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ABSTRACTMore and more 
omputers are being in
orporated in devi
eswhere the available amount of memory is limited. As a resultresear
h is in
reasingly fo
using on the automated redu
tionof program size. Most if not all of the literature in this areaeither fo
uses on 
ode 
ompa
tion or on the removal of deaddata. They are however 
losely related as 
ode addressesare nothing but data. The main 
ontribution of this paperis to show how 
ombined 
ode and data 
ompa
tion 
anbe a
hieved using a link-time 
ode 
ompa
tion system thatworks by reasoning about the use of both 
ode and dataaddresses. The analyses proposed are built on fundamentalproperties of linked 
ode and therefor generally appli
able.The 
ombined 
ode and data 
ompa
tion is evaluated onSPEC2000 and MediaBen
h programs, resulting in binaryprogram size redu
tions of 24.0%{45.8%. This 
ompa
tioninvolves no speed trade-o�, as the 
ompa
ted programs areon average about 5% faster.
1. INTRODUCTIONComputers are in
reasingly being in
orporated in devi
eswhere the available amount of memory is limited, su
h asPDAs, set-top boxes, wearables, mobile and embedded sys-tems in general. The limitations on memory size result from
onsiderations su
h as spa
e, weight, power 
onsumptionand produ
tion 
ost. At the same time, there is a desireto exe
ute in
reasingly sophisti
ated appli
ations, su
h asen
ryption and spee
h re
ognition, on su
h devi
es. Thisleads to in
reasingly large programs, both be
ause of theadditional fun
tionality that they provide, and be
ause ofthe use of modern software engineering te
hniques that aimat the use of 
omponents or 
ode libraries. These buildingblo
ks are primarily developed with reusability and general-ity in mind. An appli
ation developer often uses only partof a 
omponent or a library, and be
ause of the 
omplexstru
ture of these building blo
ks, the linker often links alot of useless 
ode and data into the appli
ation. This prob-lem 
an be 
onsidered as one of the big hurdles to be takenbefore modern software engineering te
hniques 
an be usedto develop mobile or embedded appli
ations.For these reasons, re
ent years have seen growing interestin resear
h on 
ode and data 
ompa
tion, i.e., the transfor-mation of programs to redu
e their memory footprint whileretaining the property that they 
an be exe
uted dire
tly�The work of B. De Sutter, K. De Boss
here and B. DeBus was supported by the Fund for S
ienti�
 Resear
h {Flanders under grant 3G001998. The work of S. Debray wassupported in part by the National S
ien
e Foundation undergrants CCR-0073394, EIA-0080123, and ASC-9720738.

without requiring any de
ompression. Most of the literatureon 
ompa
tion fo
uses on either 
ode or data 
ompa
tion.Data 
ompa
tion resear
h is limited to simple literal addressremoval from obje
t �les [15℄ or the removal of dead datamembers in OO-languages, where the analysis is applied onsour
e 
ode, thus for
ing 
onservative assumptions aboutlibrary 
ode [16℄. Work on 
ode 
ompa
tion has generallyfo
used on identifying repeated instru
tion sequen
es withina program and abstra
ting them into fun
tions [3, 9℄.In all of this work, data and 
ode 
ompa
tion have been
arried out independently of ea
h other. It is not diÆ
ultto see, however, that there are signi�
ant dependen
es be-tween the 
ode and data 
omponents of an exe
utable pro-gram. For example, unused library 
ode that is uselesslybeing linked with a program will often be a

ompanied byuseless data (empiri
al eviden
e indi
ates that 5{10% of thelibrary 
ode linked with a program is unrea
hable [14, 13℄).Code optimizations su
h as dead and unrea
hable 
ode elim-ination 
an 
ause data to be
ome unrea
hable as well, bygetting rid of 
ode referring to that data. Conversely, theelimination of unused data that 
ontains pointers to 
ode,su
h as jump tables and virtual fun
tion tables, 
an 
ause
ode to be
ome unrea
hable, and potentially eliminable, aswell. The elimination of a word of storage from the dataarea of a program yields exa
tly the same overall bene�t, interms of memory footprint redu
tion, as the elimination ofa word of storage from the 
ode area of the program. In-deed, the two optimizations are synergisti
: the eliminationof data 
an enable additional elimination of 
ode, whi
h 
anenable the elimination of even more data, and so on.The main 
ontribution of this paper is to develop a whole-program analysis that treats data and 
ode elimination uni-formly and simultaneously. We show how this 
an be doneusing a link-time 
ode 
ompa
tion system that reasons aboutboth 
ode and data addresses. Con
eptually, the idea is verysimple: use 
onstant propagation to determine the values ofaddresses in 
ode and data areas, and based on this reason-ing identify 
ode and data values that are not used and 
anbe eliminated. The resulting system a
hieves size redu
tionsthat are signi�
antly better than have been reported in thepast: for example, on the SPECint-2000 ben
hmark suite,we a
hieve redu
tions of about 35%{40%, on the average,in the number of program instru
tions, and 27%{32% inthe total program size (instru
tions+data). Our ideas relyonly on general properties of 
ompiled 
ode and so is notrestri
ted to a parti
ular implementation 
ontext. For sim-pli
ity of exposition the dis
ussion below will fo
us on load-store ar
hite
tures, where arithmeti
 operations involve onlyregisters, and memory is a

essed only via load and storeinstru
tions; however, the ideas presented here are not lim-



ited to su
h ar
hite
tures, and 
an be readily adapted toar
hite
tures supporting more 
omplex addressing modes.
2. STRUCTURE OF COMPILED CODEThe obje
t module generated by a 
ompiler from a sour
emodule typi
ally 
onsists of several 
ode and data se
tions;examples of su
h se
tions in
lude the 
ode se
tion, the 
on-stant data se
tion, the zero-initialized data se
tion, the lit-eral address se
tion, et
. The linker 
ombines a numberof su
h obje
t modules into an exe
utable program: in thepro
ess, it puts all the se
tions in their �nal order and lo-
ation. The se
tions of the same type 
oming from di�erentobje
t modules are typi
ally 
ombined into a single se
tionof that type in the �nal exe
utable. To avoid 
onfusion, inthe remainder of this paper the original se
tions in the ob-je
t �les will be 
alled 
ode and data blo
ks, or blo
ks forshort. A se
tion in an exe
utable �le is thus a juxtapositionof blo
ks from the obje
t modules from whi
h the exe
utablewas 
onstru
ted.To a

ess a memory lo
ation, the address of that lo
ationhas to be loaded or 
omputed into a register (possibly im-pli
itly, as a displa
ement of a base address). This registeris then used as a sour
e operand to a

ess that lo
ation.Now 
onsider the lo
ations that an address 
omputed inthis way 
ould possibly refer to. In general, when generat-ing the blo
ks in one obje
t module, the 
ompiler does nothave any information about the blo
ks in other obje
t mod-ules, su
h as their size or the order in whi
h they will belinked together. It therefore 
annot make any assumptionsabout the eventual lo
ations of these blo
ks in the �nal exe-
utable. This means that in the obje
t 
ode, 
omputationson an address pointing to some blo
k 
an never yield anaddress pointing to some other blo
k in the obje
t �le, be-
ause the displa
ement between the two blo
ks is not knownat 
ompile time. This property holds for all the blo
ks inthe �nal exe
utable program. This means that the data ina blo
k is dead unless there is a pointer to that blo
k foundin some other blo
k (e.g., a pointer to a data blo
k from a
ode blo
k, or vi
e versa) or expli
itly programmed in the
ode.1 If there are su
h pointers, but they are not used forstores, the data is read-only.This property is fundamental to the analyses des
ribedlater in this paper, in Se
tions 3 and 4. Both analyses areable to dete
t dead and read-only memory areas, and ea
halgorithm has its strengths and weaknesses. In Se
tion 5,they are 
ombined to retain their strengths and over
ometheir weaknesses.Table 1 gives some insight in the distribution of the sizeof the blo
ks 
ontaining non-zero-initialized data for theSPECint2000 ben
hmark suite. Note that about one �fthof the stati
ally allo
ated data 
ontains 
ode or data ad-dresses, of whi
h more than 85% is lo
ated in read-only datase
tions. Note how many of the data blo
ks 
ontain at mostone or two addresses. In blo
ks that are 16 bytes large, the1It is possible, in prin
iple, for a program to 
ommuni
atesu
h pointers from one point in a program to another in non-standard ways, e.g., by writing it out to a �le at one programpoint and reading it ba
k in at another. The dis
ussion hereapplies even in su
h situations. For example, in order towrite out an address, we have to �rst put the address into aregister, so we 
an dete
t that the address is taken; at theother end, 
ode that attempts to dereferen
e a value thatis read in will be 
onsidered to be able to a

ess any blo
kwhere an address is taken, whi
h will in
lude the lo
ationwhose address was passed to it.

non-zero initialized data 2552912 bytesnon-zero intialized read-only data 1115392 bytesrelo
atable data 473580 bytesread-only relo
atable data 405412 bytesblo
k size = 8 bytes 32184 blo
ksblo
k size = 16 bytes 3603 blo
ks16 bytes < blo
k size � 64 bytes 738 blo
ks64 bytes < blo
k size � 256 bytes 882 blo
ks256 bytes < blo
k size � 1KB 487 blo
ks1KB < blo
k size � 4KB 257 blo
ks4KB < blo
k size � 16KB 116 blo
ks16KB < blo
k size � 64KB 22 blo
ksTable 1: Some numbers on stati
ally allo
ated non-zero-initialized data and addresses summed for thewhole SPECint2000 ben
hmark suite.last 8 bytes are very often padding and so 
ontain no realdata or addresses. It is 
lear that most of the blo
ks aresmall enough to put severe restri
tions on the possible usesof the data addresses.
3. GLOBALLY UNIFORM

CONSTANT PROPAGATIONAs shown in [4℄, aggressive global optimization te
hniques,su
h as 
onstant propagation, a
hieve good results for 
ode
ompa
tion. One of the reasons for this su

ess is that atlink-time address 
al
ulations are 
andidates for optimiza-tion as well. Indire
t data a

esses and indire
t 
ontrol 
owtransfers 
an often be transformed into dire
t data a

essesand dire
t 
ontrol 
ow transfers. The behavior of the pro-gram then be
omes more expli
it, thereby 
reating other
ode optimization and 
ompa
tion possibilities. As a sidebene�t, the addresses stored in memory for the indire
t dataa

esses and 
ontrol 
ow transfers often be
ome dead be-
ause they are no longer loaded after this transformation.As 
onstant propagation (of addresses) is the driving for
ebehind these transformations and 
ode 
ompa
tion, we ex-tend 
onstant propagation to a
hieve the following goals:{ Dete
tion of read-only data, whi
h helps us re�ne the
ontrol 
ow graph of the program by allowing us to re-solve the possible targets of indire
t 
ontrol transfers.{ Dete
tion of dead data that 
an be removed from theprogram. A potential side bene�t is that the removal ofsu
h data 
an result in fewer possible indire
t 
ontroltransfer targets and less indire
t a

essible data.{ Resolution of the possible targets of indire
t 
ontroltransfers on the 
y, i.e., during the analysis itself, sin
ethis generally yields better results than doing it in aseparate phase. This is 
omparable to 
onditional 
on-stant propagation, whi
h basi
ally performs on-the-
yunrea
hable 
ode elimination and performs better thanseparate simple 
onstant propagation and unrea
hable
ode elimination [2℄.
3.1 Basic Constant PropagationFigure 1 shows the pseudo-
ode for a basi
 
onstant prop-agation algorithm (the reader interested in a deeper treat-ment of 
onstant propagation is referred to standard textson optimizing 
ompilers, e.g., [17℄). Here i denotes an in-stru
tion, r a register and m a memory lo
ation or address.



Basi
ConstantPropagation():Init()Fixpoint()Init():for all i; r : InsMap[i; r℄ = >for all r : InsMap[program entry point; r℄ = ?MarkIns[program entry point℄ = TRUEFixpoint():while(9i : MarkIns[i℄ == TRUE)for all i with MarkIns[i℄ == TRUE :MarkIns[i℄ = FALSEPropagate(i; Evaluate(i))Meet(x; y):return x u yEvaluate(i):swit
h (type(i))
ase Op :return SymbExe(i)
ase Load :let the address being loaded from be m;if (m is a 
onstant address ^Blo
k[m℄ in 
onstant se
tion)return SymbExe(i)elsereturn InsMap[i℄ with destination register set to ?
ase Store :return InsMap[i℄Propagate(i; tmp):for all su

essors j of i :if (Meet(tmp; InsMap[j℄) 6= InsMap[j℄)InsMap[j℄ = Meet(tmp; InsMap[j℄)MarkIns[j℄ = TRUEFigure 1: A simpli�ed basi
 
onstant propagationalgorithm.InsMap[i; r℄ is the latti
e element mapped to register r atthe program point of instru
tion i. InsMap[i℄ is the arrayof all register value mappings at that point. MarkIns[i℄ isa boolean indi
ating whether the �x-point algorithm shouldre-evaluate the instru
tion. SymbExe(i) returns the register
ontent mappings after symboli
 exe
ution of the instru
-tion on its mapping. Blo
k[m℄ is the data blo
k 
ontainingthe memory lo
ation m.The latti
e this �x-point algorithm uses is depi
ted in Fig-ure 2. InsMap[i; r℄ is mapped to > if register r has not beende�ned at program point i; it is mapped to Ci if the registerholds that 
onstant; and to ? when it (possibly) does nothold a 
onstant value. The 
onstant propagation algorithmswe use are optimisti
: before the �x-point 
al
ulations allregister 
ontents at all program lo
ations are assumed topossibly be 
onstants, ex
ept for the values at the programentry point.The basi
 
onstant propagation shown in Figure 1 is keptas simple as possible for the sake of 
larity. Our implemen-tation uses an aggressive 
ontext-sensitive interpro
edural
onstant propagator. It works on a low-level intermediaterepresentation of exe
utable programs and so it is limited to

the propagation of register 
ontents. No data is propagatedthrough memory lo
ations, ex
ept for data in 
onstant datase
tions: if they are loaded by instru
tions with 
onstantsour
e operands, the data is propagated into the program.When possible, a 
onditional bran
h based on the value ofa register r propagates information about r into the su

es-sor blo
ks: for example, an instru
tion `beq r, : : : ,' whi
hbran
hes if register r is 0, propagates the information that rhas the value 0 into its true-bran
h. If the register tested bya 
onditional bran
h evaluates to a 
onstant value (i.e., the
orresponding test has a �xed known out
ome), the 
ontrol
ow edge that is not taken is dis
arded.
3.2 Globally Uniform Constant PropagationGiven our assumption that values stored in memory 
anonly be a

essed via load instru
tions, it 
an be seen, fromthe pseudo-
ode for load instru
tions (in Evaluate()) inFigure 1, that only data values from 
onstant data se
tionswill be propagated into the program. It is also 
lear that thispropagation does not give information about the liveness orread-only 
hara
ter of the data in writable data se
tions. Toaddress these short
omings, we extend the basi
 
onstantpropagator in four ways:1. all stati
ally allo
ated global data is assumed 
onstantand dead at the start of the �x-point algorithm,2. stati
ally allo
ated global data that is a

essed some-where during 
onstant propagation is marked as live,3. stati
ally allo
ated global data that is written some-where during 
onstant propagation is marked as writable,4. 
onditional 
onstant propagation is extended to indi-re
t 
ontrol 
ow transfers.To formalize this, we need a latti
e for the memory lo
ations.This latti
e has the same stru
ture as that shown in Figure2, but the latti
e elements now have di�erent meanings. Ifa memory lo
ation is mapped to >, this means that thelo
ation is dead, i.e., it 
annot be used by the program andwe don't 
are what it 
ontains. Mapping a lo
ation m toa value Ci denotes that m 
ontains the value Ci and mmay be read by the program, i.e., m is live. If a lo
ationis mapped to ?, this denotes that the program may writeto this lo
ation, so for the rest of the propagation we don'tknow what value is stored there.This latti
e explains why the extended propagator is 
alledthe Globally Uniform Constant Propagator. Stati
ally allo-
ated global memory lo
ations are 
onsidered to have a 
on-stant value throughout the exe
ution of the whole programor are 
onsidered non-
onstant. This resembles the uniformdivision used in simple o�-line partial evaluators [10℄. Notethat the same latti
e is used for two di�erent things: formapping register 
ontents and for mapping memory lo
a-tions.The extended algorithm is given in pseudo-
ode in Fig-ure 3. New or 
hanged lines are indi
ated with a `�' in theleft margin. In this 
ode MemMap[m℄ is the latti
e elementmapped to memory lo
ation m. MemRefSet[m℄ is the setof instru
tions that during 
onstant propagation loaded thedata at lo
ation m.Initially, all data lo
ations are 
onsidered to be dead bythe algorithm (mapped to > in line 4 of Init), and no loadsof data are 
onsidered to have o

ured (line 5 of Init). Thealgorithm then iteratively identi�es lo
ations that may belive. When a load instru
tion is evaluated, if the sour
e



>
?Ci Ci+1Ci�1 ...... ?u Ci = ?>u Ci = CiCi u Cj = ? i� i 6= jCi u Cj = Ci i� i = jFigure 2: The latti
e used for CP and the meet rulesoperand is a 
onstant address and the 
orresponding mem-ory lo
ation is not mapped to ?, the stati
ally allo
atedvalue at that address is loaded and propagated into the pro-gram. Be
ause it may later turn out that this value 
an-not be guaranteed to be a 
onstant, we add the instru
-tion to the set of instru
tions that loaded from this memorylo
ation (MemRefSet[m℄). This happens in the Load 
asein Evaluate. This is fundamentally di�erent from the ba-si
 
onstant propagator, sin
e the edges of the 
ontrol 
owgraph are no longer the only links that 
ontrol whi
h in-stru
tions should be re-evaluated after lowering a registermapping at some program point.If we dis
over a store to some 
onstant lo
ation in Evaluate,WriteMem sets the mapping of that lo
ation to ?. Thismeans that we assume worst-
ase behavior for this mem-ory lo
ation: there 
an be loads and stores from and to it.There might be loads in the program from that address thatwe will not evaluate. Therefore, if the stati
ally allo
atedvalue at that lo
ation is a data address itself, we have toassume that this address may be used for loads and storesas well. In the algorithm, the re
ursive 
all to WriteMemtakes 
are of this. Note that a stati
ally allo
ated value inmemory is an address if and only if it is relo
atable. Ourimplementation uses relo
ation information to distinguishbetween ordinary data and addresses.At all times during the propagation, if a 
onstant addressis being propagated and at some point during the analysiswe lose tra
k of exa
tly whi
h address we are working with(e.g., due to address arithmeti
 where one of the operandsmay not be known), we make the worst-
ase assumptionthat the program will write in the whole blo
k 
ontainingthat address: WriteMem is exe
uted on the whole blo
k. Wehave to make this assumption be
ause we don't tra
k theuse of this address any longer, and so must make worst-
aseassumptions about the ways in whi
h it 
ould be used. Theworst-
ase assumption is stated in:� Meet(x; y): if a propagated address meets another valueor? and thereby is no longer propagated as a 
onstant.� Propagate(i): if the su

essors of an indire
t 
ontroltransfer 
annot be resolved at some program point,this is modeled with a spe
ial su

essor node Unknownin the 
ontrol 
ow graph. This node is assumed tohave worst-
ase behavior: it reads from and writes toall registers and all memory lo
ations whose addressesare propagated into it; in parti
ular, all registers aremapped to the latti
e element ? at Unknown. Com-puting the meet of the propagated values with ? atthis node assures that Meet takes 
are of unknown su
-
essors.

� Evaluate(i): if a 
onstant address is stored, we don'ttra
k the use of that stored value, sin
e our propagatornotes only that the memory lo
ation is writable (bymapping it to ?), and as a result will not load the
ontents of that address later in the analysis.Note that stores where no 
onstant addresses are involved|e.g., a store to an address that is loaded from a memorylo
ation whose 
ontents 
annot be predi
ted stati
ally|donot have to be treated spe
ially. This is be
ause the onlyreason the address being stored to is unknown is that welost tra
k of the possible addresses that 
ould rea
h the storeinstru
tion during propagation. As dis
ussed above, whenwe lose tra
k of an address we make worst-
ase assumptionsabout what may happen, so su
h stores are 
onservativelyhandled by one of the three 
ases above.The fundamental reason why this algorithm works is theorganization of memory into blo
ks, as dis
ussed in Se
tion2. For a blo
k B to be live, a pointer to that blo
k mustbe loaded somewhere in the program. If we dete
t su
h apointer, two things 
an happen: either we �nd all its usesand have an a

urate pi
ture of its use, or we lose tra
k ofthe pointer somewhere and assume the worst-
ase s
enario:the whole blo
k 
an be written. If we don't dete
t a pointerto the blo
k in the 
ode, there are two possible reasons:either B is dead or it 
an only be a

essed through data insome blo
k B0 but we don't know the 
ontents of B0. Inthe latter 
ase B0 must have been written to at some pointin the program or somewhere we had to make worst-
aseassumptions about the use of data in B0, and the re
ursive
all in WriteMem at that point handles this.At the end of the 
onstant propagation, all 
onstants (in-
luding addresses) that are found are propagated into theprogram and dead blo
ks are marked for removal. Furtheroptimization of the program may �nd that it is more eÆ-
ient to 
ompute some loaded values instead of loading theminto a register (e.g., see [15℄). Some data 
an additionallybe
ome dead if this happens, and 
an be removed from theprogram.The fourth extension, namely the generalization of 
on-ditional 
onstant propagation to indire
t 
ontrol transfers,permits on-the-
y resolution of indire
t 
ontrol 
ow trans-fers where possible. Re
all that for 
onditional 
onstantpropagation, information at a 
onditional bran
h node inthe 
ontrol 
ow graph is propagated over only one outgoingedge if the 
ondition of the bran
h evaluates to a 
onstant.This yields better results than simple 
onstant propagationfollowed by a separate pass of unrea
hable 
ode elimina-tion. The same holds for indire
t 
ontrol 
ow. Suppose thatprior to 
onstant propagation we don't know the target ofan indire
t bran
h at some program point: as mentioned



GloballyUniformConstantPropagation():Init()Fixpoint()Init():for all i; r : InsMap[i; r℄ = >for all r : InsMap[program entry point; r℄ = ?MarkIns[program entry point℄ = TRUE� for all m : MemMap[m℄ = >� for all m : MemRefSet[m℄ = �Fixpoint():while(9i : MarkIns[i℄ == TRUE)for all i with MarkIns[i℄ == TRUE :MarkIns[i℄ = FALSEPropagate(i; Evaluate(i))Evaluate(i):swit
h (type(i))
ase Op :return SymbExe(i)
ase Load :let the address being loaded from be m� if (
onstant address m ^� (MemMap[m℄ 6= ?_Blo
k[m℄ in 
onstant se
tion))� MemRefSet[m℄ = MemRefSet[m℄ [ fig� MemMap[m℄ = Meet(MemMap[m℄; loaded value)return SymbExe(i)elsereturn InsMap[i℄ with destination register set to ?
ase Store :� if (
onstant address m is stored)� for all n in Blo
k[m℄ :� WriteMem(n)� if (x is stored at 
onstant destination m)� WriteMem(m)return InsMap[i℄Propagate(i; tmp):for all su

essors j of i :if (Meet(tmp; InsMap[j℄) 6= InsMap[j℄)InsMap[j℄ = Meet(tmp; InsMap[j℄)MarkIns[j℄ = TRUEMeet(m; n):� if (m is a 
onstant address ^ (m u n 6= m))� for all o in Blo
k[m℄ :� WriteMem(o)� if (n is a 
onstant address ^ (m u n 6= n))� for all o in Blo
k[n℄ :� WriteMem(o)return x u yWriteMem(m):� if (MemMap[m℄ is a 
onstant address)� WriteMem(MemMap[m℄)� MemMap[m℄ = Meet(MemMap[m℄;?)� for all i in MemRefSet[m℄ :� MarkIns[i℄ = TRUE� MemRefSet[m℄ = �Figure 3: The Globally Uniform Constant Propaga-tor algorithm.

earlier, this is modeled with the spe
ial su

essor node Un-known that enfor
es worst-
ase behavior. Now suppose thatat some point during the �x-point iteration in the analysis,a target address A (i.e. the address of a possible su

essor)is loaded from a lo
ation A0 that is still 
onsidered read-only. It seems likely that if the target address A rea
hesthe indire
t bran
h instru
tion, then so will the address A0from whi
h it was loaded. However, if we simply propagatethe register values to Unknown, the assumptions regardingits worst-
ase behavior|spe
i�
ally, that it may write to alladdresses propagated into it|will 
ause A0 to be mappedto ?. The result would be that the instru
tion loading thetarget address has to be re-evaluated, now with the blo
k
ontaining A0 marked writable. The e�e
t of this is thatwe 
an no longer infer that the target address loaded is A,and so lose the ability to resolve the target of the indire
tbran
h.The solution is to optimisti
ally propagate the registerlatti
e mappings to the su

essor at address A. If it turnsout, during the rest of the �x-point 
omputation, that the
ontents of blo
k B (where the target address A was loadedfrom) 
annot be overwritten on that path, then we have su
-
eeded in resolving the target A of the indire
t bran
h. If thetarget address is overwritten at some point in the 
omputa-tion, the instru
tion loading the target address will be re-evaluated with the blo
k 
ontaining A0 marked as writable,and we will 
orre
tly infer that A is not the only possiblesu

essor of the indire
t bran
h.It should be emphasized that the analysis presented abovemodels only the 
ode (InsMap) and the stati
ally allo
ateddata (MemMap) in the program, not the entire spa
e of ad-dressable memory. For this reason, the memory require-ments of the analysis are quite reasonable. The spa
e re-quired for MemMap[m℄ for a lo
ation m 
onsists of a word forthe Ci values and an additional byte for the possibilities >and ?. In our 
urrent implementation, on a 64-bit ar
hite
-ture, this in
urs only 12% more spa
e than the amount ofstati
ally allo
ated data in the program.
3.3 DiscussionAs we put forward some goals for this algorithm, it isuseful to evaluate its performan
e. It turns out that theperforman
e of the algorithm is quite poor. The problemis the Meet operation. Suppose that m and n are 
onstantaddresses and m 6= n, then Meet(m;n) will be 
omputed as?: this properly 
aptures one aspe
t of the 
omputation|that the result is not a �xed 
onstant address|but at atremendous 
ost in pre
ision, sin
e the latti
e element ?for memory addresses is interpreted as a 
omplete la
k ofinformation: that is, the blo
ks 
ontaining m and n are
onsidered to possibly be read from or written to during ex-e
ution. The problem with this is that it loses informationabout memory blo
ks that are read-only, whi
h in turn hasa signi�
ant adverse e�e
t on the pre
ision of the overallanalysis. In pra
ti
e, almost all 
onstant addresses propa-gated through the program somewhere meet other 
onstantsor non-
onstants in Meet. Assuming the worst-
ase s
enariofor su
h addresses, that there will be loads from and storesto their whole blo
k, is mu
h too 
onservative: it is often the
ase that there are only loads using many of these addresses.Basi
ally, the 
onstant propagator des
ribed here is 
om-parable to monovariant partial evaluation. It is well knownthat polyvariant partial evaluation performs mu
h better.It is also mu
h harder to implement be
ause of eÆ
ien
yand termination issues. In our 
ase, fortunately, it is not



ne
essary to fully partially evaluate a program, sin
e we areonly interested in what happens with the addresses. Fur-thermore, we know that 
al
ulations on addresses 
an onlyresult in a �xed number of other addresses: they are alwayslimited to the blo
k the original address points to. Thissolves a possible termination problem.
4. PARTIAL EVALUATION OF ADDRESS

CALCULATIONSThe goal of partial evaluation of address 
al
ulations is,again, the dete
tion of dead and read-only memory lo
a-tions, avoiding the weak point of the 
onstant propagator,i.e. the overly 
onservative Meet. As des
ribed below, ea
h
onstant address that is produ
ed is propagated separatelyby our partial evaluator: this makes it diÆ
ult to in
or-porate the resolution of indire
t 
ontrol transfers into thisanalysis. Be
ause of this, we do not attempt to resolve indi-re
t 
ontrol transfers here, but instead rely on the resultsobtained from the 
onstant propagation des
ribed in theprevious se
tion (the pre
ision problem with Meet in the
onstant propagator notwithstanding).Our partial evaluator works in three phases, as dis
ussedbelow. The same memory latti
e is used as in the 
onstantpropagation for memory lo
ations and all memory lo
ationsare again initialized to >.Phase 1. Dete
tion of Loads/Stores at Constant Ad-dresses.During the �rst phase, the program is s
anned for instru
-tions that load or store from or to 
onstant addresses. Theseare the instru
tions for whi
h the 
onstant propagator hasfound 
onstant address arguments. The memory latti
emappings are adjusted a

ordingly: if there is a load froma 
onstant address A, then if the 
onstant propagator in-di
ates that lo
ation A 
ontains a 
onstant C then A ismapped to C, otherwise it is mapped to ?; if there is astore to address A, then A is mapped to ?.Phase 2. Dete
tion of Uses of Non-Constant Ad-dresses.In the se
ond phase, the program is s
anned for instru
tionsthat produ
e 
onstant addresses. This is a subset of theinstru
tions that are found by the 
onstant propagator tohave 
onstant operands. In parti
ular, we want to identify
omputations where a 
onstant address A0 is used to 
om-pute other addresses A1; : : : ; An. For ea
h of the addressesso 
omputed, we want to keep tra
k of the fa
t that theywere derived from A0.To do this, we 
arry out a mono-variant binding-time anal-ysis for ea
h instru
tion I that produ
es a 
onstant result,starting at I with its result as a stati
 value. The spe
i�
notions of stati
 and dynami
 variables in partial evalua-tion theory will in the remainder of this se
tion be 
alled`
onstant' and `non-
onstant,' for 
onsisten
y with the 
on-stant propagation algorithm dis
ussed in the previous se
-tion. The latti
e used here is the same as that for 
onstantpropagation of register values, i.e., > means that the regis-ter's value if unde�ned, a value Ci means that the registeris guaranteed to 
ontain the value Ci, and ? means that thevalue of the register may not be a �xed 
onstant. The onlydi�eren
e is that register values at program points are ini-tialized to 
onstants (if the 
onstant propagator has foundthem to be 
onstant) or ? if they are not 
onstant a

ordingto the 
onstant propagator.To identify addresses that are derived from other addresses,

ea
h register is also tagged with one of the elements D or ND,denoting, respe
tively, derived or not-derived from the initialaddress from whi
h the binding-time analysis was initiated.They form a latti
e with only two simple meeting rules:ND u x = xD u x = DPartial evaluation pro
eeds as des
ribed below. Re
all thatat the beginning of partial evaluation, all addresses are mappedto >, i.e., marked as dead. Some lo
ations then have theirmappings 
hanged to a non-> value in Phase 1. Phase 2then updates the mappings of yet more lo
ations. When
hanging the mapping of an address during this pro
ess, wealways set it to the meet of the old and new mappings forthat address. Thus, if the old mapping of a lo
ation is xand we want to update it to a value y, the mapping of thatlo
ation is set to x u y. Sin
e u is asso
iative and 
ommu-tative, this means that the order in whi
h the updates are
arried out does not a�e
t the �nal result. To redu
e rep-etition and simplify the presentation, the dis
ussion belowdoes not expli
itly refer to this aspe
t of updating the latti
emappings.� The same symboli
 exe
ution of evaluable instru
tionsas in 
onstant propagation is used.� The value (
onstant or ?) produ
ed by an instru
-tion is tagged with D or ND depending on the type ofinstru
tion and the tags of the instru
tion operands.For example, an Add instru
tion adding some value toa (
onstant or non-
onstant) value tagged D will resultin a tag D, as this means that some value is added toan address derived from the original address, whi
hresults again in an address derived from the originaladdress. A Compare instru
tion 
omparing a D-taggedvalue to something else produ
es an ND mapping, sin
ethe result of a 
omparison is not an address.� In addition to the previous rule, the result of an in-stru
tion for whi
h the 
onstant propagator has foundthe produ
ed value to be a 
onstant, is tagged ND. Ifthe produ
ed value is an address, it will be propagatedin a separate binding-time analysis. This is pre
iselyhow we avoid the problems of the Meet pro
edure dur-ing 
onstant propagation.� If at some program-point during partial evaluation, noregisters are mapped to D, evaluation along that pathstops, sin
e there 
an be no more uses of the addressor its derivatives along that path.� If at some program-point, a register mapped to a 
on-stant address Ci is used as an address for a load orstore, the latti
e mapping of the memory lo
ation atthat 
onstant address is updated a

ordingly. In this
ase, however, even if the value that is loaded 
an bedetermined to be a 
onstant address, it is not 
on-sidered to be a derivative of the original address andtherefore loaded as a non-
onstant.� If at some program-point a 
onstant address A is it-self stored in memory, the whole blo
k 
ontaining theaddress A has its mapping 
hanged to ?. In e�e
t, weassume that sin
e A is being stored into memory, theprogram may subsequently load the 
ontents of thismemory lo
ation and use it in ways that we 
annotanti
ipate, so we make worst-
ase assumptions.



� Suppose that, during partial evaluation starting witha 
onstant address A, at some program point we en-
ounter a load from a non-
onstant address taggedwith D. This means that there is a load from some ad-dress (whose exa
t value we don't know) derived fromA. Based on our earlier assumptions (see Se
tion 2),an address derived from A must refer to a lo
ation inthe same blo
k as A, we 
on
lude from this that everylo
ation in the blo
k 
ontaining A is live. The par-tial evaluator therefore maps ea
h su
h address to themapping for that address 
omputed by the 
onstantpropagator (i.e., either a 
onstant Ci or ?).� If at some program-point, a non-
onstant tagged withD is used in a store instru
tion, the whole blo
k 
on-taining the original address is mapped to ?. As thisis the worst 
ase, partial evaluation is �nished.The reason why this algorithm performs better on somepla
es than our 
onstant propagator is be
ause the mono-variant partial evaluation is performed separately for ea
hinstru
tion produ
ing a 
onstant address. By performingmultiple mono-variant partial evaluations, we approximatethe result of a poly-variant partial evaluation and we avoidmost of the meeting between 
onstant addresses and othervalues or non-
onstants in the Meet pro
edure of the Glob-ally Uniform Constant Propagator.Phase 3. Fix-point Dete
tion of A

essible Data.The �nal phase 
onsists of a �x-point 
omputation for thedete
tion of a

essible data. If a memory lo
ations A islive and it holds an address A0, then A0 is assumed to bea

essible as well. This is repeated until no new lo
ationsare found to be a

essible.
5. COMBINING THE TWO ANALYSESBasi
ally, both analysis result in a 
onservative approxi-mation of the sets of data that are a

essible or read-only.The result of the Globally Uniform Constant Propagationwas hampered by the overly 
onservative Meet pro
edure,while the partial evaluation su�ered from indire
t 
ontrol
ow transfers that it had to treat very 
onservatively. How-ever, ea
h analysis is sound: that is, every memory lo
ationthat 
an be a

essed is identi�ed as a

essible by ea
h ofthe analyses; 
onversely, if either analysis identi�es a lo
a-tion as being dead, then that lo
ation is de�nitely dead. Toimprove pre
ision, therefore, we take the interse
tion of thetwo sets of a

essible data: this results in a mu
h smallerset of data that is inferred to be a

essible. Analogously,taking the union of the two sets of dead data blo
ks resultsin a larger set of blo
ks being inferred as dead.The two analyses are 
ombined as follows:� Ea
h update of the memory latti
e mappings duringthe 
onstant propagation has as a lower bound themapping found by the partial evaluation. Thus, ifthe partial evaluation maps a memory lo
ation A toa value x and the 
onstant propagator wishes to up-date the mapping of A to y, then A is mapped to thevalue x t y.� The 
onstant propagation and partial evaluation areexe
uted several times, on an interleaved basis: �rstthe 
onstant propagation, then the partial evaluation.� Before the �rst 
onstant propagation phase, the map-pings that have not yet been 
omputed by the partial

language 
ompilerC Compaq C V6.1-011C g

 version 2.95.2 19991024C++ Compaq C++ V6.2-024Fortran 77 DIGITAL Fortran 77 v5.0Fortran 77 g77 version 2.95.2 19991024(front end version 0.5.25)Fortran 90 DIGITAL Fortran 90 v5.0Table 2: Compilers used for generating binaries.evaluation are set to the worst-
ase values, i.e., all lo-
ations are writable.This interleaved exe
ution of both analysis poses no prob-lem for our 
ode and data 
ompa
tion needs, as the original
onstant propagation was already performed several times,interleaved with various other optimizations and analysis,su
h as useless 
ode elimination, inlining, 
opy propagation,et
. The optimizations are repeated be
ause they 
reateoptimization possibilities for ea
h other that 
annot be ex-ploited by a single run over the optimizations.
6. CODE COMPACTION INTERACTIONSApart from the spa
e bene�ts of dead data elimination,the primary e�e
t of analyses des
ribed above is in the im-provement of 
ontrol 
ow analyses in the program. Thereare two sour
es for su
h improvements: �rst, these analysesallow us to resolve indire
t 
ontrol transfers more a

urately,whi
h in turn makes the 
ontrol 
ow graph more pre
ise andthereby improves the e�e
ts of data
ow analysis; and se
-ond, the elimination of pointers into the 
ode from the dataarea, e.g., from within jump tables and virtual fun
tion ta-bles, allows more 
ode to be identi�ed as unrea
hable anddis
arded. Both of these, in turn, have a bene�
ial e�e
t ondata elimination: improvements in the pre
ision of the 
on-trol 
ow graph lead to better 
onstant propagation, whileelimination of unrea
hable 
ode eliminates load instru
tionsthat a

ess memory, and thereby allow more data to be iden-ti�ed as dead and eliminated. Spa
e 
onstraints pre
lude amore detailed dis
ussion of these intera
tions, but the inter-ested reader is referred to [4℄.
7. EXPERIMENTAL RESULTSFor evaluating these algorithms, we have implementedthem in Squeeze [4℄, a binary-rewriting tool that 
ompa
tsbinaries for the Alpha ar
hite
ture. Squeeze a
hieves 
ode
ompa
tion by two means. On the one hand it aggressivelyapplies some well known interpro
edural optimizations su
has interpro
edural 
onstant propagation, 
ontext-sensitiveliveness analyses, load-store avoidan
e, dead 
ode elimina-tion, unrea
hable 
ode elimination, et
. On the other hand,Squeeze fa
tors out 
ode sequen
es that o

ur more thanon
e in a program. Squeeze is based on Alto [13℄, a link-time optimizer oriented at speeding up programs.The ben
hmark programs we used for evaluating our al-gorithms 
onsist of all C-programs from the SPECint2000ben
hmark suite, 252.eon, a C++ program from theSPECint2000 ben
hmark suite, �ve smaller C-programs fromthe MediaBen
h that are typi
al for embedded appli
ations,and �nally some programs of the SPECfp2000 ben
hmarksuite: 168.wupwise, a Fortran 77 program, and 178.galgel, aFortran90 program.



base 
ode 
ompa
ted 
ode and data 
ompa
tionprogram text binary text binary text binary164.gzip 59412 327760 35792 (60.2%) 254032 (77.5%) 34848 (58.7%) 237360 (72.4%)175.vpr 107000 637056 72624 (67.9%) 514176 (80.7%) 71264 (66.6%) 483456 (75.9%)176.g

 434744 2262816 312688 (71.9%) 1795872 (79.4%) 312048 (71.7%) 1699264 (71.1%)181.m
f 64072 345216 40192 (62.7%) 271488 (78.6%) 39024 (60.9%) 242400 (70.2%)186.
rafty 112684 635696 79600 (70.6%) 521008 (82.0%) 79280 (70.4%) 482784 (76.0%)197.parser 92156 493232 59344 (64.4%) 378544 (76.7%) 58224 (61.2%) 347168 (70.4%)253.perlbmk 221928 1144512 153616 (69.2%) 882368 (77.1%) 153280 (69.1%) 828192 (72.4%)254.gap 216984 1025616 151200 (69.7%) 779856 (76.0%) 150176 (69.2%) 755136 (73.6%)255.vortex 211320 1289600 126304 (59.7%) 961920 (74.6%) 125344 (59.3%) 895808 (69.5%)256.bzip2 55288 311472 33424 (60.5%) 245936 (79.0%) 32432 (58.7%) 229376 (73.6%)300.twolf 134556 736080 93872 (69.8%) 588624 (80.0%) 92720 (68.9%) 521712 (70.9%)MEAN 66.1% 78.3% 65.0% 72.4%adp
m 44560 257424 25328 (56.8%) 191888 (74.5%) 24272 (54.5%) 183520 (71.3%)epi
 71432 388960 44608 (62.5%) 298848 (76.8%) 43408 (60.8%) 277104 (71.2%)gsm 63828 351712 38400 (60.2%) 269762 (76.7%) 37360 (58.5%) 249024 (70.8%)mpeg2de
 68384 384976 43424 (63.5%) 303056 (78.8%) 42320 (61.9%) 281920 (73.2%)mpeg2en
 85236 475168 57616 (67.6%) 376864 (79.3%) 56416 (66.2%) 347088 (73.0%)MEAN 62.1% 77.2% 60.4% 71.9%252.eon 178608 961136 91648 (51.3%) 625264 (65.1%) 86192 (48.3%) 520880 (54.2%)168.wupwise 161440 824400 95376 (59.1%) 578640 (70.2%) 87664 (54.3%) 481952 (58.5%)178.galgel 209868 1035424 133648 (63.7%) 748704 (72.3%) 125872 (60.0%) 658576 (63.6%)Table 3: Number of instru
tions and binary program size (bytes) for the ben
hmarks generated by theCompaq 
ompilers (base), after 
ode 
ompa
tion and after 
ombined 
ode and data 
ompa
tion. The ratio'sgiven are all 
ompared to the base binaries.The 
ompilers we used to generate the binaries are givenin Table 2. These 
ompilers use di�erent libraries, whi
h isuseful to show the generality of our te
hniques. All binarieswere 
ompiled with the -O2 
ags, resulting in base binariesthat are optimized for spa
e and time. For linking, Com-paq's ld was used with 
ags -r -d -z -m -non shared. Thisway stati
ally linked exe
utables are produ
ed, 
ontainingsymbol and relo
ation information. The -m 
ag makes thelinker dump a map indi
ating where the blo
ks of the obje
t�les are lo
ated in the �nal binary. It is this map we use todivide the data se
tion into blo
ks.The overall 
ode and program size redu
tions using our
ombined analyses are given in Tables 3 and 4 for bina-ries generated by Compaq and Gnu 
ompilers. The averageprogram size redu
tions for the SPECint2000 ben
hmarksare 27.6% and 32.1%, depending on the 
ompilers used andtherefore on the libraries linked with the program. Com-pared to the numbers for 
ode 
ompa
tion only, they are5.9% and 5.5% higher. This results largely from the removalof dead data and less from additional elimination of 
ode, asthe gain in 
ode size redu
tion is mu
h smaller. The resultsfor the MediaBen
h programs are similar.The results for the C++ program, 252.eon, are quite re-markable. More than half of the instru
tions is removedfrom the program, whi
h, together with the removal of deaddata, results in a program 
ompa
tion of 46.8%. The re-sult is that the stati
ally linked, 
ompa
ted binary is 5.1%smaller than the dynami
ally linked one! The reason is thedynami
ally linked program 
onsists for a large part of adynami
 string and symbol table.The results obtained for 168.wupwise and 178.galgel showthat also for s
ienti�
 appli
ations program 
ompa
tion yieldsgood results. Note that, despite the fa
t that the g77-
ompiled binary for 168.wupwise is more than a fa
tor 2smaller than the f77-
ompiled one (whi
h is due to the useof mu
h smaller libraries), the relative 
ompa
tion resultsfor both binaries do not di�er that mu
h. On the one hand,this 
on�rms our believe that the size of a program is not

only 
orrelated to the fun
tionality needed by the program-mer, but also highly depends on the libraries used. On theother hand the size of the 
ompa
ted binaries shows thatthere is mu
h room for progression, as the f77-
ompiled and
ompa
ted binary is still more than a fa
tor 1.8 larger thanthe g77-
ompiled and 
ompa
ted one. The number of in-stru
tions in both binaries even di�ers with more than afa
tor of 2.Table 5 
ompares the exe
ution times for the base pro-grams, the base programs with pro�le-dire
ted 
ode layoutadded, and the programs resulting from Squeeze. The ex-periments were run on a 500 MHz Compaq Alpha 21164EV56 pro
essor with a split primary dire
t mapped 
a
he (8KB ea
h of instru
tion and data 
a
he), 96 KB of on-
hipse
ondary 
a
he, 8 MB of o�-
hip ba
kup 
a
he, and 512Mbytes of main memory, running Tru64 Unix 5.0a. It 
anbe seen that the 
ompa
tion of 
ode and data typi
ally doesnot 
ome at the 
ost of speed: e.g., for the SPECint-2000ben
hmarks the 
ompa
ted programs are, on the average,about 5% faster than the original programs.Table 6 shows the total memory footprint (i.e. the largestamount of memory an appli
ation takes during its exe
u-tion) for the MediaBen
h programs. The average 
ompa
tionis 17.2%. This is not only due to the 
ode and data 
om-pa
tion, but also to the removal of unne
essary sta
k-spillsby Squeeze.
8. RELATED WORKThere is a 
onsiderable body of work on 
ode 
ompres-sion, but mu
h of this fo
uses on 
ompressing exe
utable�les as mu
h as possible in order to redu
e storage or trans-mission 
osts [5, 6, 7, 8, 11, 12℄. These approa
hes gen-erally produ
e 
ompressed representables that are smallerthan those obtained using our approa
h, but have the draw-ba
k that they must either be de
ompressed to their originalsize before they 
an be exe
uted [5, 6, 7, 8℄|whi
h 
an beproblemati
 for limited-memory devi
es|or require spe
ial



base 
ode 
ompa
ted 
ode and data 
ompa
tionprogram text binary text binary text binary164.gzip 57592 318592 30464 (52.8%) 228480 (71.7%) 29472 (51.2%) 211888 (66.5%)175.vpr 100108 542544 62912 (62.8%) 411472 (75.8%) 61584 (61.5%) 380336 (70.1%)176.g

 434376 2139184 281040 (64.7%) 1557552 (72.8%) 280416 (64.6%) 1445952 (67.6%)181.m
f 60252 326848 37040 (61.5%) 253120 (77.4%) 35872 (59.5%) 232400 (71.1%)186.
rafty 106204 574224 71008 (66.9%) 451344 (78.6%) 69872 (65.8%) 413008 (71.9%)197.parser 86904 456608 53408 (61.5%) 341920 (74.9%) 52032 (59.9%) 310496 (68.0%)253.perlbmk 210244 1085136 130816 (62.2%) 790224 (72.8%) 130912 (62.3%) 719344 (66.2%)254.gap 186188 876944 115216 (61.9%) 614800 (70.1%) 114176 (61.3%) 590064 (67.3%)255.vortex 213876 1112144 116400 (54.4%) 735312 (66.1%) 115280 (53.9%) 672160 (60.4%)256.bzip2 49932 284528 28400 (56.9%) 210800 (74.1%) 27408 (54.9%) 202432 (71.1%)300.twolf 123856 631984 77248 (62.4%) 459952 (72.8%) 76160 (61.5%) 420880 (66.6%)MEAN 60.7% 73.4% 59.7% 67.9%adp
m 41208 240848 22704 (55.1%) 183552 (76.2%) 21600 (52.4%) 166944 (69.3%)epi
 67196 368496 41040 (61.1%) 278384 (75.5%) 39888 (59.4%) 264752 (71.8%)gsm 59180 328432 32800 (55.4%) 246512 (75.1%) 31680 (53.5%) 229888 (70.0%)mpeg2de
 63064 363104 37424 (59.4%) 272992 (75.2%) 36288 (57.5%) 251664 (69.3%)mpeg2en
 81420 444640 52800 (64.8%) 346336 (77.9%) 51584 (63.4%) 316576 (71.2%)MEAN 59.2% 76.0% 57.2% 70.3%168.wupwise 69784 395216 41024 (58.8%) 305104 (77.2%) 39008 (55.9%) 258416 (65.4%)Table 4: Number of instru
tions and binary program size in bytes for the ben
hmarks generated by the GNU
ompilers (base), after 
ode 
ompa
tion and after 
ombined 
ode and data 
ompa
tion. The ratio's given areall 
ompared to the base binaries.hardware support for exe
uting the 
ompressed 
ode dire
tly[11, 12℄. By 
ontrast, programs 
ompa
ted using our te
h-niques 
an be exe
uted dire
tly without any de
ompressionor spe
ial hardware support.Most of the previous work on 
ode 
ompa
tion to yieldsmaller exe
utables treats an exe
utable program as a sim-ple linear sequen
e of instru
tions [1, 3, 9, 18℄. They usesuÆx trees to identify repeated instru
tions in the programand abstra
t them out into fun
tions. None of these worksaddress the issue of redu
ing the size of the data se
tionwithin a program. The size redu
tions they report are mod-est, averaging about 4{7%. We have re
ently showed thatan alternative approa
h, using the 
onventional 
ontrol 
owgraph representation of a program and based by and large onaggressive inter-pro
edural 
ompiler optimizations aimed ateliminating 
ode, 
an a
hieve signi�
ant redu
tions in 
odesize, averaging around 30% [4℄. However, this work does nottake into a

ount the removal of dead data, and the syner-gisti
 e�e
t this has on the removal of unne
essary 
ode.The work we have reported in this paper yields overall sizeredu
tions that are about 5-6% higher than that reported inour earlier work [4℄, this improvement 
oming mainly fromthe removal of dead data.The elimination of unused data from a program has been
onsidered by Srivastava and Wall [15℄ and Sweeney and Tip[16℄. Srivastava and Wall, des
ribing a link-time optimiza-tion te
hnique for improving the 
ode for subroutine 
alls inAlpha exe
utables, observe that the optimization allows theelimination of most of the global address table entries in theexe
utables. However, their fo
us is primarily on improvingexe
ution speed, and they do not investigate the eliminationof data areas other than the global address table. The workof Sweeney and Tip is restri
ted to eliminating dead datamembers in C++ programs, and so is not appli
able to non-obje
t-oriented programs; by 
ontrast, our approa
h, whi
hworks on exe
utable programs, 
an be applied to programswritten in any language. Neither of these works addressesthe 
lose relationship between the elimination of data andthe elimination of 
ode. Sweeney reports a size redu
tionof 4.4% on the average; by 
onsidering the elimination of

both 
ode and data, by 
ontrast, we a
hieve size redu
tionsof 27{32% overall.
9. CONCLUSIONS AND FUTURE WORKBe
ause of the growing deployment of mobile and embed-ded pro
essors with a limited amount of available memory,te
hniques that redu
e the memory footprint of programsare be
oming in
reasingly important. Previous work onthis topi
 has typi
ally fo
used either on the redu
tion ofdata areas or on redu
tion of 
ode areas, but not on both,even though there are obvious dependen
es and synergiesbetween the two. This paper des
ribes a low-level analy-sis that reasons about the use of 
ode and data addresseswithin programs, and thereby is able to exploit these depen-den
es and synergies. Experimental results indi
ate that theresulting system a
hieves signi�
antly better memory foot-print redu
tions than previous work.The algorithms proposed in this paper 
an be re�ned in anumber of ways: a more pre
ise analysis of sta
k behavior
an lower the number of program points at whi
h worst-
aseassumptions have to be made. Instead of not following theuse of a sta
k-saved address, it will then be possible to followits use from the pla
es where the address is reloaded fromthe sta
k. Using a poly-variant partial evaluation for ea
hprodu
ed address will produ
e better results as well.Another way to in
rease the performan
e of these algo-rithms is to split the data blo
ks in smaller ones. At link-time, interval analysis 
ould be a useful algorithm to headin this dire
tion.Compilers 
ould assist this pro
ess as well, e.g. by in-di
ating borders in the data se
tions of obje
t �les thatare not 
rossed by address 
omputations. They might evenprodu
e multiple obje
t �les for ea
h sour
e 
ode �le. Allstati
ally de
lared obje
ts that have no overlap with otherobje
ts in memory 
an be put in another obje
t �le. Thismight o

asionally result in less eÆ
ient obje
t 
ode be
ausethe 
ompiler does not know the relation between the ad-dresses of those obje
ts. Link-time optimizers su
h as Altoor Squeeze will easily remove these ine�e
ienties though.



Compaq 
ompilers GNU 
ompilersprogram base pro�led 
ompa
ted base 
ompa
ted164.gzip 1152 1111 ( 96.4%) 1155 (100.3%) 1180 1110 ( 94.3%)175.vpr 919 897 ( 97.6%) 767 ( 83.5%) 1012 830 ( 82.0%)176.g

 865 813 ( 94.0%) 837 ( 96.8%) 874 874 (100.1%)181.m
f 1463 1455 ( 99.5%) 1485 (101.5%) 1493 1476 ( 98.6%)186.
rafty 660 610 ( 92.4%) 577 ( 87.4%) 632 644 (102.6%)197.parser 1800 1663 ( 92.4%) 1740 ( 96.7%) 1795 1724 ( 96.3%)253.perlbmk 942 904 ( 96.0%) 872 ( 92.6%) 969 889 ( 92.3%)254.gap 1008 956 ( 94.8%) 1053 (104.5%) 902 875 ( 97.0%)255.vortex 1299 1202 ( 92.5%) 1023 ( 78.8%) 1603 1186 ( 74.4%)256.bzip2 1139 1089 ( 95.6%) 1086 ( 95.3%) 1205 1023 ( 84.1%)300.twolf 1657 1827 (110.3%) 1560 ( 94.1%) 1921 1750 ( 91.6%)GEOM. MEAN 1173 1139 ( 97.1% ) 1105 (94.2% ) 1235 1126 (91.1% )adp
m 11.5 11.7 (101.7%) 12.3 (107.0%) 15.1 15.2 (100.7%)epi
 11.6 11.3 ( 97.4%) 12.0 (103.4%) 14.1 16.7 (118.4%)gsm 11.9 12.9 (108.4%) 11.8 ( 99.2%) 14.3 12.8 ( 89.5%)mpeg2de
 11.5 10.8 ( 93.9%) 14.2 (123.5%) 21.2 19.3 ( 91.0%)mpeg2en
 11.7 9.2 ( 78.6%) 11.5 ( 98.3%) 17.3 16.1 ( 93.1%)GEOM. MEAN 11.6 11.2 ( 96.5% ) 12.4 (106.2% ) 16.4 16.0 ( 97.7% )252.eon 780 792 (101.5%) 848 (108.7%) - -168.wupwise 1082 1114 (103.0%) 1013 ( 93.6%) 1255 1213 ( 96.7%)178.galgel 2697 2827 (104.8%) 2728 (101.1%) - -Table 5: Exe
ution times for the base binaries, the pro�le-feedba
k generated binaries and the 
ode and data
ompa
ted binaries.program base 
ompa
tedadp
m 312 K 208 K (66.7%)gsm 456 K 344 K (75.4%)epi
 1.70 M 1.58 M (92.9%)mpeg2de
 888 K 768 K (86.5%)mpeg2en
 1.88 M 1.74 M (92.6%)MEAN 82.8%Table 6: Total Memory Footprint for the Media-Ben
h programs.
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