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1 Introduction(Semi-)Automatic cost analysis of programs has been widely studied in the context of functional lan-guages. A major di�erence between logic programs and functional programs in this regard is that logicprograms are nondeterministic in general, and may produce multiple solutions. A related problem isthat because failure of execution is not an abnormal situation, it is possible to write programs where im-plicit failures have to be accounted for and dealt with explicitly if meaningful results are to be obtained.Because of such behavior, the details of low-level control 
ow are signi�cantly more complex in logicprograms, compared to programs in functional or imperative languages. Because of this, cost analysisfor logic programs is considerably harder than for programs in more traditional languages. The primarycontribution of this paper is to show how nondeterminism, and the generation of multiple solutions viabacktracking, can be handled within a uniform framework for cost analysis. In particular, we show howproperties of uni�cation may be exploited in the treatment of comparison operators (=; 6=; >;�; <;�)to improve the analysis of nondeterministic predicates.In principle, the cost of a procedure depends on some measure of the input size. Therefore, itis necessary to keep track of the sizes of arguments to procedures at each program point (procedureentry and exit). In addition, in order to handle nondeterministic procedures, knowledge about thenumber of solutions generated by each predicate is required. In this paper, size relationships betweenarguments and the number of solutions each predicate can generate are inferred using data dependencyinformation.Not unexpectedly, the size relationships between arguments, the number of solutions and the timecomplexity functions for recursive procedures are obtained in the form of di�erence equations. To getclosed form expressions, these di�erence equations need to be solved. The automatic solution of generaldi�erence equations is a di�cult problem, but there is a wide class of programs for which the di�erenceequations can be solved automatically [5, 16, 31]. Our approach consists of the following steps:1. Use data dependency information to compute the relative sizes of variable bindings at di�erentprogram points. This size information can be used to determine the space requirements of variablebindings, which in turn can be used to compute the space complexity;2. use the size information to compute the number of solutions generated by each procedure;3. use the size and the number of solutions information to compute the time complexity.Automatic cost analysis of programs has applications in many areas. In program transformation andautomatic program synthesis, it can be used as a criterion to choose among several possible alternatives[6, 22, 27]. In software engineering, programmers can employ it to understand program behavior. Incompilers for parallel systems, knowledge about the cost of di�erent procedures can be used to guide thepartitioning, allocation and scheduling of parallel processes to ensure that the gains from parallelismoutweigh the overhead associated with the management of concurrent processes [9, 35]. Informationabout the number of solutions generated by di�erent procedures can be used to improve the performanceof deductive database programs, e.g., to plan the order in which subgoals are evaluated [10]. In addition,knowledge about the size relationships between arguments is important for reasoning about programtermination [32, 38, 40].The remainder of this paper is organized as follows: Section 2 introduces some preliminary notionson the subject. Section 3 presents the method for the inference of argument size relationships. Section1



4 describes the analysis for estimating the number of solutions generated by each procedure. Section 5shows the scheme for the composition of time complexity functions. Section 6 describes a mechanismfor obtaining (approximate) solutions for di�erence equations. Section 7 shows the organization of aprototype implementation. Section 8 sketchs a soundness proof of our method. Section 9 illustrates anapplication of automatic cost analysis: task granularity analysis for parallel logic programs. Finally,Section 10 discusses some related work, and Section 11 gives conclusions.2 PreliminariesMost logic programming languages are based on a subset of the �rst order predicate calculus knownas Horn clause logic. Such a language has a countably in�nite set of variables, and countable setsof function and predicate symbols, these sets being mutually disjoint. Without loss of generality, weassume that with each function symbol f and each predicate symbol p is associated a unique naturalnumber n, referred to as the arity of the symbol; f and p are said to be n-ary symbols, and written f=nand p=n respectively. A 0-ary function symbol is referred to as a constant. A term in such a language iseither a variable, or a constant, or a compound term f(t1; : : : ; tn) where f is an n-ary function symboland the ti are terms. A literal is either an atom p(t1; : : : ; tn), where p is an n-ary predicate symbol andt1; : : : ; tn are terms, or the negation of an atom; in the �rst case the literal is said to be positive, in thesecond case it is negative. A clause is the disjunction of a �nite number of literals, and is said to beHorn if it has at most one positive literal. A Horn clause with exactly one positive literal is referredto as a de�nite clause. The positive literal in a de�nite clause is its head, and the remaining literalsconstitute its body. A predicate de�nition consists of a �nite number of de�nite clauses, all whose headshave the same predicate symbol; a goal is a set of negative literals. A logic program consists of a �niteset of predicate de�nitions. We adhere to the syntax of Edinburgh Prolog and write a de�nite clause asp :� q1; : : : ; qnread declaratively as \p if q1 and : : : and qn". Names of variables begin with upper case letters, whilenames of non-variable (i.e. function and predicate) symbols begin with lower case letters.We assume that each argument position of a predicate is annotated as an input or output position,depending on whether or not it is bound to a term when that predicate is invoked.1 In this paper weconsider well-moded clauses with ground bindings. A clause is said to be well-moded if1. every variable appearing in an input position in a body literal also appears either in an inputposition in the head of the clause, or in an output position of some other body literal; and2. every variable occurring in an output position in the head of the clause also appears either in aninput position in the head, or in an output position in the body.The intuition is that the binding for any variable in the clause is either a term given as an input ar-gument, or a term produced as an output argument by a body literal. A term is said to be ground ifit contains no variable. A clause with ground bindings demands that all input arguments are bound toground terms on invocation and all output arguments are bound to ground terms on success. Strictlyspeaking, this groundness requirement can be relaxed as long as no predicate binds any variable occur-ring in any of its input argument positions: as an example, consider the familiar append program for1The input/output character of argument positions can be inferred via data
ow analysis [7, 28].2



concatenating lists, which does not require that the elements of the lists being processed be ground.While it is possible to give syntactic characterizations that imply this property, however, such charac-terizations, in attempting to cope with aliasing e�ects, quickly become verbose and cumbersome whileshedding little light on the essential property they are attempting to characterize. For this reason,we shall consider only programs with ground bindings in this paper, with the understanding that thenotion can be appropriately generalized where necessary.The call graph for a program is a directed graph which represents the caller-callee relationshipsbetween predicates in the program. Each node in the graph denotes a predicate in the program. Thereis an edge from a node p1 to a node p2 if a literal with predicate symbol p2 appears in the body ofa clause de�ning the predicate p1. A body literal in a clause is called a recursive literal if it is partof a cycle that contains the head of that clause in the call graph for the program. A clause is callednonrecursive if no body literal is recursive, and is called direct recursive if it contains recursive literalsand all the recursive literals have the same predicate symbol as the head; otherwise, it is called indirectrecursive. A clause is recursive if it is either direct or indirect recursive.Operationally, given an output position a1 and an input position a2 in a clause, a2 is dependent on a1if the variable bindings generated at a1 are used to construct the term occurring at a2, i.e., if the termsoccurring at positions a1 and a2 have variables in common. The data dependencies between argumentpositions can be represented by a directed acyclic graph G = (V;E), called an argument dependencygraph, where V is a set of vertices and E a set of edges. Each vertex in the graph denotes an argumentposition. There is an edge ha1; a2i from an argument position a1 to an argument position a2 if a2 isdependent on a1: in this case, a1 is said to be a predecessor of a2, and a2 a successor of a1. Note thatthe vertices denoting the input positions in the head have no predecessor; and the vertices denoting theoutput positions in the head have no successor. A path in the graph is a sequence of vertices v1; : : : ; vnsuch that hvi; vi+1i is an edge in the graph, for 1 � i < n. Argument dependency graphs are inducedby the control strategy of the system, and may be inferred via data
ow analysis [3, 7].It is sometimes convenient to abstract an argument dependency graph into a graph that representsthe data dependencies between literals. A literal dependency graph is a directed acyclic graph. Eachvertex in the graph denotes a literal and consists of the set of vertices in argument dependency graphthat correspond to the argument positions in the denoted literal. There is an edge between two verticesin literal dependency graph if there exists at least one edge between the two corresponding sets ofvertices in argument dependency graph. The head of the clause is treated specially. It is dividedinto two vertices, one consists of the input positions in the head, and the other consists of the outputpositions in the head. Paths in literal dependency graph are de�ned in the same way as in argumentdependency graph. Hereafter we assume that the argument dependency graphs and literal dependencygraphs are given.Example 2.1 Consider the following program which permutes a list of elements given as its �rstargument and returns the result as its second argument:perm([], []).perm(X, [R|Rs]) :- select(R, X, Y), perm(Y, Rs).select(X, [X|Xs], Xs).select(X, [Y|Ys], [Y|Zs]) :- select(X, Ys, Zs).3



����h2����b11 ����b12 ����b13 ����b21 ����b22����h1������� fXgPPPPPPPPPqfRg -fYg ������� fRsg� - -Clause 2����h2����h1?[]Clause 1Figure 1: Argument dependency graphs and literal dependency graphs for the clauses of predicate perm.Given a list X as its �rst (input) argument, perm/2 generates a permutation of X by nondeterministicallyselecting an element R of X, permuting the remainder Y of the input list into a list Rs, and returning thelist [R|Rs] as its second (output) argument. The argument dependency graphs and literal dependencygraphs for the clauses of the predicate perm/2 are shown in Figure 1, where hi denotes the ith argumentposition in the head, while bji denotes the ith argument position in the jth body literal. The circlesrepresent the vertices in the argument dependency graphs, while rectangles represent vertices in theliteral dependency graph. 2Because logic programs can be nondeterministic, there may in general be more than one clausewhose head uni�es with a call. The results of cost analysis can be greatly improved if situations wherethis cannot happen, i.e., where clauses are mutually exclusive, are detected and dealt with specially.Informally, two clauses of a predicate are mutually exclusive if at most one of the clauses can succeedfor any call to that predicate. The detection of mutual exclusion between clauses is discussed in [8].The clauses of a predicate can be partitioned into a set of mutually exclusive \clusters" such that twoclauses are in the same cluster if and only if they are not mutually exclusive. Then, cost analysis canbe performed separately for each cluster, with the total cost for the predicate being given in terms ofthe cost of the most expensive cluster. In this paper, we assume that the partitioning of clauses intomutually exclusive clusters has been carried out (for details, see [8]).3 Argument Size Relations: Space ComplexityThis section presents a method for the inference of argument size relations based on data dependencyinformation. The purpose of this inference is to represent the input size to each body literal as a functionin terms of the input size to the head. The input size to body literals would be used later to infer thecost of body literals. We will �rst discuss notions related to various \size measures" for terms. This isfollowed by a discussion of how (based on the data dependency in a clause) size relationships betweeneach argument position and its predecessors may be inferred using appropriate size measures. We thendescribe how these size relationships can be propagated so that the size relation corresponding to an4



input position in a literal can be transformed into a function in terms of the size of the input positionsin the head. Finally, a characterization of conditions under which such size functions are well-de�nedis given.3.1 Size MeasuresVarious measures can be used to determine the \size" of an input, e.g., term-size, term-depth, list-length,integer-value, etc. The measure(s) appropriate in a given situation can in most cases be determined byexamining the types of argument positions, the general idea being to use the \back edges" in the typegraph of a predicate to determine how that predicate recursively traverses its input terms (or constructsits output terms), and thereby synthesize a measure for the predicate [32, 40]. Type information maybe inferred via program analysis [13, 29, 36, 42], and is not discussed further here.We �rst discuss how to determine the size of ground terms. Let j � jm : H ! N? be a functionthat maps ground terms to their sizes under a speci�c measure m, where H is the Herbrand universe,i.e. the set of ground terms of the language, and N? the set of natural numbers augmented with aspecial symbol ?, denoting \unde�ned". Examples of such functions are \list length", which mapsground lists to their lengths and all other ground terms to ?; \term size", which maps every groundterm to the number of constants and function symbols appearing in it; \term depth", which mapseach ground term to the height of its tree representation; and so on. Thus, j[a; b]jlist length = 2,jf(1; f(2; nil; nil); nil)jterm depth = 2, but jf(a)jlist length = ?.Based on j � jm, the size properties of general terms can be described using two functions sizem anddi� m. the function sizem(t) de�nes the size of a term t under a measure m:sizem(t) = ( n if j�(t)jm = n for every substitution � such that �(t) is ground? otherwise.Thus, size list length([L; a]) = 2, and size list length([ajL]) = ?. A detailed realization of the size functionfor some commonly encountered measures is given in Figure 2. The function di� m(t1; t2) gives the sizedi�erence between two terms t1 and t2 under a measure m:di� m(t1; t2) = 8><>: d if t2 is a subterm of t1 and j�(t2)jm � j�(t1)jm � d for everysubstitution � such that �(t1) and �(t2) are ground? otherwise.Thus, di� list length([a; bjL]; L) = �2, di� term depth(f(1; X; Y); X) = �1, and di� term size(X; f(X)) = ?. Adetailed realization of the di� function for some commonly encountered measures is given in Figure3. Where the particular measure under consideration is clear from the context in the discussion thatfollows, we will omit the subscript in the size and di� functions.3.2 Size RelationsWe now show how size and di� functions can be used to extract size relationships between each argumentposition and its predecessors. We use the notation @a to denote the term occurring at an argumentposition a, ma to denote the size measure associated with a, and sz(@a) to denote the size of the termoccurring at argument position a. Further, let Szbp : Nn?;1 ! N?;1 be a function that represents thesize of the bth (output) argument position in a predicate p, which has n input argument positions, in5



If m is integer value, thensizem(t) =8><>: n if t is an integer n�(sizem(t1); : : : ; sizem(tn)) if t = �(t1; : : : ; tn) for some evaluable arithmetic functor �? otherwiseIf m is list length, thensizem(t) =8><>: 0 if t is the empty list1 + sizem(t1) if t is of the form [ jt1] for some term t1? otherwiseIf m is term depth, thensizem(t) =8><>: 0 if t is a constant1 +maxfsizem(ti) j 1 � i � ng if t = f(t1; : : : ; tn)? otherwiseIf m is term size, thensizem(t) =8><>: 1 if t is a constant1 +Pni=1fsizem(ti)g if t = f(t1; : : : ; tn)? otherwiseFigure 2: The function sizem(t) for some common size measures
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If m is integer value, thendi� m(t1; t2) = ( 0 if t1 � t2? otherwiseIf m is list length, thendi� m(t1; t2) = 8><>: 0 if t1 � t2di� m(t; t2)� 1 if t1 is of the form [ jt] for some term t? otherwiseIf m is term depth, thendi� m(t1; t2) = 8><>: 0 if t1 � t2maxfdi� m(ti; t2) j 1 � i � ng � 1 if t1 = f(t1; : : : ; tn)? otherwiseIf m is term size, thendi� m(t1; t2) = 8><>: 0 if t1 � t2arg(t1; i)� sizem(t1) if t1 = f(t1; : : : ; tn) and ti � t2 for some i, 1 � i � n? otherwisewhere arg(t1; i) is a symbolic expression denoting the term-size of the ith argument of the term t1.Figure 3: The function di� m(t1; t2) for some common size measures m
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terms of the size of its input positions, where N?;1 denotes the set of natural numbers plus two specialsymbols ? and 1, denoting unde�ned and in�nite respectively.We �rst consider the argument positions in a body literal. Let L be a body literal in a clause,with input argument positions a1; : : : ; an. An argument position in L is either an input or an outputposition. First, consider an output position b in L. There are two possibilities:(1) If L is recursive, then sz(@b) is symbolically expressed assz(@b) � Sz(b)L (sz(@a1); : : : ; sz(@an)).(2) If L is not recursive, assume the argument size function for argument position b in literal L havebeen recursively computed as Sz(b)L (x1; : : : ; xn), then sz(@b) can be expressed assz(@b) � Sz(b)L (sz(@a1); : : : ; sz(@an)).Note that since the function giving the size relationship between the input and output positionsof L has already been computed recursively, we are able, in this case, to express the relationshipbetween sz(@b) and fsz(@a1); : : : ; sz(@an)g explicitly in terms of this function.Next, consider an input position a in literal L, and let preds(a) denote the set of predecessors of a. Thesize of the term occurring at a can be determined as follows:(1) If sizema(@a) 6= ?, then sz(@a) � sizema(@a);(2) otherwise, if mc = ma and � = di� ma (@c;@a) 6= ? for some argument position c 2 preds(a),then sz(@a) � sz(@c) + �;(3) otherwise, if sizema (@a) can be expanded using the de�nition in Figure 2, then:(a) expand sizema(@a) one step accordingly;(b) recursively compute sizema (ti) for the appropriate subterms ti (depending on the size measureinvolved) of @a with respect to the same set of predecessors preds(a);(c) if each of these recursive size computations has a de�ned result, then use them to computesz(@a) as appropriate (depending on the particular size measure under consideration); if theresult of any of the recursive size computations is unde�ned, sz(@a) = ?.(4) otherwise, sz(@a) = ?.We now use subterms(a) to denote the set of subterms t occurring in @a that are used in the step (2)such that either di� ma (@c; t) 6= ? for some argument position c 2 preds(a), or di� ma (@c; t) = ? for allargument position c 2 preds(a) and sizema (t) cannot be further expanded using the de�nition in Figure2 in step (3). In other words, subterms(a) contains the set of subterms occurring in @a whose sizesare required in order to determine the size of @a. We also use def (t) to denote the (output) argumentposition where a term t 2 subterms(a) becomes bound. The argument positions and literals where avariable becomes bound are easily available from the argument and literal dependency graphs.Example 3.1 Consider the clause 8



nrev([H|L], R) :- nrev(L, R1), append(R1, [H], R).We use the following notation to refer to the size of the term occurring in an argument position in aclause: head[i] denotes the size of the ith argument position in the head, while bodyj[i] denotes thesize of the ith argument position in the jth body literal. Assume that for nrev/2, the �rst argumentis an input position while the second is an output position; and for append/3, the �rst two argumentpositions are input positions while the third argument is an output position. Further, assume that thesize measure under consideration is list length. Then, the size relations for the body literals are givenby body1[1] � size(L) = head[1] + di� ([HjL]; L) = head[1]� 1,body1[2] � Sz(2)nrev(body1[1]),body2[1] � size(R1) = body1[2] + di� (R1; R1) = body1[2],body2[2] � size([H]) = 1,body2[3] � Sz(3)append (body2[1]; body2[2]).Let a be the �rst argument position of literal nrev/2. Then subterms(a) = fLg, and def (L) is the �rstargument position in the head. 2Similarly, a set of size relations can be obtained for output argument positions in the head.Example 3.2 Continuing the previous example, the size relations for the output position in the headis head[2] � size(R) = body2[3] + di� (R; R) = body2[3].23.3 Size FunctionsWe now show how the size relations can be propagated to transform a size relation corresponding to aninput position in a literal into a function in terms of the input size to the head. However, for recursiveclauses, we need to solve the symbolic expression due to recursive literals into an explicit function �rst.We can then use the explicit function to infer the input size to the literals that succeed the recursiveones.Given the size relations for the body literals of a clause, it is possible to transform the size relationsfor the output argument positions in the head into functions in terms of the sizes of the input argumentpositions in the head. The basic idea here is to repeatedly substitute size relations for body literals\into" size relations for head arguments: given size relations R1 � `' �  ' for a body literal, and R2 �`� � E(')' for some output argument position in the head, where E(') is some expression involving ',the substitution of R1 into R2 yields the size relation `� � E( )'. The process of repeatedly subsitutingsize relations for body literals into those for output positions in the head is called normalization. Analgorithm for realizing normalization is given in Figure 4.9



Let EB be the set of size relations for body literals, and h be the size relation for an output position inthe head or an input position in a body literal. The algorithm proceeds as follows:beginrepeatif there is at least one occurrence of a term t in the RHS of hand t is the LHS of a relation b 2 EBthen replace each occurrence of t in the RHS of h by the RHS of buntil there is no changeend Figure 4: An algorithm for normalizationExample 3.3 Consider the predicate perm/2 de�ned in Example 2.1. Let head[i] and bodyj [i] denotethe sizes of the ith argument position in the head and in the jth body literal respectively. Assume thatthe size relations for the output argument positions of the predicate select/3 have been recursivelycomputed as Sz(1)select � �x:? and Sz(3)select � �x:x�1 (see the Appendix A for details). Using list lengthas the size measure, the size relations for the body literals in the recursive clause arebody1[1] � Sz(1)select (body1[2]) = ?,body1[2] � size(X) = head[1] + di� (X; X) = head[1],body1[3] � Sz(3)select (body1[2]) = body1[2]� 1,body2[1] � size(Y) = body1[3] + di� (Y; Y) = body1[3],body2[2] � Sz(2)perm(body2[1]),and the size relation for the output argument position in the head ishead[2] � size([RjRs]) = size(Rs) + 1= body2[2] + di� (Rs; Rs) + 1= body2[2] + 1.On normalization, this giveshead[2] � Sz(2)perm(body2[1]) + 1� Sz(2)perm(body1[3]) + 1� Sz(2)perm(body1[2]� 1) + 1� Sz(2)perm(head[1]� 1) + 1.Thus, the size function for the output argument position in the head can be represented asSz(2)perm(head[1]) = Sz(2)perm(head[1]� 1) + 1.In addition, from the �rst clause, we can obtain the equation Sz(2)perm(0) = 0 as the boundary condition.They can be solved to yield Sz(2)perm � �x:x, i.e. the size of the output of perm/2 is bounded by the sizeof its input. 2 10



Recall that in a recursive clause, the size of the output arguments of recursive literals in the bodyare expressed symbolically in terms of its input sizes. Once the size functions for the output positionsin the head have been determined, they can be substituted for these symbolic expressions in the set ofsize relations for the body literals. We can then apply normalization again to compute the size of eachinput position for each body literal, so that it is de�ned in terms of the size of the input arguments inthe head of the clause. These size functions can be used later in computing the number of solutionsand the time complexity of the clause.Example 3.4 Consider the clause de�ned in Example 3.1. Suppose the argument size function for theoutput argument position of nrev/2 has been computed as Sz(2)nrev � �x:x. Then the size for the �rst(input) argument position of literal append/3 can be obtained asbody2[1] � body1[2]� Sz(2)nrev(body1[1])� body1[1]� head[1]� 1.2Theorem 3.1 Normalization of size relations terminates for all clauses.Proof At each iteration of the normalization algorithm, only �nitely many substitutions are made.The number of iterations of the algorithm is bounded by the height of the argument dependency graph.23.4 Well-connectednessWe now give a characterization of conditions under which the inferred argument size functions arewell-de�ned. Let C be a well-moded clause with the input argument positions �1; : : : ; �n in the head.Suppose further that C is not indirect recursive. Let A be the set of output positions in the head andinput positions in the body literals. A clause C is said to be well-connected if1. for each argument position 
 2 A, and for each term t 2 subterms(
), the following hold:(i) Sz(def (t))l is de�ned if def (t) occurs in a nonrecursive literal l;(ii) mdef (t) = m
 ; and(iii) di� (Tdef (t); t) is de�ned.2. For each recursive literal L with input argument positions �1; : : : ; �n, the following hold:(i) there is no recursive literal on the path from the input of the head to L in the literaldependency graph of C;(ii) sz(@�i) � sz(@�i) for all i, 1 � i � n; and(iii) sz(@�i) < sz(@�i), for some i, 1 � i � n.11



Intuitively, condition (1) guarantees that all the argument sizes are functions de�ned in terms of theinput sizes, while condition (2) ensures that the functions are in the form of di�erence equations forrecursive clauses. The notion of well-connectedness can be extended in a straightforward way to dealwith indirect recursion.Example 3.5 We give two examples of non-well-connected clauses. First, consider the program:sum([], 0).sum([H|T], S) :- sum(T, S1), S is H + S1.which computes the sum of a list of numbers. Suppose the �rst argument is the input, and the sizemeasures under consideration are list length for the �rst argument position and integer value for thesecond argument position. Since the size of H for the literal is/2 cannot be extracted from the term[H|T], the size of the output S cannot be expressed as a function in terms of the size of the input [H|T].Therefore, if the size measure under consideration is not �ne enough to capture the size relationshipsbetween argument positions, the clauses are usually non-well-connected. However, notice that thoughthe argument size function is unde�ned for sum/2, because the size of the input to the recursive literalsum/2, i.e., T, can be computed and the time complexity for the builtin predicate is/2 is known inadvance, it is still possible to estimate the time complexity for sum/2. Next, consider the program:rev([], L, L).rev([H|T], L, R) :- rev(T, [H|L], R).which reverses a list of elements. Suppose the �rst and second arguments are input and list length isused as the size measure under consideration. Since the size of [H|L] is larger than the size of L inthe recursive clause, the resulting size function for the output argument position of rev/3 is not inthe form of di�erence equation. Thus, in general, clauses using accumulator style programming arenon-well-connected. 2The analysis for argument size relations based on normalization is applicable to well-connectedclauses:Theorem 3.2 If a clause C is well-connected, then the following hold after the size relations that holdin C are normalized:1. If C is nonrecursive, then the sizes for the output argument positions in the head of C are obtainedas a closed form function of is the sizes of the input argument positions in the head of C;2. if C is direct recursive, then the sizes for the output argument positions in the head of C areobtained as a di�erence equation in terms of the sizes of the input argument positions in the headof C; and3. if C is indirect recursive, then the sizes for the output argument positions in the head of C areobtained as a di�erence equation, which is part of a system of di�erence equations for mutuallyrecursive clauses, in terms of the sizes of the input argument positions in the head of C.12



Proof By induction on the number of literals in the body of C. 2The preceding discussion has shown how to infer the argument size functions for a clause. Theargument size functions for a predicate can then be obtained by taking the maximum among theexpressions for the argument size functions obtained for each of its clauses.With knowledge about the size relationships between argument positions in the clauses, given thesize of input, the space required by each argument position can be estimated. This information canthen be used to compute the space required by a predicate in a speci�c computational model andimplementation.4 Number of SolutionsThis section describes the analysis for estimating the number of solutions generated by a predicate. Thiscan be characterized in terms of two parameters: the relation size of the predicate, which usually does notdepend on the input; and the solution size, i.e., the maximumnumber of outputs that can be generatedby a single input to the predicate, which usually depends on the size of the input. Although, amongthem, only solution size information is used to compute the cost of a predicate, relation size informationcan greatly improve the estimation of solution size. We �rst present a general algorithm, based on theproperties of uni�cation, for estimating these two parameters for each predicate. Then we give twoalgorithms that estimate the relation size for two special classes of predicates based on the properties ofcomparison operators (=; 6=; >;�; <;�) and information about argument types. The predicates in the�rst class are the ones that can be \unfolded" into a conjunction and/or disjunction of linear arithmeticconstraints; and the predicates in the second class are the ones that can be \unfolded" into a conjunctionof binary nonequality constraints. Compared with the general algorithm, the two special algorithmscan considerably improve the precision of the analysis for these two classes of predicates. Finally, weshow how to combine these algorithms in relation size analysis.4.1 A General AlgorithmThe basic idea behind the algorithm is counting the number of possible bindings for each variable ina clause. Using data dependency information, the number of instances for the term occurring at anargument position is estimated from the number of instances for the terms occurring at its predecessors.Based on properties of uni�cation, the number of bindings for a variable is estimated from the numberof instances for the terms in which it appears. We �rst assume that no duplicate solutions are generatedduring execution; we will discuss how to deal with duplicates at the end of this subsection.We use BfTg to denote the number of instances for a (tuple of) term(s) T in a clause. In thediscussion of relation size and solution size analyses, we will overload this notation. For a variable V ,in relation size analysis, BfV g denotes the number of distinct bindings for V that are generated by allpossible inputs to the clause; in solution size analysis, it denotes the number of distinct bindings thatare generated by a single input to the clause. Because the algorithms for the two analyses are verysimilar, and the quantities denoted by the above notation share the same properties in both analyses,the overloading of the notation makes the discussion much more concise.We now describe two useful properties of uni�cation. First, consider a clausep(Y) :� q(Y), r(Y). 13



Assume that q/1 can bind Y to two values a and b, while r/1 can bind it to a, b and c. Since asuccessful invocation to a predicate ensures that di�erent occurrences of a variable in a clause mustbind to the same term, the number of bindings for Y in this clause should be 2, i.e., the bindings to aand b. Thus the number of bindings for a variable in the clause is bounded above by the minimum ofthe number of possible bindings for di�erent occurrences of that variable:Theorem 4.1 If a variable X has n occurrences in the body of a clause and the numbers of possible bind-ings for these di�erent occurrences are separately computed as k1; : : : ; kn, then BfXg � minfk1; : : : ; kng.2 Recall our assumption that the input arguments to any predicate are bound to ground terms whenthat predicate is called, and its output positions are also bound to ground terms if the call succeeds:Theorem 4.1 may not hold, in general, if nonground bindings are considered [11]. Next consider a termf(X,Y,X) that contains more than one variable. Suppose X can take on two bindings, a and b, while Ycan take on two bindings c and d. The total number of instances thus possible for the term f(X,Y,X)is 4: f(a,c,a), f(b,c,b), f(a,d,a), f(b,d,b). In general, given the number of bindings possible forthe variables contained in a term, an upper bound on the number of instances for that term is given bythe product of the number of bindings possible for each of its variables:Theorem 4.2 Let T be a (tuple of) term(s) in a clause. If T contains a set of variables S =fX1; : : : ; Xmg, such that BfXig � NfXig, for 1 � i � m, then BfTg = BS � Qmi=1NfXig, with B; = 1.2 Thus, if the number of possible bindings for each variable occurring in a tuple of terms T has beendetermined, then we can de�ne a function to compute the number of instances for that tuple of terms.Let T contain a set of variables, S = fX1; : : : ; Xmg, and NfXig be the determined number of bindingspossible for Xi. We de�ne a function, called instance function and denoted by instance(T ), as follows:2instance1(T ) = Qmi=1NfXig.Because the di� functions de�ned for size measures are based on structural di�erences betweenterms, well-connected recursive clauses usually apply recursion on (terms derived from) subterms of theinput arguments. Since the invocation to a well-connected recursive clause may succeed for any instanceof the input arguments, the relations they de�ne are, in general, in�nite. Thus, it is more desirable,for recursive predicates, to obtain information about the maximum number of outputs that can begenerated by a single input. For example, the predicate select/3 de�ned in Example 2.1 succeeds forany nonempty input list, so the size of its relation is in�nite. However, given a nonempty list of lengthn as input, select/3 always generates n outputs. We associate each predicate p in the program witha pair hRelp; Solpi, called the binding pattern of p, where Relp denotes an upper bound of the relationsize for p, and Solp denotes an upper bound of the solution size for p. In general, for a predicate pwith n input positions, Relp is in N1, namely, a natural number or the symbol1, denoting an in�niterelation; while Solp : Nn?;1 !N1 is a function in terms of the size of the input.2Since we will successively improve the realizationof the instance function, we use subscripts to distinguish the di�erentversions of this function. 14



Consider a clause p(�x0; �y0) :� q1(�x1; �y1); : : : ; qn(�xn; �yn), where the body literals are sorted in topolog-ical order from the literal dependency graph, and �xi are input arguments and �yi are output arguments.Let vars(�t) be the set of variables in tuple �t, and lits(v) be the set of literals in which variable v appears.Further, let �ni be the input size to literal qi. Assume that the binding patterns for the nonrecursivebody literals have been (recursively) computed and the binding patterns for recursive literals have beenrepresented in symbolic form as a function of input size. The algorithm proceeds as follows:begin/* compute Relp */if p is recursive then Relp :=1;else dofor each variable v 2 vars(�x0) doNfvg := minfRelj j j 2 lits(v)g;odfor i := 1 to n doIi := minfinstance(�xi);Relqig;Oi := minfIi � Solqi(�ni);Relqig;for each variable v 2 vars(�yi) doNfvg := minfOi;Relj j j 2 lits(v)g;ododRelp := instance((�x0; �y0));od/* compute Solp */for each variable v 2 vars(�x0) doNfvg := 1;odfor i := 1 to n doIi := minfinstance(�xi);Relqig;Oi := minfIi � Solqi(�ni);Relqig;for each variable v 2 vars(�yi) doNfvg := minfOi;Relj j j 2 lits(v)g;ododSolp := instance(�y0);end Figure 5: An algorithm for computing binding patterns15



Based on Theorems 4.1 and 4.2, we can devise a simple algorithm to compute the binding patternfor each predicate. The algorithm is presented in Figure 5, and can be summarized as follows: considera clause: `p(�x0; �y0) :� q1(�x1; �y1); : : : ; qn(�xn; �yn)', where the body literals are sorted in topological orderfrom the literal dependency graph, and �xi are input arguments and �yi output arguments. Let vars(�t)be the set of variables in tuple �t, and lits(v) be the set of literals in which variable v appears. First thebinding patterns of its nonrecursive body literals are recursively computed and the binding patterns ofits recursive literals are represented in symbolic form. To compute Relp, the relation size for p, if thepredicate p is recursive, then Relp is set to be in�nite; otherwise, the number of bindings, Bfvg, for eachvariable v in the input arguments �x0 is estimated using Theorem 4.1:Bfvg � Nfvg = minfRelj j j 2 lits(v)g.Using the binding patterns of the body literals, we can then estimate the number of instances for inputand output arguments in the body literals. For each literal qi(�xi; �yi), the number of instances, Bf�xig,for the input arguments �xi is bounded by instance function applied on �xi by Theorem 4.2; and it shouldalso be bounded by the size of the relation de�ned by qi, i.e., Relqi . Thus the smaller of these twoquantities is taken to be the estimated value of Bf�xig:Bf�xig � Ii = minfinstance(�xi);Relqig.Let �ni denote the input size to literal qi. The number of instances, Bf�yig, for the output arguments �yiof qi is bounded by the product of Bf�xig and Solqi(�ni); and it should also be bounded by Relqi . Theirminimum is taken to be the estimated value of Bf�yig:Bf�yig � Oi = minfIi � Solqi(�ni);Relqig.Having the binding information about output arguments �yi, we can continue to estimate the number ofbindings for each variable v becoming bound in �yi by taking the minimum of the numbers of bindingsfor di�erent occurrences of v using Theorem 4.1:Bfvg � Nfvg = minfOi;Relj j j 2 lits(v)g.Once all the body literals are processed, the number of bindings possible for all the variables in theclause are estimated. Finally, using Theorem 4.2 again, we can estimate the number of instances,Bf�x0;�y0g, for the arguments in the head:Bf�x0;�y0g � Relp = instance((�x0; �y0)).Example 4.1 Consider the program:p(X, Y, Z) :� q(X, Y), r(Y, Z).q(a1, b1). q(a2, b1).r(b1, c1). r(b2, c2). r(b3, c3).16



Suppose the �rst argument of predicate p/3 is the input, and the binding patterns for predicates q/2 andr/2 have been recursively computed as h2; �x:1i and h3; �x:1i, respectively. In this example, becauseall the predicates are nonrecursive, the corresponding solution sizes do not depend on the input size;therefore, we will ignore the size of arguments in the discussion. To compute Relp, we �rst computeNfXg = Relq = 2using Theorem 4.1. Using Theorems 4.1 and 4.2,I1 = minfinstance(X);Relqg = minf2; 2g = 2,O1 = minfI1 � Solq;Relqg = minf2� 1; 2g = 2,NfYg = minfOi;Relrg = minf2; 3g = 2;I2 = minfinstance(Y);Relrg = minf2; 3g = 2,O2 = minfI2 � Solr;Relrg = minf2� 1; 3g = 2,NfZg = O2 = 2.The relation size for p/3 is bounded byinstance((X; Y; Z)) = NfXg �NfYg � NfZg = 8,by Theorem 4.2. Thus, we have Relp � 8. 2The computation of Solp, the solution size for p, can be carried out in the same way as the compu-tation of Relp. The only di�erences are that at the beginning the number of bindings for each variablein the input arguments �x0 in the head is not estimated using Theorem 4.1, instead it is assigned to be1; and at the end we only estimate the number of possible output arguments for the head, rather thanboth input and output arguments.Example 4.2 Continuing the previous example, to compute Solp, we set NfXg = 1 because variable Xis the input. Then we follow the same procedure as the computation of Relp. Using Theorems 4.1 and4.2,I1 = minfinstance(X);Relqg = minf1; 2g = 1,O1 = minfI1 � Solq;Relqg = minf1� 1; 2g = 1,NfYg = minfOi;Relrg = minf1; 3g = 1;I2 = minfinstance(Y);Relrg = minf1; 3g = 1,O2 = minfI2 � Solr;Relrg = minf1� 1; 3g = 1,NfZg = O2 = 1.Using Theorem 4.2 again, the number of outputs generated by a single input to p/3 is bounded byinstance((Y; Z)) = NfYg �NfZg = 1� 1 = 1. 17



So we have Solp � �x:1, i.e., p/3 generates at most one output for each input. 2Theorem 4.2 is based on the tacit assumption that bindings for distinct variables are generatedindependently of each other. For example, if two variables X and Y can each get two bindings in aclause, then Theorem 4.2 assumes that in the worst case, 2�2 = 4 instances can be generated for a termf(X,Y). This may be overly conservative if the bindings for X and Y are not generated independently.This is the case for distinct variables that are bound by the same literal, e.g., in the programp(X, f(Y, Z)) :� q(X, Y, Z).q(a, b, c). q(a, d, e).Suppose X is the input of p/2. Though q/3 generates 2 bindings for each of the variables Y and Z,only 2 solutions are possible for q/3 and thus for p/2, rather than 2� 2 = 4 solutions. The followingtheorem gives a rule for improving the estimation in such cases. Intuitively, it says the following: ifevery variable in a set S occurs as an output of the same literal, then the number of bindings for S isbounded by the number of possible outputs generated by that literal.Theorem 4.3 Let �y be the output arguments of a literal, and O be the computed number of instancesfor �y. If S � vars(�y) is a set of variables, then BS � min(Qv2S Nfvg; O).Proof By Theorem 4.2, BS � Qv2S Nfvg. Since BS � Bvars(�y) and Bvars(�y) � O, we have BS � O. 2Using Theorem 4.3, we can improve instance function as follows: let T be a tuple of terms, thevariables in T can be divided into Vk1 ; : : : ; Vkn sets of variables such that the variables in Vki becomebound in literal qki , and Oki be the computed number of output instances for literal qki . Then a newrealization of instance function can be de�ned as:instance2(T ) = Qni=1minfQv2Vki Nfvg; Okig.Other cases in which the variable bindings are dependently generated occur between variables inthe input and output arguments of the same literal. Consider the programp(X, f(Y, Z)) :� q(X, Y), r(Y, Z).q(a, b). q(a, c).r(b, d). r(c, e).Suppose X is the input of p/2. Then each of the variables Y and Z in the clause de�ning p/2 can get2 bindings, but only 2 solutions are possible for r/2 and thus for p/2, instead of 2 � 2 = 4 solutions.The dependence between these variable bindings comes from the fact that the bindings for the outputvariables are instantiated according to the bindings of the input variables. The following theoremgives a rule for improving the estimation in such cases. Intuitively, it states that if every variable in aset S occurs as either an input or an output of the same literal, then the number of bindings for S isbounded by the number of possible outputs generated by that literal.Theorem 4.4 Let �x and �y be the input and output arguments of a literal q, and O be the computednumber of instances for �y. If S � vars((�x; �y)), then BS � min(Qv2S Nfvg; O).18



Proof By Theorem 4.2, BS � Qv2S Nfvg. Let �n denote the input size to literal q. Since Bvars((�x;�y)) �Bf�xg�Solq(�n), and Bvars((�x;�y)) � Relq , Bvars((�x;�y)) � O. Because BS � Bvars((�x;�y)), we have BS � O. 2Using Theorem 4.4, we can further improve instance function as follows: let T be a tuple of terms,such that the variables in T can be divided into Vk1 ; : : : ; Vkn sets of variables such that the variables inVki become bound in literal qki. The improvement can be achieved by merging these variable sets usingTheorem 4.4 such that the number of resulting variable sets is fewer. This merging process can proceedby considering the literals in reverse topological order from literal dependency graph. Let qki be theliteral under consideration, if the variable set corresponding to qki is nonempty, then we can move all thevariables, which occur in the input arguments of qki and which are in the variable set corresponding toa predecessor of qki, into the set corresponding to qki . Let Vl1 ; : : : ; Vlm be the resulting sets of variablesfrom the merging process with m � n, and Oli be the computed number of output instances for literalqli . Then we can de�ne a new realization of instance function as:instance3(T ) = Qmi=1minfQv2Vli Nfvg; Olig.Theorems 4.3 and 4.4 give rules for improving estimation for variable bindings within a singleliteral. We now consider dependent variable bindings which may involve variables beyond a singleliteral. Consider the program:p(X, f(Y, Z)) :� q(X, Y, W), r(W, Z).q(a, b1, c1). q(a, b2, c2).r(c1, d1). r(c1, d2). r(c2, d3). r(c2, d4).Suppose X is the input of p/2. Then each of the variables Y and W in the clause de�ning p/2 can get 2bindings: b1 and b2, c1 and c2. Since each of the bindings for W can generate 2 bindings for variable Z,Z will get a total of 4 bindings: d1, d2, d3, d4. The number of instances for f(Y,Z), therefore, shouldbe 4: f(b1,d1), f(b1,d2), f(b2,d3), f(b2,d4), instead of 2 � 4 = 8. The dependency between thevariable bindings for Y and Z is due to the fact that the variable bindings for Y and W are generateddependently by literal q/3 and the bindings for Z are instantiated according to the bindings of W. Inother words, because of W, the variable bindings for Y and Z are generated in an indirectly dependentway. The following theorem provides a rule for improving the estimation in such cases:Theorem 4.5 Let qi and qj be two literals, �xi; �yi; �xj; �yj be the corresponding input and output argu-ments, �nj be the input size to qj, and Oi and Oj be the corresponding computed number of outputinstances. Let S � vars((�xi; �yi; �xj; �yj)) be a set of variables. If1. vars(�xj) � vars((�xi; �yi)),2. instance(�xj) = Oi,3. instance(�xj) � Relqj ,4. instance(�xj) � Solqj (�nj) � Relqj ,then BS � min(Qv2S Nfvg; Oj). 19



Proof By Theorem 4.2, BS � Qv2S Nfvg. Also,Bvars((�xi;�yi;�xj;�yj)) � Bvars((�xi;�yi;�xj )) � Solqj (�nj)= Bvars((�xi;�yi)) � Solqj (�nj) (from 1)� Oi � Solqj (�nj)= instance(�xj) � Solqj (�nj) (from 2)= Ij � Solqj (�nj) (from 3)= Oj. (from 4)Because BS � Bvars((�xi;�yi;�xj;�yj )), we have BS � Oj . 2Let qi and qj be two literals. We say literal qj subsumes literal qi if they satisfy the four conditionsspeci�ed in Theorem 4.5. Using a proof similar to Theorem 4.5, it is very easy to verify by inductionthat the result of Theorem 4.5 can be generalized to any number of literals:Theorem 4.6 Let q1; : : : ; qn be literals, �x1; �y1; : : : ; �xn; �yn be the corresponding input and out-put arguments, and On be the computed number of output instances for literal qn. Let S �vars((�x1; �y1; : : : ; �xn; �yn)) be a set of variables. If qi+1 subsumes qi for 1 � i < n, then BS �min(Qv2S Nfvg; On).Using Theorem 4.6, we can improve instance function once again. We apply a merging processsimilar to that of instance3. For each literal under consideration, if the corresponding variable set isnonempty, we �rst move all the variables which satisfy Theorem 4.6 into the variable set, then wemove all the variables which satisfy Theorem 4.4 into the variable set. Let Vk1 ; : : : ; Vkn be the resultingvariable sets from the merging process, and Oki be the computed number of output instances for literalqki . Then the new instance function is de�ned as:instance4(T ) = Qni=1minfQv2Vki Nfvg; Okig.Example 4.3 Consider the predicate perm/2 de�ned in Example 2.1. Assume the binding patternhRelselect ; Solselecti for predicate select/3 has been recursively computed as h1; �x:xi (see the Ap-pendix A for details). Since predicate perm/2 succeeds for every input list, we obtain Relperm � 1. Tocompute Solperm , we �rst set NfXg = 1. Using Theorem 4.1, we obtainO1 = NfXg � Solselect(body1[2]) = head[1],NfRg = minfO1;Relselectg = head[1],NfYg = minfO1;Relselect ;Relpermg = head[1];O2 = NfYg � Solperm(body2[1]) = head[1]� Solperm(head[1]� 1),NfRsg = minfO2;Relpermg = head[1]� Solperm(head[1]� 1),Using Theorem 4.5, Since fYg � fR; X; Yg, instance(Y) = head[1] = O1, instance(Y) � Relperm , andinstance(Y) � Solperm(head[1]� 1) = head[1]� Solperm(head[1]� 1) � Relperm , we obtaininstance([RjRs]) = minfNfRg �NfRsg; O2g = head[1]� Solperm(head[1]� 1).20



Notice that variables R and Rs are from distinct literals. Thus, we have the equationSolperm(x) = x� Solperm(x� 1).This equation can be solved, with the boundary condition Solperm(0) = 1 from the �rst clause of perm/2,to obtain Solperm � �x:x!. 2Note that in the general algorithmof Figure 5, we can also keep track of the parameters that maintainthe upper bounds of the number of input and output instances for each predicate, or even the size ofthe domain for each argument position in a predicate. This may improve the accuracy of estimation ateach step of the algorithm, and we may also derive optimization techniques similar to those speci�edin Theorems 4.3 { 4.6. In general, however, the more information is used in the algorithm, the lesse�ective are the derived optimization techniques. Because of this, it is di�cult to predict how bene�cialsuch additional information is with regard to the precision of the �nal result.Up to now we have assumed that all the solutions generated are distinct. However, in practice,a single input may generate duplicate solutions. In general it is necessary to account for duplicatesolutions, since otherwise erroneous results may be obtained for time complexity analysis. For programsthat generate duplicate solutions, Theorems 4.1 and 4.2 may not hold any more, and we have to usemore conservative methods. For example, consider the program:p(X, W) :� q(X, Y), r(Y, Z), s(Z, W).q(a, b1). q(a, b2).r(b1, c). r(b2, c).s(c, d).Suppose X is the input of p/2. Then variable Z would be bound to c twice due to the distinct bindings,b1 and b2, of Y. Using Theorem 4.2, since the relation size for predicate s/2 is 1, we would infer that thenumber of possible bindings for Z is 1. However, because of the duplicates generated for Z, duplicatesare generated for W by the input a to p/2. Thus, in practice, we need to make sure that the predicatesare duplicate-free in order to apply the techniques described in this subsection. If not, we can only inferthat literal s/2 would be invoked twice, and since for each input to s/2 only one output is generated, Wwould get two bindings, instead of just one. A su�cient condition for duplicate-free predicates is givenin [26].Finally, it may sometimes be necessary to explicitly account for implicit failures. The problem isillustrated by the following program to check membership in a list:member(X, [X|_]).member(X, [_|L]) :- member(X, L).A straightforward analysis would infer the equation `Solmember(n) = 1' for the �rst clause, and`Solmember(n) = Solmember(n�1)' for the second, and since the two clauses are not mutually exclusive, theresulting equation would be obtained asSolmember (n) = Solmember (n� 1) + 1. 21



The problem is that there is no base case from which this equation can be solved. In this case, we mustexplicitly account for the fact that the base case fails and yields no solutions: this requires adding theequationSolmember (0) = 0:The resulting equations can be solved to give the expected result.4.2 Linear Arithmetic ConstraintsWe now present a simple algorithm for estimating the relation size for predicates which can be \un-folded" into a conjunction and/or disjunction of linear arithmetic constraints on a set of variables. Theconstraints may involve any of the following comparison operators: =; 6=; >;�; <, and �. The types ofthe variables in the predicates are assumed to be given as integer intervals.Since the manipulation of general n-ary constraints (involving n variables) can incur exponentialcost [30], we approximate the set of n-ary constraints by a set of binary constraints (involving at most2 variables) through the \projection" of an n-ary relation onto a set of binary relations. As shown in[30], the set of projected binary constraints is a minimal extra relation of the original n-ary constraints.If the set of n-ary arithmetic constraints is linear and the types for the variables can be representedas integer intervals, then a set of binary constraints can be easily projected from n-ary constraints viainterval arithmetic manipulation.The set of binary arithmetic constraints can be represented as a graph G = (V;E), called a consis-tency graph. Each vertex vi;j in V denotes the variable binding of a value dj to a variable xi, xi  dj,for 1 � i � n and 1 � j � m. There is an edge hvp;g; vq;hi between two vertices vp;g and vq;h if thetwo bindings xp  dg and xq  dh satisfy all the constraints involving variables xp and xq . The twobindings are then said to be consistent. The set of vertices Vi = fvi;1; : : : ; vi;mg corresponding to avariable xi is called the binding set of xi. The order of a consistency graph G is (n;m) if G correspondsto a set of constraints involving n variables and m values. Because two distinct values cannot be boundto the same variable at the same time, no pair of vertices in a binding set are adjacent. Therefore, theconsistency graph of a set of constraints involving n variables is an n-partite graph.A clique of a graph G is a subgraph of G whose vertices are pairwise adjacent. An n-clique is a cliquewith n vertices. Because a solution S for a set of constraints C involving n variables is an n-tuple ofbindings of values to variables such that all the constraints are satis�ed, every pair of variable bindingsin S is consistent. Thus S corresponds to an n-clique of the consistency graph of C, and the number ofsolutions for C is equal to the number of n-cliques in the consistency graph of C.From now on we will concentrate on describing an algorithm for estimating the number of n-cliquesin a consistency graph. The basic idea behind the algorithm is to identify the number of n-cliques eachvertex and edge in the graph may belong to. To this end, we associate a weight with each edge in thegraph. A weighted consistency graph G = (V;E;W ) is a consistency graph associated with a functionW : V � V !N such that W assigns a positive integer to an edge hu; vi if hu; vi 2 E, and assigns 0 tohu; vi if hu; vi 62 E.The number of n-cliques, K(G;n), in a weighted consistency graph G of order (n;m) is de�ned asfollows: let S be the set of n-cliques of G and H = (VH ; EH ;WH) 2 S be an n-clique. We de�ne22



K(H;n) = minfWH (e) j e 2 EHg, and K(G;n) = PH2S K(H;n). Initially every edge is assigned aweight of 1.The number of n-cliques a vertex may belong to depends on the connectivity with its adjacentvertices. Let G = (V;E;W ) be a weighted consistency graph and NG;v = fw 2 V j hv; wi 2 Egbe the neighbors of a vertex v. The adjacency graph of v, AdjG(v), is the subgraph of G induced byNG;v, namely, AdjG(v) = (NG;v; EG;v; EG;v), where EG;v is the set of edges in E that join the verticesin NG;v and WG;v(hu;wi) = min(W (hv; ui);W (hv; wi);W (hu;wi)), for each edge hu;wi 2 EG;v. Thefollowing theorem shows the relationship between the number of n-cliques in a graph and the numberof (n� 1)-cliques in the adjacency graphs corresponding to the vertices in a binding set.Theorem 4.7 Let G be a weighted consistency graph of order (n;m). Then for each binding set V =fv1; : : : ; vmg,K(G;n) = mXi=1K(AdjG(vi); n� 1): (1)Proof Let Gi = (Vi; Ei;Wi) be the subgraph of G induced by NG;vi [ fvig. Since no two verticesin V are adjacent, K(G;n) = Pmi=1K(Gi; n). Let AdjG(vi) = (VA; EA;WA). Because vi is adjacentto every vertex in NG;vi , minfWi(e) j e 2 Eig = minfWA(e) j e 2 EAg. Therefore, K(Gi; n) =K(AdjG(vi); n� 1). 2Theorem 4.7 says that the problem of computing the number of n-cliques in a consistency graph oforder (n;m) can be transformed into m subproblems of computing the number of (n � 1)-cliques in aconsistency graph of order (n�1;m). However, a direct computation requires exponential time O(mn).Therefore, we de�ne an operator to combine the set of subgraphs AdjG(v1); : : : ; AdjG(vm) in Formula(1) into a graph H such that K(H;n� 1) is an upper bound on K(G;n).We de�ne a binary operator �, called graph addition, on two weighted consistency graphs as follows:let G1 = (V;E1;W1) and G2 = (V;E2;W2) be two weighted consistency graphs with the same set ofvertices. Then G1 � G2 = (V;E1�2;W1�2), where E1�2 = E1 [ E2, and W1�2(e) = W1(e) +W2(e),for all e 2 E1�2. The e�ect of graph addition on the number of n-cliques is shown in the followingtheorems:Theorem 4.8 Let G1 = (V;E1;W1) and G2 = (V;E2;W2) be two weighted consistency graphs of order(n;m). ThenK(G1 � G2; n) � K(G1; n) +K(G2; n): (2)Proof By a straightforward case analysis. 2Theorem 4.9 Let G be a weighted consistency graph of order (n;m). Then for each binding set V =fv1; : : : ; vmg,K(G;n) � K( mMi=1 AdjG(vi); n� 1): (3)23



Let G = (V;E;W ) be a weighted consistency graph of order (n;m). The algorithm proceeds as follows:beginG1 := G; /* G1 = (V1; E1;W1) */for i := 1 to n� 2 doGi+1 :=Lmj=1AdjGi(vi;j); /* Gi+1 = (Vi+1; Ei+1;Wi+1) */odK(G;n) =Pe2En�1 Wn�1(e);endFigure 6: An algorithm for estimating the number of n-cliques in a weighted consistency graphProof By Theorems 4.7 and 4.8. 2We now summarize the algorithm for computing an upper bound on K(G;n) for a weighted con-sistency graph G of order (n;m). We apply Theorem 4.9 repeatedly to a sequence of consecutivelysmaller graphs. By starting with the graph G, at each iteration, one binding set is removed from thegraph, and a smaller graph is constructed by performing graph addition on the set of adjacency graphscorresponding to the vertices in the removed binding set. This binding set elimination process continuesuntil there are only two binding sets left. The resultant graph is now a bipartite graph. By de�nition,the number of 2-cliques in a bipartite weighted consistency graph is the sum of the weights of the edges(2-cliques) in the graph. This algorithm is shown in Figure 6. The time complexity for this algorithmis O(n3m3) for a graph of order (n;m) [24].Example 4.4 Consider the following predicate which speci�es a set of precedence constraints amonga set of tasks:schedule(SA, SB, SC, SD, SE, SF, SEnd) :�SB � SA + 1, SC � SA + 1, SD � SA + 1, SE � SB + 5,SE � SC + 3, SF � SD + 5, SF � SE + 2, SEnd � SF + 1.Suppose the integer interval [0; 10] is given as the type for each of the variables SA; SB; : : :; SEnd, wecan then use the algorithm to estimate the number of legal schedules or the relation size for predicateschedule/7 to be 71. In this case, this estimate is exact. 24.3 Binary Nonequality ConstraintsWe now present a simple algorithm for estimating the relation size for predicates which can be \unfolded"into a conjunction of binary nonequality constraints on a set of variables. The constraints are in theform of X 6= Y for any two variables X and Y . The types of the variables in a predicate are assumedto be the same �nite set of constants.We �rst show that the problem of computing the number of bindings that satisfy a set of binarynonequality constraints on a set of variables with the same type can be transformed into the problem ofcomputing the chromatic polynomial of a graph. The chromatic polynomial of a graph G, denoted by24



C(G; k), is a polynomial in k and represents the number of di�erent ways G can be colored by using nomore than k colors. The transformation of the problem goes as follows: let G be the graph consistingof a set of vertices, each of them corresponds to a variable, and there is an edge between two verticesif there is a binary nonequality constraint between the corresponding two variables. If the size of thetype for variables is k, then the number of ways of coloring G using no more than k colors is exactlythe number of bindings that satisfy the set of binary nonequality constraints.Unfortunately, the problem of computing the chromatic polynomial of a graph is NP-hard, becausethe problem of k-colorability of a graph G is equivalent to the problem of deciding whether C(G; k) > 0and the problem of graph k-colorability is NP-complete [19]. However, it turns out that if we cane�ciently compute a lower bound on the chromatic number of a graph, then we can e�ciently computean upper bound on the chromatic polynomial of a graph. The chromatic number of a graph G, writtenas �(G), is the minimum number of colors necessary to color G so that adjacent vertices have di�erentcolors. The following theorem by Bondy [1] gives a lower bound on the chromatic number of a graph.Theorem 4.10 Let G be a graph with m vertices f1; : : : ;mg, with the degree of vertex i denoted byd(i), such that d(1) � � � � � d(n). Let �j be de�ned recursively by�j = n� d(j�1Xi=1 �i + 1):Suppose k � n is some integer satisfyingk�1Xj=1 �j < n: (4)Then �(G) � k. 2Let �(G) denote the largest integer k satisfying Equation (4) for a graph G. Then we can design analgorithm to compute an upper bound on the chromatic polynomial of a graph G. The basic idea is tostart with a subgraph that consists of only a single vertex of the graph, then repeatedly build largerand larger subgraphs by adding a vertex at a time into the previous subgraph. When a vertex is added,the edges connecting that vertex to vertices in the previous subgraph are also added. At each iteration,the chromatic polynomial for the corresponding subgraph is computed using the computed polynomialfor the previous subgraph and the number of ways of coloring the current added vertex.Let G = (V;E) be a graph with n vertices. Suppose ! = v1; : : : ; vn is an ordering of V . We de�netwo sequences of subgraphs of G according to !. The �rst is a sequence of subgraphs G1; : : : ; Gn, calledaccumulating subgraphs, where Gi = (Vi; Ei), Vi = fv1; : : : ; vig, and Ei is the set of edges of G that jointhe vertices of Vi, for 1 � i � n, The second is a sequence of subgraphs G02; : : : ; G0n, called interfacingsubgraphs, where G0i = (V 0i ; E0i), V 0i is the set of vertices of Gi�1 that are adjacent to vertex vi, and E0iis the set of edges of Gi�1 that join the vertices of V 0i , for 1 < i � n.An algorithm for computing the chromatic polynomial of a graph, based on the construction ofaccumulating subgraphs and interfacing subgraphs, is shown in Figure 7. This algorithm constructs theaccumulating subgraphs according to an ordering on the set of vertices. At each iteration, the number25



Let G = (V;E) be a graph with n vertices. The algorithm proceeds as follows:begingenerate an ordering ! = v1; : : : ; vn of V ;C(G; k) := k;G1 := (fv1g; ;);for i := 2 to n docompute the interfacing subgraph G0i;C(G; k) := C(G; k)� (k � �(G0i));compute the accumulating subgraph Gi;odend Figure 7: An algorithm for computing the chromatic polynomial of a graphss ss s����@@ AAAA ������ HHHH12 34 5Figure 8: An exampleof ways of coloring the new added vertex is computed based on a lower bound on the chromatic numberof the corresponding interfacing subgraph.Example 4.5 Consider the graph shown in Figure 8. The imposed ordering is denoted by the labels ofvertices. The corresponding accumulating subgraphs and interfacing subgraphs are shown in Figure 9.The computed chromatic polynomial is k(k � 1)(k � 2)3. In this case, that is also the exact chromaticpolynomial of the graph. 2Theorem 4.11 Let G = (V;E) be a graph with n vertices and ! be an ordering of V . Suppose theinterfacing subgraphs of G corresponding to ! are G02; : : : ; G0n. ThenC(G; k) � k nYi=2(k � �(G0i)): (5)Proof Suppose G1; : : : ; Gn are the accumulating subgraphs of G corresponding to !. The proof is byinduction on Gj, for 1 � j � n. In base case, G1 is a graph consisting of one vertex v1, so C(G1; k) = k.Suppose Equation (5) is satis�ed by Gj for some j, 1 � j < n. Then consider adding the vertex nj+126



i 1 2 3 4 5accumulatingsubgraphsGi s1 ss12 s ss�� AA12 3 s ss s��@ AA��12 34 s ss ss��@ �AA�� HH12 34 5interfacingsubgraphsG0i s1 ss12 ss12 ss13Figure 9: The accumulating and interfacing subgraphs of the graph in Figure 8and associated edges into Gj to form Gj+1. Since �(G0j+1) is the least number of colors necessary forcoloring G0j+1, we haveC(Gj+1; k) � (k � �(G0j+1))C(Gj; k).By Theorem 4.10, we have(k � �(G0j+1))C(Gj; k) � (k � �(G0j+1))C(Gj ; k).Therefore, C(Gj+1; k) � (k � �(G0j+1))C(Gj ; k). From the hypothesis, we obtainC(Gj+1; k) � k j+1Qi=2(k � �(G0i)).Since Gn = G, the theorem is proved. 2Since the bound in Equation (5) may depend on the ordering of the vertices in the graph, we usea heuristic to �nd a \good" ordering. The intuition is that if the degrees of the interfacing subgraphsare smaller, then the lower bound of the chromatic number is more likely to be closer to the chromaticnumber. Therefore, we use the decreasing order on the degrees of vertices. This is also the orderingproposed by Welsh and Powell for coloring a graph [43]. The ordering in the graph of Figure 8 issuch an ordering. The complexity of the algorithm for computing chromatic polynomial of a graph isO(n2 logn+ nm) for a graph with n vertices and m edges [23].Example 4.6 Consider the following predicate:map color(X1, X2, X3, X4, X5) :� 27



color(X1), color(X2), color(X3), color(X4), color(X5),X1 6= X2, X1 6= X3, X1 6= X4, X1 6= X5, X2 6= X3, X2 6= X4, X3 6= X5.Suppose a �nite set of colors is given as the type for variables X1; : : : ; X5. We can then use the algorithmfor computing chromatic polynomial of a graph to estimate the number of solutions generated bypredicate map color/5. The corresponding graph for predicate map color/5 is that in Example 4.5.From Example 4.5, we know that the number of solutions generated by predicate map color/5 isbounded above by k(k � 1)(k � 2)3, where k is the number of colors in the type. In particular, we canimmediately conclude that no solutions are possible for this predicate if fewer than 3 colors are used.24.4 Combining the AlgorithmsWe now show how to properly combine the algorithms described above in relation size analysis. Whentype information is available for a predicate, each of its clauses is �rst checked to see if it can be unfoldedinto a conjunction of binary nonequality constraints where the variables range over the same �nite set ofconstants. In this case, the constraint graph is constructed and the algorithm for estimating chromaticpolynomial of a graph is utilized to estimate the number of solutions possible for those variables.Otherwise, the clause is checked to see if it can be unfolded into a conjunction and/or disjunctionof linear arithmetic constraints, and if the types of variables are represented as integer intervals. Inthis case, the algorithm for estimating the number of n-cliques of a consistency graph is employed toestimate the number of bindings possible. In other cases, the general algorithm is used. As in the case ofsize relationships, recursive literals are handled by using symbolic expressions to denote the number ofsolutions generated by them, and solving (or giving upper bound estimates to) the resulting di�erenceequations.The number of solutions for a predicate can then be obtained by combining the expressions for thenumber of solutions obtained for each of its clauses. Notice that the combining operation for argumentsize relations is maximization, while summation is used for the expressions for the number of solutions.The number of solutions a predicate can generate is the maximum of the number of solutions that canbe generated by each mutually exclusive cluster of clauses; the number of solutions any cluster cangenerate is bounded by the sum of the number of solutions that can be generated by each clause withinthe cluster.5 Time ComplexityThis section presents the analysis for estimating the time complexity of predicates. Let Tp : Nn?;1 !N1 be a function that denotes the time complexity for a predicate p with n input positions. The timecomplexity of a clause can be bounded by the time complexity of head uni�cation together with thetime complexity of each of its body literals. Consider a clause C de�ned as `H :� L1; : : : ; Lm'. Becauseof backtracking, the number of times a literal will be executed depends on the number of solutions thatthe literals preceding it can generate. Suppose that the input size to clause C is �n, and the input sizeto literal Li is �ni. Then the time complexity of clause C can be expressed asTC(�n) � � + mXi=1(Yj�i SolLj (�nj))TLi (�ni); (6)28



where � is the time needed to resolve the head H of the clause with the literal being solved. Here weuse j � i to denote that Lj precedes Li in the literal dependency graph for the clause.There are a number of di�erent metrics that can be used as the unit of time complexity in theseexpressions, e.g., the number of resolutions, the number of uni�cations, or the number of instructionsexecuted. If the time complexity metric is the number of resolutions, then � is 1; if it is the number ofuni�cations, then � is the arity of the clause head.Example 5.1 Consider again the predicate perm/2 de�ned in Example 2.1. The time complexity ofthe recursive clause of perm/2 can be expressed asTperm(head[1]) = � + Tselect (head[1]) + Solselect (head[1])� Tperm (Sz(3)select (head[1])).Assume the time complexity metric is the number of resolutions, the time complexity for predicateselect/3 has been computed as Tselect � �x:2x (see the Appendix A for details), and Solselect � �x:xand Sz(3)select � �x:x� 1 have been computed as in previous sections. Then the time complexity for therecursive clause of perm/2 can be simpli�ed toTperm(head[1]) = head[1]� Tperm(head[1]� 1) + 2� head[1] + 1.This equation can be solved to obtain the time complexityTperm � �x: xPi=1(3x!=i!) + 3x!� 2.with the boundary condition Tperm(0) = 1 from the �rst clause. 2As in the case of estimating the number of solutions, the clauses are partitioned into mutuallyexclusive clusters. The time complexity for each such cluster can be obtained by summing the timecomplexity for each of its clauses. In addition to that, however, we also need to take into account thefailure cost introduced by trying to solve the clauses in other clusters. The failure cost from solving aclause in another cluster can be estimated by considering the sources leading to the mutual exclusionamong clauses. This information can be easily produced by mutual exclusion analysis. After the failurecosts are added into the time complexity for each cluster, the time complexity of a predicate is thenobtained as the maximum of the time complexities of these clusters.As for the analysis for the number of solutions, it may be necessary to explicitly account for implicitfailures, e.g., for the predicate member/2 discussed earlier, in order to produce di�erence equations thatcan be solved. This can be done in a manner analogous to that for the number of solutions analysis.6 Automatic Solution of Di�erence EquationsAlgorithms for the automatic solution of di�erence equations have been studied by a number of re-searchers [5, 16, 31]. It is always possible to reduce a system of linear di�erence equations to a singlelinear di�erence equation in one variable, so it su�ces to consider the solution of a single linear dif-ference equation in one variable. The programs in [5, 16, 31] solve linear di�erence equations withconstant coe�cients using either characteristic equations or generating functions. Using exponential29



generating functions, the problem of solving linear di�erence equations with polynomial coe�cients canbe reduced to that of solving ordinary di�erential equations. Moreover, for �rst order linear di�erenceequations, there is a simple explicit closed form solution that depends on closed form solutions of sumsand products.Nonlinear di�erence equations may arise in the analysis for argument size functions, where thesize functions for a literal that succeeds a recursive literal are nonlinear. They may also arise in theanalysis for the number of solutions, where multiplication is applied to compute the number of instancesof arguments. Furthermore, maximum and minimum functions also introduce nonlinearity into theequations. The solution of nonlinear di�erence equations is generally much more di�cult than thesolution of linear di�erence equations. There is, however, a large class of nonlinear di�erence equationsthat can be transformed into linear equations by transformation of variables. For example, by taking thelogarithm of both sides of an equation, products can be transformed into sums. In addition, althoughthere is no algorithm for solving arbitrary nonlinear di�erence equations, there are many special formnonlinear di�erence equations which have known solutions.Finally, to automate the whole analysis, it is necessary to return a closed form solution for all thedi�erence equations. Since we are computing upper bounds on complexity, it su�ces to compute anupper bound on the solution of a set of di�erence equations, rather than an exact solution. This canbe done by simplifying the equations using transformations such that a solution to the transformedequations is guaranteed to be an upper bound on the solution to the original equations. In particular,di�erence equations involving max and min|which occur frequently when analyzing logic programs|are considered to be nonlinear, and there is no general method for solving them. However, since weare interested in computing upper bounds, such equations can be simpli�ed to eliminate occurrences ofmax and min such that solutions to the resulting equation will be an upper bound on solutions to theoriginal equation. The essential idea here is the following: in an expression max (e1; e2), if one of the(non-negative) expressions is provably an upper bound on the other for all assignments of values to thevariables occurring in them, then this expression is clearly the maximum; otherwise, the maximum isbounded above by the sum e1+ e2. The situation is somewhat simpler for min: if neither expression isa provable lower bound on the other, then either of the two expressions can be chosen as a conservativeupper bound on the minimum. There are many possible ways to generalize this basic approach tomore than two expressions: the main concern is the tradeo� between the precision and e�ciency of thecomputation, and the appropriate choice is left to the implementors.It is, unfortunately, rather di�cult to syntactically characterize the classes of programs that canbe analyzed by our approach. The reason is that such a characterization basically boils down tocharacterizing programs that give rise to di�erence equations of a certain kind, namely, linear di�erenceequations with constant or polynomial equations. Now the exact form of the di�erence equations thatare obtained for a predicate depend on the size measures under consideration, i.e., it is di�cult to givean abstract characterization of programs that are analyzable without a careful consideration of theparticular size measures involved, and this can become a rather lengthy discussion. To make mattersworse, even nonlinear equations can sometimes be transformed into linear equations that can be solvedand the solutions transformed back solutions for the original equation. So a discussion of what programscan be analyzed would have to get into these kinds of transformations as well. The details get quitemessy, and are beyond the scope of this paper. 30



7 ImplementationCASLOG (Complexity Analysis System for LOGic) is a prototype implementation of the techniquesdescribed in previous sections. It consists of �ve major components: a preprocessor, argument sizeanalyzer, number of solution analyzer, time complexity analyzer and di�erence equation solver. Theorganization of CASLOG is shown in Figure 10.The preprocessor consists of �ve modules: mode analysis, data dependency analysis, mutual exclu-sion analysis, type analysis and size measure analysis. At this time, mode analysis, type analysis andsize measure analysis have not been implemented (as indicated by dashed boxes in Figure 10) and theusers have to supply this information via declarations in the program. Data dependency analysis usesmode information to build an argument dependency graph and a literal dependency graph for eachclause, while mutual exclusion analysis classi�es the clauses into mutually exclusive clusters for eachpredicate.The argument size analyzer applies size measure information to derive the set of argument sizerelations associated with each clause, and computes the argument size functions for each output positionin the clause head by performing normalization on the set of argument size relations.The number of solution analyzer is divided into two subcomponents: the relation size analyzer andthe solution size analyzer. In relation size analysis, when type information is available for a predicate,the predicate is checked to see if it can be unfolded into a conjunction of binary nonequality constraints,or a conjunction and/or disjunction of linear arithmetic constraints. In this case, the appropriate specialalgorithm is used to estimate the relation size of the predicate. Otherwise, the general algorithm is usedto estimate the relation size of the predicate. The general algorithm is used for solution size analysis.The time complexity analyzer combines information about argument sizes and number of solutionsto estimate the time complexity function for each predicate.In argument size analysis, solution size analysis and time complexity analysis, the cost expressionsfor recursive clauses are in the form of di�erence equations. A di�erence equation solver has been im-plemented in CASLOG. It can solve a number of common classes of di�erence equations, e.g., �rst orderlinear di�erence equations, second order linear di�erence equations with constant coe�cients, di�erenceequations from divide-and-conquer paradigm and a special class of di�erence equations derivable fromclauses with the size measure term-size. Apart from this, we have incorporated the Maple SymbolicComputation System [4] into CASLOG, so that the system can resort to Maple when the di�erenceequations encountered cannot be handled by its di�erence equation solver. If neither our di�erenceequation solver nor Maple can deal with the di�erence equations encountered, a conservative upperbound, ��x:1, is returned.The core modules of the system consists of the argument size analyzer, the relation size and solu-tion size analyzer, and the time complexity analyzer. These modules share several common features:depending on data dependency information to compute the complexity expressions for each clause, re-lying on mutual exclusion information to compose the complexity expressions for a predicate from theexpressions of its clauses, and resorting to di�erence equation solver to analyze recursive clauses. Thesecommon features allow the analyses be performed in a uni�ed framework that simpli�es proofs of cor-rectness and the implementation of the algorithms. This framework is then enhanced by incorporatingtwo special algorithms to improve the relation size analysis for two special classes of predicates. The31
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system is implemented on top of SICStus Prolog [2]. Preliminary results on the speed of the system,running on a Sparcstation-2 with 64 Mbytes of memory, is given in Appendix B.There are some programs that the system cannot deal with very well. These include transitiveclosure programs, where the problem is that it is not clear what size measures to use; chain programs,i.e., programs where the output of a recursive literal is used as input by another recursive literal, asis the case, for example, in a doubly recursive transitive closure program|such programs are not wellconnected, and as a result yield di�erence equations that cannot be solved; and programs that useaccumulators, where the resultant complexity functions may not be solvable (however, these programsare analyzable provided that the user indicates, in the size measure annotations, which arguments arebeing used as accumulators and should therefore be ignored). The system also su�ers an undesirable lossin precision when dealing with some divide-and-conquer programs, where the sizes of output positionsfor \divide" predicates may be dependent, while we handle them independently: because of this, thecomplexity of the qsort/2 predicate in Example 5 of Appendix B is inferred to be exponential ratherthan quadratic.8 SoundnessIn this section we sketch a soundness proof of our method. We call a predicate size-monotonic if itsargument size functions are monotonic on its input size. Here we assume that all the predicates in theprogram are size-monotonic.The size relations in argument size analysis are sound because if size(t) is de�ned on t and di�(t1; t2)is de�ned on (t1; t2), then by de�nition size(�(t)) = size(t) and di� (�(t1); �(t2)) = di� (t1; t2) for anysubstitution �. Since the transformations applied during normalization replace a term by another equalor larger term, and all the predicates are size-monotonic, the normalization is also sound. Therefore,the soundness of argument size analysis is reduced to the soundness of di�erence equation solver. Asound di�erence equation solver can be achieved by always returning an upper bound of the solutionto the original equations, as described in Section 6.In Theorems 4.1 { 4.6, 4.9 and 4.11, all the properties described satisfy the upper bound requirement.Since the computation for relation size and solution size involves only the summations and products ofpositive quantities, and the expression for an input term is the sum of the expressions for its subterms forrecursive clauses (i.e., monotonicity is satis�ed), the soundness of number of solutions analysis followsimmediately from the soundness of argument size analysis and di�erence equation solver.Equation (6), which is used to compute time complexity, involves only summations and products ofpositive quantities, and the expression for an input term is the sum of the expressions for its subtermsfor recursive clauses (i.e., monotonicity is satis�ed), Consequently, the soundness of time complexityanalysis follows immediately from the soundness of argument size analysis, number of solutions analysisand di�erence equation solver.9 An Application: Task Granularity AnalysisWhile logic programming languages o�er a great deal of scope for parallelism, there is usually someoverhead associated with the execution of goals in parallel because of the work involved in task creation,communication, scheduling, migration and so on. In practice, therefore, the \granularity" of a goal, i.e.an estimate of the work available under it, should be taken into account when deciding whether or not33



to execute a goal concurrently as a separate task. The cost analysis described in the previous sectionscan be applied to this problem: the idea is to compute a estimate of the time complexity Tp(n) of apredicate p on an input of size n at compile time. This expression is evaluated at runtime, when thesize of the input is known, and yields an estimate of the work available in a call to the predicate. Forexample, given a predicate de�ned byp([]).p([H|L]) :� q(H), p(L).assume that the literals q(H) and p(L) in the body of the second clause can be shown to be independent,so that these literals are candidates for concurrent execution. Suppose the expression Tq(n) giving thecost of q on an input of size n is 3n2, and suppose the cost of creating a concurrent task is 48 units ofcomputation. Then, the code generated for the second clause might be of the formn := size(H);if 3n2 < 48 then execute q and p sequentially as a single taskelse execute q and p concurrently as separate tasksOf course, this could be simpli�ed further at compile time, so that the code actually executed at runtimemight be of the formif size(H) < 4 then execute q and p sequentially as a single taskelse execute q and p concurrently as separate tasksThe ideas described above were tested by experiments on a four-processor Sequent Symmetry, using twodi�erent Prolog systems: ROLOG [17] and &-Prolog [14]. Most programs reported some performanceimprovement due to granularity control: the speedups ranged from 2% to 32% on ROLOG, and from0% to 29% on &-Prolog. On a few programs, there was a net slowdown (19.5% in one case in ROLOG,and about 16% in one &-Prolog benchmark), because the cost analysis did not take into account theadditional cost of maintaining input size information and testing it at each level of recursion. Theinterested reader is referred to [9] for details. While many of the compilation and code generationissues remain to be worked out in full detail, these experiments suggest that reasonable performanceimprovements can be obtained from appropriate control of task granularity in parallel logic programs.10 Related WorkVan Gelder has investigated an approach to reasoning about the constraints between the argument sizesof predicates, using concepts from computational geometry [39]. To reasoning about the terminationof procedures, he uses linear inequalities to represent the size relationships among the arguments of apredicate, while for each output argument we represent its size as a function in terms of the input sizeand the function may be nonlinear.Lipton and Naughton have applied adaptive sampling techniques to estimate the number of solutionsof database query [25]. Their method estimates the query size dynamically at run-time, in contrast ourmethod is a static analysis performed at compile-time.Much of the work on automatic complexity analysis is in the context of functional programminglanguages [12, 15, 21, 34, 37, 41, 44]. We extend their work by being able to handle nondeterminism and34



the generation of multiple solutions via backtracking in logic programs. Kaplan considers the analysisof the average-case complexity of logic programs [18], but his approach cannot handle programs thatcan produce multiple solutions, thereby excluding many interesting programs.Knuth [20] and Purdom [33] have exploited random sampling techniques to estimate the e�ciency ofbacktracking algorithms. The primary di�erence is that their method is dynamic, whereas our methodis static.11 ConclusionsThis paper develops a method for (semi-)automatic analysis of the worst-case cost of a large class oflogic programs. The primary contribution of this paper is that it shows how to deal with nondeter-minism and the generation of multiple solutions via backtracking. Nondeterminism and the abilityto backtrack and produce multiple solutions complicates control 
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Sz(1)select(x) = ?;Sz(3)select(x) = Sz(3)select (x� 1) + 1,Sz(3)select(x) = x� 1.These equations are solved to obtain Sz(1)select � �x:? and Sz(3)select � �x:x� 1.Next, consider the predicate perm/2, called with the �rst argument as the input argument. The sizerelations for the body literals of the recursive clause arebody1[1] � Sz(1)select (body1[2]),body1[2] � size(X) = head[1] + di� (X; X) = head[1],body1[3] � Sz(3)select (body1[2]),body2[1] � size(Y) = body1[3] + di� (Y; Y) = body1[3],body2[2] � Sz(2)perm(body2[1]),and the size relation for the output position in the head of the recursive clause ishead[2] � size([RjRs]) = size(Rs) + 1 = body2[2] + di� (Rs; Rs) + 1 = body2[2] + 1.When normalized, this yields the relationhead[2] � Sz(2)perm(head[1]� 1) + 1.In addition, from the �rst clause, we can obtain the relation head[2] � 0 as a boundary condition. Thuswe have the following set of equationsSz(2)perm(x) = Sz(2)perm(x� 1) + 1,Sz(2)perm(0) = 0.These equations can be solved to obtain Sz(2)perm � �x:x, i.e. the size of the output of predicate perm/2is bounded by the size of its input.This shows how normalization of size relations can be used to track argument sizes. We then continuewith the analysis for the number of solutions a predicate can generate. First, consider the predicateselect/3. Since predicate select/3 is recursive, we obtain Relselect � 1. To compute Solselect , giventhe size relations and functions computed earlier, the number of bindings possible for variables in therecursive clause can be computed as follows. We �rst set NfYg = NfYsg = 1. Using Theorem 4.1, weobtainO1 = NfYsg � Solselect(body1[2]) = Solselect (head[2]� 1),NfXg = NfZsg = minfO1;Relselectg = Solselect (head[2]� 1).Using Theorem 4.4, the number of possible outputs for the head is39



instance((X; [YjZs])) = minfNfXg �NfYg � BfZsg; O1g = Solselect (head[2]� 1).Thus we have the equationSolselect (x) = Solselect (x� 1).In addition, from the �rst clause, we obtain the equation Solselect (x) = 1. Because the two clauses arein the same mutually exclusive cluster, we sum these two equations, and obtainSolselect (x) = Solselect (x� 1) + 1.This equation can be solved, with boundary condition Solselect (0) = 0 (accounting explicitly for implicitfailure in the base case) to obtain Solselect � �x:x, i.e. the predicate select/3 will generate at most xsolutions for an input of size x.Next, consider the predicate perm/2. As in the case of predicate select/3, we obtain Relperm � 1.To compute Solperm, we �rst set NfXg = 1. Using Theorem 4.1, we obtainO1 = NfXg � Solselect(body1[2]) = head[1],NfRg = minfO1;Relselectg = head[1],NfYg = minfO1;Relselect ;Relpermg = head[1];O2 = NfYg � Solperm(body2[1]) = head[1]� Solperm(head[1]� 1),NfRsg = minfO2;Relpermg = head[1]� Solperm(head[1]� 1),Using Theorem 4.5, Since fYg � fR; X; Yg, instance(Y) = head[1] = O1, instance(Y) � Relperm , andinstance(Y) � Solperm(head[1]� 1) = head[1]� Solperm(head[1]� 1) � Relperm , we obtaininstance([RjRs]) = minfNfRg �NfRsg; O2g = head[1]� Solperm(head[1]� 1).Thus, we have the equationSolperm(x) = x� Solperm(x� 1).This equation can be solved, with the boundary condition Solperm(0) = 1 from the �rst clause of perm/2,to obtain Solperm � �x:x!.The analysis for time complexity now proceeds as follows: �rst, we consider the clauses de�ningpredicate select/3. Using the number of resolutions as the time complexity metric, the di�erenceequations representing the time complexity for the clauses areTselect (head[2]) = 1,Tselect (head[2]) = Tselect (body1[2]) + 1 = Tselect (head[2]� 1) + 1.Summing these two equations, we obtain 40



Tselect (head[2]) = Tselect (head[2]� 1) + 2.This equation can be solved, with the boundary condition Tselect (0) = 0, from the implicit failure, toyieldTselect � �x:2x.This is then applied to the clauses de�ning predicate perm/2. The di�erence equations representing thetime complexity for the clauses areTperm(0) = 1,Tperm(head[1]) = Tselect (body1[2]) + Solselect (body1[2]) � Tperm(Sz(3)select(body1[2]))= head[1]� Tperm(head[1]� 1) + 2� head[1] + 1.These equations can then be solved to obtain the time complexityTperm � �x: xPi=1(3x!=i!) + 3x!� 2.B ExamplesThis appendix contains several examples of programs analyzed by the CASLOG system. In each case,we show the input program (including mode and size measure declarations that are currently necessary),the cost expressions inferred by CASLOG, and the total analysis time on a Sparcstation-2. The measureof time complexity, for each example, is the number of resolutions (procedure calls).1. Naive Reverse: A very simple recursive program with two recursive predicates:Input::- mode(nrev/2,[+,-]).:- measure(nrev/2,[length,length]).nrev([],[]).nrev([H|L],R) :- nrev(L,R1), append(R1,[H],R).:- mode(append/3,[+,+,-]).:- measure(append/3,[length,length,length]).append([],L,L).append([H|L],L1,[H|R]) :- append(L,L1,R).Cost Expressions Inferred:Sz(2)nrev � �x:x;Relnrev � 1;Solnrev � �x:1;Tnrev � �x:0:5x2+ 1:5x+ 1. 41



Sz(3)append � �hx; yi:x+ y;Relappend �1;Solappend � �hx; yi:1;Tappend � �hx; yi:x+ 1.Total Analysis Time: 0.20 secs.2. Fibonacci: A simple program illustrating double recursion:Input::- mode(fib/2,[+,-]).:- measure(fib/2,[int,int]).fib(0,0).fib(1,1).fib(M,N)} :- M > 1, M1 is M-1, M2 is M-2, fib(M1,N1), fib(M2,N2), N is N1+N2.Cost Expressions Inferred:Sz(2)fib � �x:0:447� 1:618x� 0:447� (�0:618)x;Relfib � 1;Solfib � �x:1;Tfib � �x:1:447� 1:618x + 0:552� (�0:618)x � 1.Total Analysis Time: 0.20 secs.3. Flatten: This program 
attens nested lists into a \
at" list. It shows how CASLOG usesknowledge about the behavior of control constructs such as cut (`!') to infer mutual exclusion betweenclauses, thereby allowing a more precise analysis.Input::- mode(flatten/2,[+,-]).:- measure(flatten/2,[size,length]).flatten(X,[X]) :- atomic(X), X \== [],!.flatten([],[]).flatten([X|Xs],Ys) :- flatten(X,Ys1), flatten(Xs,Ys2), append(Ys1,Ys2,Ys).Cost Expressions Inferred:Sz(2)flatten � �x:x;Relflatten � 1;Solflatten � �x:1;Tflatten � �x:0:5x2+ x+ 0:5.Total Analysis Time: 0.21 secs. 42



4. Towers of Hanoi:Input::- mode(hanoi/5,[+,+,+,+,-]).:- measure(hanoi/5,[int,void,void,void,length]).hanoi(1,A,B,C,[mv(A,C)]).hanoi(N,A,B,C,M) :-N > 1, N1 is N-1,hanoi(N1,A,C,B,M1), hanoi(N1,B,A,C,M2),append(M1,[mv(A,C)],T), append(T,M2,M).Cost Expressions Inferred:Sz(5)hanoi � �x:2x � 1;Relhanoi � 1;Solhanoi � �x:1;Thanoi � �x:x2x + 2x�1 � 2.Total Analysis Time: 0.49 secs.5. Quicksort: A divide-and-conquer program. CASLOG has trouble with this one because it doesnot keep track of the fact that the size of the two outputs of part/4 are not independent, and as aresult gives a rather pessimistic estimate of the time complexity of qsort/2.Input::- mode(qsort/2,[+,-]).:- measure(qsort/2,[length,length]).qsort([],[]).qsort([First|L1],L2) :-part(First,L1,Ls,Lg),qsort(Ls,Ls2), qsort(Lg,Lg2),append(Ls2,[First|Lg2],L2).:- mode(part/4,[+,+,-,-]).:- measure(part/4,[void,length,length,length]).part(F,[],[],[]).part(F,[X|Y],[X|Y1],Y2) :- X =< F, part(F,Y,Y1,Y2).part(F,[X|Y],Y1,[X|Y2]) :- X > F, part(F,Y,Y1,Y2).Cost Expressions Inferred:Sz(2)qsort � �x:2x � 1;Relqsort � 1;Solqsort � �x:1;Tqsort � �x:Pxi=1(i2x�i) + x2x�1 + 2x+1 � 1.43



Sz(3)part � �x:x;Sz(4)part � �x:x;Relpart � 1;Solpart � �x:1;Tpart � �x:x+ 1.Total Analysis Time: 0.55 secs.6. N-Queens: A nondeterministic predicate that can generate multiple solutions via backtracking:Input::- mode(safe/2,[+,-]).:- measure(safe/2,[int,length]).safe(N,Queens) :- extend(N,N,Queens).:- mode(extend/3,[+,+,-]).:- measure(extend/3,[int,int,length]).extend(0,_,[]).extend(M,N,[q(M,Q)|Selected]) :-M > 0, M1 is M-1,extend(M1,N,Selected), choose(N,Q), consistent(q(M,Q),Selected).:- mode(consistent/2,[+,+]).:- measure(consistent/2,[void,length]).consistent(_,[]).consistent(Q,[Q1|Rest]) :- noattack(Q,Q1), consistent(Q,Rest).:- mode(noattack/2,[+,+]).:- measure(noattack/2,[void,void]).noattack(q(X1,Y1),q(X2,Y2)) :-Y1 =\= Y2, X is X1-X2, Y is Y1-Y2, Z is Y2-Y1, X =\= Y, X =\= Z.:- mode(choose/2,[+,-]).:- measure(choose/2,[int,int]).choose(N,N) :- N > 0.choose(N,M) :- N > 0, N1 is N-1, choose(N1,M).Cost Expressions Inferred:Sz(2)safe � �x:x;Relsafe � 1;Solsafe � �x:xx;Tsafe � �x:Pxi=1(2ixi) + xx+1=(x� 1)� x=(x� 1) + x+ 2.Sz(3)extend � �hx; yi:x;Relextend �1; 44



Solextend � �hx; yi:yx;Textend � �hx; yi:Pxi=1(2iyi) + yx+1=(y � 1)� y=(y � 1) + x+ 1.Relconsistent � 1;Solconsistent � �x:1;Tconsistent � �x:2x+ 1.Relnoattack � 1;Solnoattack � �x:1;Tnoattack � �x:1.Sz(2)choose � �x:x;Relchoose �1;Solchoose � �x:x;Tchoose � �x:2x.Total Analysis Time: 0.83 secs7. Permutation: A nondeterministic program that generates permutations of a list. Note that forthe predicate select/3, implicit failure in the base case has to be accounted for explicitly.Input::- mode(perm/2,[+,-]).:- measure(perm/2,[length,length]).perm([],[]).perm([X|Xs],[R|Rs]) :- select(R,[X|Xs],Y), perm(Y,Rs).:- mode(select/3,[-,+,-]).:- measure(select/3,[void,length,length]).select(X,[X|Xs],Xs).select(X,[Y|Ys],[Y|Zs]) :- select(X,Ys,Zs).Cost Expressions Inferred:Sz(2)perm � �x:x;Relperm � 1;Solperm � �x:x!;Tperm � �x:Pxi=1(3x!=i!) + 3x!� 2.Sz(1)select � �x:?;Sz(3)select � �x:x� 1;Relselect �1;Solselect � �x:x;Tselect � �x:2x.Total Analysis Time: 0.33 secs 45



8. Eight-Queens: A very di�erent program from the n-queens program shown above, this illustrateshow linear arithmetic constraints are handled. This program is only the \test" portion of a generate-and-test program: for this reason, all arguments of queen/8 are inputs, the number of solutions perinput is 1, and the time complexity for queen/8 is much smaller than its relation size.Input::- mode(queen/8,[+,+,+,+,+,+,+,+]).:- measure(queen/8,[int,int,int,int,int,int,int,int]).:- domain(queen/8,[1-8,1-8,1-8,1-8,1-8,1-8,1-8,1-8]).queen(X1,X2,X3,X4,X5,X6,X7,X8) :- safe([X1,X2,X3,X4,X5,X6,X7,X8]).:- mode(safe/1,[+]).:- measure(safe/1,[length]).safe([]).safe([X|L]) :- noattacks(L,X,1), safe(L).:- mode(noattacks/3,[+,+,+]).:- measure(noattacks/3,[length,int,void]).noattacks([],_,_).noattacks([Y|L],X,D) :- noattack(X,Y,D), D1 is D+1, noattacks(L,X,D1).:- mode(noattack/3,[+,+,+]).:- measure(noattack/3,[int,int,void]).noattack(X,Y,D) :- X =\= Y, Y-X =\= D, Y-X =\= -D.Cost Expressions Inferred:Relqueen � 46312;Solqueen � �hx1; x2; x3; x4; x5; x6; x7; x8i:1;Tqueen � �hx1; x2; x3; x4; x5; x6; x7; x8i:83.Relsafe � 1;Solsafe � �x:1;Tsafe � �x:x2 + x+ 1.Relnoattacks � 1;Solnoattacks � �hx; yi:1;Tnoattacks � �hx; yi:2x+ 1.Relnoattack � 1;Solnoattack � �hx; yi:1;Tnoattack � �hx; yi:1.Total Analysis Time: 5.32 secs.9. Map Coloring: A simple program that illustrates the handling of binary nonequality constraints.The predicate c/3 is included to illustrate the use of unfolding during analysis. As for the previous46



example, this program is only the \test" component of a generate-and-test program.Input::- mode(color/5,[+,+,+,+,+]).:- measure(color/5,[int,int,int,int,int]).:- domain(color/5,[[1,2,3,4,5],[1,2,3,4,5],[1,2,3,4,5],[1,2,3,4,5],[1,2,3,4,5]]).color(A,B,C,D,E) :- A =\= B, A =\= C, A =\= D, A =\= E, c(B,C,D), C =\= E.:- mode(c/3,[+,+,+]).:- measure(c/3,[int,int,int]).:- domain(c/3,[[1,2,3,4,5],[1,2,3,4,5],[1,2,3,4,5]]).c(X,Y,Z) :- X =\= Y, X =\= Z.Cost Expressions Inferred:Relcolor � 540;Solcolor � �hx1; x2; x3; x4; x5i:1;Tcolor � �hx1; x2; x3; x4; x5i:2.Relc � 80;Solc � �hx1; x2; x3i:1;Tc � �hx1; x2; x3i:1.Total Analysis Time: 0.21 secs.10. Precedence Scheduling: A program that illustrates the handling of arithmetic constraints.This program only tests whether the inputs given satisfy the precedence constraints given.Input::- mode(schedule/7,[+,+,+,+,+,+,+]).:- measure(schedule/7,[int,int,int,int,int,int,int]).:- domain(schedule/7,[0-10,0-10,0-10,0-10,0-10,0-10,0-10]).schedule(A,B,C,D,E,F,G) :-B >= A+1, C >= A+1, D >= A+1, E >= B+5,E >= C+3, F >= D+5, F >= E+2, G >= F+1.Cost Expressions Inferred:Relschedule � 71;Solschedule � �hx1; x2; x3; x4; x5; x6; x7i:1;Tschedule � �hx1; x2; x3; x4; x5; x6; x7i:1.Total Analysis Time: 1.42 secs. 47


