
Global Flow Analysis as a Practical Compilation Tool 1M. V. HERMENEGILDO, R. WARREN, AND S. K. DEBRAYAbstractThis paper addresses the issue of the practicality of global
ow analysis in logic program compilation,in terms of speed of the analysis, precision, and usefulness of the information obtained. To this end,design and implementation aspects are discussed for two practical abstract interpretation-based
owanalysis systems: MA3, the MCC And-parallel Analyzer and Annotator; and Ms, an experimental modeinference system developed for SB-Prolog. The paper also provides performance data obtained from theseimplementations and, as an example of an application, a study of the usefulness of the mode informationobtained in reducing run-time checks in independent and-parallelism. Based on the results obtained, itis concluded that the overhead of global
ow analysis is not prohibitive, while the results of analysis canbe quite precise and useful.1 IntroductionThe extensive use of advanced compilation techniques [8, 22, 30, 32, 33, 34], coupled with parallel execu-tion [5, 10, 15, 20, 35], appears to be a very promising approach to achieving improved performance inlogic programming systems. Existing systems are based largely on local analysis (i.e. clause-level or, atmost, procedure-level, as in the WAM). Such techniques have already brought substantial performance im-provements to popular Prolog systems [2, 7, 29]. However, global analysis o�ers the potential to attainsubstantially better object code and therefore even higher execution speeds.The purpose of data
ow analysis is to determine, at compile time, properties of the terms that variablescan be bound to, at runtime, at di�erent points in a program. Since most \interesting" properties of programsare undecidable, the information obtained via such static analyses is typically conservative. Nevertheless itcan be used in many cases to improve the quality of code generated for the program. This has given rise toa great deal of research in
ow analysis-based optimization of logic programs (e.g. see [3, 9, 18, 21, 31, 32,34, 24]).Most of the
ow analyses that have been proposed for logic programming languages are based on atechnique called abstract interpretation [6]. The essential idea in this technique is to give a �nite description ofthe behavior of a program by symbolically executing it over an \abstract domain," which is usually a completelattice or cpo of �nite height. Elements of the abstract domain and those of the actual computational domainare related via a pair of monotone, adjoint functions referred to as the abstraction (�) and concretization (
)functions. In addition, each primitive operation f of the language is abstracted to an operation f 0 over theabstract domain. Soundness of the analysis requires that the concrete operation f and the correspondingabstract operation abs f be related as follows: for every x in the concrete computational domain, f(x) v
(abs f (�(x))).Though the idea of abstract interpretation has been applied to logic programs by various researchers[1, 17, 18, 19, 23, 25], relatively few practical implementations appear to have actually been reported in the1A preliminary version of this paper appeared in Proc. 1988 International Conference on Logic Programming. The workof M. Hermenegildo was supported in part by MCC's Deductive Computing Lab. and also in part by ESPRIT project 2471\PEPMA." The work of S. Debray was supported in part by the National Science Foundationunder grant numberCCR-8702939.1

literature: at this time, the only implemented systems that we are aware of, apart from those described inthis paper, are those of Janssens [18], Mellish [24], Taylor [31], and Van Roy [34]. However, in order thatthe analysis and optimization of large programs be practical as a compilation tool, it is necessary that suchanalysis algorithms be both precise and e�cient, and that the resulting information be of use for the intendedpurpose, be it proving properties of the program or improving execution speed. The question remains thenregarding whether
ow analysis can actually be done routinely with useful precision in a reasonable amountof time, and, if so, what implementation techniques might be used to achieve this goal.This paper addresses the issue of the practicality and implementability of
ow analyses of Prolog pro-grams. It reports on the design, implementation, and performance of two abstract interpretation-based
ow analysis systems: MA3, the MCC And-parallel Analyzer and Annotator; and Ms (\Mode system"), anexperimental
ow analysis system developed for SB-Prolog. Section 2 deals with implementation issues: itbrie
y introduces the concept of \abstract compilation" used in these two systems (Section 2.1) and discussesvarious implementation approaches and their tradeo�s regarding extension tables, program transformations,treatment of builtins, etc. (Sections 2.2-2.3). Section 3 o�ers speed and precision performance �gures and adiscussion of these results. Section 4 presents as an example an application of the mode information obtainedin the compilation of logic programs for independent and-parallel execution. Finally, Section 5 summarizesour conclusions, which indicate that quite good precision can be attained and at a reasonable cost.2 Implementation IssuesAlthough abstract interpretation of logic programs has been proposed by various researchers, the paucityof reported implementations seems to suggest that its implementation may be regarded as computationallyexpensive. We argue that such a perception is not justi�ed, and that if properly implemented, global
owanalysis systems for logic programs need not be overly expensive. In this section, various implementationissues that are relevant to the e�ciency of global data
ow analysis systems are discussed.2.1 Abstract \Compilation"A naive implementation of a global
ow analysis system, based on the technique suggested by the name\abstract interpretation," might proceed by modifying a standard meta-circular interpreter to compute overthe abstract domain. An alternative is to specialize such an abstract interpreter to deal with only theprogram under consideration. This can be done by making a single pass over the program P to be analyzedand producing a transformed program P 0 = � (P) which, when executed, yields precisely the desired
owinformation about the original program P (see Figure 1). This transformation can be thought of as a partialevaluation of the abstract interpreter with respect to the input program P being analyzed[4].The transformation � is determined by the
ow information desired. Abstract interpretation of a programconsists essentially of \simulating" its execution over an abstract domain. This is done by specifying, as partof the abstract interpretation, an \abstract operation" abs f for each primitive operation f of the language.To see how this should be done, it is necessary to make the primitive operations of the language { in ourcase, application of substitutions and uni�cation { explicit. Let these primitive operations be denoted bypredicates app subst and unify: app subst (�; t; t0) is true if and only if the substitution �, applied to the termt, yields the term t0, i.e. t0 = �(t); and unify(�; t1; t2; �) is true if and only if the terms t1 and t2, uni�edin the context of the substitution �, yield the substitution �, i.e. � = � �, where is the most generaluni�er of �(t1) and �(t2). Consider the execution of a clause p(�T0) : � q1(�T1); : : : ; qn(�Tn): Initially, eachvariable in the clause is uninstantiated. First, the arguments in the head of the clause are uni�ed with thosein the call to yield a substitution �0. The �rst literal in the body is then evaluated in the context of thissubstitution; if this succeeds yielding a new substitution �1, the next literal in the body is evaluated in thecontext of �1, and so on. Finally, when all the literals in the body have been successfully evaluated, yielding2

P 0 M 0\Approximate" program Simpli�ed Meaning
P MSource Program Source Meaningsemantics �

semantics �transformation abstraction� �-
-

? ?Figure 1: Analysis, abstraction and \approximate" programsa substitution �n, the \return value" is obtained by applying �n to the tuple of arguments in the head of theclause.This operational behavior can be made explicit by rewriting the clause as follows:p(�Xin, �Xout) :-unify(id; �Xin; �T0; �0),apply subst(�0; �T1; �T1;in), q1(�T1;in; �T1;out); unify(�0; �T1;in; �T1;out; �1),apply subst(�1; �T2; �T2;in), q2(�T2;in; �T2;out); unify(�1; �T2;in; �T2;out; �2),: : :,apply subst(�n�1; �Tn; �Tn;in); qn(�Tn;in; �Tn;out); unify(�Tn;in; �Tn;out; �n),apply subst(�n; �T0; �Xout).where �Xin, �Xout, �Ti;in and �Ti;out, i = 1; : : : ; n, are distinct new tuples of variables, and id is the identitysubstitution. Each k-ary predicate|which can be thought of as a predicate that takes one argument that isa k-tuple of terms|has been modi�ed to have two arguments: the �rst, subscripted \in", representing thetuple of arguments at the call to the predicate, and the second, subscripted \out", representing the tuple ofarguments at the return from that call.It is important that we maintain separate sets of \calling" and \return" arguments. One reason fordoing this is to make explicit the operational aspects of a logic program computation (since this is whatan abstract interpretation tries to mimic). We contend that it also has declarative virtues, since it makesexplicit the distinction between a term before a substitution is applied to it, and the term that resultsafter the application of the substitution. The most important reason for this, however, is to anticipate a3

technical di�culty in abstract interpretation | certain kinds of static analyses require that the connectionbetween \calling" and \return" values be maintained explicitly during analysis in order to avoid undue lossof precision.The corresponding abstract interpretation computation can now be described simply by replacing theprimitive operations app subst and unify by the corresponding operations over the abstract domain, denotedby abs app subst and abs unify respectively:abs p(�Xin, �Xout) :-abs unify(�(fidg); �Xin; �T0; A0),abs app subst(A0; �T1; �T1;in), abs q1(�T1;in; �T1;out), abs unify(A0; �T1;in; �T1;out; A1),abs app subst(A1; �T2; �T2;in), abs q2(�T2;in; �T2;out), abs unify(A1; �T2;in; �T2;out; A2),: : :,abs app subst(An�1; �Tn; �Tn;in), abs qn(�Tn;in; �Tn;out), abs unify(An�1; �Tn;in; �Tn;out; An),abs app subst(An; �T0; �Xout).where �(fidg) represents the abstract domain element corresponding to (the singleton set containing) theidentity substitution. The Ai are \abstract substitutions", i.e. abstract domain elements representing setsof substitutions. The resulting program is referred to as the \approximate" program.While this transformation su�ces to describe the computation over the abstract domain, it may not besuitable for direct evaluation by a top-down interpreter, e.g. Prolog. One reason for this is that abstractinterpretation requires that all possible computation paths in the program be explored. Moreover, this pro-grammay not terminate if executed directly by a top-down interpreter. Thus, additional machinery is neededto force every computation path in the program to be explored and to ensure termination once a �xpointhas been reached. We address both these issues by evaluating the approximate program using extensiontables [12]: this involves augmenting the approximate program with code to maintain and manipulate suchextension tables.The practical bene�t of this approach is that since the
ow information is obtained by executing thetransformed program directly, instead of having the underlying system execute the abstract interpreterwhich in turn symbolically executes the original program, one level of interpretation is avoided during theiterative �xpoint computation characteristic of data
ow analyses. Since much of the cost of global
owanalyses is in these iterative �xpoint computations, this results in signi�cantly more e�cient analyses. Thetechnique, which|with tongue �rmly in cheek|we refer to as \abstract compilation," was (to the best of ourknowledge) �rst suggested in [9]. Both the MA3 and Ms systems use this technique in their implementations.An important issue from the perspective of e�ciency of analysis is not only how the transformation ofthe program is performed|since the transformation process obviously represents overhead|but also howthe \approximate" program is incorporated into the Prolog system for execution. The issue of programtransformation will be returned to later, after introducing the techniques for dealing with extension tables.The approach taken in order to make the \approximate" program executable will depend greatly on the char-acteristics of the underlying system. The most immediate alternative is to \assert" the transformed clausesinto the database. Global analysis is then performed by simply calling the entry point of the transformedprogram. In a system in which asserted code is fully compiled, including indexing, this is a desirable solutionbecause of its simplicity. In many systems, however, asserted code is actually interpreted and sometimes noteven indexed. In those cases the performance advantage of \abstract compilation" is lost, since although onelevel of interpretation is eliminated another may be added. An alternative solution is to make the approxi-mate program fully compiled by storing it in a temporary �le and loading it into the Prolog system using the4

System uni�cation assert accessing asserted codeQuintus 1.6 1.0 544-1477 300-930SB-Prolog 2.3 1.0 3038-6075 103-144Sicstus 0.5 1.0 359-678 308-639Table 1: Normalized costs of some operations in representative Prolog systemsyy Abstracted from the results of a benchmark suite due to Fernando Pereira [28].standard compiler. There is an obvious tradeo� between these two alternatives: program assert overheadand perhaps slow analysis (dependent on the implementation of assert) vs. I/O and program compilationoverhead but with a lower analysis time.2.2 Implementation of Extension TablesAn important component of a
ow analysis system is the extension table [12], which is a memo structure thatrecords data
ow information during analysis. A central issue in the design of the program transformationsystem, discussed in the previous section, is the implementation of this table: while the extension tablemodule may appear to be a rather small component of the entire
ow analysis system, design and implemen-tation decisions made for this component can have profound repercussions on the design, implementation andperformance of the remainder of the system. For this reason, the issues and tradeo�s involved are discussedat some length. It is assumed that the
ow analysis system is being implemented on top of, rather than aspart of, a conventional Prolog system.2 This means that there are two basic approaches to implementingthe extension table: (i) as part of the Prolog database, with operations on the table e�ected via side e�ects,through assert and retract; and (ii) using Prolog terms as the data structures representing the table, withtable operations a�ected via uni�cation.There are several advantages to implementing the extension table as part of the Prolog database. Themost important of these is that the program transformation is simpli�ed considerably: �rstly, the tablebecomes a global structure that does not have to be passed around explicitly; more importantly, all executionpaths in the program can be explored in a relatively straightforward way. For the analysis of a programto be sound, it is necessary that every execution path that can be taken at runtime be explored duringanalysis. If operations on the table are persistent across backtracking, then this can be e�ected simply byadding a fail literal at the end of each transformed clause. The e�ect of this, when the transformed clauseis executed, is that after the body has been processed, execution is forced to backtrack into the next possibleexecution path. In this manner, every execution path in the program is considered during analysis (cutsin the source program are discarded during transformation, so they do not pose a problem). Moreover,once the transformed program has been implemented in this manner, another advantage becomes apparent:because execution is made to fail back as soon as an execution path has been explored, space used on thevarious Prolog stacks during the analysis of that path can be reclaimed relatively e�ciently. TheMA3 systemcurrently uses the Prolog database for extension table implementation. Figure 2 shows a simpli�ed versionof the program transformation used by the MA3 system applied to the familiar qsort example. '$unify'goals perform the abstract uni�cation, while the '$findmode' goals perform the failure-driven explorationof execution paths and LUB calculations.2Note that section 4 presents results from an implementation where the global analyzer is part of a (parallel) Prolog system.However, in this case the whole compiler, as is often the case, is written in standard Prolog, and the considerations in thissection still apply. 5

% Original programqsort([],R,R).qsort([X|L],R,R0) :-partition(L,X,L1,L2),qsort(L2,R1,R0),qsort(L1,R,[X|R1]).% Transformed program'compute$MODE'(qsort(A,B,C),Mode,Mode) :-'$unify'(qsort([],F,F),qsort(A,B,C)).'compute$MODE'(qsort(A,B,C),InMode,OutMode) :-'$unify'(qsort([H|I],J,K),qsort(A,B,C)),'$findmode'(partition(I,H,L,M),InMode,N),'$findmode'(qsort(M,O,K),N,P),'$findmode'(qsort(L,J,[H|O]),P,Outmode).Figure 2: Approximate program transformation in MA3.The principal disadvantage in implementing the extension table as part of the Prolog database is thatoperations on the table use assert and retract, which are relatively expensive: e.g. in three represen-tative systems, asserting a unit clause is between two and three orders of magnitude slower than doing asimple uni�cation, see Table 1. This would be less of a problem if access to asserted clauses was very fast.Unfortunately, as can be seen from Table 1, accessing asserted code is also relatively expensive in mostcurrent Prolog systems. There is also a hidden cost in the failure-driven exploration of execution paths: thisapproach requires that choice points be created at the entrance to predicates with more than one applicableclause. This can incur a signi�cant cost, since the creation of a choice point is typically relatively expensive.The tradeo�s here, however, are more complex: for example, it is di�cult to compare the cost incurred increating these choice points with the time saved in failure-driven space reclamation as compared to garbagecollection.Another approach is to implement the extension table as a Prolog term, with operations on the tablee�ected via uni�cation. The principal advantage of this approach is that assert and retract are notnecessary for manipulating the table. Instead, uni�cation|which, as mentioned above, is two to threeorders of magnitude faster|is used. The principal disadvantage of this approach is that because operationson the table are undone on failure and backtracking, the program transformation must explicitly force allexecution paths to be explored. This makes the transformation more complex. The fact that the extensiontable has to be passed around explicitly as a parameter to all relevant predicates also adds to the size of thetransformed program, which in turn increases the time and space taken to assert it.In the Ms analysis system, the extension table is maintained as a Prolog structure, and the explorationof every execution path in the program is guaranteed as follows: each transformed clause is given an extraargument, the clause number. Corresponding to each predicate there is a driver which calls each numberedclause in turn, collects the results, and returns a summary (in this case, their least upper bound) to thecaller. Thus, the transformed predicates for a predicate p with m clauses have the structure shown in Figure6

p$pred (InMode, ExtTbl, OutMode) :-p$cl(1, InMode, ExtTbl, OutMode1),: : :,p$cl(m, InMode, ExtTbl, OutModem),lub([OutMode1, ..., OutModem], OutMode).p$cl(1, InMode, ExtTbl, OutMode) :- : : :...p$cl(m, InMode, ExtTbl, OutMode) :- : : :Figure 3: Approximate program transformation in Ms.3. In systems that support indexing on asserted clauses, an index will be created on the �rst argument(corresponding to the clause number) of the transformed predicate p$cl. This has the advantage thatselection of the di�erent clauses then becomes deterministic, so no choice points need to be created for thedi�erent p$cl calls. This, in turn, leads to space and time savings. On the other hand, this approach doesnot permit failure-driven space reclamation.2.3 Other OptimizationsBecause of the high cost of assert, and the relatively slow speed of asserted code, it is advantageous to shiftas much work as possible from within asserted code to within compiled code, so as to reduce the amountof asserting necessary. For example, it is substantially cheaper not to create and assert the p$pred clauseshown in Figure 3, with m+1 literals in the body, directly as given. Instead, we de�ne a compiled predicatemode iterate that takes a template of the p$cl goals and the number of clauses m, invokes each of thep$cl goals, collects their individual output modes, computes the least upper bound of these and returns itas the overall output mode. This reduces the size (and cost) of asserting the p$pred clause signi�cantly.The p$pred clause that is asserted now looks simply likep$pred (InMode, ExtTbl, OutMode) :-mode iterate(m, p$cl(, InMode, ExtTbl,), OModes),lub(OModes, OutMode).The predicate mode iterate, which is de�ned and compiled as part of the main analysis program, is givenby the following:mode_iterate(N, Call, OModes) :-N > 0 ->(OModes = [OMode | ORest],copy_terms(Call, Copy),arg(1, Copy, N),arg(4, Copy, OMode),call(Copy),N1 is N - 1,mode_iterate(N1, Call, ORest) 7

) ;OModes = [].While this makes some extra term copying necessary at runtime (m copies of the p$cl template have to becreated), the overhead involved is usually more than o�set by the savings in assert. This is in some wayssimilar to the '$findmode' predicate used by MA3. Note that if input and output modes are always groundterms, as in the Ms system, then the call to copy terms/2 above can be replaced by two calls to functor/3.Another optimization that can result in signi�cant reductions in the amount of code asserted, and causesubstantial improvements in the speed of the system, is to eliminate clauses that are redundant with respectto success pattern computation. This of course depends on the granularity of the abstract domain. Forexample, assuming an abstract domain that represents all ground terms by a single element of the abstractdomain, given the set of facts and clausesp(a,b).p(c,[a,b,c]).p(X,X).p(e,f).p(X,Y):- g(X), h(a,Y).p(X,Y):- g(X), h(f(b),Y).they can be represented by transforming only the following subset:p(a,b).p(X,X).p(X,Y):- g(X), h(a,Y).This optimization is especially e�ective for \database" predicates, or tables, which are de�ned entirely byunit clauses. As an example of the utility of this optimization, consider the benchmarks presented in Section3. SB-Prolog's assembler, which is used in the asm benchmark, contains tables de�ning instruction names,opcodes, and their sizes: most of these clauses can be eliminated for mode inference purposes. The peepholebenchmark, which is SB-Prolog's peephole optimizer, contains large tables that contain information aboutregisters used and de�ned by di�erent instructions: many of these can likewise be eliminated. The readbenchmark, consisting of a Prolog tokenizer and parser, contains a table of operators and a table de�ning\special characters", which can also be subjected to this optimization. By eliminating redundant clauses inthis manner, two kinds of savings are realized: the space and time taken to create and assert the approximateprogram decreases; and the time taken in the �xpoint computation also decreases. In our experiments, thespeedups obtained from this optimization ranged up to a factor of 2 in some cases.Another interesting issue is the treatment of builtin predicates. One simple alternative is to simply ignoresuch predicates in the analysis. This is however not desirable because a great deal of information can bederived from builtin predicates: �rst, the output modes of many builtin predicates are known and can beapplied to subsequent goals in the path. Second, builtin predicates often require particular entry modes (forexample, some arguments must be ground, others may have to be unbound variables) or otherwise they fail.An example of this is the is/2 arithmetic predicate which requires its second argument to be ground (andan arithmetic expression). If it can be determined during the analysis that such conditions are not met thenit can be concluded that the rest of the current path will not be executed resulting in analysis time savedand potentially increased precision. In addition, if no information is available regarding an argument for8

Builtin Input Mode Output Modeis/2 ?, ground ground, ground</2 ground, ground ground, groundput/2 ground, ground ground, groundlength/2 ?,? ?, groundvar/1 ? varnumber/1 ? groundTable 2: Examples of builtin predicates modes.which a builtin predicate enforces a particular mode, it can be assumed that if execution is to continue afterthat predicate, then the argument must have been bound to that mode. Table 2 shows some examples ofmodes for builtins in a simple f?; var; groundg domain.Finally, in order to provide a starting point for the abstract analysis a number of \query forms" aregenerally given to the analyzer along with the program, corresponding to the possible points at whichexecution of the program may be invoked (alternatively, all possible queries to all possible predicates in theprogram should be considered, but this will generally severely limit the amount of information that can beobtained from the analysis). In addition, ideally query forms should also include the set of abstract entrysubstitutions for each of these possible entry points. It is interesting to note that in a Prolog system withmodules, such as Quintus Prolog [29], the module entry point information can actually be used as queryforms, since it determines the points at which the program can be accessed from outside. This property isused in the MA3 system so that in general the user does not need to provide any additional information tothe global analysis system beyond the normal module declarations, global analysis thus not imposing anyadditional burden on the programmer. For example, a Quintus module declaration such as:- module(foo, [main/2]).which is found at the beginning of a �le would instruct the system to perform global analysis of this �le,starting with the main/2 predicate. Of course, since no information is available at this point regardinginput abstract substitutions the analysis would start with :- main(?,?). The user can of course provideadditional information regarding the input abstract substitutions (for example, in MA3 via :-imode and:-omode declarations).2.4 E�ects of Program \Cleanness" on Flow AnalysisWhile \impure" language features such as var/1, nonvar/1, cut, etc., can be handled without any trouble,a signi�cant problem in reliable
ow analysis is the use of features such as call/1, not/1, etc., where theargument appearing in the program text is a variable. Such goals are di�cult and expensive to analyzecorrectly, and can a�ect the precision and e�ciency of analysis signi�cantly. A similar problem arises withassert and retract. Neither of the two
ow analysis systems described here address these problems at thistime. What is curious is that in almost every program containing such \dirty" features that we looked at,their use was not really necessary, and seemed to be a hangover from an imperative programming style. Ourexperience indicates that (i) \clean" programs are desirable not only for their aesthetic and semantic appeal,but also for the very pragmatic reason that such programs are much more amenable to compiler analysisand optimization; and (ii) \unclean" features can often be avoided with a little e�ort during coding.9

3 PerformanceIn this section we o�er timings and other statistics obtained from the two inference systems presentedin this paper (MA3 and Ms). These �gures support our claim that global program analysis need not becomputationally overwhelming: the cost fraction corresponding to a
ow analysis pass added to a typicalProlog compiler would seem to be of the order of 30-80%.Tables 3-4 and 5-6 give two di�erent performance perspectives, e�ciency and precision. The benchmarkprograms used were the following:� asm, the SB-Prolog assembler;� boyer, from the Gabriel benchmarks, by Evan Tick;� browse, from the Gabriel benchmarks, by Tep Dobry and Herve Touati;� func, a functionality inference system written for SB-Prolog;� projgeom, a program due to William Older;� peephole, the peephole optimizer used in SB-Prolog;� preprocess, a source-level preprocessor used in the SB-Prolog compiler;� queens, a program for the n-queens problem;� read + rdtok, the public-domain Prolog tokenizer and parser by Richard O'Keefe and D. H. D. Warren;and� serialize, by D. H. D. Warren.They constitute a set of \real" programs representing a wide mix of application areas, characteristics, andcoding styles.Tables 3-4 give analysis vs. compile times: as can be seen,
ow analysis takes up 27-50% of the totalcompilation time in the Ms system (actual analysis time of a benchmark is compared to the time taken bythe SB-Prolog compiler to compile the benchmark), and from 50-82% in the MA3 system (idem. with respectto the Quintus compiler). In each case, most of the time charged to mode inference is in fact taken up inasserting the \approximate" program. Thus, all these numbers could be improved by improving the e�ciencyof assert. While MA3 uses the Prolog database to implement the extension table and Ms passes arounda Prolog term, we would caution against using the �gures in Tables 3-4 to draw conclusions regarding therelative e�ciencies of these two approaches, since the speeds of the underlying Prolog systems and compilerswere very di�erent. It is also our intuition that if a combination of the techniques used in both systems (anddescribed in Section 2.2) is used, substantially better performance could be obtained.Tables 5-6 attempt to characterize the \precision" of the inference systems (di�erences in the total numberof argument positions in a program between tables 5 and 6 arise from di�erences in the set of predicatesconsidered to be \builtins" by the two mode inference systems). Table 5 gives the precision of the MA3system, in terms of the percentage of argument positions whose modes were correctly inferred. The valuesrange from 55% to 100%, in most cases lying in the 80%-90% range. Thus, MA3 proves to be quite precise,presumably due to the tracking of variable aliasing and structures of terms. Table 6 gives the precision �guresfor Ms. UnlikeMA3, Ms uses an extremely simple abstract domain \ground," \nonvariable" and \unknown"and makes no attempt to keep track of the structures of terms, relative positions of embedded variables10

Benchmark Analysis Time T1 Total Compile Time T2 T1=T2asm 63.70 96.22 0.66boyer 26.01 45.22 0.58browse 33.32 40.32 0.83func 38.20 55.14 0.69peephole 23.45 40.32 0.58preprocess 79.84 102.17 0.78projgeom 3.70 6.83 0.54queens 2.86 5.92 0.48read 64.23 82.67 0.78serialize 4.35 7.44 0.58Table 3: MA3 Compile vs. Analysis times (secs, using Quintus 2.2, Sun 3/50)Benchmark Analysis Time T1 Total Compile Time T2 T1=T2asm 103.76 242.84 0.43boyer 48.30 140.32 0.34browse 18.08 66.94 0.27func 66.00 136.94 0.48peephole 47.80 115.26 0.41preprocess 94.66 194.88 0.49projgeom 8.40 18.90 0.44queens 9.60 19.16 0.50read 68.32 155.90 0.44serialize 6.90 19.12 0.36Table 4: Ms Compile vs. Analysis times (secs, using SB-Prolog 2.3.2, Sun 3/50)
11

Benchmark TAP # \hits" % hitsasm 113 92 81.4boyer 69 38 55.0browse 47 37 78.7func 130 81 62.3peephole 36 33 91.6preprocess 139 116 83.4projgeom 27 23 85.2queens 20 20 100.0read 141 126 89.3serialize 15 13 86.6Table 5: Precision of the MA3 systemBenchmark TAP IAP # \hits" hits/IAP(%) hits/TAP(%)asm 96 69 67 97.10 69.79boyer 61 35 7 20.0 11.48browse 42 30 21 70.0 50.0func 118 87 58 66.67 49.15peephole 34 21 16 76.19 47.05preprocess 131 92 46 50.0 35.11projgeom 27 24 22 91.67 81.48queens 21 17 16 94.12 76.19read 147 85 51 60.0 34.69serialize 14 7 4 57.14 30.77Table 6: Precision of the Ms system.TAP = Total # of argument positions; IAP = # of \interesting" arg. positions.
12

within a term, etc. As a result, there are two sources of imprecission: (i) the inability to reason about \free"arguments; and (ii) lack of information about term structures. In an attempt to distinguish between theloss of precision due to these two e�ects, two di�erent measures of precision are used: the relative precision,expressed as the percentage of \interesting," i.e. non-free argument positions, whose modes are correctlyinferred by the system; and the absolute precision, expressed as the percentage of all argument positionswhose modes are correctly inferred. It can be seen that the relative precision of the Ms system ranges, inmost cases, from 70% to over 95%; for programs that pass around a lot of partially instantiated structures,such as func, preprocess, read and serialize, the lack of information about term structure results in a dropin the relative precision to between 50% and 70%. The boyer program is something of an anomaly, but theunusually low precision of inference in this case can be traced to the inference system's lack of su�cientknowledge about the builtins functor/3 and arg/3. As might be expected in this case, the inability torepresent and reason about free variables results in lower absolute precision �gures.4 An Application: And-parallelism DetectionThis section discusses the application of mode inferencing to the generation of Independent/Restricted And-parallelism [10, 15, 14], an e�cient type of parallelism in which only independent goals are executed inparallel and one of the main applications of the MA3 system. Note, however, that the application of modeinformation is in general much broader, ranging from other high-level applications, such as the improvementof Prolog's backtracking behavior, to low-level applications relating to details of code generation in Prologcompilers. Together, they underscore the importance of mode informationat all levels in optimizing compilersfor high-performance logic programming systems. This application is presented as a speci�c example of theusefulness of the information obtained from global
ow analysis.The parallelization process is herein viewed as a transformation of the original Prolog program into an&-Prolog [15, 13] program which contains (possibly conditional) parallel conjunctions of goals. Although &-Prolog supports several types of parallelizing expressions the discussion is herein limited for conciseness to thegeneration of Conditional Graph Expressions (CGEs) [15]. CGEs are a mechanism (derived from DeGroot'sECEs [10]) for the generation and control of and-parallelism. CGEs can appear in the bodies of Horn clausesand augment such clauses with conditions which determine the independence of goals and provide controlover the spawning and synchronization of such independent goals during parallel forward execution andbacktracking. A CGE is de�ned as an independence condition i cond, followed by a conjunction of goals,i.e.: (i cond => goal1 & goal2 & ... & goaln).i cond is a su�cient condition (to be checked at run-time) which when met guarantees the independenceof the goals in the conjunction. Operationally, goal1 through goaln can be run in parallel if i cond is met;otherwise they are run sequentially. Goals in a CGE may themselves be either standard Prolog goals orother CGEs so that complex execution graphs can be encoded. Such execution graphs and expressions canbe generated by the user, but a more desirable situation is, of course, that they be generated automaticallyby the compiler. Chang et al. [3], DeGroot [11], Jacobs and Langen [16], and Warren, Muthukumar, Rossi,and Hermenegildo [15, 14, 27], among others, have addressed this subject. The two main issues involved inthe CGE generation process are how to associate the goals in a clause into groups for parallel execution,and how to determine conditions for independence for each group. Given a particular goal grouping, andconsidering only local analysis (i.e. restricting the analysis to a single clause) a su�cient i cond can be givenby the conjunction [15, 14]:ground(list of variables), indep(list of tuples) 13

Usefulness of Abs. Int.Bench. #CGE Ovhd. % modes % uncond. cge checks/cgeinferred w/o ai w ai w/o ai w aiAVG N/A 38.9 83.34 9.31 52.2 3.0 0.74asm 123 33.3 81.4 27.6 47.2 1.6 0.8boyer 10 30.1 55.0 30.0 60.0 2.3 1.6browse 9 65.2 78.7 0 44.4 2.2 0.5matrix 3 38.3 82.3 0 33.3 4.7 0.6peephole 27.0 25.6 91.6 0 70.4 4.2 0.4projgeom 4.0 36.0 85.2 0 50.0 4.5 1.0queens 7 30.2 100.0 14.3 71.4 2.5 0.4read 42 48.1 89.3 11.9 59.5 2.2 0.8serialize 3.0 43.3 86.6 0 33.3 3.0 0.6Table 7: Performance of the abstract interpreter and annotatorwhere list of variables is the set of all variables which appear in more than one conjunct contained withinthe CGE, and list of tuples is the minimal set of pairs of non-shared variables which appear in di�erentconjuncts. The ground check succeeds if every variable in list of variables is instantiated to a ground termwhen the test is made at runtime; the \indep" check succeeds if for all pairs in list of tuples the two variablesin each pair are bound to terms which do not share variables.The conditions above are su�cient but not necessary in the majority of cases. Since the \indep" and\ground" checks can be expensive (e.g. if the checks are performed on deeply nested structures) it isimperative to reduce them to the minimum. A limited number of checks can be eliminated by additionallocal analysis, using knowledge about the modes of builtins and the fact that �rst occurrences of existentialvariables are always unbound [14]. However, local analysis proves to be of relatively limited utility. On theother hand, our experience with the MA3 system shows that, given a global analyzer capable of inferringgroundness and independence of variables, CGE checks can be signi�cantly reduced and sometimes eliminatedaltogether at compile time through partial evaluation with the mode information.Table 7 summarizes some of our experiments in applying inferred mode information to CGE generation.The results correspond to the \MEL" annotation algorithm [27], coupled with MA3. The table shows foreach benchmark the number of CGEs generated, the fraction (overhead) added by the global analysis timeto the actual compilation time, the percentage of modes inferred, the percentage of unconditional CGEsgenerated (i.e. for which no run-time checks are needed), and the average number of checks per CGE. A newbenchmark (matrix, a matrix multiplication program) is also shown in this table. The \Ovhd." �gures givenin this table represent actual overhead, i.e. the percentage of time added to compilation by global analysis(as opposed to the fraction of compilation time represented by the analysis). The reader may note that these�gures are also lower than those given in the previous section. This is due to the fact that in this sectionthe global analyzer is measured while embedded within the &-Prolog compiler, while for the measurementsin the previous section the analyzer was extracted from the &-Prolog compiler and run standalone on top ofQuintus Prolog, in order to make comparison with the Ms system more meaningful. The last two columnsare given with and without abstract interpretation for comparison. The number of checks per CGE issigni�cantly reduced when global analysis is applied and in a good number of cases unconditional CGEsare generated (i.e. CGEs with no checks), resulting in parallel execution with no independence detectionoverhead. It can be seen that only a minor improvement of these results would make it feasible to avoid14

run-time checks altogether by simply generating parallel code for unconditional CGEs and sequential code(rather than a CGE) for the conditional ones (as proposed in the \UDG" annotation method proposed in[27]). The usefulness of global
ow analysis in this application is therefore clear. In fact, the results presentedin Table 7 represent lower bounds on CGE optimization and are expected to improve as our analysis andparallelization tools, which are not directly the subject of the paper, mature. Most signi�cantly, the resultspresented are based on MA3 inferring term groundness only. Recent results [26, 17] show that it is possibleto infer both groundness and independence information with a high degree of accuracy. This and otherre�nements should continue to optimize the parallelization process, further improving runtime performance.Although we have concentrated on the issue of i cond determination, the groundness and independencemode information is also essential in the goal grouping process, mode analysis therefore representing animportant tool for the e�cient implementation of and-parallelism. In addition, the same techniques can beapplied to the generation of other types of (non CGE-based) execution graphs as supported by &-Prologand other types of and- and or-parallel execution. For example, the knowledge that variables are ground(and therefore, read-only) could be used to selectively avoid at compile-time multiple binding environmentmaintenance overheads in OR-parallel systems, thus extending the usefulness of this application of global
ow analysis.5 ConclusionsGlobal
ow analysis o�ers information which can be useful both in optimizing compilers and in the e�cientexploitation of parallelism, the combination of which currently appears to be the best approach towardsachieving increased performance in logic programming systems. Our experiences with the implementation oftwo
ow analysis systems for Prolog (MA3, the MCC And-parallel Analyzer and Annotator and Ms, a
owanalysis system for SB-Prolog), as reported in this paper, show that global data
ow analyses need not be tooexpensive computationally to be practical. We have proposed novel implementation techniques, shown anexample of an actual application of the information generated, and discussed some precision and performancetradeo�s. In addition, we have provided performance data obtained from the MA3 and Ms implementationsanalyzing sizeable programs, and showed positive results from applying the information generated by MA3to the problem of avoiding run-time checks in independent and-parallelism. The results showed that thesesystems are indeed practical tools: analysis time typically increases conventional compilation time by abouta factor of 2 to 3, and considerable
ow information is obtained which can result in signi�cant speedups inprogram execution. Moreover, much of the current overhead is due to having implemented only a particularsubset of the techniques presented herein and to ine�ciencies in the underlying Prolog implementations (e.g.in assert) which can be improved upon. Our conclusion is therefore that such techniques can be used toimplement global
ow analysis systems that are quite precise, yet not overly expensive.References[1] M. Bruynooghe. A Framework for the Abstract Interpretation of Logic Programs. Technical ReportCW62, Department of Computer Science, Katholieke Universiteit Leuven, October 1987.[2] M. Carlsson. Sicstus Prolog User's Manual. Po Box 1263, S-16313 Spanga, Sweden, February 1988.[3] J.-H. Chang and Alvin M. Despain. Semi-Intelligent Backtracking of Prolog Based on Static DataDependency Analysis. In International Symposium on Logic Programming, pages 10{22. IEEE ComputerSociety, July 1985.[4] M. Codish. Personal communication, July 1986.15

[5] J. S. Conery. Parallel Execution of Logic Programs. Kluwer Academic Publishers, Norwell, Ma 02061,1987.[6] P. Cousot and R. Cousot. Abstract Interpretation: A Uni�ed Lattice Model for Static Analysis ofPrograms by Construction or Approximation of Fixpoints. In Conf. Rec. 4th Acm Symp. on Prin. ofProgramming Languages, pages 238{252, 1977.[7] S. Debray. The SB-Prolog System, Version 2.3.2: A User's Manual. Technical Report 87-15, Dept. ofComputer Science, University of Arizona, March 1988.[8] S. K. Debray. A Simple Code Improvement Scheme for Prolog. In Sixth International Conference onLogic Programming, pages 17{32. MIT Press, June 1989.[9] S. K. Debray and D. S. Warren. Automatic Mode Inference for Prolog Programs. Journal of LogicProgramming, pages 207{229, September 1988.[10] D. DeGroot. Restricted AND-Parallelism. In International Conference on Fifth Generation ComputerSystems, pages 471{478. Tokyo, November 1984.[11] D. DeGroot. A Technique for Compiling Execution Graph Expressions for Restricted AND-parallelismin Logic Programs. In Proc. of the 1987 Int'l Supercomputing Conf., pages 80{89, Athens, 1987. SpringerVerlag.[12] S. W. Dietrich. Extension Tables: Memo Relations in Logic Programming. In Fourth IEEE Symposiumon Logic Programming, pages 264{272, September 1987.[13] M. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploiting Independent And-Parallelism. In 1990 International Conference on Logic Programming. MIT Press, June 1990.[14] M. Hermenegildo and F. Rossi. On the Correctness and E�ciency of Independent And-Parallelismin Logic Programs. In 1989 North American Conference on Logic Programming, pages 369{390. MITPress, October 1989.[15] M. V. Hermenegildo. An Abstract Machine Based Execution Model for Computer Architecture Designand E�cient Implementation of Logic Programs in Parallel. PhD thesis, Dept. of Electrical and Com-puter Engineering (Dept. of Computer Science TR-86-20), University of Texas at Austin, Austin, Texas78712, August 1986.[16] D. Jacobs and A. Langen. Compilation of Logic Programs for Restricted And-Parallelism. In EuropeanSymposium on Programming, pages 284{297, 1988.[17] D. Jacobs and A. Langen. Accurate and E�cient Approximation of Variable Aliasing in Logic Programs.In 1989 North American Conference on Logic Programming. MIT Press, October 1989.[18] G. Janssens. Deriving Run-time Properties of Logic Programs by means of Abstract Interpretation. PhDthesis, Dept. of Computer Science, Katholieke Universiteit Leuven, Belgium, March 1990.[19] N. Jones and H. Sondergaard. A semantics-based framework for the abstract interpretation of prolog.In Abstract Interpretation of Declarative Languages, chapter 6, pages 124{142. Ellis-Horwood, 1987.[20] L. Kale. Parallel Execution of Logic Programs: the REDUCE-OR Process Model. In Fourth Interna-tional Conference on Logic Programming, pages 616{632. Melbourne, Australia, May 1987.[21] H. Mannila and E. Ukkonen. Flow Analaysis of Prolog Programs. In 4th IEEE Symposium on LogicProgramming. IEEE Computer Society, September 1987.16

[22] A. Marien, G. Janssens, A. Mulkers, and M. Bruynooghe. The impact of abstract interpretation: anexperiment in code generation. In Sixth International Conference on Logic Programming, pages 33{47.MIT Press, June 1989.[23] K. Marriott and H. S�ndergaard. Semantics-based data
ow analysis of logic programs. InformationProcessing, pages 601{606, April 1989.[24] C. S. Mellish. Some Global Optimizations for a Prolog Compiler. Journal of Logic Programming, 2(1),April 1985.[25] C.S. Mellish. Abstract Interpretation of Prolog Programs. In Third International Conference on LogicProgramming, number 225 in Lecture Notes in Computer Science, pages 463{475. Imperial College,Springer-Verlag, July 1986.[26] K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence Information at Compile-Time Through Abstract Interpretation. In 1989 North American Conference on Logic Programming.MIT Press, October 1989.[27] K. Muthukumar and M. Hermenegildo. The DCG, UDG, and MEL Methods for Automatic Compile-time Parallelization of Logic Programs for Independent And-parallelism. In 1990 International Confer-ence on Logic Programming, pages 221{237. MIT Press, June 1990.[28] F. Pereira. Prolog Benchmarks. Prolog Electronic Digest, 5(56), August 1987.[29] Quintus Prolog User's Guide and Reference Manual|Version 6, April 1986.[30] J.-C. Tân. Prolog Optimization by Removal of Redundant Trailings. Technical report, Dept. of Com-puter Science, National Taiwan University, Taipei, April 1989.[31] A. Taylor. Removal of dereferencing and trailing in prolog compilation. In Sixth International Conferenceon Logic Programming, pages 48{60. MIT Press, June 1989.[32] A. Taylor. LIPS on a MIPS: Results from a prolog compiler for a RISC. Technical report, Associationfor Logic Programming, June 1990.[33] A. K. Turk. Compiler Optimizations for the WAM. In Third International Conference on Logic Program-ming, number 225 in Lecture Notes in Computer Science, pages 657{662. Imperial College, Springer-Verlag, July 1986.[34] P. Van Roy and A. M. Despain. The Bene�ts of Global Data
ow Analysis for an Optimizing PrologCompiler. In Proceedings of the North American Conference on Logic Programming, pages 501{515.MIT Press, October 1990.[35] D. H. D. Warren. OR-Parallel Execution Models of Prolog. In Proceedings of TAPSOFT '87, LectureNotes in Computer Science. Springer-Verlag, March 1987.
17

