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Abstract: While the ability to simulate nondeterminism and compute multiple solutions for a single

query is a powerful and attractive feature of logic programming languages, it is expensive in both time

and space. Since programs in such languages are very often functional, i.e. do not produce more than one

distinct solution for a single input, this overhead is especially undesirable. This paper describes how pro-

grams may be analyzed statically to determine which literals and predicates are functional, and how the

program may then be optimized using this information. Our notion of ‘‘functionality’’ subsumes the

notion of ‘‘determinacy’’ that has been considered by various researchers. Our algorithm is less reliant

on language features such as the cut, and thus extends more easily to parallel execution strategies, than

others that have been proposed.
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1. Introduction

In recent years, there has been a great deal of interest in logic programming languages, the best known of

these being Prolog. The ability to simulate nondeterminism is a powerful feature of such languages. It

permits the succinct and readily understandable expression of logical alternatives that require complex

constructs in many programming languages. However, the additional runtime support needed for this,

e.g. the ability to remember previous states and backtrack to them on failure, can incur a significant over-

head. This is especially undesirable since predicates in logic programs are very often functional, and do

not need this generalized backtracking ability. Knowledge about the functionality of predicates can be

used to make significant improvements in the space and time requirements of a program. Knowing that a

predicate is functional may make it possible, for example, to avoid having to record a system state to

backtrack to, effect early reclamation of space on the runtime stack, and avoid unnecessary search.

Traditionally, the means of controlling Prolog’s search has been through cuts inserted by the pro-

grammer. This, however, makes programs harder to understand and reason about declaratively [20, 22].

An alternative is to treat the cut as a low-level primitive that should be used infrequently by the program-

mer, if at all, but which may be introduced by compilers in the course of generating optimized code for

execution in a sequential environment. In this view, the cut is seen, not as a language feature intrinsic to

logic programming, but as an implementation feature of sequential Prolog. (It is not obvious whether

cuts are very useful in parallel execution schemes.) To emphasize the distinction between user-supplied

cuts and those generated by the compiler, we will refer to the latter as ‘‘savecp/cutto pairs’’ (the reason

for these names is discussed in Section 5.1). It then becomes the responsibility of the compiler to deter-

mine which parts of the program involve redundant search that can be eliminated by inserting

savecp/cutto pairs. This paper explores ways of doing this by inferring functionality of predicates and

literals.

A special case of functionality, that of determinacy, has been investigated by Mellish [16], Naish

[19] and Sawamura and Takeshima [23]. Deransart and Maluszynski, taking a different approach, have

characterized such behavior of logic programs in terms of attribute grammars, but in the restricted setting

of definite clause programs [ Deransart Maluszynski 1985 ]. These authors have not considered the rela-

tionship between functional computations and negation by failure, or investigated connections with

dependency theory in databases. A notion similar to that of functionality has been considered by Mendel-

zon in the restricted setting of databases, i.e. assuming that function symbols are absent, and that some

predicates are defined entirely by ground facts [17]. Our approach is both more general and less opera-

tional. It does not rely exclusively on user-supplied cuts to infer functionality, thereby promoting what

we believe is a better programming style. It also enables us to optimize certain cases where a particular

call of a predicate may be functional even though the predicate itself is not.

The reader is assumed to be acquainted with the basic concepts of logic programming, an introduc-

tion to which may be found in [14]. The remainder of this paper is organized as follows: Section 2 intro-

duces various concepts that are used later in the paper. Section 3 defines and discusses the notions of

functionality and mutual exclusion. Section 4 describes an algorithm for the static inference of
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functionality. Section 5 discusses some compile-time optimizations that are possible with knowledge of

functionality. Section 6 concludes with a summary.

2. Preliminaries

2.1. The Language

The language considered here is essentially that of first order predicate logic. It has countable sets of

variables, function symbols and predicate symbols, these sets being mutually disjoint. Each function and

predicate symbol is associated with a unique natural number called its arity. A function symbol of arity 0

is called a constant. A term is either a variable, or a constant, or a compound term f(t1, ..., tn) where f is a

function symbol of arity n, and the ti are terms, 1 ≤ i ≤ n. The principal functor of a term t is defined as

follows: if t is a constant c, then the principal functor is c, while if t is a compound term f(t1, ..., tn), then

its principal fiunctor is f; the principal functor of a variable is undefined. An atomic goal, or atom, is of

the form p (t1, ..., tn), where p is an n-ary predicate symbol and the ti are terms, 1 ≤ i ≤ n.

A logic program consists of a finite set of predicate definitions. A predicate definition consists of a

finite set of clauses. Each clause is a finite set of literals, which are either atomic goals or negations of

atomic goals. The clauses are generally constrained to be definite Horn, i.e. have exactly one positive

literal: the positive literal is called the head of the clause, and the remaining literals, if any, constitute the

body of the clause; a clause with only negative literals is referred to as a goal. It is possible to have nega-

tive literals in the body of a clause. The semantics of negated goals is given in terms of unprovability by

finite failure; it coincides with logical negation (with respect to the ‘‘completed’’ program) under certain

conditions: the set of program clauses must have a minimal model, and each negated goal G to be proved

must be of the form ∀ Xddnot(G1) where Xdd is a list of the variables occurring in G1 at the time G is selected

for resolution [14]. This is usually enforced by requiring that only ground negated goals be considered

[4]. However, some systems permit negated goals to contain variables, provided such variables are expli-

citly quantified to comply with the requirement above [18].

The meaning of a clause is the disjunction of its literals; that of the program is the conjunction of its

clauses. We adhere to the syntax of Edinburgh Prolog and write clauses in the form

p :− q1, . . ., qn.

which can be read as ‘‘p if q1 and . . . and qn’’. Variables are written starting with upper case letters,

while predicate and function symbols are written starting with lower case letters. In addition, the follow-

ing syntax is used for lists: the empty list is written [], while a list with head Hd and tail Tl is written

[Hd|Tl]. The symbol ‘!’ is used to denote the Prolog atom cut, which provides a mechanism for control-

ling backtracking. Operationally, the effect of executing a cut is to discard all backtrack points up to that

of the parent goal.

A literal is a static component of a clause. In an execution of the program, the corresponding

dynamic entity is a call, which is a substitution instance of an alphabetic variant of the literal. A call to
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an n-ary predicate p can therefore be considered to be a pair $langle p/n, Td$rangle where Td is an n-tuple

of terms which are arguments to the call. When the predicate being referred to in a call is clear from the

context, we omit the predicate name and refer to the call by its tuple of arguments. Calls corresponding

to a literal are said to arise from that literal. If the predicate symbol of a literal L is p, then L is said to

refer to the predicate p.

The declarative semantics of logic programs is usually given in terms of the model theory of first

order logic: the meaning of a logic program is its least Herbrand model [14, 24]. Computationally, how-

ever, predicates, clauses and literals in a program can be thought of as denoting binary relations over

tuples of terms. Thus, if D is the set of terms (possibly containing variables) in a program, then an n-ary

predicate (clause, literal, call) denotes a subset of Dn × Dn. The first element of the pair represents the

‘‘input’’, or calling, values of its arguments, and the second, the ‘‘output’’, or returned values.† We refer

to such relations as input-output relations. If a pair $langle t1, t2$rangle is in the input-output relation of

a predicate p, and θ is the most general unifier of t1 and t2, then a call t1 to p can succeed with the substi-

tution θ. Notice that for any pair $langle t1, t2$rangle in an input-output relation, t2 must be a substitu-

tion instance of t1.

We sometimes wish to ignore values returned for ‘‘void’’ or ‘‘anonymous’’ variables, i.e. variables

that occur only once in a clause. Given an n-tuple T and a set of argument positions A = {m1, . . ., mk}, 1

≤ m1 < . . . < mk ≤ n, let the projection of T on A denote the k-tuple obtained by considering only the

values of the argument positions m1 . . . mk of T. Then, the projection of an input-output relation on a set

of argument positions is defined as follows:

Definition: Given an input-output relation R and a set of argument positions A, the projection of R on A,

written πA(R), is the set of pairs $langle SI, SO$rangle such that for some pair $langle TI, TO$rangle in R,

SI is the projection of TI on A, and SO is the projection of TO on A. g

This is analogous to the projection operation of relational databases. Notice that in ‘‘pure’’ logic pro-

grams, i.e. programs not containing nonlogical features such as cut, var, nonvar, etc., the projection of an

input-output relation of a predicate p on a set of argument positions A is precisely the input-output rela-

tion obtained for a new predicate defined by p, but with the arguments in the head restricted to those in A.

Thus, for A = {1, . . ., k} and R the input-output relation for an n-ary predicate p in a pure program, πA(R)

coincides with the input-output relation of a predicate p ¢defined by the single clause

p ¢(X1, . . ., Xk) :− p(X1, . . ., Xn).

Additionally, we sometimes wish to restrict our attention to a ‘‘horizontal slice’’ of the input-output rela-

tion of a predicate. This is given by the notion of input restriction:
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† This is a straightforward abstraction of denotational semantics that have been proposed for Prolog [9, 12]
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Definition: Let R be the input-output relation for an n-ary predicate (clause, literal) in a program, and let

T be a set of n-tuples of terms. The input restriction of R to T, written σT(R), is the set of pairs $langle SI,

SO$rangle in R such that SI is in T. g

Implementations of logic programming languages may impose an ordering on the clauses and literals

comprising a program. For example, Prolog implementations execute clauses according to their textual

top-to-bottom order in the search for a proof, and resolve literals within a clause according to their textual

left-to-right order. These orderings induce data and control dependencies that are crucial to the analysis

of program properties such as functionality. To simplify the presentation, Prolog’s evaluation ordering

on clauses and literals is assumed throughout this paper. However, our algorithm is not dependent on this

ordering in any fundamental way, and its adaptation to other execution orders is straightforward.

2.2. Modes

In general, Prolog programs are undirected, i.e. can be run either ‘‘forwards’’ or ‘‘backwards’’, and do

not distinguish between ‘‘input’’ and ‘‘output’’ arguments for a predicate. However, in most programs,

individual predicates tend to be used with some arguments as input arguments and others as output argu-

ments. Knowledge of such directionality, expressed using modes, enables various compile-time optimi-

zations to be made. Mode information can either be supplied by the user, in the form of mode declara-

tions, or be inferred from a global analysis of the program [8, 16].

It is convenient to think of the mode of an n-ary predicate as representing a set of n-tuples of terms,

or equivalently, a set of calls. The modes considered here are quite simple: c represents the set of ground

terms, f the set of variables and d the set of all terms. Thus, if a predicate p/3 has mode $langle c, f,

d$rangle in a program, then it will always be called with its first argument ground and its second argu-

ment uninstantiated in that program; however, nothing definite can be said about the instantiation of its

third argument. In general, a mode for an n-ary predicate is an n-tuple over {c, d, f}. A call to a predi-

cate with arguments Td is consistent with the mode of that predicate if Td is in the set of tuples of terms

represented by that mode.

Given an ‘‘input’’ mode for a predicate or clause, it is possible to propagate it (from left to right, if

we assume Prolog’s evaluation order) to literals in the body and obtain modes for these literals [8]. The

modes so inferred are said to be induced by the input mode. Thus, given the clause

p(X, Y) :− q(X, Z), r(Z, Y).

and the mode $langle c, f$rangle for p, the induced mode for the literal q(X, Z) is $langle c, f$rangle . If

we also know that q always binds its arguments to ground terms on success, then it can be inferred that if

execution succeeds through q(X, Z), Z will be bound to a ground term, so that the induced mode for r(Z,

Y) is $langle c, f$rangle .
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2.3. Functional Dependencies

Functional dependencies are well known in relational database theory. Given a predicate p(Xdd),

where Xdd is a sequence of distinct variables, if there exist subsets of its arguments Udd and Vdd such that a

ground instantiation of the arguments Udd uniquely determines the instantiation of the arguments Vdd, then

Udd is said to functionally determine Vdd in p, and Vdd is said to depend functionally on Udd. More formally, if

Udd functionally determines Vdd in p(Udd, Vdd), and ud is a ground instantiation of Udd, then for all vd1 and vd2,

whenever p(ud, vd1) and p(ud, vd2) are true, it must be the case that vd1 = vd2 . We use the notation ‘‘L : S1 →

S2’’, where L is a literal and S1 and S2 are sets of variables occurring in L, to indicate that S1 functionally

determines S2 in L, i.e. that if L is executed with ground instantiations for the variables in S1, then the

instantiations of the variables in S2 are uniquely determined if the call succeeds.

The following axioms, known as Armstrong’s axioms, are sound and complete for functional depen-

dencies:

Reflexivity: If S2 ⊆ S1, then L : S1 → S2 for any L.

Transitivity: If L : S1 → S2 and L : S2 → S3 then L : S1 → S3.

Augmentativity: If L : S1 → S2, and S = S0 ∪ S1 for some S0, then L : S → S2.

This extends in a natural way to conjunctions of literals, and to clauses: if L is a member of a conjunct C

and L : S1 → S2, then C : S1 → S2; if Cl is a clause ‘‘H :− B’’ and B : S1 → S2, then Cl : S1 → S2.

Let S be a set of variables in a clause C, and F a set of functional dependencies that hold in the

clause. The set of all variables in that clause that can be inferred to be functionally determined by S under

F, using the axioms above, is called the closure of S under F. If S2 is the closure of S1 under a set of func-

tional dependencies F, we write C : S1
F

→
*

S2. Given a set of functional dependencies F and a set of vari-

ables S, the closure of S under F can be determined in time linear in the size of F [15].

3. Functionality

The notion of ‘‘determinacy’’ has usually been identified with ‘‘having no alternatives’’. For example,

Sawamura et al. define determinacy as, essentially, ‘‘succeeding at most once’’ [23]; Mellish defines a

goal as determinate if it ‘‘will never be able to backtrack to find alternative solutions’’ [16]. Unfor-

tunately, such definitions are inherently operational in nature, and procedures to infer determinacy tend to

rely heavily on the presence of cuts in the user’s program. This has two drawbacks: it encourages bad

programming style, and does not extend gracefully to parallel execution schemes even though such

schemes would benefit from knowledge of determinacy.

We consider a more general property of predicates, functionality, where all alternatives produce the

same result, which therefore need not be computed repeatedly. The difference between determinacy and

functionality is illustrated by the following example:
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Example 1: The predicate

p(a).

p(X) :− p(X).

is functional, since the set of solutions it produces is the singleton {p(a)}. However, since it can produce

this solution infinitely many times, it is not determinate in the traditional sense. g

Functionality subsumes determinacy: clearly, determinacy implies functionality; however, as the

example above shows, the converse is not true.

Functionality can be considered at the level of literals, clauses and predicates. We define these

notions as follows:

Definition: Let R be the input-output relation of a literal L, in a program and A the set of its non-void

argument positions. Then, L is functional relative to a call C in the program iff πA(σ{C}(R)) is a function.

A literal is functional relative to a mode M iff it is functional relative to every call consistent with M. g

In other words, a literal is functional if any call that can arise from it is functional on its non-void argu-

ments.

Definition: Let C be a call to a predicate (clause) with input-output relation R. The predicate (clause) is

functional relative to C iff σ{C}(R) is a function. A predicate (clause) is functional relative to a mode M

iff it is functional relative to every call consistent with M. g

A somewhat different view of functionality may be had by considering SLD-resolution as a goal rewrit-

ing process. Then, a literal L is functional if SLD-resolution of L is Church-Rosser with respect to the

substitutions returned for the variables of L [ Downey communication ]. The idea extends without

difficulty to clauses and predicates.

If a literal (clause, predicate) is not functional, it is said to be relational. Notice that whether or not

a predicate, clause or literal is functional is determined by its input-output relation, and need not have

anything to do with whether arguments in calls to it are instantiated to ground terms on success. For

example, the predicate defined by the single clause

p(X, Y).

is functional − its input-output relation is the identity function over pairs of terms − even though it

succeeds with the nonground arguments when called with nonground arguments. Not surprisingly, the

functionality of a predicate is in general undecidable ([23] proves the recursive unsolvability of deciding

the special case where a call can succeed at most once). However, sufficient conditions can be given for

functionality:
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Proposition 3.1: A literal p(Xdd) is functional relative to mode M if the predicate p is functional relative to

mode M. $box

Proposition 3.2: A literal p(Xdd) is functional relative to mode M if there are subsets Udd, Vdd ⊆ Xdd such that

(i) Udd ∪ Vdd = Xdd; (ii) Udd functionally determines Vdd in p(Xdd); and (iii) in any call consistent with mode M,

each argument in Udd is ground.

Proof: From the definition of functional dependency. $box

Functional dependencies are especially relevant here because, as many researchers have pointed out, logic

programming languages are very well suited for querying relational databases, and functional dependen-

cies are among the most frequently encountered integrity constraints for such databases. The detection of

functionality is therefore important if futile searches through large relations are to be avoided. For the

purposes of this paper, it is assumed that the relevant functional dependencies for base predicates have

been supplied to the functionality analyzer.

Proposition 3.2 can be generalized to take void variables into account. Consider a literal p(Xdd), with

Udd, Vdd, Wdd ⊆ Xdd such that Xdd = Udd ∪ Vdd ∪ Wdd where p(Xdd ) : Udd → Vdd, and Wdd consists only of void variables.

Then, p(Xdd) can be rewritten as a literal q(Yd), where Yd = Udd ∪ Vdd and q is a new predicate, defined by the

clause

q(Yd) :− p(Xdd).

From Proposition 3.2, the literal q(Yd) is functional relative to a mode M if for any call consistent with M,

each argument in Udd is ground. This argument extends in a straightforward way to the original literal,

p(Xdd), leading to the following proposition:

Proposition 3.3: A literal p(Xdd) is functional relative to a mode M if there are subsets Udd, Vdd, Wdd ⊆ Xdd such

that (i) Xdd = Udd ∪ Vdd ∪ Wdd; (ii) Udd functionally determines Vdd in p(Xdd ); (iii) in any call consistent with M,

each term in Udd is ground; and (d) Wdd consists only of void variables. $box

Example 3: Consider a predicate emp(Id, Name, Dept, Sal, PhoneNo), which is an employee relation

whose arguments are the employee’s identification number, name, the department he works for, his salary

and phone number. Assume that the predicate has the functional dependencies Id → Name (‘‘an

employee can have only one name’’) and Id → Sal (‘‘an employee can have only one salary’’). Then, the

literal

emp(12345, EmpName, _ , Sal, _ )

is functional. Here, the arguments {Id, Name, Dept, Sal, PhoneNo} can be partitioned into the sets {Id},

{Name, Sal} and {Dept, PhoneNo} where Id → Name and Id → Sal, Id is a ground term in the literal and

{Dept, PhoneNo} correspond to anonymous variables. However, the literal

emp(12345, EmpName, _ , Sal, PhoneNum)
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may not be functional, since an employee can have more than one phone number. g

In general, a clause is functional if each literal in its body is functional. It is possible to permit literals

that are not functional in the body, as long as they occur in contexts that are functional. The notion of a

functional context can be defined more formally as follows:

Definition: A literal L occurs in a functional context in a clause C if the body of C is of the form ‘‘G, !,

G1’’ or ‘‘G1, not(G), G2’’, and L occurs in G. g

This definition applies to simple Horn clauses extended with negation. It can be extended in a straightfor-

ward way to take other kinds of connectives, such as Prolog’s if-then-else construct, into account.

Proposition 3.4: A clause C is functional if any literal L in its body that is not functional relative to its

mode induced by M occurs in a functional context. $box

Notice that this proposition does not require the presence of cuts in the clause: if each literal in the body

of the clause can be shown to be functional, then the clause can be inferred to be functional even if there

are no cuts in the body. As stated, however, the proposition suffers from the problem that it may be sen-

sitive to the order of literals in the body of the clause. Consider, for example, the program defined by

q(a, b).

q(c, d).

r(b, c).

r(d, e).

p1(X, Y) :− q(X, Z), r(Z, Y).

p2(X, Y) :− r(Z, Y), q(X, Z).

Assume that p1 and p2 have mode $langle c, d$rangle , and that in both q and r, the first argument func-

tionally determines the second. Each literal in the body of the clause for p1 is functional from Proposi-

tion 3.2, and hence the clause for p1 is also functional relative to the mode $langle c, d$rangle . Now

consider the clause for p2: the induced mode for the literal r(Z, Y) is $langle d, d$rangle , so the literal is

not functional. Further, this literal does not occur in a functional context. Thus, the clause cannot be

inferred to be functional from Proposition 3.4.

The problem here is that the functional dependencies are being encountered in the wrong order. A

simple solution that suggests itself is to try reordering the literals in the body of the clause. However, this

does not always work: consider the clause

p(X, Z) :− q(X, Y, U, Z), r(Y, U).

Assume that p has mode $langle c, d$rangle ; that the functional dependencies X → Y and U → Z hold in

q(X, Y, U, Z), and the functional dependency Y → U holds in r(Y, U). Further, assume that both q and r
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succeed binding their arguments to ground terms. Then, the clause is functional. However, it cannot be

shown to be functional from Proposition 3.4 by reordering the literals in its body.

The key to the problem lies in determining what other functional dependencies are implied by those

that are already known to hold in the clause:

Proposition 3.5: Let F be the functional dependencies that hold in a clause C, and S the set of variables

appearing in the head of C. Given a mode M for C, let gd(M) ⊆ S be the set of variables appearing in

arguments in the head of the clause that are guaranteed to be ground in any call consistent with M, and let

C : gd(M)
F

→
*

S0. Then, C is functional relative to mode M if S ⊆ S0.

Proof: By definition, S0 is the closure of gd(M) under F. Further, M guarantees that each variable in

gd(M) will be instantiated to a ground term in any call to C. It follows that in any call to C consistent

with M, each variable in S0 will be uniquely determined on success. Since S ⊆ S0, it follows that any call

to C consistent with M will, if it succeeds, succeed with its variables uniquely determined. Thus, C is

functional. $box

Returning to the example above, given the mode M = $langle c, d$rangle for the clause

p(X, Z) :− q(X, Y, U, Z), r(Y, U).

the set gd(M) is {X}, and the closure of {X} under the functional dependencies {X → Y, Y → U, U → Z }

is {X, Y, U, Z}. Since the set of variables appearing in the head of the clause is contained in this closure,

the clause is functional relative to mode M. Notice that using this proposition, it may be possible to infer

a clause to be functional even though it contains literals that neither have functional dependencies nor are

functional or occur in a functional context. For example, the clause

p(X, Z) :− q(X, Y, U, Z), r(Y, U), s(U, W).

with functional dependencies {X → Y, Y → U, U → Z } can be inferred to be functional relative to mode

$langle c, d$rangle irrespective of whether the literal s(U, W) is functional.

The rules given above enable us to reason about the functionality of literals and clauses. The next

step is to extend them to allow reasoning about the functionality of predicates. A sufficient condition for

the functionality of a predicate in a program is that each clause of the predicate be functional, and further

that at most one clause succeed for any call to that predicate in that program. The latter is expressed

using the notion of mutual exclusion of clauses:

Definition: Two clauses C1 and C2 for a predicate, with input-output relations RC1 and RC2 respectively,

are mutually exclusive relative to a call G iff either σ{G}(RC1) = ∅ or σ{G}(RC2) = ∅ . Two clauses for a

predicate are mutually exclusive relative to a mode M iff they are mutually exclusive relative to every call

consistent with M. g

10



In other words, if two clauses of a predicate are mutually exclusive relative to a call G, then it is not pos-

sible for G to succeed through both clauses. Clauses that are mutually exclusive relative to all calls to the

corresponding predicate in a program are referred to simply as mutually exclusive. The following propo-

sitions establish sufficient conditions for the static determination of mutual exclusion among clauses.

Proposition 3.6: Two clauses are mutually exclusive relative to any mode if there is a cut in the body of

the textually antecedent clause. $box

Proposition 3.7: Two clauses are mutually exclusive relative to a mode M if there is a subset Udd of the

argument positions in their heads whose values are not unifiable, and each term in Udd is ground in any call

to the corresponding predicate that is consistent with M. $box

Example 4: The clauses

p(a, f(X), Y) :− q1(X, Y).

p(b, f(g(Y)), Z) :− q2(Y, Z).

are mutually exclusive relative to the mode $langle c, d, d$rangle ; however, they may not be mutually

exclusive relative to the modes $langle d, c, d$rangle or $langle d, d, c$rangle . g

It is possible to weaken this condition somewhat, so that the relevant terms in the calls are not required to

be ground, as long as they are ‘‘sufficiently instantiated’’ to discriminate between the clauses. While the

extension is conceptually straightforward, it needs a more expressive language for the specification of

variable instantiations than the simple mode set {c, d, f} considered in this paper; this is not pursued

further here.

Proposition 3.8: Two clauses for a predicate p of the form

p(Xdd) :− G11, r(Yd0), G12.

p(Xdd) :− G21, ∀ not( r(Yd1) ), G22.

where each of the Gij consist of zero or more literals, are mutually exclusive relative to a mode M if (i)

each literal in G11 and G21 is functional relative to its mode induced by M, and (ii) for any call to p that is

consistent with M, the call arising from the literal r(Yd0) in the first clause is subsumed by the call arising

from the literal ∀ not(r(Yd1)) in the second.

Proof: If each literal in G11 and G21 is functional relative to its mode induced by M, then for any call con-

sistent with M, there can be at most one call arising from each of the literals r(Yd0) and ∀ not(r(Yd1)).

Assume that the subsumption condition of the proposition is satisfied for these. Then, at runtime, if the

goal r(Yd0) is called with substitution σ and succeeds, then the goal r(σ(Yd1)) will also succeed. Therefore,

the goal ∀ not(r(σ(Yd1))) will fail. Conversely, the goal ∀ not(r(Yd1)) can succeed only if no instance of

r(Yd1) succeeds, which means that r(Yd0) must fail. Thus, the two clauses can never both succeed for any
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call consistent with M, i.e. they are mutually exclusive relative to M. $box

For this proposition to hold, it is necessary that r(Yd1) subsume r(Yd0) in the program. This does not

guarantee subsumption at runtime, of course, but sufficient conditions for runtime subsumption can be

given. One such sufficient condition is that G11 and G21 be identical and not share any variables with

r(Yd1); another is that none of the literals in G21 instantiate any variables, e.g. when they are all negated

literals.

It is easy to see how to extend this proposition to situations where two literals can be inferred to be

complementary even though they do not have the same predicate symbol, e.g. from knowledge about

builtin predicates.

Example 5: The clauses

length([], N) :− N =:= 0.

length([H | L], N) :− N > 0, plus(M, 1, N), length(L, M).

are mutually exclusive relative to the mode 〈d, c〉 , because ‘N =:= 0’ implies ‘not(N > 0)’, and ‘N > 0’

implies ‘not(N =:= 0)’. g

Proposition 3.8 assumes a finite failure semantics for negation. Analogous conditions can be found for

other treatments of negation as well. It gives a weaker condition for the mutual exclusion of clauses than

requiring cuts in their bodies, since the clauses

p(Xdd) :− q(Yd0), r(Yd).

p(Xdd) :− not( q(Yd1) ), s(Zd).

where q(Yd1) subsumes q(Yd0), is not equivalent to the clauses

p(Xdd) :− q(Yd0), !, r(Yd).

p(Xdd) :− s(Zd).

if q(Yd0) is not functional. Proposition 3.8 is applicable even in parallel evaluation contexts, while condi-

tions involving cuts do not extend naturally to execution strategies that are not sequential.

From the point of view of inference, we distinguish between two kinds of mutual exclusion: that

which can be inferred without any knowledge of the functionality of any user-defined predicate or literal,

and that which requires knowledge of the functionality of user-defined predicates. The former is referred

to as simple mutual exclusion, the latter as derived mutual exclusion. Note that in Proposition 3.8, in the

case where G11 and G21 consist of built-in predicates whose functionality is known, the proposition can

be used to infer simple mutual exclusion.

Proposition 3.9: A predicate is functional relative to a mode M if its clauses are pairwise mutually

exclusive relative to mode M, and each clause is functional relative to mode M.
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Proof: Since the clauses are pairwise mutually exclusive relative to mode M, at most one clause can

succeed for any call to the predicate consistent with M. Since each clause is functional relative to M, any

invocation of it can succeed in at most one way. Hence any call to the predicate consistent with M can

succeed in at most one way, i.e. the input restriction of its input-output relation to these calls is a

function. $always

4. Functionality Inference

The basic idea in the inference of functionality is to solve a set of simultaneous, possibly recursive, equa-

tions over a set of propositional variables. This is similar to the technique for the inference of deter-

minacy used by Mellish [16]. As an example, consider a predicate p whose definition is of the form

(cl1) p :− p11, p12, . . ., p 1n1
.

(cl2) p :− p21, p22, . . ., p 2n2
.

. . .

(clm) p :− pm1, pm2, . . ., pmnm
.

By Proposition 3.9, p is functional if each of its clauses cl1, . . ., clm is functional, and they are pairwise

mutually exclusive. A strengthening of this condition to if and only if† induces a set of equations of the

form

func_p = MutExp $and func_cl1 $and . . . $and func_clm

where each of the variables is propositional: func_p is true only if p is functional, func_cl1 if clause cl1 is

functional, and so on; MutExp is true only if the clauses for p are pairwise mutually exclusive. The func-

tionality of each clause depends, from Proposition 3.4, on the functionality of the literals in its body. This

allows us to add the equations

func_cl1 = func_p11 $and func_p12 $and . . . $and f unc_p 1n1
.

. . .

func_clm = func_pm1 $and func_pm2 $and . . . $and f unc_pmnm
.

Each of the variables func_p, func_p11, func_cl1 etc., is referred to as a functionality status flag. Equa-

tions are also set up for the propositional variable MutExp if necessary.

We first present an algorithm that takes only simple mutual exclusion of clauses into account. The

algorithm is proved sound. The fact that only simple mutual exclusion is considered does not affect

soundness, but results in some predicates, which are actually functional, being inferred to be relational. A

later section considers derived mutual exclusion and shows how it can be reduced to simple mutual exclu-

sion, so that the algorithm and its soundness proof go through as before.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† Note that this strengthening is conservative, i.e. it may lead to a loss of precision but not of soundness.

13



4.1. Functionality Inference with Simple Mutual Exclusion of Clauses

4.1.1. An Algorithm

The algorithm for functionality analysis takes as input a set of clauses comprising the program, a set (pos-

sibly empty) of modes for predicates in the program, and a set (possibly empty) of functional dependen-

cies. The output is an annotated program, where each predicate, clause and literal is annotated with a flag

that indicates whether or not it is functional. Associated with each literal, clause and predicate A is a flag

A.fstat, its functionality status, that ranges over {⊥ , true, false} and initially has the value ⊥ . The idea

behind the algorithm is to first detect predicates whose clauses are not pairwise simple mutually exclusive

and set their functionality status flags to false, and then to propagate these values in the program call

graph in a depth first manner.

Nodes in the call graph represent predicates in the program. The node corresponding to a predicate

p contains the functionality status flag p.fstat for that predicate, initialized to ⊥ , together with a bit

p.visited that initially has the value false. The set of edges in the call graph of the program is denoted by

CG_EDGES: if $langle p, q$rangle ∈ CG_EDGES then there is a directed edge from p to q in the call graph.

The graph is represented using adjacency lists. The algorithm also maintains, as an auxiliary data struc-

ture, a stack of predicates RELPREDS that is initially empty. Pseudocode for the algorithm is given in Fig-

ure 1.†

The algorithm proceeds in three stages. In the first stage, various flags are initialized and the call

graph is constructed. Functionality status flags are initialized to ⊥ , unless the value of the flag can be

determined a priori without any information about the functionality of any other predicate. Thus, literals

for built-in predicates that are known to be functional, negated literals, and literals that can be determined

to be functional from Propositions 3.1, 3.2 or 3.3, have their functionality status set to true at this stage.

Then, if a clause can be inferred to be functional based on Proposition 3.4 or Proposition 3.5, its func-

tionality status is set to true. If the clauses for a predicate cannot be determined to be pairwise simple

mutually exclusive, then its functionality status is set to false, and it is marked as visited; otherwise, if

each of its clauses has been inferred to be functional, then its functionality status is set to true and it is

marked as visited (recall that it is possible for a clause to be functional, based on functional contexts and

functional dependencies, even if its body contains literals that are not functional: in such cases, a predi-

cate can be functional even if it calls relational predicates). If a literal L ≡ q( ... ) is inferred to be func-

tional at this stage, or occurs in a functional context in a clause for a predicate p, then whether or not the

predicate q is functional has no influence on whether p is functional, so L is not considered when the call

graph is constructed.

The order in which predicates are processed may affect which predicates have their functionality

status flags set to true in this stage. This is because of the possibility of mutual recursion: consider
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† The algorithm is presented in this form, rather than more declaratively in a language such as Prolog, in order to simplify

subsequent reasoning about computational aspects of the algorithm, such as termination and asymptotic complexity.
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predicates p, and q that are mutually recursive:

p :− . . ., q, . . .

. . .

q :− . . ., r, . . .

Suppose p is processed first: then, since p is relational if q is relational, it is necessary to add an edge 〈 p,

q〉 in the call graph. If, during the subsequent processing of q, it is discovered from Proposition 3.5 that

the clauses for q are functional independently of whether or not p is functional, then q.fstat is set to true.

However, this is information is not propagated back to p. If q were to be processed before p, however, the

fact that q is functional would be detected when p was being processed. It is easy to see from this exam-

ple that no particular order of processing the predicates, e.g. a postorder traversal of a depth-first spanning

tree of the program call graph, will always detect every predicate that can be detected as functional in the

first stage of the algorithm. As a result, some predicates may have their functionality status set to ⊥ at the

end of the first stage even though they are actually functional. Such predicates have their functionality

status flags set in the third stage.

Once functionality status flags have been initialized, they are propagated iteratively in the second

stage of the algorithm. The rule for propagation is given by Proposition 3.9. Whenever the functionality

status of a predicate q is set to false, this value is propagated to any predicate p that has a clause in which

a literal referring to q occurs in a non-functional context. As shown above, it is possible to have an edge

〈 r, s〉 in CG_EDGES where it is not known, in Stage I, whether s will be functional or not. Now if s.fstat is

set to false, this information has to be propagated back to r; but if s.fstat is true, then it does not neces-

sarily follow that r is also functional. Thus, when propagating functionality status values along the call

graph, it is necessary to ensure that the only value being propagated is false.

At the end of the iteration, every predicate that can be inferred to be relational has its functionality

status set to false. It is possible that some predicates still have a functionality status of ⊥ : these are set to

true in the third stage of the algorithm. It is also possible that some clauses and literals may still have

functionality status flags with the value ⊥ . These are also set appropriately at this stage.

4.1.2. Correctness

To establish the soundness of the algorithm, we show that any predicate inferred to be functional is in fact

functional. To this end, it suffices to show that any predicate that is relational has its functionality status

set to false when the algorithm terminates. Define the notion of lowest common ancestor for nodes in a

tree as follows: a node n0 is a common ancestor of a set of nodes N in a tree T if n0 is an ancestor of n in T

for each n ∈ N; n0 is the lowest common ancestor of N in T if n0 is a common ancestor of N, and there is

no other common ancestor n1 ≠ n0 of N such that n0 is an ancestor of n1. Each literal in a program can

give rise to a number of calls during execution, each call defining a tree called a search tree or an

AND/OR tree. The algorithm can be thought of as computing over an abstraction of these trees, which

can be characterized by defining the notion of relational depth:
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Definition: Let TC be the search tree corresponding to a call C in a program. For each pair of succesful

leaf nodes $langle i, j$rangle in TC giving distinct sets of substitutions for the non-void variables in C, let

δ(i, j) be the depth of the lowest common ancestor of the pair in TC. The relational depth ρ(C) of the call

C is defined to be the least depth δ(i, j) of all such pairs $langle i, j$rangle , if the call is relational, and ∞
otherwise. g

Definition: Let C be the set of calls to a relational predicate p in a program. The relational depth of the

predicate p is defined to be
c ∈ C
min ρ(c). g

Intuitively, the relational depth of a call is the least depth in the search tree for that call at which a predi-

cate is encountered whose clauses are not pairwise mutually exclusive. The relational depth of a predi-

cate is simply the least relational depth of all calls to it that can arise in the program.

Lemma 4.1: If a literal L ≡ p(Td ) is relational in a program, then the predicate p is also relational in that

program.

Proof: Assume that p is functional in the program. It follows, from Proposition 3.1, that L must also be

functional in the program, which is a contradiction. $box

Lemma 4.2: If a predicate p is relational in a program, then either

(1) the clauses for p are not pairwise simple mutually exclusive, and the functionality status flag of p is

set to false in Stage I of the algorithm; or

(2) there is a relational predicate q in the program, such that there is an edge 〈 p, q〉 in the call graph of

the program.

Proof: If p is relational, then its clauses are either pairwise simple mutually exclusive, or they are not. If

they are not pairwise simple mutually exclusive, then from the soundness of Propositions 3.6, 3.7 and 3.8,

it follows that p’s functionality status flag will be set to false in Stage I of the algorithm.

If p’s clauses are pairwise simple mutually exclusive, then since p is relational, it must be the case

that there is a literal L ≡ q( ... ) in the body of a clause C for p, such that L is relational and does not occur

in a functional context in C. From Lemma 4.1, it follows that q is relational. In this case, it can be seen

from the algorithm that an edge 〈p, q〉 is added to the call graph of the program in Stage I. $box

Lemma 4.3: The relational depth of a relational call (predicate) is finite, and fixed for a given program.

Proof: If the call is relational, then there is a pair of successful leaf nodes in its search tree that give dis-

tinct substitutions for at least one non-void variable in the call. These leaf nodes are at finite depths in the

search tree, hence their lowest common ancestor is also at a finite depth. This establishes that the rela-

tional depth is finite for a relational call. That it is fixed for a given program follows from the fact that

the search tree defined by the call is fixed for a given program. The statement for relational predicates
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follows from the fact that the relational depth of a relational predicate is the least relational depth of all

calls to it in the program, which must be finite, and fixed with respect to the program. $box

Theorem 4.4 (Soundness): If a predicate is relational in a program, then its functionality status is inferred

to be false by the algorithm.

Proof: By induction on the relational depth N of the predicate.

If N = 0, then the clauses of p cannot be mutually exclusive, and hence cannot be pairwise simple

mutual exclusive. From Lemma 4.2, it follows that the functionality status of p is set to false in Stage I

of the algorithm. Since the value of a functionality status flag does not change once it has been set to

false, the functionality status of p will be false if the algorithm terminates.

Assume that the theorem holds for predicates with relational depth less than k, k > 0. Consider a

predicate p with relational depth N = k. Since N > 0, the clauses of p are mutually exclusive. Consider

the search tree corresponding to a call p(Td ) for which the relational depth is k (there must be such a call,

since the relational depth of the predicate p is k). Let the root of this tree be α. There is a node χ, at

depth k in this tree, that has two paths leading to successful leaf nodes that yield distinct sets of substitu-

tions for the variables in the call (see Figure 2).

Consider the subtree S, rooted at a node β that is a child of α, that contains the node χ. Let β be

labelled by the goal L1, . . ., Lm. Then, there is a clause C, with head H and body B, in the program, such

that p(Td ) and H are unifiable with most general unifier θ, and θ(B) ≡ L1, . . ., Lm. Consider the goal L1,

. . ., Lm: for some literal Ll ≡ ql( ... ), 1 ≤ l ≤ m, the predicate ql must have relational depth less than k.

From the soundness of Propositions 3.1, 3.2 and 3.3, Ll is not inferred to be functional in Stage I. It fol-

lows from Lemma 4.2 that the edge $langle p, ql$rangle is in CG_EDGES. From the induction hypothesis,

ql. fstat is set to false by the algorithm. Assume that this is set in the i th. iteration of the algorithm. Then,

it is evident from the algorithm that ql is inserted into RELPREDS in the i th. iteration. At the end of this

iteration, therefore, RELPREDS is nonempty, and the iteration does not stop at this point. Since $langle p,

ql$rangle is in CG_EDGES, it follows that p.fstat is set to false in a later iteration, if it has not already been

set earlier. Since functionality status flags do not change once they have been set to false, the functional-

ity status of p remains set to false. From Lemma 4.3, every relational predicate has finite relational depth.

This implies that every relational predicate has its functionality status set to false when Stage II of the

algorithm terminates.

That the functionality status of each relational literal and clause is set to false at the end of Stage III

follows from the fact the functionality status of each relational predicate is set to false at the end of Stage

II of the algorithm, as proved above.

A program contains only finitely many predicates, clauses and literals, and hence only finitely many

functionality status flags. This implies that the call graph of the program is finite. The value of a func-

tionality status flag can only go from ⊥ to true or false, never in the other direction, so the value of a

17



functionality status flag can change at most once. A predicate p is added to RELPREDS only if p.visited is

false, and once its node in the call graph has been visited, p.visited is set to true, so the node for p is not

visited again. This means that a predicate is not added to RELPREDS more than once. Since RELPREDS is

always finite and has length bounded by the number of predicates defined in the program, each predicate

added to it is eventually be processed and removed from it. This implies that the algorithm eventually

terminates. $always

4.1.3. An Example

The following example illustrates how the algorithm works:

Example 6: Consider the program defined by the clauses

p([], []).

p([X |L1], [Y |L2]) :− q(X, Z, _), r(Z, Y), p(L1, L2).

q(0, 0, 0).

q(0, 0, 1).

q(1, 1, 0).

q(1, 1, 1).

r(X, Y) :− even(X), Y is 2 * X + 1.

r(X, Y) :− not(even(X)), Y is 2 * X.

s(X, Y, Z) :− q(X, Y, Z), r(X, Z).

even(X) :− X mod 2 =:= 0.

Assume that it is known that p/2 has the mode $langle c, f$rangle , q/3 has the mode $langle c, f,

f$rangle and that in the predicate q(X, Y, Z), the functional dependency X → Y holds. At the end of

Stage I of the algorithm, the only predicate whose clauses cannot be inferred to be pairwise mutually

exclusive is q. All functionality status flags except q.fstat therefore have value true, and RELPREDS = [q].

The call graph for the program (with nodes for built-in predicates omitted) is given in Figure 3.

In the first iteration in Stage II of the algorithm, s.fstat is set to false, and s is added to relpreds.

Thus, after the first iteration of the while-loop, RELPREDS = [ s ]. However, since there is no node with an

edge going to s, there is no change to any functionality status flag after this, and the while loop terminates

after the next iteration.

The third stage of the algorithm then results in the functionality status of the clause for s getting the

value false.

The output of the algorithm, therefore, is that the predicates p, r and even are functional, the literal

referring to q in the recursive clause for p is functional, but that the predicates q and s are relational. g
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4.1.4. Complexity

Consider a program with p predicates of arity a, each predicate with at most m clauses, each clause con-

taining at most n literals; assume that the number of functional dependencies that hold in the program is

F. There are at most mp clauses and mnp literals in the program, so that the number of functionality

status flags is mnp + mp + p.

Inspecting the literals in Stage I of the algorithm to determine whether they are functional takes

time O(mnpa). Determining the closure of the functional dependencies takes time O(F); each clause has

O(a) variables in the head, so checking whether each clause is functional according to Proposition 3.5

takes time O(a). The complexity of checking for functionality of clauses in Stage I is therefore O(F +

ma). The checking of pairwise mutual exclusion of m clauses takes time O(m2a), and this has to be done

for p predicates. Typically, m can be expected to be O(n), whence m2ap is O(mnap).† Letting mnap = N

be the size of the program, the time complexity of Stage I is therefore O(mnap + F + ma + m2ap) = O(N +

F). If there are E edges in the call graph of the predicate, then the worst case complexity of Stage II,

which is a depth first search of a graph with p nodes and E edges, is O(max(p, E)). In Stage III, it may be

necessary to test and set O(mnp) functionality status flags, which takes time O(mnp). The overall time

complexity of the algorithm is therefore O(N + F + max(p, E)).

The space used for the various functionality status flags is O(N). The space required to store F

functional dependencies is O(F). Since there are p vertices and E edges in the call graph for the program,

its adjacency list representation requires O(E + p) space. Since the iterations in the algorithm can be

accomplished in O(1) space, the space complexity is O(N + F + E + p) = O(N + F + E).

4.2. Functionality Inference for Derived Mutual Exclusion

The algorithm for functionality inference given earlier considers only simple mutual exclusion of clauses.

It is possible to expand the set of predicates inferred to be functional if derived mutual exclusion is also

taken into account. The problem of functionality inference in the presence of derived mutual exclusion of

clauses turns out to be easily reducible to the case of simple mutual exclusion, so that results from the

previous sections remain directly applicable.

From Proposition 3.8, two clauses for a predicate p of the form

p(Xdd) :− G11, r(Yd0), G12.

p(Xdd) :− G21, not( r(Yd1) ), G22.

are mutually exclusive relative to a mode M if the literals in G11 and G21 are functional relative to their

modes induced by M; if r(Yd1) subsumes r(Yd0); and if the clauses meet some other conditions to satisfy

Proposition 3.8, e.g. if G11 and G21 are identical and functional, and variable-disjoint with r(Yd0); or if the

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† This may not be true for database predicates, which are defined by a large number of unit clauses. As mentioned, howev-

er, it is assumed that the relevant information for such predicates is supplied separately in the form of functional dependencies.

Thus, database predicates need not be considered here.
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literals in G21 are all negated. These clauses are derived mutually exclusive if any of the literals in G11 or

G21 refers to a user-defined predicate. In this case, mutual exclusion cannot be detected in Stage I of the

algorithm. Notice, however, that there are two components to inferring derived mutual exclusion: (i) the

checking of conditions, such as subsumption of Yd0 by Yd1, and variable disjointness between G11 and

r(Yd0), that can be performed in Stage I; and (ii) the verification of the functionality of user-defined predi-

cates in G11 and G21, which has to be deferred to Stage II of the algorithm. Once the subsumption of

literals and the satisfaction of the other constraints has been verified in Stage I, derived mutual exclusion

depends only on the functionality of user-defined predicates. This can now be handled simply by adding

an equation describing this condition to the system of equations considered earlier. For example, if

derived mutual exclusion for the clauses of a predicate p depends on a set of user-defined predicates Q,

then the equation that is added is

MutExp =
q ∈ Q
∧ func_q

where MutExp is the mutual exclusion bit for p, and func_q is the functionality status of a predicate q.

This gives a set of equations where the functionality of each predicate depends only on those of other

predicates. These equations can be solved as described earlier. The reader may verify that the space and

time complexity in this case remains linear in the size of the program.

5. Functional Optimizations

This section considers some of the optimizations that can be made with knowledge about functionality

and mutual exclusion.

5.1. Controlling Backtracking: savecp and cutto

One of the functional optimizations discussed is the insertion of cuts. For this, we briefly describe the

primitives used in our system to implement cut. In any implementation of cut, it is necessary to know

how far to cut back to in the stack of choice points. One way of doing this is to note the current choice

point at an appropriate point in execution, and cut back to this point when a cut is encountered. In our

system, this is done via two primitives, savecp/1 and cutto/1. These are internal primitives that are intro-

duced by the compiler, and are unavailable to the user. The call savecp(X) saves the current choice point

in X, while the call cutto(X) sets the current choice point to be that saved in X. Thus, a predicate with a

cut in it,

p(Xdd) :− q(Yd), !, r(Zd).

p(Xdd) :− s(Udd).

is transformed by the compiler to

p(Xdd) :− savecp(W), p1(Xdd, W).

p1(Xdd, W) :− q(Yd), cutto(W), r(Zd).

p1(Xdd, _) :− s(Udd).
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where W is a new variable not occurring in the original definition of p, and p1 is a new predicate not

appearing in the original program. In general, savecp and cutto can be used to bracket calls whose choice

points are to be cut.

5.2. Functionality and the Insertion of Cuts

If a call is functional, it can succeed with at most one distinct answer. Once this answer has been

obtained, further search for other solutions for that call cannot produce any new solutions. A savecp/cutto

pair may therefore be inserted by the compiler around the corresponding literal without (in most cases)

affecting the semantics of the program. (There are certain non-logical contexts in which cuts so intro-

duced can affect program semantics: this is discussed later.)

It is usually profitable to insert savecp/cutto pairs around functional literals referring to nonfunc-

tional predicates, as in Example 3 above. If a predicate is itself functional, then it is generally preferable

to insert savecp/cutto pairs in the clauses defining it, rather than around literals referring to it. A point to

note is that when inserting cuts in clauses, care should be exercized to ensure that opportunities for tail

recursion optimization are not being lost as a result.

Example 7: Consider the predicate

big_shot(Id, EmpName) :− emp(Id, EmpName, _, Salary, _ ), Salary > 100000.

Given the mode $langle c, d$rangle for big_shot/2 and the functional dependencies Id → Name, Id →
Salary for the predicate emp(Id, Name, Dept, Salary, PhoneNo), it can be inferred that the literal referring

to emp in the clause above is functional. Since the predicate emp is not itself functional, this should be

transformed to

big_shot(Id, EmpName) :−
savecp(X), emp(Id, EmpName, _, Salary, _ ), cutto(X), Salary > 100000.

g

Further improvement is possible if we consider sequences of functional literals. Define a fail_back_to

relation over pairs of literals, such that fail_back_to(p1, p2) is true if execution should backtrack to the

(most recent) goal corresponding to literal p2 if a goal corresponding to literal p1 fails (this relation is

fairly trivial given Prolog’s naive backtracking strategy, but nontrivial fail_back_to relations can be

given for more sophisticated backtracking strategies [1, 3]). For functional calls, the fail_back_to rela-

tion is transitive. In other words, given a sequence of literals

. . . p1, . . ., p2, . . ., p3, . . .

where p1, p2 and p3 are functional literals and the fail_back_to relation has the tuples $langle p3,

p2$rangle and $langle p2, p1$rangle , execution can fail back directly to p1 on failure of the goal p3, i.e.

$langle p3, p1$rangle is in the fail_back_to relation. This property can be used to produce more

efficient code for contiguous functional calls, as the example shows:
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Example 8: Consider the clause

p(X, Y) :− q(X, Z, _), r(X, Y, _), s(Y, Z).

Assume that p has the mode 〈c, f〉 , so that both q/3 and r/3 have the induced modes $langle c, f, f$rangle ,

and that both q and r are functional relative to this mode. The calls to q/3 and r/3 in the clause above are

therefore functional, and the clause can therefore be transformed to the following in a straightforward

way:

p(X, Y) :− savecp(U), q(X, Z, _), cutto(U), savecp(V), r(X, Y, _), cutto(V), s(Y, Z).

However, since the two functional calls were contiguous in the original clause, the transitivity of the

fail_back_to relation can be used to obtain the following clause, which is more efficient in both space and

time:

p(X, Y) :− savecp(U), q(X, Z, _), cutto(U), r(X, Y, _), cutto(U), s(Y, Z).

g

5.3. Avoiding Cuts in Functional Predicates

The obvious way to improve functional predicates and literals is to cut away useless choice points, as

illustrated in the preceding examples. However, this still involves the creation of choice points, which is

not inexpensive. Under certain circumstances, more efficient code can be generated for functional predi-

cates if cuts are not generated. This section considers two such situations.

5.3.1. Clause Indexing

The creation of a choice point for a call to a functional predicate can often be avoided by proper clause

indexing. In such cases, the addition of cuts to the predicate can actually result in redundant work. A

better strategy is to have the compiler either build more sophisticated indices, or transform the program,

based on mode information and analysis of mutual exclusion of clauses, so that Prolog’s usual indexing

scheme will suffice to avoid the creation of choice points (typically, Prolog systems, e.g. [25, 27], index

on the principal functor of the first argument of each clause). The additional effort involved at compile

time can very well be offset by the space and time savings accruing from not having to put down a choice

point at each call. In such cases, where no choice points are being created, cuts in the bodies of clauses

are no-ops if they serve only to cut the clause selection alternatives, and constitute unproductive over-

head.

Example 9: Consider the predicate

process([], []).

process([’,’(X, Y) | Rest], [T | TRest]) :− process_comma(X, Y, T), process(Rest, TRest).

process([’;’(X, Y) | Rest], [T | TRest]) :− process_semicolon(X, Y, T), process(Rest, TRest).

process([not(X) | Rest], [T | TRest]) :− process_not(X, T), process(Rest, TRest).

The clauses for the predicate process are mutually exclusive if it is always called with its first argument
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ground. However, in order to avoid creating a choice point for it, it is necessary to look beyond the prin-

cipal functor of its first argument, which is the same for three of its four clauses. This can be done either

by building a more sophisticated index for this predicate, or by transforming it to the following at compile

time:

process([],[]).

process([H | L], [TH | TL]) :− process1(H, TH), process(L, TL).

process1(’,’(X, Y), T) :− process_comma(X, Y, T).

process1(’;’(X, Y), T) :− process_semicolon(X, Y, T).

process1(not(X), T) :− process_not(X, T).

Here, process1 is a new predicate not appearing elsewhere in the program. It is evident that in the

transformed program, the usual indexing mechanism of Prolog suffices to avoid the creation of choice

points for calls to process/2 or process1/2. g

5.3.2. Transformations for Mutually Exclusive Clauses

Mutual exclusion between clauses is often based upon complementary tests. Such clauses can often be

transformed in a manner that avoids the creation of choice points. In such cases, it is possible to avoid

cuts in the clauses without sacrificing efficiency.

Mutual exclusion due to complementary tests is addressed in Proposition 3.8, which considers

clauses of the form

p(Xdd ) :− G11, q(Td ), G12.

p(Xdd ) :− G21, not(q(Udd )), G22.

where the Gij consist of zero of more literals. This proposition is applicable only if the heads of the

clauses being considered are identical (modulo variable renaming). In practice, it is rarely the case that

clauses have identical heads, but mode and functionality information can often be used to effect transfor-

mations that permit the application of Proposition 3.8. The essence of the transformation is to use mode

information to move certain unifications from the heads of clauses into their bodies. Consider a clause

p(t1, . . ., tm−1, tm, . . ., tn) :− Body.

and assume, without loss of generality, that the mode of the predicate indicates that all arguments

between and including the mth. and nth. are guaranteed to be free variables in any call to p. The transfor-

mation replaces these arguments with new variables Xm, . . ., Xn that do not appear elsewhere in the

clause, and introduces explicit unifications ‘Xi = ti’, m ≤ i ≤ n, immediately before the body of the

clause.† The transformed clause is therefore

p(t1, . . ., tm−1, Xm, . . ., Xn) :− Xm = tm, . . ., Xn = tn, Body.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

† Strictly speaking, it is necessary to do this only for those arguments where the term t
i
is not a variable.
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While this transformation may, in many cases, suffice to ensure that the two clauses have identical heads

(modulo variable renaming), the clauses may still not be in a form where Proposition 3.8 can be applied.

In such cases, it is often useful to try to move the complementary goals q(Td ) and not(q(Udd )) towards the

head of the clause by reordering literals. In general, changing the order of literals in a clause can affect its

operational behavior, by changing the order in which solutions are found or affecting its termination

characteristics. However, simple special cases can be considered where these problems do not arise: for

example, two literals

. . ., r(Vdd ), s(Wdd ), . . .

in the body of a clause can be transposed without affecting the behavior of the clause, provided that

(i) r(Vdd ) and s(Wdd ) are guaranteed to be independent, so that the order in which variables are bound

does not pose problems;

(ii) both the literals r(Vdd ) and s(Wdd ) are functional, so that order of solutions is not an issue;

(iii) the termination of r(Vdd ) and s(Wdd ) is guaranteed, e.g. when they consist only of simple tests or do not

involve any recursion; and

(iv) r(Vdd ) and s(Wdd ) are free of side effects.

An example application of this transformation is given by the following:

Example 10: Consider the following predicate, used to partition lists in the quicksort algorithm:

part(_, [], [], []).

part(M, [E | L], [E | U1], U2) :− E =< M, part(M, L, U1, U2).

part(M, [E | L], U1, [E | U2]) :− E > M, part(M, L, U1, U2).

While the second and third clause intuitively seem to be mutually exclusive because of the complemen-

tary tests, they cannot be so inferred from Proposition 3.8. If it is assumed, however, that the first two

arguments to the predicate are input arguments while the third and fourth are output arguments, i.e. that it

has the mode 〈c, c, f, f 〉 , then it can be transformed, as described above, to

part(_, [], [], []).

part(M, [E | L], X, U2) :− X = [E | U1], E =< M, part(M, L, U1, U2).

part(M, [E | L], U1, Y) :− Y = [E | U2], E > M, part(M, L, U1, U2).

At this point, the literals X = [E |U1] and E =< M in the second clause satisfy the four conditions listed

above for literal reordering (independence follows from the fact that both E and M are ground given the

mode under consideration). A similar comment applies to the literals Y = [E |U2] and E > M in the third

clause. Literal reordering then yields

part(_, [], [], []).

part(M, [E | L], X, U2) :− E =< M, X = [E | U1], part(M, L, U1, U2).

part(M, [E | L], U1, Y) :− E > M, Y = [E | U2], part(M, L, U1, U2).

At this point, the third and fourth clauses can be inferred to be mutually exclusive based on Proposition
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3.8. The clauses can in fact be fused, with the recognition of complementary tests yielding

part(_, [], [], []).

part(M, [E | L], X, Y) :−
E =< M → (X = [E | U1], part(M, L, U1, Y)) ; (Y = [E | U2], part(M, L, X, U2)).

From Proposition 3.7, these clauses can be seen to be mutually exclusive relative to the mode 〈c, c, f, f 〉 .
In an implementation, it is possible to execute this predicate without creating a choice point, since a type

test on the second argument suffices to discrimate between the two clauses, while an arithmetic test

suffices to determine which alternative in the body of the second clause should be taken. A variant of this

transformation is used in the SB-Prolog compiler [7]: the optimization resulting from this leads to a speed

increase of over 30% for this example. g

5.4. Functional Optimizations in Parallel Execution Strategies

Functionality and mutual exclusion can also be exploited in parallel evaluation strategies. Parallel execu-

tion of logic programs can be broadly divided into two classes: OR-parallel execution, where alternative

search paths are explored concurrently, and AND-parallel execution, where subtasks of a computation are

solved concurrently. Different flavors of OR-parallelism have been proposed by a number of researchers

[2, 10, 21, 28, 29]. Other proposals incorporate both AND- and OR-parallelism [5, 13, 30, 31].

OR-parallel execution may be controlled via commit operators, which are symmetric generalizations

of the cut. There are two kinds of commit: strict commit, which prevents any solutions or side effects in

other execution branches from becoming visible; and cavalier commit, which makes no guarantees about

side effects [29]. During OR-parallel execution, if two clauses are known to be mutually exclusive, then

commits may be introduced by the compiler at appropriate places. This allows processes for one clause to

be killed off, and the machine resources used by it reclaimed, as soon as the other one succeeds. In situa-

tions where the absence of side effects can be guaranteed, cavalier commits can be inserted instead of

strict commits, reducing the need for process suspension and synchronization. Indeed, in cases involving

simple mutual exclusion, e.g. based on simple arithmetic tests, the compiler can move fork points lower

in the execution tree, delaying the creation of OR-parallel processes until the outcome of the test becomes

known, in a manner analogous to the transformation illustrated in Example 10. This can, in many cases,

avoid the cost of creating useless processes and thereby reduce the overall cost of the computation. The

early elimination of execution branches in this manner also allows early ‘‘promotion’’ of variable bind-

ings from conditional, where bindings are maintained in binding lists local to processes, to unconditional,

where the binding is actually written out to the value cell for that variable. Since operations involved in

unification are typically faster for unconditional bindings than for conditional ones [29], this also reduces

the cost of subsequent unifications involving such promoted variables. It should be noted here that since

the cut is a control mechanism designed for sequential execution strategies, it forces sequentialization of

execution under parallel evaluation strategies in order to give the expected behaviour. It may be therefore

be preferable not to have cuts in the original program, but instead let the compiler infer mutual exclusion

and functionality and generate code appropriate to the execution environment.
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Functionality information is also useful in AND-parallel systems [5, 6, 11]. For example, in

Conery’s AND/OR process model [5], OR-processes for literals that are known to be functional can be

killed, and their resources reclaimed, as soon as they have delivered a solution. This, in turn, can improve

backtracking behavior within AND-processes, since the number of goals that have to be considered for

backtracking can be reduced. Functionality information can also be used to influence scheduling deci-

sions in AND-parallel systems: consider a situation where there are two independent goals G1 and G2 that

have to both be solved, where G1 is functional and G2 is not. If there is only one processor available at

this point, then the scheduler can schedule eiher G1 or G2 on it. In such a case, unless G1 is certain to

succeed, it may be better to schedule G1 for execution in preference to G2. This is because the fact that

G1 is functional suggests that scheduling it early can reduce backtracking costs and enable earlier recla-

mation of resources allocated to it.

5.5. Functional Optimizations in Other Execution Strategies

Information about functionality and functional dependencies can also be used in sequential execution

strategies that depart from Prolog’s left-to-right control regime for literals within a clause. For example,

both CHAT-80 [26] and MU-Prolog [19] use heuristic estimates of the number of solutions that can be

returned by a database predicate to determine the order of execution of literals within a goal. In both sys-

tems, priority declarations are supplied by the user for database predicates, to provide information about

the number of clauses and the probability of match for each argument position. An important assumption

that is made is that the probabilities of arguments in a clause matching the corresponding arguments in a

call are independent for different argument positions. However, the specification of functional dependen-

cies may require reasoning about more than one argument position at one time. For example, consider a

predicate p defined as

p(0, 0, 0).

p(0, 1, 1).

p(1, 0, 1).

p(1, 1, 0).

In this predicate, the first two arguments together functionally determine the third: there is no functional

dependency between just the first and third arguments, or the second and third arguments. Thus, priority

declarations cannot express functional dependencies in general. Since functional dependencies specify

semantic properties of the database, information about functionality and functional dependencies is likely

to be more accurate than that obtained from priority declarations, and can be used to obtain better esti-

mates for the number of solutions for a literal, improving the performance of the query optimizer.

Since the notion of functionality is applicable even for predicates that are not necessarily database

predicates, it can also be taken into consideration when planning the execution order for predicates that

do not involve database relations. As an example, Naish considers computation rules that select locally

deterministic calls, where a locally deterministic call is defined as one that ‘‘has at most one matching

clause for any (non-delaying) call to it’’ [19]. Clearly, the notion of local determinism can be generalized
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to that of functionality. Alternatively, the definition of local determinism can be generalized to incor-

porate the notion of mutual exclusion of clauses, as illustrated in Example 10.

5.6. Functionality and Cut Insertion : Some Caveats

Section 5.2 discussed the bracketing of deterministic calls with savecp/cutto pairs to avoid useless back-

tracking. There are situations, however, where such transformations can alter the semantics of the pro-

gram. The example below illustrates this:

Example 11: Consider a predicate to count the number of occurrences of an element in a list:

numocc(Elt, L, N) :− bagof(Elt, member(Elt, L), EltList ), length(EltList, N).

where member/2 and length/2 are defined in the usual way. If numocc/3 is always called with the first

two arguments ground, then the call to member/2 is functional. However, bracketing this call to

member/2 with a savecp/cutto pair would give incorrect answers. g

The problem arises because in this case the number of successes is what is important, not just the answer.

One could argue that numocc/3 is better written as a recursive predicate free of non-logical constructs

such as bagof: the point of the example is to illustrate the fact that cuts should not be inserted blithely

without taking the context into account. Other such examples can be constructed, involving side effects

such as read or write operations, where altering the number of successes can affect the semantics of the

program. For this reason, caution should be exercised in inserting cuts. For example, cuts should be

inserted at a point only if it can be guaranteed that the search tree below that point is free of side effects.

6. Implementation

A prototype functionality inference system based on the ideas described here has been implemented for

the SB-Prolog system. The functionality inference system, which is written in Prolog, uses a simple

mode inference system to infer predicate modes [8]. The system was tested on some simple programs

(quicksort, four-queens, a simple rewriting theorem prover) as well as significant modules from the SB-

Prolog compiler (the scanner and parser, preprocessor, peephole optimizer and assembler). The results,

given in Table 1, indicate that functionality analysis takes about 2% to 4% of the total compilation time,

and that about 65% to 80% of the predicates can typically be inferred to be functional. A closer examina-

tion indicates that where the analysis is conservative, it is so principally because of a conservative mode

inference system, suggesting that the precision of the functionality inference system could be improved

even further given a more sophisticated mode inference system, or via user-declared modes. Our experi-

ments indicate that functionality inference can be a practical and useful tool in the analysis and optimiza-

tion of logic programs.

7. Summary

The paper considers the question of inferring the functionality of predicates in logic programs. The

notion of functionality subsumes that of determinacy. Not being an inherently operational notion, it tends
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Program No. of predicates No. inferred functionaliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

quicksort 4 4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

theorem prover 9 6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

fourqueens 11 8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

peephole 13 10iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

assembler 33 21iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

preprocessor 38 14iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

scanner/parser 42 31iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

func-inf 47 38iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 1

to rely on features such as the ‘‘cut’’ to a much lesser extent. This encourages a better style of program-

ming and extends gracefully to parallel evaluation strategies. Sufficient conditions for functionality are

given, and an algorithm described for the automatic inference of functionality of predicates. Some pro-

gram optimizations based on information about functionality and mutual exclusion of clauses are

described, both for sequential and parallel execution strategies.
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begin

RELPREDS := nil; /* Stage I : initialization of flags */

CG_EDGES := ∅ ;

for each literal, clause and predicate A in the program do A.fstat := ⊥ ;

for each predicate p in the program do

if p’s clauses cannot be inferred to be pairwise simple mutually exclusive then begin

p.fstat := false; p.visited := true;

RELPREDS := push(p, RELPREDS);

end

else begin

for each clause C of p do begin

for each literal L ≡ q( ... ) in the body of C do

if L can be inferred functional from Propositions 3.1, 3.2 or 3.3 then L.fstat := true

else if L is not in a functional context then CG_EDGES := CG_EDGES ∪ $langle p, q$rangle ;

if C can be inferred to be functional from Propositions 3.4 or 3.5 then C.fstat := true;

end;

if C.fstat = true for each clause C of p then begin

p.fstat := true; p.visited := true;

end

else p.visited := false;

end; /* if */

while RELPREDS ≠ nil do begin /* Stage II : iterative propagation */

p := head(RELPREDS);

if ($exists q)[$langle q, p$rangle ∈ CG_EDGES and p.fstat = false and ¬ q.visited] then begin

q.fstat := false;

q.visited := true;

RELPREDS := push(q, RELPREDS);

end

else RELPREDS := pop(RELPREDS);

end; /* while */

for each predicate p in the program do if p.fstat = ⊥ then p.fstat = true; /* Stage III : cleanup */

for each clause C in the program do begin

for each literal L ≡ q( ... ) in the body of C do if L.fstat = ⊥ then L.fstat := q.fstat;

if C.fstat = ⊥ then

C.fstat := ($exists a literal L in the body of C)[¬ L.fstat and L is not in a functional context];

end

end.

Figure 1: Algorithm for Functionality Inference
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move 3i; Root: box ht 0.3i invis "α: p( . . . ) "; B0: box wid 1.5i with .ne at Root.s invis B1: box wid

1.5i with .nw at Root.s invis Lev1: box ht 0.3i wid 2.5i with .n at B0.se invis " β: L1, . . ., Ll, . . ., Lm

"; B2: box wid 1.5i ht 1.5i with .ne at Lev1.s invis B3: box wid 1.5i ht 1.5i with .nw at Lev1.s invis

Alpha: box ht 0.2i with .ne at B2.se invis " g χ"; B4: box wid 1i ht 1i with .ne at Alpha.s invis B5: box

wid 1i ht 1i with .nw at Alpha.s invis # box wid 0.1i ht 0.1i with .n at B4.sw box wid 0.1i ht 0.1i with .n

at B5.se # " (depth = 1)" at Lev1.e ljust " (depth = k)" at B3.se ljust # line from

Root.s to Lev1.n line from B0.ne to 2/3<B0.ne, B0.sw> line dashed from 2/3<B0.ne, B0.sw> to B0.sw

line from B1.nw to 2/3<B1.nw, B1.se> line dashed from 2/3<B1.nw, B1.se> to B1.se line from B2.ne to

2/3<B2.ne, B2.sw> line dashed from 2/3<B2.ne, B2.sw> to B2.sw line from B3.nw to 2/3<B3.nw,

B3.se> line dashed from 2/3<B3.nw, B3.se> to B3.se line from B4.ne to 2/3<B4.ne, B4.sw> line dashed

from 2/3<B4.ne, B4.sw> to 9/10<B4.ne, B4.sw> line from B5.nw to 2/3<B5.nw, B5.se> line dashed from

2/3<B5.nw, B5.se> to 9/10<B5.nw, B5.se> spline from Lev1.s down 0.5i then left 0.1i then

down 0.5i left 0.1i then left 0.1i then to Alpha.n

Figure 2

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

move 2i; B: box wid 2i ht 2i invis; "g" at B.n; "g" at B.w; "g" at B.e "g" at B.s C: box wid 0.7i with .w at

B.e invis box ht 0.3i wid 0.2i with .n at B.n invis "p" box ht 0.3i wid 0.2i with .n at B.s invis "s" "g even"

at C.e ljust box wid 0.2i ht 0.2i with .ne at B.w invis "q" box wid 0.2i ht 0.2i with .nw at B.e invis "r"

arrow from 1/20<B.n, B.w> to 19/20<B.n, B.w> arrow from 1/20<B.n, B.e> to 19/20<B.n, B.e> arrow

from 1/20<B.s, B.w> to 19/20<B.s, B.w> arrow from 1/20<B.s, B.e> to 19/20<B.s, B.e> arrow from

1/10<C.w, C.e> to 19/20<C.w, C.e> spline -> from B.n then left 0.2i up 0.2i then right 0.2i up 0.2i

then right 0.2i down 0.2i then to B.n

Figure 3: Call Graph for Example 6
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