Combining Global Code and Data Compaction’

Bjorn De Sutter

Bruno De Bus
Koen De Bosschere
Ghent University, Belgium

brdsutte@elis.rug.ac.be

ABSTRACT

More and more computers are being incorporated in devices
where the available amount of memory is limited. As a result
research is increasingly focusing on the automated reduction
of program size. Most if not all of the literature in this area
either focuses on code compaction or on the removal of dead
data. They are however closely related as code addresses
are nothing but data. The main contribution of this paper
is to show how combined code and data compaction can
be achieved using a link-time code compaction system that
works by reasoning about the use of both code and data
addresses. The analyses proposed are built on fundamental
properties of linked code and therefor generally applicable.
The combined code and data compaction is evaluated on
SPEC2000 and MediaBench programs, resulting in binary
program size reductions of 24.0%-45.8%. This compaction
involves no speed trade-off, as the compacted programs are
on average about 5% faster.

1. INTRODUCTION

Computers are increasingly being incorporated in devices
where the available amount of memory is limited, such as
PDAs, set-top boxes, wearables, mobile and embedded sys-
tems in general. The limitations on memory size result from
considerations such as space, weight, power consumption
and production cost. At the same time, there is a desire
to execute increasingly sophisticated applications, such as
encryption and speech recognition, on such devices. This
leads to increasingly large programs; both because of the
additional functionality that they provide, and because of
the use of modern software engineering techniques that aim
at the use of components or code libraries. These building
blocks are primarily developed with reusability and general-
ity in mind. An application developer often uses only part
of a component or a library, and because of the complex
structure of these building blocks, the linker often links a
lot of useless code and data into the application. This prob-
lem can be considered as one of the big hurdles to be taken
before modern software engineering techniques can be used
to develop mobile or embedded applications.

For these reasons, recent years have seen growing interest
in research on code and data compaction, i.e., the transfor-
mation of programs to reduce their memory footprint while
retaining the property that they can be executed directly

*The work of B. De Sutter, K. De Bosschere and B. De
Bus was supported by the Fund for Scientific Research
Flanders under grant 3G001998. The work of S. Debray was
supported in part by the National Science Foundation under
grants CCR-0073394, EIA-0080123, and ASC-9720738.

Saumya Debray
The University Of Arizona

debray@cs.arizona.edu

without requiring any decompression. Most of the literature
on compaction focuses on either code or data compaction.
Data compaction research is limited to simple literal address
removal from object files [15] or the removal of dead data
members in OO-languages, where the analysis is applied on
source code, thus forcing conservative assumptions about
library code [16]. Work on code compaction has generally
focused on identifying repeated instruction sequences within
a program and abstracting them into functions [3, 9].

In all of this work, data and code compaction have been
carried out independently of each other. It is not difficult
to see, however, that there are significant dependences be-
tween the code and data components of an executable pro-
gram. For example, unused library code that is uselessly
being linked with a program will often be accompanied by
useless data (empirical evidence indicates that 5 10% of the
library code linked with a program is unreachable [14, 13]).
Code optimizations such as dead and unreachable code elim-
ination can cause data to become unreachable as well, by
getting rid of code referring to that data. Conversely, the
elimination of unused data that contains pointers to code,
such as jump tables and virtual function tables, can cause
code to become unreachable, and potentially eliminable, as
well. The elimination of a word of storage from the data
area of a program yields exactly the same overall benefit, in
terms of memory footprint reduction, as the elimination of
a word of storage from the code area of the program. In-
deed, the two optimizations are synergistic: the elimination
of data can enable additional elimination of code, which can
enable the elimination of even more data, and so on.

The main contribution of this paper is to develop a whole-
program analysis that treats data and code elimination uni-
formly and simultaneously. We show how this can be done
using a link-time code compaction system that reasons about
both code and data addresses. Conceptually, the idea is very
simple: use constant propagation to determine the values of
addresses in code and data areas, and based on this reason-
ing identify code and data values that are not used and can
be eliminated. The resulting system achieves size reductions
that are significantly better than have been reported in the
past: for example, on the SPECint-2000 benchmark suite,
we achieve reductions of about 35% 40%, on the average,
in the number of program instructions, and 27%-32% in
the total program size (instructions+data). Our ideas rely
only on general properties of compiled code and so is not
restricted to a particular implementation context. For sim-
plicity of exposition the discussion below will focus on load-
store architectures, where arithmetic operations involve only
registers, and memory is accessed only via load and store
instructions; however, the ideas presented here are not lim-

ited to such architectures, and can be readily adapted to
architectures supporting more complex addressing modes.

2. STRUCTURE OF COMPILED CODE

The object module generated by a compiler from a source
module typically consists of several code and data sections;
examples of such sections include the code section, the con-
stant data section, the zero-initialized data section, the lit-
eral address section, etc. The linker combines a number
of such object modules into an executable program: in the
process, it puts all the sections in their final order and lo-
cation. The sections of the same type coming from different
object modules are typically combined into a single section
of that type in the final executable. To avoid confusion, in
the remainder of this paper the original sections in the ob-
ject files will be called code and data blocks, or blocks for
short. A section in an executable file is thus a juxtaposition
of blocks from the object modules from which the executable
was constructed.

To access a memory location, the address of that location
has to be loaded or computed into a register (possibly im-
plicitly, as a displacement of a base address). This register
is then used as a source operand to access that location.
Now consider the locations that an address computed in
this way could possibly refer to. In general, when generat-
ing the blocks in one object module, the compiler does not
have any information about the blocks in other object mod-
ules, such as their size or the order in which they will be
linked together. It therefore cannot make any assumptions
about the eventual locations of these blocks in the final exe-
cutable. This means that in the object code, computations
on an address pointing to some block can never yield an
address pointing to some other block in the object file, be-
cause the displacement between the two blocks is not known
at compile time. This property holds for all the blocks in
the final executable program. This means that the data in
a block is dead unless there is a pointer to that block found
in some other block (e.g., a pointer to a data block from a
code block, or vice versa) or explicitly programmed in the
code.! If there are such pointers, but they are not used for
stores, the data is read-only.

This property is fundamental to the analyses described
later in this paper, in Sections 3 and 4. Both analyses are
able to detect dead and read-only memory areas, and each
algorithm has its strengths and weaknesses. In Section 5,
they are combined to retain their strengths and overcome
their weaknesses.

Table 1 gives some insight in the distribution of the size
of the blocks containing non-zero-initialized data for the
SPECint2000 benchmark suite. Note that about one fifth
of the statically allocated data contains code or data ad-
dresses, of which more than 85% is located in read-only data
sections. Note how many of the data blocks contain at most
one or two addresses. In blocks that are 16 bytes large, the

Tt is possible, in principle, for a program to communicate
such pointers from one point in a program to another in non-
standard ways, e.g., by writing it out to a file at one program
point and reading it back in at another. The discussion here
applies even in such situations. For example, in order to
write out an address, we have to first put the address into a
register, so we can detect that the address is taken; at the
other end, code that attempts to dereference a value that
is read in will be considered to be able to access any block
where an address is taken, which will include the location
whose address was passed to it.

non-zero initialized data 2552912 bytes
non-zero intialized read-only data | 1115392 bytes
relocatable data 473580 bytes
read-only relocatable data 405412 bytes
block size = 8 bytes 32184 blocks
block size = 16 bytes 3603 blocks
16 bytes < block size < 64 bytes 738 blocks
64 bytes < block size < 256 bytes 882 blocks
256 bytes < block size < 1KB 487 blocks
1KB < block size < 4KB 257 blocks
4KB < block size < 16KB 116 blocks
16KB < block size < 64KB 22 blocks

Table 1: Some numbers on statically allocated non-
zero-initialized data and addresses summed for the
whole SPECint2000 benchmark suite.

last 8 bytes are very often padding and so contain no real
data or addresses. It is clear that most of the blocks are
small enough to put severe restrictions on the possible uses
of the data addresses.

3. GLOBALLY UNIFORM
CONSTANT PROPAGATION

As shown in [4], aggressive global optimization techniques,
such as constant propagation, achieve good results for code
compaction. One of the reasons for this success is that at
link-time address calculations are candidates for optimiza-
tion as well. Indirect data accesses and indirect control flow
transfers can often be transformed into direct data accesses
and direct control flow transfers. The behavior of the pro-
gram then becomes more explicit, thereby creating other
code optimization and compaction possibilities. As a side
benefit, the addresses stored in memory for the indirect data
accesses and control flow transfers often become dead be-
cause they are no longer loaded after this transformation.

As constant propagation (of addresses) is the driving force
behind these transformations and code compaction, we ex-
tend constant propagation to achieve the following goals:

— Detection of read-only data, which helps us refine the
control flow graph of the program by allowing us to re-
solve the possible targets of indirect control transfers.

Detection of dead data that can be removed from the
program. A potential side benefit is that the removal of
such data can result in fewer possible indirect control
transfer targets and less indirect accessible data.

Resolution of the possible targets of indirect control
transfers on the fly, i.e., during the analysis itself, since
this generally yields better results than doing it in a
separate phase. This is comparable to conditional con-
stant propagation, which basically performs on-the-fly
unreachable code elimination and performs better than
separate simple constant propagation and unreachable
code elimination [2].

3.1 Basic Constant Propagation

Figure 1 shows the pseudo-code for a basic constant prop-
agation algorithm (the reader interested in a deeper treat-
ment of constant propagation is referred to standard texts
on optimizing compilers, e.g., [17]). Here i denotes an in-
struction, r a register and m a memory location or address.

BasicConstantPropagation():
Init()
Fixpoint()

Init():
for all ¢,r : InsMap[i,r]=T
for all r : InsMap[program entry point,r] = L
MarkIns[program entry point] = TRUE

Fixpoint():
while(3i : MarkIns[i] == TRUE)
for all i with MarkIns[i] == TRUE :
MarkIns[i] = FALSE
Propagate(i,Evaluate(i))

Meet(z,y):
return z My

Evaluate(i):
switch (type(7))
case Op :
return SymbExe(4)
case Load :
let the address being loaded from be m;
if (m is a constant address A
Block[m] in constant section)
return SymbExe (%)
else
return InsMap[i] with destination register set to L
case Store :
return InsMapli|

Propagate(i, tmp):
for all successors j of i :
if (Meet(tmp, InsMap[j]) # InsMap[j])
InsMap[j] = Meet(tmp, InsMaplj])
MarkIns[j] = TRUE

Figure 1: A simplified basic constant propagation
algorithm.

InsMapli, r] is the lattice element mapped to register r at
the program point of instruction i. InsMap[i] is the array
of all register value mappings at that point. MarkIns[i] is
a boolean indicating whether the fix-point algorithm should
re-evaluate the instruction. SymbExe(i) returns the register
content mappings after symbolic execution of the instruc-
tion on its mapping. Block[m] is the data block containing
the memory location m.

The lattice this fix-point algorithm uses is depicted in Fig-
ure 2. InsMap[i,r] is mapped to T if register r has not been
defined at program point 4; it is mapped to C; if the register
holds that constant; and to L when it (possibly) does not
hold a constant value. The constant propagation algorithms
we use are optimistic: before the fix-point calculations all
register contents at all program locations are assumed to
possibly be constants, except for the values at the program
entry point.

The basic constant propagation shown in Figure 1 is kept
as simple as possible for the sake of clarity. Our implemen-
tation uses an aggressive context-sensitive interprocedural
constant propagator. It works on a low-level intermediate
representation of executable programs and so it is limited to

the propagation of register contents. No data is propagated
through memory locations, except for data in constant data
sections: if they are loaded by instructions with constant
source operands, the data is propagated into the program.
When possible, a conditional branch based on the value of
a register r propagates information about r into the succes-
sor blocks: for example, an instruction ‘beq r, ... ,” which
branches if register r is 0, propagates the information that r
has the value 0 into its true-branch. If the register tested by
a conditional branch evaluates to a constant value (i.e., the
corresponding test has a fixed known outcome), the control
flow edge that is not taken is discarded.

3.2 Globally Uniform Constant Propagation

Given our assumption that values stored in memory can
only be accessed via load instructions, it can be seen, from
the pseudo-code for load instructions (in Evaluate()) in
Figure 1, that only data values from constant data sections
will be propagated into the program. It is also clear that this
propagation does not give information about the liveness or
read-only character of the data in writable data sections. To
address these shortcomings, we extend the basic constant
propagator in four ways:

1. all statically allocated global data is assumed constant
and dead at the start of the fix-point algorithm,

2. statically allocated global data that is accessed some-
where during constant propagation is marked as live,

3. statically allocated global data that is written some-
where during constant propagation is marked as writable,

4. conditional constant propagation is extended to indi-
rect control flow transfers.

To formalize this, we need a lattice for the memory locations.
This lattice has the same structure as that shown in Figure
2, but the lattice elements now have different meanings. If
a memory location is mapped to T, this means that the
location is dead, i.e.; it cannot be used by the program and
we don’t care what it contains. Mapping a location m to
a value C; denotes that m contains the value C; and m
may be read by the program, i.e., m is live. If a location
is mapped to L, this denotes that the program may write
to this location, so for the rest of the propagation we don’t
know what value is stored there.

This lattice explains why the extended propagator is called
the Globally Uniform Constant Propagator. Statically allo-
cated global memory locations are considered to have a con-
stant value throughout the execution of the whole program
or are considered non-constant. This resembles the uniform
division used in simple off-line partial evaluators [10]. Note
that the same lattice is used for two different things: for
mapping register contents and for mapping memory loca-
tions.

The extended algorithm is given in pseudo-code in Fig-
ure 3. New or changed lines are indicated with a ‘-’ in the
left margin. In this code MemMap[m] is the lattice element
mapped to memory location m. MemRefSet[m] is the set
of instructions that during constant propagation loaded the
data at location m.

Initially, all data locations are considered to be dead by
the algorithm (mapped to T in line 4 of Init), and no loads
of data are considered to have occured (line 5 of Init). The
algorithm then iteratively identifies locations that may be
live. When a load instruction is evaluated, if the source

1nci =1

TNC =C;
CineC; = Liffi#j
CinGC; =C;iffi=j

Figure 2: The lattice used for CP and the meet rules

operand is a constant address and the corresponding mem-
ory location is not mapped to L, the statically allocated
value at that address is loaded and propagated into the pro-
gram. Because it may later turn out that this value can-
not be guaranteed to be a constant, we add the instruc-
tion to the set of instructions that loaded from this memory
location (MemRefSet[m]). This happens in the Load case
in Evaluate. This is fundamentally different from the ba-
sic constant propagator, since the edges of the control flow
graph are no longer the only links that control which in-
structions should be re-evaluated after lowering a register
mapping at some program point.

If we discover a store to some constant location in Evaluate,

WriteMem sets the mapping of that location to L. This
means that we assume worst-case behavior for this mem-
ory location: there can be loads and stores from and to it.
There might be loads in the program from that address that
we will not evaluate. Therefore, if the statically allocated
value at that location is a data address itself, we have to
assume that this address may be used for loads and stores
as well. In the algorithm, the recursive call to WriteMem
takes care of this. Note that a statically allocated value in
memory is an address if and only if it is relocatable. Our
implementation uses relocation information to distinguish
between ordinary data and addresses.

At all times during the propagation, if a constant address
is being propagated and at some point during the analysis
we lose track of exactly which address we are working with
(e.g., due to address arithmetic where one of the operands
may not be known), we make the worst-case assumption
that the program will write in the whole block containing
that address: WriteMem is executed on the whole block. We
have to make this assumption because we don’t track the
use of this address any longer, and so must make worst-case
assumptions about the ways in which it could be used. The
worst-case assumption is stated in:

e Meet(z,y): if a propagated address meets another value
or | and thereby is no longer propagated as a constant.

e Propagate(i): if the successors of an indirect control
transfer cannot be resolved at some program point,
this is modeled with a special successor node Unknown
in the control flow graph. This node is assumed to
have worst-case behavior: it reads from and writes to
all registers and all memory locations whose addresses
are propagated into it; in particular, all registers are
mapped to the lattice element L at Unknown. Com-
puting the meet of the propagated values with L at
this node assures that Meet takes care of unknown suc-
Cessors.

e Evaluate(?): if a constant address is stored, we don’t
track the use of that stored value, since our propagator
notes only that the memory location is writable (by
mapping it to L), and as a result will not load the
contents of that address later in the analysis.

Note that stores where no constant addresses are involved—
e.g., a store to an address that is loaded from a memory
location whose contents cannot be predicted statically do
not have to be treated specially. This is because the only
reason the address being stored to is unknown is that we
lost track of the possible addresses that could reach the store
instruction during propagation. As discussed above, when
we lose track of an address we make worst-case assumptions
about what may happen, so such stores are conservatively
handled by one of the three cases above.

The fundamental reason why this algorithm works is the
organization of memory into blocks, as discussed in Section
2. For a block B to be live, a pointer to that block must
be loaded somewhere in the program. If we detect such a
pointer, two things can happen: either we find all its uses
and have an accurate picture of its use, or we lose track of
the pointer somewhere and assume the worst-case scenario:
the whole block can be written. If we don’t detect a pointer
to the block in the code, there are two possible reasons:
either B is dead or it can only be accessed through data in
some block B’ but we don’t know the contents of B’. In
the latter case B’ must have been written to at some point
in the program or somewhere we had to make worst-case
assumptions about the use of data in B’, and the recursive
call in WriteMem at that point handles this.

At the end of the constant propagation, all constants (in-
cluding addresses) that are found are propagated into the
program and dead blocks are marked for removal. Further
optimization of the program may find that it is more effi-
cient to compute some loaded values instead of loading them
into a register (e.g., see [15]). Some data can additionally
become dead if this happens, and can be removed from the
program.

The fourth extension, namely the generalization of con-
ditional constant propagation to indirect control transfers,
permits on-the-fly resolution of indirect control flow trans-
fers where possible. Recall that for conditional constant
propagation, information at a conditional branch node in
the control flow graph is propagated over only one outgoing
edge if the condition of the branch evaluates to a constant.
This yields better results than simple constant propagation
followed by a separate pass of unreachable code elimina-
tion. The same holds for indirect control flow. Suppose that
prior to constant propagation we don’t know the target of
an indirect branch at some program point: as mentioned

GloballyUniformConstantPropagation():
Init()
Fixpoint()

Init():
for all i,r: InsMap[i,r]=T
for all r : InsMap[program entry point,r] = L
MarkIns[program entry point] = TRUE

— for all m : MemMap[m| =T

— for all m : MemRefSet[m] = ¢

Fixpoint():
while(3i : MarkIns[i] == TRUE)
for all i with MarkIns[i] == TRUE :
MarkIns[i] = FALSE
Propagate(i,Evaluate(i))

Evaluate(i):
switch (type(7))
case Op :
return SymbExe(4)
case Load :
let the address being loaded from be m
— if (constant address m A
— (MemMap[m] # LVBlock[m] in constant section))
— MemRefSet[m] = MemRefSet[m] U {i}
— MemMap[m] = Meet (MemMap[m], loaded value)
return SymbExe(4)
else
return InsMap[i] with destination register set to L
case Store :
— if (constant address m is stored)
— for all n in Block[m] :
— WriteMem(n)
— if (z is stored at constant destination m)
— WriteMem(m)
return InsMapli]

Propagate(i, tmp):
for all successors j of i :
if (Meet(tmp, InsMap[j]) # InsMap[j])
InsMap[j] = Meet(tmp, InsMaplj])
MarkIns[j] = TRUE

Meet(m, n):
— if (m is a constant address A (M n # m))
— for all 0 in Block[m] :
— WriteMem(o)
— if (n is a constant address A (m Mn # n))
— for all 0 in Block[n] :
— WriteMem(o)
return z My

WriteMem(m):

— if (MemMap[m] is a constant address)
— WriteMem(MemMap[m])

— MemMap[m| = Meet(MemMap[m], L)

— for all i in MemRefSet[m)] :

— MarkIns[i] = TRUE

— MemRefSet[m] = ¢

Figure 3: The Globally Uniform Constant Propaga-
tor algorithm.

earlier, this is modeled with the special successor node Un-
known that enforces worst-case behavior. Now suppose that
at some point during the fix-point iteration in the analysis,
a target address A (i.e. the address of a possible successor)
is loaded from a location A’ that is still considered read-
only. It seems likely that if the target address A reaches
the indirect branch instruction, then so will the address A’
from which it was loaded. However, if we simply propagate
the register values to Unknown, the assumptions regarding
its worst-case behavior specifically, that it may write to all
addresses propagated into it—will cause A’ to be mapped
to L. The result would be that the instruction loading the
target address has to be re-evaluated, now with the block
containing A’ marked writable. The effect of this is that
we can no longer infer that the target address loaded is A,
and so lose the ability to resolve the target of the indirect
branch.

The solution is to optimistically propagate the register
lattice mappings to the successor at address A. If it turns
out, during the rest of the fix-point computation, that the
contents of block B (where the target address A was loaded
from) cannot be overwritten on that path, then we have suc-
ceeded in resolving the target A of the indirect branch. If the
target address is overwritten at some point in the computa-
tion, the instruction loading the target address will be re-
evaluated with the block containing A’ marked as writable,
and we will correctly infer that A is not the only possible
successor of the indirect branch.

It should be emphasized that the analysis presented above
models only the code (InsMap) and the statically allocated
data (MemMap) in the program, not the entire space of ad-
dressable memory. For this reason, the memory require-
ments of the analysis are quite reasonable. The space re-
quired for MemMap[m)] for a location m consists of a word for
the C; values and an additional byte for the possibilities T
and L. In our current implementation, on a 64-bit architec-
ture, this incurs only 12% more space than the amount of
statically allocated data in the program.

3.3 Discussion

As we put forward some goals for this algorithm, it is
useful to evaluate its performance. It turns out that the
performance of the algorithm is quite poor. The problem
is the Meet operation. Suppose that m and n are constant
addresses and m # n, then Meet(m, n) will be computed as
L: this properly captures one aspect of the computation—
that the result is not a fixed constant address but at a
tremendous cost in precision, since the lattice element L
for memory addresses is interpreted as a complete lack of
information: that is, the blocks containing m and n are
considered to possibly be read from or written to during ex-
ecution. The problem with this is that it loses information
about memory blocks that are read-only, which in turn has
a significant adverse effect on the precision of the overall
analysis. In practice, almost all constant addresses propa-
gated through the program somewhere meet other constants
or non-constants in Meet. Assuming the worst-case scenario
for such addresses, that there will be loads from and stores
to their whole block, is much too conservative: it is often the
case that there are only loads using many of these addresses.

Basically, the constant propagator described here is com-
parable to monovariant partial evaluation. It is well known
that polyvariant partial evaluation performs much better.
It is also much harder to implement because of efficiency
and termination issues. In our case, fortunately, it is not

necessary to fully partially evaluate a program, since we are
only interested in what happens with the addresses. Fur-
thermore, we know that calculations on addresses can only
result in a fixed number of other addresses: they are always
limited to the block the original address points to. This
solves a possible termination problem.

4. PARTIAL EVALUATION OF ADDRESS
CALCULATIONS

The goal of partial evaluation of address calculations is,
again, the detection of dead and read-only memory loca-
tions, avoiding the weak point of the constant propagator,
i.e. the overly conservative Meet. As described below, each
constant address that is produced is propagated separately
by our partial evaluator: this makes it difficult to incor-
porate the resolution of indirect control transfers into this
analysis. Because of this, we do not attempt to resolve indi-
rect control transfers here, but instead rely on the results
obtained from the constant propagation described in the
previous section (the precision problem with Meet in the
constant propagator notwithstanding).

Our partial evaluator works in three phases, as discussed
below. The same memory lattice is used as in the constant
propagation for memory locations and all memory locations
are again initialized to T.

Phase 1. Detection of Loads/Stores at Constant Ad-
dresses.

During the first phase, the program is scanned for instruc-
tions that load or store from or to constant addresses. These
are the instructions for which the constant propagator has
found constant address arguments. The memory lattice
mappings are adjusted accordingly: if there is a load from
a constant address A, then if the constant propagator in-
dicates that location A contains a constant C' then A is
mapped to C, otherwise it is mapped to L; if there is a
store to address A, then A is mapped to L.

Phase 2. Detection of Uses of Non-Constant Ad-
dresses.

In the second phase, the program is scanned for instructions
that produce constant addresses. This is a subset of the
instructions that are found by the constant propagator to
have constant operands. In particular, we want to identify
computations where a constant address Ao is used to com-
pute other addresses Ai,...,A,. For each of the addresses
so computed, we want to keep track of the fact that they
were derived from Ag.

To do this, we carry out a mono-variant binding-time anal-
ysis for each instruction I that produces a constant result,
starting at I with its result as a static value. The specific
notions of static and dynamic variables in partial evalua-
tion theory will in the remainder of this section be called
‘constant’ and ‘non-constant,’ for consistency with the con-
stant propagation algorithm discussed in the previous sec-
tion. The lattice used here is the same as that for constant
propagation of register values, i.e., T means that the regis-
ter’s value if undefined, a value C; means that the register
is guaranteed to contain the value C;, and | means that the
value of the register may not be a fixed constant. The only
difference is that register values at program points are ini-
tialized to constants (if the constant propagator has found
them to be constant) or L if they are not constant according
to the constant propagator.

To identify addresses that are derived from other addresses,

each register is also tagged with one of the elements D or ND,
denoting, respectively, derived or not-derived from the initial
address from which the binding-time analysis was initiated.
They form a lattice with only two simple meeting rules:

NDMx==x
DMax =D

Partial evaluation proceeds as described below. Recall that
at the beginning of partial evaluation, all addresses are mapped
to T, i.e., marked as dead. Some locations then have their
mappings changed to a non-T value in Phase 1. Phase 2
then updates the mappings of yet more locations. When
changing the mapping of an address during this process, we
always set it to the meet of the old and new mappings for
that address. Thus, if the old mapping of a location is =
and we want to update it to a value y, the mapping of that
location is set to x My. Since M is associative and commu-
tative, this means that the order in which the updates are
carried out does not affect the final result. To reduce rep-
etition and simplify the presentation, the discussion below
does not explicitly refer to this aspect of updating the lattice
mappings.

e The same symbolic execution of evaluable instructions
as in constant propagation is used.

e The value (constant or L) produced by an instruc-
tion is tagged with D or ND depending on the type of
instruction and the tags of the instruction operands.
For example, an Add instruction adding some value to
a (constant or non-constant) value tagged D will result
in a tag D, as this means that some value is added to
an address derived from the original address, which
results again in an address derived from the original
address. A Compare instruction comparing a D-tagged
value to something else produces an ND mapping, since
the result of a comparison is not an address.

e In addition to the previous rule, the result of an in-
struction for which the constant propagator has found
the produced value to be a constant, is tagged ND. If
the produced value is an address, it will be propagated
in a separate binding-time analysis. This is precisely
how we avoid the problems of the Meet procedure dur-
ing constant propagation.

e If at some program-point during partial evaluation, no
registers are mapped to D, evaluation along that path
stops, since there can be no more uses of the address
or its derivatives along that path.

e If at some program-point, a register mapped to a con-
stant address C; is used as an address for a load or
store, the lattice mapping of the memory location at
that constant address is updated accordingly. In this
case, however, even if the value that is loaded can be
determined to be a constant address, it is not con-
sidered to be a derivative of the original address and
therefore loaded as a non-constant.

e If at some program-point a constant address A is it-
self stored in memory, the whole block containing the
address A has its mapping changed to L. In effect, we
assume that since A is being stored into memory, the
program may subsequently load the contents of this
memory location and use it in ways that we cannot
anticipate, so we make worst-case assumptions.

e Suppose that, during partial evaluation starting with
a constant address A, at some program point we en-
counter a load from a non-constant address tagged
with D. This means that there is a load from some ad-
dress (whose exact value we don’t know) derived from
A. Based on our earlier assumptions (see Section 2),
an address derived from A must refer to a location in
the same block as A, we conclude from this that every
location in the block containing A is live. The par-
tial evaluator therefore maps each such address to the
mapping for that address computed by the constant
propagator (i.e., either a constant C; or L).

e If at some program-point, a non-constant tagged with
D is used in a store instruction, the whole block con-
taining the original address is mapped to L. As this
is the worst case, partial evaluation is finished.

The reason why this algorithm performs better on some
places than our constant propagator is because the mono-
variant partial evaluation is performed separately for each
instruction producing a constant address. By performing
multiple mono-variant partial evaluations, we approximate
the result of a poly-variant partial evaluation and we avoid
most of the meeting between constant addresses and other
values or non-constants in the Meet procedure of the Glob-
ally Uniform Constant Propagator.

Phase 3. Fix-point Detection of Accessible Data.
The final phase consists of a fix-point computation for the
detection of accessible data. If a memory locations A is
live and it holds an address A’, then A’ is assumed to be
accessible as well. This is repeated until no new locations
are found to be accessible.

5. COMBINING THE TWO ANALYSES

Basically, both analysis result in a conservative approxi-
mation of the sets of data that are accessible or read-only.
The result of the Globally Uniform Constant Propagation
was hampered by the overly conservative Meet procedure,
while the partial evaluation suffered from indirect control
flow transfers that it had to treat very conservatively. How-
ever, each analysis is sound: that is, every memory location
that can be accessed is identified as accessible by each of
the analyses; conversely, if either analysis identifies a loca-
tion as being dead, then that location is definitely dead. To
improve precision, therefore, we take the intersection of the
two sets of accessible data: this results in a much smaller
set of data that is inferred to be accessible. Analogously,
taking the union of the two sets of dead data blocks results
in a larger set of blocks being inferred as dead.

The two analyses are combined as follows:

e Each update of the memory lattice mappings during
the constant propagation has as a lower bound the
mapping found by the partial evaluation. Thus, if
the partial evaluation maps a memory location A to
a value z and the constant propagator wishes to up-
date the mapping of A to y, then A is mapped to the
value z U y.

e The constant propagation and partial evaluation are
executed several times, on an interleaved basis: first
the constant propagation, then the partial evaluation.

e Before the first constant propagation phase, the map-
pings that have not yet been computed by the partial

language compiler

C Compaq C V6.1-011

C gee version 2.95.2 19991024
C++ Compaq C++ V6.2-024

Fortran 77 | DIGITAL Fortran 77 v5.0
Fortran 77 | g77 version 2.95.2 19991024
(front end version 0.5.25)
Fortran 90 | DIGITAL Fortran 90 v5.0

Table 2: Compilers used for generating binaries.

evaluation are set to the worst-case values, i.e., all lo-
cations are writable.

This interleaved execution of both analysis poses no prob-
lem for our code and data compaction needs, as the original
constant propagation was already performed several times,
interleaved with various other optimizations and analysis,
such as useless code elimination, inlining, copy propagation,
etc. The optimizations are repeated because they create
optimization possibilities for each other that cannot be ex-
ploited by a single run over the optimizations.

6. CODE COMPACTION INTERACTIONS

Apart from the space benefits of dead data elimination,
the primary effect of analyses described above is in the im-
provement of control flow analyses in the program. There
are two sources for such improvements: first, these analyses
allow us to resolve indirect control transfers more accurately,
which in turn makes the control flow graph more precise and
thereby improves the effects of dataflow analysis; and sec-
ond, the elimination of pointers into the code from the data
area, e.g., from within jump tables and virtual function ta-
bles, allows more code to be identified as unreachable and
discarded. Both of these, in turn, have a beneficial effect on
data elimination: improvements in the precision of the con-
trol flow graph lead to better constant propagation, while
elimination of unreachable code eliminates load instructions
that access memory, and thereby allow more data to be iden-
tified as dead and eliminated. Space constraints preclude a
more detailed discussion of these interactions, but the inter-
ested reader is referred to [4].

7. EXPERIMENTAL RESULTS

For evaluating these algorithms, we have implemented
them in SQUEEZE [4], a binary-rewriting tool that compacts
binaries for the Alpha architecture. SQUEEZE achieves code
compaction by two means. On the one hand it aggressively
applies some well known interprocedural optimizations such
as interprocedural constant propagation, context-sensitive
liveness analyses, load-store avoidance, dead code elimina-
tion, unreachable code elimination, etc. On the other hand,
SQUEEZE factors out code sequences that occur more than
once in a program. SQUEEZE is based on ArTo [13], a link-
time optimizer oriented at speeding up programs.

The benchmark programs we used for evaluating our al-
gorithms consist of all C-programs from the SPECint2000
benchmark suite, 252.eon, a C++ program from the
SPECint2000 benchmark suite, five smaller C-programs from
the MediaBench that are typical for embedded applications,
and finally some programs of the SPEC{p2000 benchmark
suite: 168.wupwise, a Fortran 77 program, and 178.galgel, a
Fortran90 program.

base code compacted code and data compaction

program text | binary text | binary text | binary

164.gzip 59412 | 327760 | 35792 (60.2%) | 254082 (77.6%) | 34848 (58.7%) | 237360 (72.4%)
175.vpr 107000 | 637056 | 72624 (67.9%) | 514176 (80.7%) | 71264 (66.6%) | 483456 (75.9%)
176.gcc 434744 | 2262816 | 312688 (71.9%) | 1795872 (79.4%) | 312048 (71.7%) | 1699264 (71.1%)
181.mcf 64072 | 345216 | 40192 (62.7%) | 271488 (78.6%) | 39024 (60.9%) | 242400 (70.2%)
186.crafty 112684 635696 79600 (70.6%) 521008 (82.0%) 79280 (70.4%) 482784 (76.0%)
197.parser 92156 | 493232 | 59344 (64.4%) | 378544 (76.7%) | 58224 (61.2%) | 347168 (70.4%)
253.perlbmk | 221928 | 1144512 153616 (69.2%) 882368 (77.1%) 153280 (69.1%) 828192 (72.4%)
254.gap 216984 | 1025616 | 151200 (69.7%) | 779856 (76.0%) | 150176 (69.2%) | 755136 (73.6%)
255.vortex 211320 | 1289600 126304 (59.7%) 961920 (74.6%) 125344 (59.3%) 895808 (69.5%)
256.bzip?2 55288 | 311472 | 33424 (60.5%) | 245936 (79.0%) | 32432 (58.7%) | 229376 (73.6%)
300.twolf 134556 736080 93872 (69.8%) 588624 (80.0%) 92720 (68.9%) 521712 (70.9%)
MEAN 66.1% 78.3% 65.0% 72.0%
adpcm 44560 257424 25328 (56.8%) 191888 (74.5%) 24272 (54.5%) 183520 (71.3%)
epic 71432 | 388960 | 44608 (62.5%) | 298848 (76.8%) | 43408 (60.8%) | 277104 (71.2%)
gsm 63828 | 351712 | 38400 (60.2%) | 269762 (76.7%) | 37360 (58.5%) | 249024 (70.8%)
mpeg2dec 68384 | 384976 | 43424 (63.5%) | 303056 (78.8%) | 42320 (61.9%) | 281920 (73.2%)
mpeg2enc 85236 | 475168 | 57616 (67.6%) | 376864 (79.3%) | 56416 (66.2%) | 347088 (73.0%)
MFEAN 62.1% 77.2% 60.4% 71.9%
252.eon 178608 961136 91648 (51.3%) 625264 (65.1%) 86192 (48.3%) 520880 (54.2%)
168.wupwise | 161440 | 824400 | 95376 (59.1%) | 578640 (70.2%) | 87664 (54.3%) | 481952 (58.5%)
178.galgel 209868 | 1035424 | 133648 (63.7%) 748704 (72.3%) | 125872 (60.0%) 658576 (63.6%)

Table 3: Number of instructions and binary program size (bytes) for the benchmarks generated by the
Compagq compilers (base), after code compaction and after combined code and data compaction. The ratio’s

given are all compared to the base binaries.

The compilers we used to generate the binaries are given
in Table 2. These compilers use different libraries, which is
useful to show the generality of our techniques. All binaries
were compiled with the -O2 flags, resulting in base binaries
that are optimized for space and time. For linking, Com-
paq’s Id was used with flags -r -d -z -m -non_shared. This
way statically linked executables are produced, containing
symbol and relocation information. The -m flag makes the
linker dump a map indicating where the blocks of the object
files are located in the final binary. It is this map we use to
divide the data section into blocks.

The overall code and program size reductions using our
combined analyses are given in Tables 3 and 4 for bina-
ries generated by Compaq and Gnu compilers. The average
program size reductions for the SPECint2000 benchmarks
are 27.6% and 32.1%, depending on the compilers used and
therefore on the libraries linked with the program. Com-
pared to the numbers for code compaction only, they are
5.9% and 5.5% higher. This results largely from the removal
of dead data and less from additional elimination of code, as
the gain in code size reduction is much smaller. The results
for the MediaBench programs are similar.

The results for the C++ program, 252.eon, are quite re-
markable. More than half of the instructions is removed
from the program, which, together with the removal of dead
data, results in a program compaction of 46.8%. The re-
sult is that the statically linked, compacted binary is 5.1%
smaller than the dynamically linked one! The reason is the
dynamically linked program consists for a large part of a
dynamic string and symbol table.

The results obtained for 168.wupwise and 178.galgel show
that also for scientific applications program compaction yields
good results. Note that, despite the fact that the g77-
compiled binary for 168.wupwise is more than a factor 2
smaller than the f77-compiled one (which is due to the use
of much smaller libraries), the relative compaction results
for both binaries do not differ that much. On the one hand,
this confirms our believe that the size of a program is not

only correlated to the functionality needed by the program-
mer, but also highly depends on the libraries used. On the
other hand the size of the compacted binaries shows that
there is much room for progression, as the f77-compiled and
compacted binary is still more than a factor 1.8 larger than
the g77-compiled and compacted one. The number of in-
structions in both binaries even differs with more than a
factor of 2.

Table 5 compares the execution times for the base pro-
grams, the base programs with profile-directed code layout
added, and the programs resulting from SQUEEZE. The ex-
periments were run on a 500 MHz Compaq Alpha 21164
EV56 processor with a split primary direct mapped cache (8
KB each of instruction and data cache), 96 KB of on-chip
secondary cache, 8 MB of off-chip backup cache, and 512
Mbytes of main memory, running Tru64 Unix 5.0a. It can
be seen that the compaction of code and data typically does
not come at the cost of speed: e.g., for the SPECint-2000
benchmarks the compacted programs are, on the average,
about 5% faster than the original programs.

Table 6 shows the total memory footprint (i.e. the largest
amount of memory an application takes during its execu-
tion) for the MediaBench programs. The average compaction
is 17.2%. This is not only due to the code and data com-
paction, but also to the removal of unnecessary stack-spills
by SQUEEZE.

8. RELATED WORK

There is a considerable body of work on code compres-
sion, but much of this focuses on compressing executable
files as much as possible in order to reduce storage or trans-
mission costs [5, 6, 7, 8, 11, 12]. These approaches gen-
erally produce compressed representables that are smaller
than those obtained using our approach, but have the draw-
back that they must either be decompressed to their original
size before they can be executed [5, 6, 7, 8] —which can be
problematic for limited-memory devices or require special

base code compacted code and data compaction

program text | binary text | binary text | binary

164.gzip 57502 | 318592 | 30464 (52.8%) | 228480 (71.7%) | 29472 (51.2%) | 211888 (66.5%)
175.vpr 100108 | 542544 | 62912 (62.8%) | 411472 (75.8%) | 61584 (61.5%) | 380336 (70.1%)
176.gce 434376 | 2139184 | 281040 (64.7%) | 1557552 (72.8%) | 280416 (64.6%) | 1445952 (67.6%)
181.mcf 60252 | 326848 | 37040 (61.5%) | 253120 (77.4%) | 35872 (59.5%) | 232400 (71.1%)
186.crafty 106204 | 574224 | 71008 (66.9%) | 451344 (78.6%) | 69872 (65.8%) | 413008 (71.9%)
197.parser 86904 | 456608 | 53408 (61.5%) | 341920 (74.9%) | 52032 (59.9%) | 310496 (68.0%)
253.perlbmk | 210244 | 1085136 | 130816 (62.2%) 790224 (72.8%) | 130912 (62.3%) 719344 (66.2%)
254.gap 186188 | 876944 | 115216 (61.9%) | 614800 (70.1%) | 114176 (61.3%) | 590064 (67.3%)
255.vortex | 213876 | 1112144 | 116400 (54.4%) | 735312 (66.1%) | 115280 (53.9%) | 672160 (60.4%)
256.bzip?2 49932 | 284528 | 28400 (56.9%) | 210800 (74.1%) | 27408 (54.9%) | 202432 (71.1%)
300.twolf 123856 631984 77248 (62.4%) 459952 (72.8%) 76160 (61.5%) 420880 (66.6%)
MEAN 60.7% 73.4% 59.7% 67.9%
adpcm 41208 240848 22704 (55.1%) 183552 (76.2%) 21600 (52.4%) 166944 (69.3%)
epic 67196 | 368496 | 41040 (61.1%) | 278384 (75.5%) | 39888 (59.4%) | 264752 (71.8%)
gsm 59180 | 328432 | 32800 (55.4%) | 246512 (75.1%) | 31680 (53.5%) | 229888 (70.0%)
mpeg2dec 63064 | 363104 | 37424 (59.4%) | 272992 (75.2%) | 36288 (57.5%) | 251664 (69.3%)
mpeg2enc 81420 | 444640 | 52800 (64.8%) | 346336 (77.9%) | 51584 (63.4%) | 316576 (71.2%)
MFEAN 59.2% 76.0% 57.2% 70.3%

[168.wupwise | 69784 | 395216 | 41024 (58.8%) [305104 (77.2%) [39008 (55.9%) [258416 (65.4%) |

Table 4: Number of instructions and binary program size in bytes for the benchmarks generated by the GNU
compilers (base), after code compaction and after combined code and data compaction. The ratio’s given are

all compared to the base binaries.

hardware support for executing the compressed code directly
[11, 12]. By contrast, programs compacted using our tech-
niques can be executed directly without any decompression
or special hardware support.

Most of the previous work on code compaction to yield
smaller executables treats an executable program as a sim-
ple linear sequence of instructions [1, 3, 9, 18]. They use
suffix trees to identify repeated instructions in the program
and abstract them out into functions. None of these works
address the issue of reducing the size of the data section
within a program. The size reductions they report are mod-
est, averaging about 4 7%. We have recently showed that
an alternative approach, using the conventional control flow
graph representation of a program and based by and large on
aggressive inter-procedural compiler optimizations aimed at
eliminating code, can achieve significant reductions in code
size, averaging around 30% [4]. However, this work does not
take into account the removal of dead data, and the syner-
gistic effect this has on the removal of unnecessary code.
The work we have reported in this paper yields overall size
reductions that are about 5-6% higher than that reported in
our earlier work [4], this improvement coming mainly from
the removal of dead data.

The elimination of unused data from a program has been
considered by Srivastava and Wall [15] and Sweeney and Tip
[16]. Srivastava and Wall, describing a link-time optimiza-
tion technique for improving the code for subroutine calls in
Alpha executables, observe that the optimization allows the
elimination of most of the global address table entries in the
executables. However, their focus is primarily on improving
execution speed, and they do not investigate the elimination
of data areas other than the global address table. The work
of Sweeney and Tip is restricted to eliminating dead data
members in C++ programs, and so is not applicable to non-
object-oriented programs; by contrast, our approach, which
works on executable programs, can be applied to programs
written in any language. Neither of these works addresses
the close relationship between the elimination of data and
the elimination of code. Sweeney reports a size reduction
of 4.4% on the average; by considering the elimination of

both code and data, by contrast, we achieve size reductions
of 27-32% overall.

9. CONCLUSIONSAND FUTURE WORK

Because of the growing deployment of mobile and embed-
ded processors with a limited amount of available memory,
techniques that reduce the memory footprint of programs
are becoming increasingly important. Previous work on
this topic has typically focused either on the reduction of
data areas or on reduction of code areas, but not on both,
even though there are obvious dependences and synergies
between the two. This paper describes a low-level analy-
sis that reasons about the use of code and data addresses
within programs, and thereby is able to exploit these depen-
dences and synergies. Experimental results indicate that the
resulting system achieves significantly better memory foot-
print reductions than previous work.

The algorithms proposed in this paper can be refined in a
number of ways: a more precise analysis of stack behavior
can lower the number of program points at which worst-case
assumptions have to be made. Instead of not following the
use of a stack-saved address, it will then be possible to follow
its use from the places where the address is reloaded from
the stack. Using a poly-variant partial evaluation for each
produced address will produce better results as well.

Another way to increase the performance of these algo-
rithms is to split the data blocks in smaller ones. At link-
time, interval analysis could be a useful algorithm to head
in this direction.

Compilers could assist this process as well, e.g. by in-
dicating borders in the data sections of object files that
are not crossed by address computations. They might even
produce multiple object files for each source code file. All
statically declared objects that have no overlap with other
objects in memory can be put in another object file. This
might occasionally result in less efficient object code because
the compiler does not know the relation between the ad-
dresses of those objects. Link-time optimizers such as ALTO
or SQUEEZE will easily remove these ineffecienties though.

Compaq compilers GNU compilers
program base | profiled | compacted base | compacted
164.gzip T152 | LILL (96.4%) | 1155 (100.3%) | 1180 | 1110 (94.3%)
175.vpr 919 | 897 (97.6% 767 (83.5%) | 1012 | 830 (82.0%)
176.gce 865 | 813 (94.0%) | 837 (96.8%) | 874 | 874 (100.1%)
181.mcf 1463 | 1455 (99.5%) | 1485 (101.5%) | 1493 | 1476 (98.6%)
186.crafty 660 | 610 (92.4%) | 577 (87.4%) | 632 | 644 (102.6%)
197.parser 1800 1663 (92.4% 1740 (96.7%) | 1795 | 1724 (96.3%)
253.perlbmk 942 | 904 (96.0%) | 872 (92.6%) | 969 | 889 (92.3%)
254.gap 1008 | 956 (94.8%) | 1053 (104.5%) | 902 | 875 (97.0%)
255.vortex 1299 | 1202 (92.5%) | 1023 (78.8%) | 1603 | 1186 (74.4%)
256.bzip2 1139 | 1089 (95.6%) | 1086 (95.3%) | 1205 | 1023 (84.1%)
300.twolf 1657 | 1827 (110.3% 1560 (94.1%) | 1921 | 1750 (91.6%)
GEOM. MEAN | 1173 | 1139 (97.1%) | 1105 (97.2%) | 1235 | 1126 (91.1%) |
adpcm 115 | 11.7 (101.7%) | 12.3 (107.0%) | 16.1 | 15.2 (100.7%)
epic 116 | 113 (97.4%) | 12.0 (103.4%) | 14.1 | 16.7 (118.4%)
gsm 119 | 12.9 (108.4%) | 11.8 (99.2%) | 14.3 | 12.8 (89.5%)
mpeg2dec 115 | 10.8 (93.9%) | 14.2 (123.5%) | 21.2 | 19.3 (91.0%)
mpeg2enc 11.7 2 (78.6%) | 11.5(98.3%) | 17.3 | 16.1 (93.1%)
GROM. MEAN | 11.6 | 11.2(96.5%) | 124 (106.2%) | 164 | 16.0 (97.7%)
252.eom 780 | 792 (101.6%) | 848 (1087%) | - -
168.wupwise 1082 | 1114 (103.0%) | 1013 (93.6%) | 1255 | 1213 (96.7%)
178.galgel 2697 | 2827 (104.8% 2728 (101.1%) - -

Table 5: Execution times for the base binaries, the profile-feedback generated binaries and the code and data
compacted binaries.

Table 6: Total Memory Footprint for the Media-

program base compacted
adpcm 312 K 208 K (66.7%)
gsm 456 K 344 K (75.4%)
epic 1.70 M | 1.58 M (92.9%)
mpeg2dec 888 K 768 K (86.5%)
mpeg2enc | 1.88 M | 1.74 M (92.6%)
MEAN 82.8%

Bench programs.

10.

1]

(3]

[4]

[7]

(8]

REFERENCES
B. S. Baker and U. Manber. Deducing similarities in
Java sources from bytecodes. In Proc. USENIX
Annual Technical Conference, pages 179-190,
Berkeley, CA, June 1998. Usenix.
C. Click and K. Cooper. Combining analyses,
combining optimizations. ACM TOPLAS,
17(2):181-196, March 1995.
K. Cooper and N. Mclntosh. Enhanced code
compression for embedded RISC processors. In Proc.
PLDI, pages 139-149, May 1999.
S. Debray, W. Evans, R. Muth, and B. De Sutter.
Compiler techniques for code compression. ACM
TOPLAS, 22(2):378-415, March 2000.
J. Ernst, W. Evans, C. Fraser, S. Lucco, and
T. Proebsting. Code compression. In Proc. PLDI,
pages 358-365, June 1997.
M. Franz. Adaptive compression of syntax trees and
iterative dynamic code optimization: Two basic
technologies for mobile-object systems. In J. Vitek
and C. Tschudin, editors, Mobile Object Systems:
Towards the Programmable Internet, number 1222 in
LNCS, pages 263-276. Springer, Feb. 1997.
M. Franz and T. Kistler. Slim binaries.
ACM, 40(12):87 94, Dec. 1997.
C. Fraser. Automatic inference of models for
statistical code compression. In Proc. PLDI, pages

Commumn.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

242-246, May 1999.

C. Fraser, E. Myers, and A. Wendt. Analyzing and
compressing assembly code. In Proc. ACM SIGPLAN
Symposium on Compiler Construction, volume 19,
pages 117-121, June 1984.

N. Jones, C. Gomard, and P. Sestoft. Partial
Evaluation and Automatic Program Generation.
Prentice-Hall International, 1993.

T. M. Kemp, R. M. Montoye, J. D. Harper, J. D.
Palmer, and D. J. Auerbach. A decompression core for
powerpc. IBM J. Research and Development, 42(6),
November 1998.

K. D. Kissell. Mips16: High-density mips for the
embedded market. In Proc. Real Time Systems 97
(RTS97), 1997.

R. Muth, S. Debray, S. Watterson, and

K. De Bosschere. alto : A link-time optimizer for the
compaq alpha. Software Practice and Ezperience,
2001. (to appear).

A. Srivastava. Unreachable procedures in
object-oriented programming. ACM Letters on
Programming Languages and Systems, 1(4):355 364,
December 1992.

A. Srivastava and W. Wall. Link-time optimization of
address calculation on a 64-bit architecture. In Proc.
PLDI, pages 49-60, June 1994.

P. Sweeney. and F. Tip. A study of dead data
members in C++ applications. In Proc. PLDI, pages
324-323, June 1998.

M. Wegman and F. Zadeck. Constant propagation
with conditional branches. ACM TOPLAS,
13(2):181-210, April 1991.

M. J. Zastre. Compacting object code via
parameterized procedural abstraction. Master’s thesis,
Dept. of Computing Science, Univ. of Victoria, 1993.

