instantiation set D. For any d in D?, we havedepth(d) =if d 2 D then 0; else 1 +maxfdepth(d1); : : : ; depth(dn)gwhere d = f(d1; : : : ; dn):As before, if d is not in D, then it must be of the form f(d1; : : : ; dn). This notionextends to i-patterns as follows: if I = hd1; : : : ; dni is an i-pattern, then depth(I) =maxfdepth(d1); : : : ; depth(dn)g.The idea behind depth abstraction is to provide a �nite approximation to anin�nite set of instantiation patterns that may arise during analysis. Since thereare only �nitely many literals in a program, only recursive calls can give rise to anin�nite number of instantiation patterns at a program point. It su�ces, therefore,to consider depth abstraction for recursive calls only. For this, the program mustbe preprocessed to identify recursive calls. De�ne the relation calls over predicatesin a program as follows: p calls q if and only if either (i) there is a clause in theprogram of the formp(: : :) :� : : : ; q(: : :); : : :or (ii) if there is a predicate r such that p calls r and r calls q. Each literal in thebody of a clause in the program is associated with a bit, called the \recursion bit",that says whether or not it is a recursive call: given a clausep(�u) :� q1(�u1); : : : ; qn(�un)Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

976 � SAUMYA K. DEBRAYthe recursion bit of the ith body literal qi(�ui), denoted by �i, is set to true if qicalls p, and to false otherwise.The de�nitions of the admissible calling and success pattern sets are very similarto those in Sections 4 and 5, except for the incorporation of depth abstractionfunctions �C and �S that operate on the CALLPAT and SUCCPAT tables respectively.Thus, for the sequential case we haveDefinition 6.3. Given a predicate p in a program P , the set of admissible call-ing patterns CALLPAT(p)� Dn and the set of admissible success patterns SUCCPAT(p)� Dn �Dn, are de�ned to be the smallest sets satisfying the following:|If p is an exported predicate and I is a calling pattern for p in the class of queriesspeci�ed by the user, then I is in CALLPAT(p).|Let q0 be a predicate in the program, Ic 2 CALLPAT(q0), and let there be a clausein the program of the formq0(�u0) :� q1(�u1); : : : ; qn(�un):Let the i-state at the point immediately after the literal qj(�uj); 0 � j � n, be Aj ,where|Ainit is the initial i-state of the clause;|A0 = update i state(Ainit; �u0; Ic);|for 1 � i � n, cpi = �C(qi; Ai�1(�ui); �i) is in CALLPAT(qi);|and if hcpi; spii is in SUCCPAT(qi), then Ai = update i state(Ai�1; �ui; spi); ifthere is no such tuple then Ai maps each variable in the clause to ;.The success pattern for the clause is given by Is = �S (q0; Ic; An(�u0); �), where� = _ni=1�i, and hIc; Isi is in SUCCPAT(q0).The de�nition for the case of parallel execution strategies is analogous, and is notconsidered separately. The depth abstraction function �C is de�ned as follows:�C(p; C; �) =if (� = true^ CALLPAT(p) 6= ;) then An(C)where n = maxfdepth(cp) j cp 2 CALLPAT(p)g;else C.In other words, whenever a recursive call is encountered for a predicate p that hasbeen called already (i.e. CALLPAT(p) is nonempty), the calling pattern is subjectedto a depth-k abstraction, where k is the depth of the deepest calling pattern inCALLPAT(p); nonrecursive calls are not subjected to such depth abstractions. Fur-ther, it is easy to see that if, given a calling pattern C, we have depth(C) � k,then Ak(C) = C, so that the only calling patterns actually a�ected by this depthabstraction are those that are deeper than any currently in CALLPAT(p).The depth abstraction function �S is de�ned analogously:�S(p; C; S; �) = let Succ = fsp j hC; spi 2 SUCCPAT(p)g inif (� = true^ Succ 6= ;) then An(S)where n = maxfdepth(sp) j sp 2 Succg;else S.Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 977Note that whereas the calling pattern for a literal is subjected to depth abstractionvia �C if it is a recursive call, the success pattern for a clause is subjected to depthabstraction via �S if any of the literals in the body of that clause is recursive. Thebasic idea is similar to Cousot's notion of widening [14]. In Cousot's development,however, any given widening operator is �xed for all programs, whereas our ap-proach allows di�erent programs to be treated di�erently. The following lemmashows that depth abstractions provide safe approximations to i-patterns:Lemma 6.2. For any i-pattern I and natural number k, �(I) � �(Ak(I)).Proof By induction on k. The base case uses the fact that the instantiationfunction � is a closure operator, and hence extensive. 2Theorem 6.3. A
ow analysis procedure over an extended instantiation set D?is sound if and only if it is complete and D is substitution-closed.Proof The proof of the if part follows the lines of Theorems 4.2 and 5.2, usingLemma6.2 to show that replacing a calling or success pattern by a depth abstractionpreserves soundness. The only if part is based on two observations: �rst, theanalysis described above does not keep track of aliasing in the sequential case, andsynchronization in the parallel case, so the arguments of Lemma 4.1 or Lemma 5.1,as appropriate, apply; and second, even if aliasing or synchronization informationis maintained, information can be lost when depth abstraction is performed. 2We next show that the analysis terminates:Lemma 6.4. For any �nite set of function symbols F and instantiation set D,the set fd 2 D?(F) j depth(d) � ng is �nite for any �nite n.Proof By induction on n. In the base case, the instantiation set D is �nite byde�nition. The inductive case then follows from the �niteness of F. 2Theorem 6.5. For any predicate p in a program, the sets CALLPAT(p) andSUCCPAT(p) contain at most �nitely many elements.Proof Consider the �rst calling pattern cp encountered for an n-ary predicate pduring analysis: it must have a �nite depth n. It can be seen, from the algorithmfor managing CALLPAT(p), that for any calling pattern cp0 that corresponds to arecursive call and is later added to CALLPAT(p), depth(cp0) � n. It follows fromLemma 6.4 that CALLPAT(p) contains at most �nitely many calling patterns arisingfrom recursive calls. Since the programs being analyzed are �nite, it follows thatCALLPAT(p) has at most �nitely many entries. The argument for SUCCPAT(p) issimilar. 2Corollary 6.6. The analysis terminates. 27. ApplicationsThis section describes applications of the data
ow analysis framework developed inthe previous sections to two families of analyses that have attracted a signi�cantamount of attention in the literature.Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

978 � SAUMYA K. DEBRAY7.1 Mode InferenceMode inference involves data
ow analysis to determine which parameters of a pred-icate are used as input parameters in a particular program, and which are used asoutput parameters. Modes can be thought of as representing prespeci�ed sets ofterms, the set of modes therefore comprising an instantiation set. Speci�c modeinference algorithms are described by, among others, Mellish [44; 45], Mannila andUkkonen [40], Debray [15; 17], and Janssens and Bruynooghe [6; 34]. The algorithmgiven by Mellish [44; 45] uses an instantiation set that is not substitution-closed.However, this algorithm does not take aliasing into account, leading to loss of sound-ness [46]. The treatments given by Debray [17] and Janssens and Bruynooghe [34]take dependencies between variables into account explicitly, but this results in com-plex and cumbersome algorithms.An alternative instantiation set, described in [66], is f;; c;nv; anyg where anydenotes the set of all terms; nv denotes the set of nonvariable terms; and c denotesthe set of ground terms. The mode inference algorithm is given by Mannila andUkkonen [40] is similar, except that it restricts itself to the instantiation set fc; anyg.In either case, 	(D) = O(1), and the complexity of the analysis, for most programs,is linear in the size of the program.Mode information �nds many applications in the optimization of logic programs.For example, mode information can be used to generate specialized uni�cationinstructions where permissible [64; 65]; to detect determinacy and functionality ofprograms [18; 45]; to generate index structures more intelligently [29]; to reducethe amount of runtime tests in systems that support goal suspension [52]; to guideprogram transformation systems [16]; and in the integration of logic and functionallanguages [55].7.2 Type InferenceIntuitively, types for functors and predicates represent sets of \values", which in ourcase are terms. Therefore, by appropriately de�ning the abstraction structure, itis possible to obtain various type systems for logic programming languages. Thereare two principal approaches to typing such languages: these describe, respectively,the sets of terms a predicate may be called with (its calling type), and those itmay succeed with (its success type). Type inference systems of either kind can beobtained as instances of the
ow analysis system described. Type inference of logicprograms has been considered by, among others, Heintze and Ja�ar [27], Janssensand Bruynooghe [34], Mishra [48], and Yardeni and Shapiro [69].As an example, consider a type inference system based on a scheme due to Satoand Tamaki, which uses depth abstractions to provide �nite descriptions of possi-bly in�nite sets of terms [58]. The depth of a subterm in a term is de�ned to bethe length of the path from the root of the term, in its tree representation, to theroot of the subterm under consideration. The idea behind depth abstraction is thefollowing: given some �xed k � 0, the depth-k abstraction of a term t, denoted by�k(t), is the term obtained by replacing subterms of t occurring at depth k by vari-ables. For example, the depth-2 abstraction of the term f(g(a); h(X; f(b;X)); Y)is f(g(U); h(X;V); Y). The analysis of a program is carried out using depth-k ab-stractions, for some �xed k speci�ed beforehand. Because subterms whose depthsJournal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 979exceed the bound k are discarded during depth abstraction, analysis using a depth-kabstraction may fail to detect aliasing at depths occurring at depths greater than k.Because of this, a variable occurring in a depth-abstracted termmay not correspondto a free variable at runtime. Soundness therefore requires that such variables beinterpreted as denoting all possible terms.Given a program where the maximum arity of any functor is m, the depth-nabstraction of a term is a tree whose size can be O(mn). Thus, 	(D) = O(mn)in this case, and the complexity of the algorithm is O(N �mn). As argued earlier,however, the maximum arity m is unlikely to grow as the program size increases,so that in practice, if n is �xed, the analysis usually takes time proportional to thesize of the program.A problem with using depth abstraction to provide type information is thatrecursive types cannot be expressed. This problem can be handled by representingtypes as rational terms, i.e. terms with \back edges". A scheme along these lineshas been proposed by Janssens and Bruynooghe [34; 35]. One of the type systemsconsidered here, and referred to as rigid types, uses substitution-closed elements.To obtain abstract domains of �nite height, Janssens and Bruynooghe impose therestriction that any acyclic path starting at the root of such a rational term shouldcontain no more than k occurrences of any particular functor, where the multiplicitybound k is a parameter that is �xed beforehand. For a multiplicity bound of k, ifthere are f function symbols, and the maximum arity of any function symbol inthe program is m, the maximum length of any acyclic path is fk, so each elementof the instantiation is a rational term containing at most mfk nodes. Comparingtwo such terms of size n for equality takes time O(n�(n)), where � is the pseudo-inverse of Ackermann's function [33]. It follows that 	(D) = O(mfk�(mfk)). Asbefore, the arity m does not usually grow with the size of the program, so if k andf are �xed then the analysis takes time proportional to the size of the programin most cases. Note also that for rigid types, the techniques of Section 6 can beapplied to obtain terminating analysis even when the abstract domain containsin�nite chains. Because of this, the restriction on the multiplicity of functors canbe removed, allowing for a more expressive type system.Type information �nds numerous applications in the optimization of logic pro-grams, of which we list a few. In the literature on compiler optimization for tra-ditional languages, \dead code" refers to code whose results are never used, while\unreachable code" refers to code that is never executed [1]. Detection of dead andunreachable code is straightforward using type information. To detect code that isnever called, or that which execution can never succeed through, we perform a typeanalysis of the program. Analysis proceeds as described earlier: when it terminates,any clause whose set of calling patterns is either empty, or contains the null ele-ment ; in one or more positions, is never called and can safely be deleted from theprogram. Any clause with whose success pattern set is empty or contains the nullelement ; in one or more positions is one that execution cannot succeed through,and is a candidate for elimination as dead code. If it can be shown that none ofthe reachable clauses of the predicates called by this clause have any side e�ects,then the clause can be deleted without a�ecting the semantics of the program. Arelated use for type information is in functor propagation, which can be thought ofas a bidirectional generalization of the notion of \constant propagation" in tradi-Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

980 � SAUMYA K. DEBRAYtional languages, can reduce the amount of nondeterminism in programs and leadto more compact code. Sato and Tamaki also give an example where descriptions ofsuccess patterns obtained using a depth-abstraction analysis is used to transforma nondeterministic parser for a context-free language into a deterministic parser[58]. Type information can also be used to analyze \dynamic" logic programs, i.e.programs where code can be created and executed dynamically, e.g. via the use ofconstructs like Prolog's assert, retract and call, and thereby allow data
ow analy-sis techniques developed for \static" logic programs to programs that are dynamic[19]. The application of type information to code optimization in logic programs isdiscussed in [6; 20; 35; 67].8. Related WorkThere is a large body of work in static analysis of logic programs, see for example [2;6; 7; 8; 15; 17; 18; 19; 23; 26; 27; 32; 34; 35; 44; 47; 49; 50; 57; 58; 69]. Frameworksfor abstract interpretation of logic programs have been proposed by, among others,Barbuti et. al. [3], Bruynooghe [5], Corsini and Fil�e [9], Jones and S�ndergaard [36],Kanamori and Kawamura [38], Marriott and S�ndergaard [41; 42; 43], Mellish [46],Nilsson [53], and Winsborough [68]. The work of Barbuti et al. [3] and Marriott andS�ndergaard [41] are fundamentally di�erent from that presented here in that theypropose \bottom-up" data
ow analyses based on various model-theoretic semanticsof logic programs, whereas the development given here is a \top-down" analysis thatrelies on the operational behavior of programs. The developments of Bruynooghe[5], Jones and S�ndergaard [36], Kanamori and Kawamura [38], and Mellish [46]resemble ours in that they, too, are concerned with \top-down" analyses. The workof Mellish, which �rst proposed a framework for
ow analysis of logic programs,was developed in the context of an operational semantics for Prolog given in termsof execution traces. It did not associate success patterns with the correspondingcall patterns, making for some loss in precision. Bruynooghe's framework is givenin the context of an operational semantics for logic programs based on AND/ORtrees. The framework of Kanamori and Kawamura is based on OLDT-resolution,which is essentially SLD-resolution augmented with extension tables. In contrastto these, the treatments of Jones and S�ndergaard [36] and Winsborough [68] arebased on denotational semantics for logic programs. Marriott and S�ndergaard [42;43] give a uniform presentation of top-down and bottop-up analyses by expressingboth in terms of operations on lattices of substitutions. Bruynooghe [5], Corsiniand Fil�e [9], Kanamori and Kawamura [38] and Nilsson [53] give algorithms forabstract interpretation of logic programs.The fundamental di�erence between the various approaches given above and thatdescribed in this paper is that while most of the abovementioned research is con-cerned with general frameworks for a variety of data
ow analyses for logic programs,our primary concern is with analyses that are of more than theoretical interest, i.e.those that can be carried out e�ciently. Thus, while most of the abovementionedworks focus on various formal and semantic aspects of abstract interpretation, westrive to identify properties of
ow analyses that guarantee e�cient algorithms. Be-cause of this, our analyses are not as expressive as some that have been describedin the literature: for example, they are unable to reason about aliasing behaviors.This is not surprising, because it is well-known that there is a tradeo� between theJournal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 981computational cost of an analysis and its precision. What is signi�cant, however, isthat we can show that our algorithms are asymptotically optimal for most programsencountered in practice, and are also useful in a reasonably wide variety of contexts.Because of this, we expect these analyses to be both practically implementable, andpractically useful. A work similar in spirit to ours is that of Le Charlier et al. [39],which gives a careful complexity analysis for an algorithm for static analysis of logicprograms, and discusses a number of optimizations for improving its e�ciency.The tradeo� between precision and e�ciency can be seen by contrasting ourlinear-time mode analysis algorithm with one proposed by Marriott, S�ndergaardand Jones [43]. The algorithm of Marriott et al. is based on a notion called down-ward closure that is closely related to the notion of substitution closure discussed inthis paper, but less restrictive: e.g. unlike our approach, it allows reasoning aboutcertain kinds of aliasing and sharing. The algorithm of Marriott et al manipulatespropositional formulae constructed from variable names appearing in the programusing only the connectives ,, ^, and _. The abstract domain is the (�nite) setof such formulae, modulo logical equivalence, which is ordered by implication ())and forms a complete distributive lattice. The analysis iteratively computes a se-quence of formulae until a �xpoint is reached, i.e. until two formulae '1 and '2are obtained on successive iterations such that '1 is equivalent to '2. However,the equivalence problem for monotone propositional formulae is known to be co-NP-complete [30], so that unless P = NP, the parameter 	(D) for this algorithm isexponential in the number of variables in a clause. This implies that each iterationof the analysis of Marriott et al. can, in the worst case, take time exponential in themaximum number of variables in a clause, unless P = NP. Further, the height oftheir abstract domain|and hence, the number of iterations that may be necessaryto attain a �xpoint|also grows (faster than linearly) with the number of variablesbeing considered. Thus, while the analysis of Marriott et al. is more precise thanours, it is signi�cantly more expensive.9. ConclusionsDespite the conceptual elegance of logic programming languages, good optimizingcompilers capable of sophisticated analysis and optimization are necessary if suchlanguages are to be competitive with more traditional languages. Moreover, in orderthat the analysis and optimization of large programs be possible, it is necessarythat such analysis algorithms be e�cient. A number of problems arise in thiscontext: aliasing e�ects can make analysis computationally expensive for sequentiallogic programming languages; synchronization problems can complicate the analysisof parallel logic programming languages; and �niteness restrictions to guaranteetermination can limit the expressive power of such analyses. Our main result is togive a simple characterization of a family of
ow analyses where these issues can beignored without compromising soundness. This results in algorithms that are simpleto verify and implement, and e�cient in execution. Based on this approach, wedescribe an e�cient algorithm for
ow analysis of sequential logic programs, extendthis approach to handle parallel executions, and �nally describe how in�nite chainsin the analysis domain can be accommodated without losing uniform termination.Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

982 � SAUMYA K. DEBRAY10. AcknowledgementsThe observation that depth abstraction need be applied only at recursive callsin abstract domains that are not Noetherian, rather than at every call, is due toMaurice Bruynooghe; for this, and many other valuable suggestions, we are grateful.Niels Jorgensen made several very helpful comments on the material of this paper.Comments by the anonymous referees helped improve the contents and presentationof the paper substantially.REFERENCESA. V. Aho, R. Sethi and J. D. Ullman, Compilers { Principles, Techniques and Tools, Addison-Wesley, 1986.A. K. Bansal and L. Sterling, \An Abstract Interpretation Scheme for Logic Programs Basedon Type Expression", Proc. International Conference on Fifth Generation Computer Systems,ICOT, Tokyo, 1988, pp. 422-429.R. Barbuti, R. Giacobazzi and G. Levi, \A Declarative Approach to Abstract Interpretation ofLogic Programs", TR-20/89, Dept. of Computer Science, University of Pisa, 1989.G. Birkho�, Lattice Theory, AMS Colloquium Publications vol. 25, 1940.M. Bruynooghe, \A Framework for the Abstract Interpretation of Logic Programs", ResearchReport CW 62, Dept. of Computer Science, Katholieke Universiteit Leuven, Oct. 1987.M. Bruynooghe, B. Demoen, A. Callebaut and G. Janssens, \Abstract Interpretation: Towardsthe Global Optimization of Prolog Programs", Proc. Fourth IEEE Symposium on Logic Pro-gramming, San Francisco, CA, Sept. 1987.J.-H. Chang, A. M. Despain and D. DeGroot, \AND-Parallelism of Logic Programs Based onA Static Data Dependency Analysis", Digest of Papers, Compcon 85, IEEE, Feb. 1985.C. Codognet, P. Codognet and M. Corsini, \Abstract Interpretation of Concurrent Logic Lan-guages", Proc. North American Conference on Logic Programming, Austin, TX, Oct. 1990.M. Corsini and G. Fil�e, \The Abstract Interpretation of Logic Programs: A General Algorithmand its Correctness", Research Report, Dept. of Mathematics, University of Padova, Sept. 1988.K. Clark and S. Gregory, \PARLOG: Parallel Programming in Logic", ACM Transactions onProgramming Languages and Systems 8, 1 (Jan. 1986), pp. 1-49.J. S. Conery, Parallel Execution of Logic Programs, Kluwer, 1987.P. Cousot and R. Cousot, \Abstract Interpretation: A Uni�ed Lattice Model for Static Analysisof Programs by Construction or Apporoximation of Fixpoints", Proc. Fourth ACM Symposiumon Principles of Programming Languages, 1977, pp. 238-252.P. Cousot, and R. Cousot, \Systematic Design of Program Analysis Frameworks", Proc. SixthACM Symposium on Principles of Programming Languages, 1979, pp. 269-282.P. Cousot, \Semantic Foundations of Program Analysis", in Program Flow Analysis: Theoryand Applications, eds. S. S. Muchnick and N. D. Jones, Prentice-Hall, 1981.S. K. Debray and D. S. Warren, \Automatic Mode Inference for Logic Programs", J. LogicProgramming vol. 5 no. 3 (Sept. 1988), pp. 207-229.S. K. Debray, \Unfold/Fold Transformations and Loop Optimization of Logic Programs",Proc.SIGPLAN-88 Conference on Programming Language Design and Implementation, Atlanta,Georgia, June 1988, pp. 297-307.S. K. Debray, \Static Inference of Modes and Data Dependencies in Logic Programs", ACMTransactions on Programming Languages and Systems vol. 11, no. 3, June 1989, pp. 419-450.S. K. Debray and D. S. Warren, \Functional Computations in Logic Programs", ACM Trans-actions on Programming Languages and Systems vol 11 no. 3, June 1989, pp. 451-481.S. K. Debray, \Flow Analysis of Dynamic Logic Programs", J. Logic Programming vol. 7 no. 2,Sept. 1989, pp. 149-176.S. K. Debray, \A Simple Code Improvement Scheme for Prolog", J. Logic Programming (toappear). (Preliminary version appeared in Proc. Sixth International Conference on Logic Pro-gramming, Lisbon, June 1988.)Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 983S. K. Debray and R. Ramakrishnan, \Canonical Computationsof Logic Programs", unpublishedmanuscript, Dept. of Computer Science, University of Arizona, Tucson, July 1990.S. W. Dietrich, \ExtensionTables: MemoRelations in Logic Programming",Proc. Fourth IEEESymposium on Logic Programming, San Francisco, CA, Sept. 1987, pp. 264-272.J. Gallagher and E. Shapiro, \Using Safe Approximations of Fixed Points for Analysis of LogicPrograms", Proc. META88, Workshop on Meta-programming in Logic Programming, Bristol,June 1988.J. Gallagher, M. Codish, and E. Shapiro, \Specialization of Prolog and FCP Programs usingAbstract Interpretation", New Generation Computing vol. 6, pp. 159-186, 1988.M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory ofNP-Completeness, Freeman, New York, 1979.R. Giacobazzi and L. Ricci, \Pipeline Optimizations in AND-Parallelism by Abstract Inter-pretation", Proc. Seventh International Conference on Logic Programming, Jerusalem, Israel,June 1990, pp. 291-305.N. Heintze and J. Ja�ar, \A Finite Presentation Theorem for Approximating Logic Programs",Proc. Seventeenth ACM Symposium on Principles of Programming Languages, San Francisco,Jan 1990, pp. 197-209.M. V. Hermenegildo, \An Abstract Machine for Restricted AND-Parallel Execution of LogicPrograms", Proc. Third International Conference on Logic Programming, London, July 1986.Springer-Verlag LNCS vol. 225, pp. 25-39.T. Hickey and S. Mudambi, \Global Compilation of Prolog", J. Logic Programming vol. 7 no.3, Nov. 1989, pp. 193-230.H. B. Hunt III and R. E. Stearns, \Monotone Boolean Formulas, Distributive Lattices, andthe Complexities of Logics, Algebraic Structures, and Computation Structures (PreliminaryReport)", Proc. Third Symposium on Theoretical Aspects of Computer Science, Orsay, France,Jan. 1986, pp. 277-287. Springer-Verlag LNCS vol. 210.D. Jacobs and A. Langen, \Compilation for Restricted AND-Parallelism",Proc. European Sym-posium on Programming 1988, Springer-Verlag LNCS vol. 300.D. Jacobs and A. Langen, \Accurate and E�cient Approximation of Variable Aliasing in LogicPrograms", Proc. North American Conference on Logic Programming, Cleveland, Ohio, Oct.1989, pp. 154-165.J. Ja�ar, \E�cient Uni�cation over In�nite Terms", New Generation Computing vol. 2 no. 3,1984, pp. 207-219.G. Janssens and M. Bruynooghe, \An Instance of Abstract Interpretation IntegratingType andMode Inferencing", Proc. Fifth International Conference on Logic Programming, Seattle, Aug.1988, pp. 669-683. MIT Press.G. Janssens, \DerivingRun-timeProperties of Logic Programs by means of Abstract Interpreta-tion", PhD Dissertation, Dept. of Computer Science, Katholieke Universiteit Leuven, Belgium,March 1990.N. D. Jones and H. S�ndergaard, \A Semantics-Based Framework for the Abstract Interpre-tation of Prolog", in Abstract Interpretation of Declarative Languages, S. Abramsky and C.Hankin (eds.), Ellis Horwood, 1987.L. V. Kale, \The REDUCE-OR ProcessModel for Parallel Evaluationof Logic Programs",Proc.Fourth International Conference on Logic Programming, Melbourne, May 1987, pp. 616-632.MIT Press.T. Kanamori and T. Kawamura, \Analyzing Success Patterns of Logic Programs by AbstractHybrid Interpretation", Draft Report, Mitsubishi Electric Corp., Japan, 1987.B. Le Charlier, K. Musumbu, and P. Van Hentenryck, \A Generic Abstract InterpretationAlgorithm and its Complexity Analysis", Research Paper RP-90/9, Institut d'Informatique,Univ. of Namur, Belgium, 1990. To appear in Proc. Eighth International Conference on LogicProgramming, Paris, June 1991.H. Mannila and E. Ukkonen, \Flow Analysis of Prolog Programs", Proc. Fourth IEEE Sympo-sium on Logic Programming, San Francisco, CA, Sept. 1987.Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

984 � SAUMYA K. DEBRAYK. Marriott and H. S�ndergaard, \Bottom-Up Abstract Interpretation of Logic Programs",Proc. Fifth International Conference on Logic Programming, Seattle, Aug 1988, pp. 733-748.MIT Press.K. Marriott and H. S�ndergaard, \Semantics-based Data
ow Analysis of Logic Programs",Information Processing 89, ed. G. Ritter, North Holland, 1989, pp. 601-606.K. Marriott, H. S�ndergaard and N. D. Jones, \Denotational Abstract Interpretation of LogicPrograms", Manuscript, Dept. of Computer Science, University of Melbourne, May 1990.C. S. Mellish, \The Automatic Generation of Mode Declarations for Prolog Programs", DAIResearch Paper 163, Dept. of Arti�cial Intelligence, University of Edinburgh, Aug. 1981.C. S. Mellish, \Some Global Optimizations for a Prolog Compiler", J. Logic Programming vol.2 no. 1 (Apr. 1985), pp. 43-66.C. S. Mellish, \Abstract Interpretation of Prolog Programs", Proc. Third International Con-ference on Logic Programming, London, July 1986. Springer-Verlag LNCS vol. 225.C. S. Mellish, \Using Specialization to Reconstruct Two Mode Inference Systems", Manuscript,Dept. of Arti�cial Intelligence, University of Edinburgh, Feb. 1990.P. Mishra, \Toward a Theory of Types in Prolog", Proc. 1984 IEEE Symposium on LogicProgramming, Atlantic City, 1984, pp. 289-298.A. Mulkers, W. Winsborough and M. Bruynooghe, \Analysis of Shared Data Structures forCompile-Time Garbage Collection in Logic Programs", Proc. Seventh International Conferenceon Logic Programming, Jerusalem, Israel, June 1990, pp. 747-764.K. Muthukumar and M. Hermenegildo, \Determination of Variable Dependence Information atCompile Time through Abstract Interpretation", Proc. North American Conference on LogicProgramming, Cleveland, Ohio, Oct. 1989 (to appear).E. W. Myers, \A Precise Inter-procedural Data Flow Algorithm", Proc. Eighth ACM Sympo-sium on Principles of Programming Languages, 1981, pp. 219-230.L. Naish, Negation and Control in Prolog, Springer-Verlag LNCS vol. 238, 1986.U. Nilsson, \A Systematic Approach to Abstract Interpretation of Logic Programs", PhD Dis-sertation, Dept. of Computer and Information Science, Link�oping University, Sweden, 1989.G. D. Plotkin, \A Note on Inductive Generalization", Machine Intelligence 5, B. Meltzer andD. Michie (eds.), Elsevier, New York, 1970, pp. 153-162.U. S. Reddy, \Transformation of Logic Programs into Functional Programs", Proc. 1984 Inter-national Symposium on Logic Programming, Atlantic City, NJ, Feb. 1984, pp. 187-196. IEEEPress.J. C. Reynolds, \Transformational Systems and the Algebraic Structure of Atomic Formulas",Machine Intelligence 5, B. Meltzer and D. Michie (eds.), Elsevier, New York, 1970, pp. 135-151.H. S�ndergaard, \An Application of Abstract Interpretation of Logic Programs: Occur CheckReduction", Proc. European Symposium on Programming 86, Saarbrucken, Mar. 1986.T. Sato and H. Tamaki, \Enumeration of Success Patterns in Logic Programs", TheoreticalComputer Science 34 (1984), pp. 227-240.E. Y. Shapiro, \A Subset of Concurrent Prolog and its Interpreter", Technical Report CS83-06, Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, Feb.1983.M. Smythe, \Powerdomains", J. Computer and System Sciences 16, 1 (1978), 23-36.H. Tamaki and T. Sato, \OLD-Resolution with Tabulation", Proc. Third International Con-ference on Logic Programming, London, July 1986. Springer-Verlag LNCS vol. 225, pp. 84-98.S. Taylor, Parallel Logic Programming Techniques, Prentice-hall, 1989.K. Ueda, Guarded Horn Clauses, D. Eng. Thesis, University of Tokyo, 1986.P. Van Roy, B. Demoen and Y. D. Willems, \Improving the Execution Speed of CompiledProlog with Modes, Clause Selection and Determinism", Proc. TAPSOFT 1987, Pisa, Italy,Mar. 1987.D. H. D. Warren, \Implementing Prolog { Compiling Predicate Logic Programs", ResearchReports 39 and 40, Dept. of Arti�cial Intelligence, University of Edinburgh, 1977.Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

E�cient Data
ow Analysis of Logic Programs � 985R. Warren, M. Hermenegildo and S. K. Debray, \On the Practicality of Global Flow Analysisof Logic Programs", Proc. Fifth International Conference on Logic Programming, Seattle, Aug.1988, pp. 684-699. MIT Press.J. L. Weiner and S. Ramakrishnan, \A Piggy-back Compiler for Prolog", Proc. SIGPLAN-88Conference on Programming Language Design and Implementation, Atlanta, Georgia, June1988, pp. 288-296.W. Winsborough, \Automatic, Transparent Parallelization of Logic Programs at CompileTime", PhD Dissertation, Dept. of Computer Science, University of Wisconsin, Madison, 1988.E. Yardeni and E. Y. Shapiro, \A Type System for Logic Programs", in Concurrent Prolog:Collected Papers vol. 2, MIT Press, 1987, pp. 211-244.

Journal of the Association for Computing Machinery, Vol. 39, No. 4, October 1992.

