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Abstract

Cost analysis of programs has been studied in the context of imperative and functional programming
languages. For logic programs, the problem is complicated by the fact that programs may be
nondeterministic and produce multiple solutions. A related problem is that because failure of
execution is not an abnormal situation, it is possible to write programs where implicit failures have
to be dealt with explicitly in order to get meaningful results. This paper addresses these problems
and develops a method for (semi-)automatic analysis of the worst-case cost of a large class of logic
programs. The primary contribution of this paper is the development of techniques to deal with
nondeterminism and the generation of multiple solutions via backtracking. Applications include

program transformation and synthesis, software engineering, and in parallelizing compilers.
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1 Introduction

(Semi-)Automatic cost analysis of programs has been widely studied in the context of functional lan-
guages. A major difference between logic programs and functional programs in this regard is that logic
programs are nondeterministic in general, and may produce multiple solutions. A related problem is
that because failure of execution is not an abnormal situation, it is possible to write programs where im-
plicit failures have to be accounted for and dealt with explicitly if meaningful results are to be obtained.
Because of such behavior, the details of low-level control flow are significantly more complex in logic
programs, compared to programs in functional or imperative languages. Because of this, cost analysis
for logic programs is considerably harder than for programs in more traditional languages. The primary
contribution of this paper is to show how nondeterminism, and the generation of multiple solutions via
backtracking, can be handled within a uniform framework for cost analysis. In particular, we show how
properties of unification may be exploited in the treatment of comparison operators (=, #,>, >, <, <)

to improve the analysis of nondeterministic predicates.

In principle, the cost of a procedure depends on some measure of the input size. Therefore, it
is necessary to keep track of the sizes of arguments to procedures at each program point (procedure
entry and exit). In addition, in order to handle nondeterministic procedures, knowledge about the
number of solutions generated by each predicate is required. In this paper, size relationships between
arguments and the number of solutions each predicate can generate are inferred using data dependency

information.

Not unexpectedly, the size relationships between arguments, the number of solutions and the time
complexity functions for recursive procedures are obtained in the form of difference equations. To get
closed form expressions, these difference equations need to be solved. The automatic solution of general
difference equations is a difficult problem, but there is a wide class of programs for which the difference

equations can be solved automatically [5, 16, 31]. Our approach consists of the following steps:

1. Use data dependency information to compute the relative sizes of variable bindings at different
program points. This size information can be used to determine the space requirements of variable

bindings, which in turn can be used to compute the space complexity;
2. use the size information to compute the number of solutions generated by each procedure;

3. use the size and the number of solutions information to compute the time complexity.

Automatic cost analysis of programs has applications in many areas. In program transformation and
automatic program synthesis, it can be used as a criterion to choose among several possible alternatives
[6, 22, 27]. In software engineering, programmers can employ it to understand program behavior. In
compilers for parallel systems, knowledge about the cost of different procedures can be used to guide the
partitioning, allocation and scheduling of parallel processes to ensure that the gains from parallelism
outweigh the overhead associated with the management of concurrent processes [9, 35]. Information
about the number of solutions generated by different procedures can be used to improve the performance
of deductive database programs, e.g., to plan the order in which subgoals are evaluated [10]. In addition,
knowledge about the size relationships between arguments is important for reasoning about program
termination [32, 38, 40].

The remainder of this paper is organized as follows: Section 2 introduces some preliminary notions

on the subject. Section 3 presents the method for the inference of argument size relationships. Section



4 describes the analysis for estimating the number of solutions generated by each procedure. Section 5
shows the scheme for the composition of time complexity functions. Section 6 describes a mechanism
for obtaining (approximate) solutions for difference equations. Section 7 shows the organization of a
prototype implementation. Section 8 sketchs a soundness proof of our method. Section 9 illustrates an
application of automatic cost analysis: task granularity analysis for parallel logic programs. Finally,

Section 10 discusses some related work, and Section 11 gives conclusions.

2 Preliminaries

Most logic programming languages are based on a subset of the first order predicate calculus known
as Horn clause logic. Such a language has a countably infinite set of variables, and countable sets
of function and predicate symbols, these sets being mutually disjoint. Without loss of generality, we
assume that with each function symbol f and each predicate symbol p is associated a unique natural
number n, referred to as the arity of the symbol; f and p are said to be n-ary symbols, and written f/n

and p/n respectively. A 0-ary function symbol is referred to as a constant. A term in such a language is

either a variable, or a constant, or a compound term f(t1,...,t,) where f is an n-ary function symbol
and the ¢; are terms. A literal is either an atom p(ty,...,t,), where p is an n-ary predicate symbol and
t1,...,t, are terms, or the negation of an atom; in the first case the literal is said to be positive, in the

second case it is negative. A clause is the disjunction of a finite number of literals, and is said to be
Horn if it has at most one positive literal. A Horn clause with exactly one positive literal is referred
to as a definite clause. The positive literal in a definite clause is its head, and the remaining literals
constitute its body. A predicate definition consists of a finite number of definite clauses, all whose heads
have the same predicate symbol; a goal is a set of negative literals. A logic program consists of a finite

set of predicate definitions. We adhere to the syntax of Edinburgh Prolog and write a definite clause as

P = 4q1,--,4n

read declaratively as “p if g1 and ... and ¢,”. Names of variables begin with upper case letters, while

names of non-variable (i.e. function and predicate) symbols begin with lower case letters.

We assume that each argument position of a predicate 1s annotated as an input or output position,
depending on whether or not it is bound to a term when that predicate is invoked.! In this paper we

consider well-moded clauses with ground bindings. A clause is said to be well-moded if

1. every variable appearing in an input position in a body literal also appears either in an input

position in the head of the clause, or in an output position of some other body literal; and

2. every variable occurring in an output position in the head of the clause also appears either in an

input position in the head, or in an output position in the body.

The intuition 1s that the binding for any variable in the clause is either a term given as an input ar-
gument, or a term produced as an output argument by a body literal. A term is said to be ground if
it contains no variable. A clause with ground bindings demands that all input arguments are bound to
ground terms on invocation and all output arguments are bound to ground terms on success. Strictly
speaking, this groundness requirement can be relaxed as long as no predicate binds any variable occur-

ring in any of its input argument positions: as an example, consider the familiar append program for

I The input/output character of argument positions can be inferred via dataflow analysis [7, 28].



concatenating lists, which does not require that the elements of the lists being processed be ground.
While it is possible to give syntactic characterizations that imply this property, however, such charac-
terizations, in attempting to cope with aliasing effects, quickly become verbose and cumbersome while
shedding little light on the essential property they are attempting to characterize. For this reason,
we shall consider only programs with ground bindings in this paper, with the understanding that the

notion can be appropriately generalized where necessary.

The call graph for a program is a directed graph which represents the caller-callee relationships
between predicates in the program. Each node in the graph denotes a predicate in the program. There
is an edge from a node p; to a node p; if a literal with predicate symbol ps appears in the body of
a clause defining the predicate p;. A body literal in a clause is called a recursive literal if it is part
of a cycle that contains the head of that clause in the call graph for the program. A clause is called
nonrecurstve if no body literal 1s recursive, and is called direct recursive if 1t contains recursive literals
and all the recursive literals have the same predicate symbol as the head; otherwise, it is called indirect

recursive. A clause 1s recursive if it 1s either direct or indirect recursive.

Operationally, given an output position a; and an input position as in a clause, a» is dependent on ay
if the variable bindings generated at a; are used to construct the term occurring at as, i.e., if the terms
occurring at positions a; and as have variables in common. The data dependencies between argument
positions can be represented by a directed acyclic graph G = (V, E), called an argument dependency
graph, where V is a set of vertices and F a set of edges. Each vertex in the graph denotes an argument
position. There is an edge (a1, az) from an argument position a; to an argument position as if as is
dependent on ap: in this case, a; is said to be a predecessor of as, and as a successor of a;. Note that
the vertices denoting the input positions in the head have no predecessor; and the vertices denoting the
output positions in the head have no successor. A path in the graph is a sequence of vertices vy, ..., v,
such that (v;,v;11) is an edge in the graph, for 1 < i < n. Argument dependency graphs are induced
by the control strategy of the system, and may be inferred via dataflow analysis [3, 7].

It is sometimes convenient to abstract an argument dependency graph into a graph that represents
the data dependencies between literals. A literal dependency graph is a directed acyclic graph. Each
vertex in the graph denotes a literal and consists of the set of vertices in argument dependency graph
that correspond to the argument positions in the denoted literal. There is an edge between two vertices
in literal dependency graph if there exists at least one edge between the two corresponding sets of
vertices in argument dependency graph. The head of the clause is treated specially. It is divided
into two vertices, one consists of the input positions in the head, and the other consists of the output
positions in the head. Paths in literal dependency graph are defined in the same way as in argument
dependency graph. Hereafter we assume that the argument dependency graphs and literal dependency

graphs are given.

Example 2.1 Consider the following program which permutes a list of elements given as its first

argument and returns the result as its second argument:

perm([1, [1).
perm(X, [RIRs]) :- select(R, X, Y), perm(Y, Rs).

select (X, [XIXs], Xs).
select(X, [YIYs], [Y|Zs]) :- select(X, Ys, Zs).
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Figure 1: Argument dependency graphs and literal dependency graphs for the clauses of predicate perm.

Given a list X as its first (input) argument, perm/2 generates a permutation of X by nondeterministically
selecting an element R of X, permuting the remainder Y of the input list into a list Rs, and returning the
list [RIRs] as its second (output) argument. The argument dependency graphs and literal dependency
graphs for the clauses of the predicate perm/2 are shown in Figure 1, where h; denotes the i** argument
position in the head, while b‘g denotes the " argument position in the j* body literal. The circles
represent the vertices in the argument dependency graphs, while rectangles represent vertices in the

literal dependency graph. 0O

Because logic programs can be nondeterministic, there may in general be more than one clause
whose head unifies with a call. The results of cost analysis can be greatly improved if situations where
this cannot happen, i.e., where clauses are mutually exclusive, are detected and dealt with specially.
Informally, two clauses of a predicate are mutually exclusive if at most one of the clauses can succeed
for any call to that predicate. The detection of mutual exclusion between clauses is discussed in [8].
The clauses of a predicate can be partitioned into a set of mutually exclusive “clusters” such that two
clauses are in the same cluster if and only if they are not mutually exclusive. Then, cost analysis can
be performed separately for each cluster, with the total cost for the predicate being given in terms of
the cost of the most expensive cluster. In this paper, we assume that the partitioning of clauses into

mutually exclusive clusters has been carried out (for details, see [8]).

3 Argument Size Relations: Space Complexity

This section presents a method for the inference of argument size relations based on data dependency
information. The purpose of this inference 1s to represent the input size to each body literal as a function
in terms of the input size to the head. The input size to body literals would be used later to infer the
cost of body literals. We will first discuss notions related to various “size measures” for terms. This is
followed by a discussion of how (based on the data dependency in a clause) size relationships between
each argument position and its predecessors may be inferred using appropriate size measures. We then

describe how these size relationships can be propagated so that the size relation corresponding to an



input position in a literal can be transformed into a function in terms of the size of the input positions
in the head. Finally, a characterization of conditions under which such size functions are well-defined

is given.
3.1 Size Measures

Various measures can be used to determine the “size” of an input, e.g., term-size, term-depth, list-length,
integer-value, etc. The measure(s) appropriate in a given situation can in most cases be determined by
examining the types of argument positions, the general idea being to use the “back edges” in the type
graph of a predicate to determine how that predicate recursively traverses its input terms (or constructs
its output terms), and thereby synthesize a measure for the predicate [32, 40]. Type information may

be inferred via program analysis [13, 29, 36, 42], and is not discussed further here.

We first discuss how to determine the size of ground terms. Let |- |, : X — N1 be a function
that maps ground terms to their sizes under a specific measure m, where H is the Herbrand universe,
i.e. the set of ground terms of the language, and N, the set of natural numbers augmented with a
special symbol —, denoting “undefined”. Examples of such functions are “list_length”, which maps
ground lists to their lengths and all other ground terms to —; “term_size”, which maps every ground
term to the number of constants and function symbols appearing in it; “term_depth”, which maps
each ground term to the height of its tree representation; and so on. Thus, |[a,b]|ist_tength = 2,
|f(1,f(2,nil,nil),nil)|term_depth = 2, but |f(a)|list_length = —.

Based on |- |, the size properties of general terms can be described using two functions size,, and

diff ,,,- the function size,, (t) defines the size of a term ¢ under a measure m:

sizem(l) = n if |6(t)|m = n for every substitution @ such that 6(t) is ground
YT = otherwise.

Thus, sizelist_lengen ([L, a]) = 2, and sizejis;_jengtn ([a|L]) = —. A detailed realization of the size function
for some commonly encountered measures is given in Figure 2. The function diff ,, (¢1,t2) gives the size

difference between two terms ¢; and ¢5 under a measure m:

d if t5 is a subterm of ¢; and |0(t2)|m — |0(t1)|m < d for every

diff , (t1,12) = substitution # such that (¢;) and 6(¢2) are ground
— otherwise.
Thusa diﬁlist_length([aab|L]aL) = _2a diﬁterm_depth (f(l,X,Y),X) = _L and diﬁterm_size(xaf(x)) =— A

detailed realization of the diff function for some commonly encountered measures is given in Figure
3. Where the particular measure under consideration is clear from the context in the discussion that

follows, we will omit the subscript in the size and diff functions.

3.2 Size Relations

We now show how size and diff functions can be used to extract size relationships between each argument
position and its predecessors. We use the notation @a to denote the term occurring at an argument
position @, m, to denote the size measure associated with a, and sz(@a) to denote the size of the term
occurring at argument position a. Further, let Szz CNY o N1 o be a function that represents the

size of the b'* (output) argument position in a predicate p, which has n input argument positions, in



If m is integer_value, then

n if ¢ is an integer n
sizem (t) = < O(sizem (t1), ..., sizen, (t,)) T4 = &(t1,...,t,) for some evaluable arithmetic functor ©
- otherwise
If m is list_length, then
0 if ¢ is the empty list
sizem (1) = X 1+ sizey,(t1) if ¢ is of the form [|¢1] for some term 3
- otherwise
If m 1s term_depth, then
0 if £ 1s a constant
sizey (t) = 1+ max{sizen, (t;) |1 <i<n} ift=f(ts,...,t)
- otherwise
If m 1s term_size, then
1 if £ 1s a constant
sizeq (1) =< 1450 {sizen(ti)} it = f(t1,...,t0)
- otherwise

Figure 2: The function size,,(t) for some common size measures




If m is integer_value, then

0 iftl=12

—  otherwise

diff,, (t1,12) = {

If m is list_length, then

0 if t1 =1¢2
diff ,,(t1,t2) = ¢ diff ,,(t,t2) — 1 if {1 is of the form [|¢{] for some term ¢
— otherwise
If m 1s term_depth, then
0 ift1 =¢2
diff ,,(t1,12) = ¢ maz{diff ,,(¢;,12) | 1 <i<n}—1 ¢l = f(te,...,tn)
— otherwise
If m 1s term_size, then
0 iftl =2
diff ,,(t1,t2) = ¢ arg(t1,9) — sizen, (t1) iftl = f({1,...,t,) and ¢; =2 for some i, 1 <i<n
— otherwise

where arg(t1,) is a symbolic expression denoting the term-size of the i** argument of the term ¢1.

Figure 3: The function diff,,(t1,12) for some common size measures m




terms of the size of its input positions, where N o, denotes the set of natural numbers plus two special

symbols — and oo, denoting undefined and infinite respectively.

We first consider the argument positions in a body literal. Let L be a body literal in a clause,
with input argument positions ai,...,a,. An argument position in L is either an input or an output

position. First, consider an output position b in L. There are two possibilities:

(1) If L is recursive, then sz(@b) is symbolically expressed as
sz(@b) < Szgj)(sz(@al), ., 52(@ay)).

(2) If L is not recursive, assume the argument size function for argument position b in literal L have

been recursively computed as SZ(;)(l‘l, ...y ), then sz(@b) can be expressed as
sz(@b) < Szgj)(sz(@al), ., 52(@ay)).

Note that since the function giving the size relationship between the input and output positions
of L has already been computed recursively, we are able, in this case, to express the relationship

between sz(@b) and {sz(Qay), ..., sz(Qay)} explicitly in terms of this function.

Next, consider an input position « in literal L, and let preds(a) denote the set of predecessors of a. The

size of the term occurring at a can be determined as follows:

(1) If sizem,(@a) # —, then s2(@a) < size,,, (Qa);

(2) otherwise, if m. = my and ¢ = diff,,, (Qc, @a) # — for some argument position ¢ € preds(a),
then sz(@Qa) < sz(Q@c) + 6;

(3) otherwise, if sizen,, (@a) can be expanded using the definition in Figure 2, then:

(a) expand sizen,, (@a) one step accordingly;

(b) recursively compute sizey,, (¢;) for the appropriate subterms ¢; (depending on the size measure

involved) of @a with respect to the same set of predecessors preds(a);

(c) if each of these recursive size computations has a defined result, then use them to compute
sz(@a) as appropriate (depending on the particular size measure under consideration); if the

result of any of the recursive size computations is undefined, sz(@a) = —.

(4) otherwise, sz(@a) = —.

We now use subterms(a) to denote the set of subterms ¢ occurring in @a that are used in the step (2)
such that either diff,, (@c,t) # — for some argument position ¢ € preds(a), or diff,,, (@Qc,t) = — for all
argument position ¢ € preds(a) and sizen,, (t) cannot be further expanded using the definition in Figure
2 in step (3). In other words, subterms(a) contains the set of subterms occurring in @a whose sizes
are required in order to determine the size of @a. We also use def (t) to denote the (output) argument
position where a term t € subterms(a) becomes bound. The argument positions and literals where a

variable becomes bound are easily available from the argument and literal dependency graphs.

Example 3.1 Consider the clause



nrev([HIL], R) :- nrev(L, R1), append(R1, [H], R).

We use the following notation to refer to the size of the term occurring in an argument position in a
clause: head[i] denotes the size of the i'" argument position in the head, while body;[i] denotes the
size of the i'" argument position in the j'* body literal. Assume that for nrev/2, the first argument
is an input position while the second is an output position; and for append/3, the first two argument
positions are input positions while the third argument is an output position. Further, assume that the
size measure under consideration is list_length. Then, the size relations for the body literals are given

by

body[1] < szze( ) = head[1]+ diff (H|L],L) = head[1] —
bodys[2] < Sziz), (bodys[1]),

bodys[1] < size(R1) = body1[2] + diff (R1,R1) = body1[2],
bodys[2] < s zze([ =1,

bodys[3] < Sz(a)ena (bodys[1], bodys[2]).

Let a be the first argument position of literal nrev/2. Then subterms(a) = {L}, and def (L) is the first

argument position in the head. O

Similarly, a set of size relations can be obtained for output argument positions in the head.

Example 3.2 Continuing the previous example, the size relations for the output position in the head

1s

head[2] < size(R) = bodys[3] + diff (R,R) = bodys[3].

3.3 Size Functions

We now show how the size relations can be propagated to transform a size relation corresponding to an
input position in a literal into a function in terms of the input size to the head. However, for recursive
clauses, we need to solve the symbolic expression due to recursive literals into an explicit function first.
We can then use the explicit function to infer the input size to the literals that succeed the recursive

ones.

Given the size relations for the body literals of a clause, it is possible to transform the size relations
for the output argument positions in the head into functions in terms of the sizes of the input argument
positions in the head. The basic idea here is to repeatedly substitute size relations for body literals
“into” size relations for head arguments: given size relations Ry = ‘¢ < 9’ for a body literal, and Ry =
‘¢ < E(p)’ for some output argument position in the head, where E(¢p) is some expression involving ¢,
the substitution of R; into Ry yields the size relation ‘¢ < E(¢)’. The process of repeatedly subsituting
size relations for body literals into those for output positions in the head is called normalization. An

algorithm for realizing normalization is given in Figure 4.



Let £p be the set of size relations for body literals, and A be the size relation for an output position in

the head or an input position in a body literal. The algorithm proceeds as follows:

begin
repeat
if there is at least one occurrence of a term ¢ in the RHS of h
and t is the LHS of a relation b € £p
then replace each occurrence of ¢ in the RHS of A by the RHS of b
until there is no change

end

Figure 4: An algorithm for normalization

Example 3.3 Consider the predicate perm/2 defined in Example 2.1. Let head[i] and body;[i] denote
the sizes of the i'# argument position in the head and in the j'* body literal respectively. Assume that
the size relations for the output argument positions of the predicate select/3 have been recursively
computed as stelect = Az.— and stelect = Az.z—1 (see the Appendix A for details). Using list_length

as the size measure, the size relations for the body literals in the recursive clause are

body[1] < Szi2).cs (bodin[2]) =

body1[2] < siz ( ) = head[1]+ dzﬁ(x X) = head[l],
bodyy[3] < S28)..., (body[2]) = bodys [2] - 1,
bodys[1] < siz ( ) = body1 [3] + diff (Y, Y) = body[3],
bodys[2] < Szia), (bodys[1]),

and the size relation for the output argument position in the head is
head[2] < size([R|Rs]) = size(Rs) + 1
= bodya[2] + diff (Rs,Rs) + 1
= body,[2] + 1.

On normalization, this gives

=S il 1+
< Szperm head[1]— 1)+ 1

Thus, the size function for the output argument position in the head can be represented as

Sz(? (head[1]) = Szperm(head[l] -1+ 1.

perm

In addition, from the first clause, we can obtain the equation Szperm(O) = 0 as the boundary condition.
They can be solved to yield Szperm = Az.z, i.e. the size of the output of perm/2 is bounded by the size
of its input. O

10



Recall that in a recursive clause, the size of the output arguments of recursive literals in the body
are expressed symbolically in terms of its input sizes. Once the size functions for the output positions
in the head have been determined, they can be substituted for these symbolic expressions in the set of
size relations for the body literals. We can then apply normalization again to compute the size of each
input position for each body literal, so that it is defined in terms of the size of the input arguments in
the head of the clause. These size functions can be used later in computing the number of solutions

and the time complexity of the clause.

Example 3.4 Consider the clause defined in Example 3.1. Suppose the argument size function for the

output argument position of nrev/2 has been computed as Szr(u%lv = Az.xz. Then the size for the first

(input) argument position of literal append/3 can be obtained as

bodys[1] < body:[2]
< Sz(3), (bodyi [1])

< bodyi[1]
< head[1] — 1.

Theorem 3.1 Normalization of size relations terminates for all clauses.

Proof At each iteration of the normalization algorithm, only finitely many substitutions are made.
The number of iterations of the algorithm is bounded by the height of the argument dependency graph.
O

3.4 Well-connectedness

We now give a characterization of conditions under which the inferred argument size functions are
well-defined. Let C' be a well-moded clause with the input argument positions aq, ..., a, in the head.
Suppose further that C' is not indirect recursive. Let A be the set of output positions in the head and

input positions in the body literals. A clause (' is said to be well-connected if

1. for each argument position v € A, and for each term t € subterms(y), the following hold:

(7) Szl(def(t)) is defined if def(t) occurs in a nonrecursive literal /;
(i€) Maes(r) = my; and
(#11) diff (Tueg(r),t) is defined.
2. For each recursive literal L with input argument positions 31, ..., 8,, the following hold:

(7) there is no recursive literal on the path from the input of the head to L in the literal
dependency graph of C;
(i7) sz(@g;) < sz(Qay) for all ¢, 1 < i< n; and
(#4i) s2(@F;) < s2(Qoy), for some ¢, 1 < i< n.

11



Intuitively, condition (1) guarantees that all the argument sizes are functions defined in terms of the
input sizes, while condition (2) ensures that the functions are in the form of difference equations for
recursive clauses. The notion of well-connectedness can be extended in a straightforward way to deal
with indirect recursion.

Example 3.5 We give two examples of non-well-connected clauses. First, consider the program:

sum([], 0).
sum([HIT], S) :- sum(T, S1), S is H + S1.

which computes the sum of a list of numbers. Suppose the first argument is the input, and the size
measures under consideration are list_length for the first argument position and integer_value for the
second argument position. Since the size of H for the literal is/2 cannot be extracted from the term
[HITI, the size of the output S cannot be expressed as a function in terms of the size of the input [HIT].
Therefore, if the size measure under consideration is not fine enough to capture the size relationships
between argument positions, the clauses are usually non-well-connected. However, notice that though
the argument size function is undefined for sum/2, because the size of the input to the recursive literal
sum/2, i.e., T, can be computed and the time complexity for the builtin predicate is/2 is known in

advance, it is still possible to estimate the time complexity for sum/2. Next, consider the program:

rev([l, L, L).
rev([H|IT], L, R) :- rev(T, [HIL], R).

which reverses a list of elements. Suppose the first and second arguments are input and list_length is
used as the size measure under consideration. Since the size of [HIL] is larger than the size of L in
the recursive clause, the resulting size function for the output argument position of rev/3 is not in
the form of difference equation. Thus, in general, clauses using accumulator style programming are

non-well-connected. O

The analysis for argument size relations based on normalization is applicable to well-connected
clauses:

Theorem 3.2 If a clause C' is well-connected, then the following hold after the size relations that hold
wmn C' are normalized:

1. If C 1s nonrecursive, then the sizes for the output argument positions in the head of C' are obtained

as a closed form function of is the sizes of the wnput argument positions in the head of C';

2. af C 1s direct recursive, then the sizes for the output argument positions in the head of C' are

obtained as a difference equation in terms of the sizes of the input argument positions in the head

of C'; and

3. if C' 1is indirect recursive, then the sizes for the output argument positions wn the head of C' are
obtained as a difference equation, which is part of a system of difference equations for mutually

recursive clauses, in terms of the sizes of the input argument positions in the head of C'.
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Proof By induction on the number of literals in the body of C'. O

The preceding discussion has shown how to infer the argument size functions for a clause. The
argument size functions for a predicate can then be obtained by taking the maximum among the

expressions for the argument size functions obtained for each of its clauses.

With knowledge about the size relationships between argument positions in the clauses, given the
size of input, the space required by each argument position can be estimated. This information can
then be used to compute the space required by a predicate in a specific computational model and

implementation.

4 Number of Solutions

This section describes the analysis for estimating the number of solutions generated by a predicate. This
can be characterized in terms of two parameters: the relation size of the predicate, which usually does not
depend on the input; and the solution size, i.e., the maximum number of outputs that can be generated
by a single input to the predicate, which usually depends on the size of the input. Although, among
them, only solution size information is used to compute the cost of a predicate, relation size information
can greatly improve the estimation of solution size. We first present a general algorithm, based on the
properties of unification, for estimating these two parameters for each predicate. Then we give two
algorithms that estimate the relation size for two special classes of predicates based on the properties of
comparison operators (=, #,>, >, <, <) and information about argument types. The predicates in the
first class are the ones that can be “unfolded” into a conjunction and/or disjunction of linear arithmetic
constraints; and the predicates in the second class are the ones that can be “unfolded” into a conjunction
of binary nonequality constraints. Compared with the general algorithm, the two special algorithms
can considerably improve the precision of the analysis for these two classes of predicates. Finally, we

show how to combine these algorithms in relation size analysis.

4.1 A General Algorithm

The basic idea behind the algorithm is counting the number of possible bindings for each variable in
a clause. Using data dependency information, the number of instances for the term occurring at an
argument position is estimated from the number of instances for the terms occurring at its predecessors.
Based on properties of unification, the number of bindings for a variable is estimated from the number
of instances for the terms in which it appears. We first assume that no duplicate solutions are generated

during execution; we will discuss how to deal with duplicates at the end of this subsection.

We use Bypy to denote the number of instances for a (tuple of) term(s) 7" in a clause. In the
discussion of relation size and solution size analyses, we will overload this notation. For a variable V|
in relation size analysis, Byy} denotes the number of distinct bindings for V' that are generated by all
possible inputs to the clause; in solution size analysis, it denotes the number of distinct bindings that
are generated by a single input to the clause. Because the algorithms for the two analyses are very
similar, and the quantities denoted by the above notation share the same properties in both analyses,

the overloading of the notation makes the discussion much more concise.

We now describe two useful properties of unification. First, consider a clause

p(Y) :— q(¥), r(Y).
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Assume that q/1 can bind Y to two values a and b, while r/1 can bind it to a, b and c. Since a
successful invocation to a predicate ensures that different occurrences of a variable in a clause must
bind to the same term, the number of bindings for Y in this clause should be 2, i.e., the bindings to a
and b. Thus the number of bindings for a variable in the clause 1s bounded above by the minimum of

the number of possible bindings for different occurrences of that variable:

Theorem 4.1 If a vartable X has n occurrences in the body of a clause and the numbers of possible bind-
ings for these different occurrences are separately computed as ki, ..., ky, then Byxy < min{ky,... kn}.
O

Recall our assumption that the input arguments to any predicate are bound to ground terms when
that predicate is called, and its output positions are also bound to ground terms if the call succeeds:
Theorem 4.1 may not hold, in general, if nonground bindings are considered [11]. Next consider a term
£(X,Y,X) that contains more than one variable. Suppose X can take on two bindings, a and b, while Y
can take on two bindings ¢ and d. The total number of instances thus possible for the term £(X,Y,X)
is 4: £(a,c,a), £(b,c,b), f(a,d,a), £(b,d,b). In general, given the number of bindings possible for
the variables contained in a term, an upper bound on the number of instances for that term is given by

the product of the number of bindings possible for each of its variables:

Theorem 4.2 Let T be a (tuple of) term(s) in a clause. If T contains a set of variables S =
{X1,..., X}, such that Byx,3 < Nyx,}, for 1 <i < m, then Biry = Bs <[[2, Nyx,}, with By = 1.
O

Thus, if the number of possible bindings for each variable occurring in a tuple of terms 7" has been
determined, then we can define a function to compute the number of instances for that tuple of terms.
Let 7" contain a set of variables, S = {X1,..., X, }, and Nyx,; be the determined number of bindings

possible for X;. We define a function, called instance function and denoted by instance(T), as follows:?

instancer (T) = T2, Nix,}-

Because the diff functions defined for size measures are based on structural differences between
terms, well-connected recursive clauses usually apply recursion on (terms derived from) subterms of the
input arguments. Since the invocation to a well-connected recursive clause may succeed for any instance
of the input arguments, the relations they define are, in general, infinite. Thus, it is more desirable,
for recursive predicates, to obtain information about the maximum number of outputs that can be
generated by a single input. For example, the predicate select/3 defined in Example 2.1 succeeds for
any nonempty input list, so the size of its relation is infinite. However, given a nonempty list of length
n as input, select/3 always generates n outputs. We associate each predicate p in the program with
a pair (Relp, Sol,), called the binding pattern of p, where Rel, denotes an upper bound of the relation
size for p, and Sol, denotes an upper bound of the solution size for p. In general, for a predicate p
with n input positions, Rel, is in M., namely, a natural number or the symbol co, denoting an infinite

relation; while Sol, : N | — N is a function in terms of the size of the input.

2Since we will successively improve the realization of the instance function, we use subscripts to distinguish the different

versions of this function.
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Consider a clause p(Zo,%0) :— ¢1(F1,91),- -+, gn(Zn, Un), where the body literals are sorted in topolog-
ical order from the literal dependency graph, and z; are input arguments and ¥; are output arguments.
Let vars(t) be the set of variables in tuple ¢, and lits(v) be the set of literals in which variable v appears.
Further, let n; be the input size to literal ¢;. Assume that the binding patterns for the nonrecursive
body literals have been (recursively) computed and the binding patterns for recursive literals have been

represented in symbolic form as a function of input size. The algorithm proceeds as follows:

begin
/% compute Rel, */
if p is recursive then Rel, := oo;
else do
for each variable v € vars(zy) do
Nyvy :=min{Rel; | j € lits(v)};
od
fori:=1tondo
I; := min{instance(Z;), Rely, };
O; := min{Il; x Solg,(n;),Rely, };
for each variable v € vars(y;) do
Ny = min{O;, Rel; | j € lits(v)};
od
od
Rel, := instance((Zo, 4o));
od

/* compute Sol, */

for each variable v € vars(zy) do
Ney =1

od

fori:=1tondo
I; := min{instance(Z;), Rely, };
O; := min{I; x Solg,(7;), Rely, };
for each variable v € vars(y;) do

Ny = min{O;, Rel; | j € lits(v)};

od

od

Sol, = instance(yo);

end

Figure 5: An algorithm for computing binding patterns
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Based on Theorems 4.1 and 4.2, we can devise a simple algorithm to compute the binding pattern
for each predicate. The algorithm is presented in Figure 5, and can be summarized as follows: consider
a clause: ‘p(Zo,¥0) :— q1(Z1,71), -, (Zn, Yn)’, where the body literals are sorted in topological order
from the literal dependency graph, and z; are input arguments and y; output arguments. Let vars(t)
be the set of variables in tuple ¢, and lits(v) be the set of literals in which variable v appears. First the
binding patterns of its nonrecursive body literals are recursively computed and the binding patterns of
its recursive literals are represented in symbolic form. To compute Rel,, the relation size for p, if the
predicate p is recursive, then Rel, is set to be infinite; otherwise, the number of bindings, By, for each

variable v in the input arguments z; 1s estimated using Theorem 4.1:

By < Nyyy = min{Rel; | j € lits(v)}.
Using the binding patterns of the body literals, we can then estimate the number of instances for input
and output arguments in the body literals. For each literal ¢;(Z;,%;), the number of instances, Byz,3,
for the input arguments z; is bounded by instance function applied on &; by Theorem 4.2; and it should

also be bounded by the size of the relation defined by ¢;, i.e., Rely,. Thus the smaller of these two

quantities is taken to be the estimated value of Byz,;:
Biz,y < I; = min{instance(z;), Relg, }.

Let n; denote the input size to literal ¢;. The number of instances, Byg,y, for the output arguments y;
of ¢; is bounded by the product of Byz,; and Soly,(7;); and it should also be bounded by Rel,,. Their

minimum is taken to be the estimated value of Byg,y:
Bigy < O; = min{l; x Soly,(n;), Relg, }.

Having the binding information about output arguments ¥;, we can continue to estimate the number of
bindings for each variable v becoming bound in y; by taking the minimum of the numbers of bindings

for different occurrences of v using Theorem 4.1:
By < Nyyy = min{O;, Rel; | j € lits(v)}.

Once all the body literals are processed, the number of bindings possible for all the variables in the
clause are estimated. Finally, using Theorem 4.2 again, we can estimate the number of instances,
Bz, go1, for the arguments in the head:

Biz, 501 < Rel, = instance((Zo, o).

Example 4.1 Consider the program:

P(x, Y’ Z) L q(X, Y)’ r(Y’ Z)
q(al, bl). q(a2, bil).
r(bl, c1). r(b2, c2). r(b3, c3).
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Suppose the first argument of predicate p/3 is the input, and the binding patterns for predicates q/2 and
r/2 have been recursively computed as (2, Az.1) and (3, Az.1), respectively. In this example, because
all the predicates are nonrecursive, the corresponding solution sizes do not depend on the input size;

therefore, we will ignore the size of arguments in the discussion. To compute Rel;, we first compute
Nixy = Relg =2
using Theorem 4.1. Using Theorems 4.1 and 4.2,

I = min{instance(X),Relq} = min{2,2} = 2,
01 = min{l; x Solg,Relg} = min{2 x 1,2} = 2,
Nyyy = min{O;,Rel. } = min{2,3} = 2;

I, = min{instance(Y), Rel, } = min{2,3} = 2,
05 = min{ls X Sol,,Rel; } = min{2 x 1,3} =2,
N{Z} == 02 == 2

The relation size for p/3 is bounded by
instance((X,Y,2)) = Nigy x Nyyy X Nyzyp = 8,
by Theorem 4.2. Thus, we have Rel, =8. O

The computation of Sol,, the solution size for p, can be carried out in the same way as the compu-
tation of Rel,. The only differences are that at the beginning the number of bindings for each variable
in the input arguments zy in the head is not estimated using Theorem 4.1, instead 1t is assigned to be
1; and at the end we only estimate the number of possible output arguments for the head, rather than

both input and output arguments.

Example 4.2 Continuing the previous example, to compute Sol,, we set Ny; = 1 because variable X
is the input. Then we follow the same procedure as the computation of Rel,. Using Theorems 4.1 and
4.2,

I = min{instance(X),Relq} = min{l,2} =1,
01 = min{l; x Solg,Relq} = min{l x 1,2} =1,
Nyyy = min{O;,Rel. } = min{l,3} =1,
I, = min{instance(Y), Rel, } = min{l,3} =1,
02 = min{ly x Soly, Rel, } = min{l x 1,3} =1,
N{Z} == 02 == 1
Using Theorem 4.2 again, the number of outputs generated by a single input to p/3 is bounded by

instance((Y,2)) = Nyyp x Nyz3 =1x1=1.
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So we have Sol, = Ax.1, i.e., p/3 generates at most one output for each input. O

Theorem 4.2 is based on the tacit assumption that bindings for distinct variables are generated
independently of each other. For example, if two variables X and Y can each get two bindings in a
clause, then Theorem 4.2 assumes that in the worst case, 2 x 2 = 4 instances can be generated for a term
£(X,Y). This may be overly conservative if the bindings for X and Y are not generated independently.

This is the case for distinct variables that are bound by the same literal, e.g., in the program

p(X, £(Y, 2)) :— q(X, Y, 2).
q(a’ b’ C)- q(a, d., e).

Suppose X is the input of p/2. Though q/3 generates 2 bindings for each of the variables ¥ and Z,
only 2 solutions are possible for q/3 and thus for p/2, rather than 2 x 2 = 4 solutions. The following
theorem gives a rule for improving the estimation in such cases. Intuitively, it says the following: if
every variable in a set S occurs as an output of the same literal, then the number of bindings for S is

bounded by the number of possible outputs generated by that literal.

Theorem 4.3 Let y be the output arguments of a literal, and O be the computed number of instances
forg. If S Cwars(y) is a set of variables, then Bs < min([],cs Ny}, O).

Proof By Theorem 4.2, Bs < HUES Nyyy. Since Bs < Byars(g) and Byars(y) < O, we have Bg < 0. D

Using Theorem 4.3, we can improve instance function as follows: let 7" be a tuple of terms, the
variables in 7" can be divided into Vj,,..., Vi, sets of variables such that the variables in Vi, become
bound in literal ¢x,, and Oy, be the computed number of output instances for literal ¢,. Then a new

realization of instance function can be defined as:

instances (1) =[], min{Hverl Nivy, Or,}

Other cases in which the variable bindings are dependently generated occur between variables in

the input and output arguments of the same literal. Consider the program

P(x, f(Y’ Z)) L q(X, Y), r(Y’ Z)
qla, b). qla, c).
r(b, d). r(c, e).

Suppose X is the input of p/2. Then each of the variables ¥ and Z in the clause defining p/2 can get
2 bindings, but only 2 solutions are possible for r/2 and thus for p/2, instead of 2 x 2 = 4 solutions.
The dependence between these variable bindings comes from the fact that the bindings for the output
variables are instantiated according to the bindings of the input variables. The following theorem
gives a rule for improving the estimation in such cases. Intuitively, it states that if every variable in a
set S occurs as either an input or an output of the same literal, then the number of bindings for S is

bounded by the number of possible outputs generated by that literal.

Theorem 4.4 Let & and y be the input and output arguments of a literal q, and O be the computed
number of instances for y. If S C vars((z,y)), then Bs < min([],cs Nivy, 0)-
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Proof By Theorem 4.2, Bs <[], c5 Niv}. Let n denote the input size to literal q. Since Byars((z,5)) <
Bizy x Solg(n), and Byars((z,5)) < Rely, Buars((z,5)) < O. Because Bs < Byars((z,5)), We have Bs < 0. O

Using Theorem 4.4, we can further improve instance function as follows: let 7" be a tuple of terms,
such that the variables in 7' can be divided into Vj,, ..., Vi, sets of variables such that the variables in
Vi, become bound in literal gg,. The improvement can be achieved by merging these variable sets using
Theorem 4.4 such that the number of resulting variable sets is fewer. This merging process can proceed
by considering the literals in reverse topological order from literal dependency graph. Let g5, be the
literal under consideration, if the variable set corresponding to g, 1s nonempty, then we can move all the
variables, which occur in the input arguments of g5, and which are in the variable set corresponding to
a predecessor of gi,, into the set corresponding to q,. Let Vi, ...,V be the resulting sets of variables
from the merging process with m < n, and O, be the computed number of output instances for literal

qr;- Then we can define a new realization of instance function as:

instances(T) = [[/~, min{Hvevll Niwy, O}

Theorems 4.3 and 4.4 give rules for improving estimation for variable bindings within a single
literal. We now consider dependent variable bindings which may involve variables beyond a single

literal. Consider the program:

P(x, f(Y’ Z)) L q(X, Y’ w), r(w’ Z)
q(a, b1, ci1). qla, b2, c2).
r(c1, d1). r(c1, d2). r(c2, d3). r(c2, d4).

Suppose X is the input of p/2. Then each of the variables Y and W in the clause defining p/2 can get 2
bindings: b1 and b2, c1 and c2. Since each of the bindings for W can generate 2 bindings for variable Z,
Z will get a total of 4 bindings: d1, d2, d3, d4. The number of instances for £(Y,Z), therefore, should
be 4: £(b1,d1), £(b1,d2), £(b2,d3), £(b2,d4), instead of 2 x 4 = 8. The dependency between the
variable bindings for Y and Z is due to the fact that the variable bindings for Y and W are generated
dependently by literal q/3 and the bindings for Z are instantiated according to the bindings of W. In
other words, because of W, the variable bindings for Y and Z are generated in an indirectly dependent

way. The following theorem provides a rule for improving the estimation in such cases:

Theorem 4.5 Let ¢; and q; be two literals, %;,¥;,T;,y; be the corresponding input and output argu-
ments, n; be the wnput size to q;, and O; and O; be the corresponding computed number of output
instances. Let S C vars((%;, 4, &;,Y;)) be a set of variables. If

1. wvars(Z;) C vars((Z;, ¥i)),

2. instance(Z;) = O;,

3. instance(z;) < Rel,,,

4. instance(Z;) x Soly; (n;) < Relg,,

then Bs < min([],cs Ny, 0j)-
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Proof By Theorem 4.2, Bs <[], o5 Ny Also,

= Buars((z:,5:)) X S0lg; (n5) (from 1)
< 0; x Solqj ()

= instance(x;) x Soly, (n;) (from 2)
= I; x Soly; (n;) (from 3)
= 0;. (from 4)

Because Bs < Byars((z.,5:,2,,9;)), We have Bs < 0j;. O

Let ¢; and ¢; be two literals. We say literal ¢; subsumes literal ¢; if they satisfy the four conditions
specified in Theorem 4.5. Using a proof similar to Theorem 4.5, it is very easy to verify by induction

that the result of Theorem 4.5 can be generalized to any number of literals:

Theorem 4.6 Let qq,...,q, be literals, z1,y1,...,%n,yn be the corresponding input and out-
put arguments, and O, be the computed number of output instances for literal q,. Let S C

vars((Z1, 41, - .-, &n, Yn)) be a set of variables. If qiy1 subsumes ¢; for 1 < i < n, then Bg <
min([,cq Vv, On)-

Using Theorem 4.6, we can improve instance function once again. We apply a merging process
similar to that of instances. For each literal under consideration, if the corresponding variable set is
nonempty, we first move all the variables which satisfy Theorem 4.6 into the variable set, then we
move all the variables which satisfy Theorem 4.4 into the variable set. Let Vi, ..., Vi be the resulting
variable sets from the merging process, and Oy, be the computed number of output instances for literal

¢k, Then the new instance function is defined as:
instances(T) =[], min{[ [, ey, Nivy, Ok, }-

Example 4.3 Consider the predicate perm/2 defined in Example 2.1. Assume the binding pattern
(Relgerect; Solge1ect ) for predicate select/3 has been recursively computed as (oo, Az.z) (see the Ap-
pendix A for details). Since predicate perm/2 succeeds for every input list, we obtain Relyern = 00. To

compute Solern, we first set Nyyy = 1. Using Theorem 4.1, we obtain

O1 = Nix3 X Solsetect (body1[2]) = head([1],

Nipy = min{O1, Relserect } = head[1],

Nyyy = min{O1, Relserect , Relpern } = head([1];

O3z = Niy} X Solpern(bodya[1]) = head[1] x Solpern(head[1] — 1),

Nirsy = min{Oz, Relpern } = head[1] x Solyern (head[1] — 1),
Using Theorem 4.5, Since {Y} C {R,X,Y}, instance(Y) = head[l] = 01, instance(Y) < Relpern, and
instance(Y) x Solpern(head[1l] — 1) = head[1] X Solperm (head[l] — 1) < Relpern, we obtain

instance([R|Rs]) = min{Nipy X Nygs}, Oz} = head[1] X Solpern (head[1] — 1).
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Notice that variables R and Rs are from distinct literals. Thus, we have the equation
SOlperm(x) =X SOlperm(x — 1)

This equation can be solved, with the boundary condition Solperm (0) = 1 from the first clause of perm/2,

to obtain Solpern = Az.z!. O

Note that in the general algorithm of Figure 5, we can also keep track of the parameters that maintain
the upper bounds of the number of input and output instances for each predicate, or even the size of
the domain for each argument position in a predicate. This may improve the accuracy of estimation at
each step of the algorithm, and we may also derive optimization techniques similar to those specified
in Theorems 4.3 — 4.6. In general, however, the more information is used in the algorithm, the less
effective are the derived optimization techniques. Because of this, it is difficult to predict how beneficial

such additional information is with regard to the precision of the final result.

Up to now we have assumed that all the solutions generated are distinct. However, in practice,
a single input may generate duplicate solutions. In general it is necessary to account for duplicate
solutions, since otherwise erroneous results may be obtained for time complexity analysis. For programs
that generate duplicate solutions, Theorems 4.1 and 4.2 may not hold any more, and we have to use

more conservative methods. For example, consider the program:

pX, W) :— q(X, V), (Y, Z), s(Z, W).
q(a, bl). qla, b2).

r(bl, c). r(b2, c).

s(c, 4).

Suppose X is the input of p/2. Then variable Z would be bound to ¢ twice due to the distinct bindings,
b1l and b2, of Y. Using Theorem 4.2, since the relation size for predicate s/2 is 1, we would infer that the
number of possible bindings for Z is 1. However, because of the duplicates generated for Z, duplicates
are generated for W by the input a to p/2. Thus, in practice, we need to make sure that the predicates
are duplicate-free in order to apply the techniques described in this subsection. If not, we can only infer
that literal s/2 would be invoked twice, and since for each input to s/2 only one output is generated, W
would get two bindings, instead of just one. A sufficient condition for duplicate-free predicates is given

in [26].

Finally, it may sometimes be necessary to explicitly account for implicit failures. The problem 1is

illustrated by the following program to check membership in a list:

member (X, [XI_1).
member (X, [_IL]) :- member(X, L).

A straightforward analysis would infer the equation ‘Solpemper(n) = 17 for the first clause, and
‘Solmember () = SOlnemper (7 — 1)’ for the second, and since the two clauses are not mutually exclusive, the
resulting equation would be obtained as

SOlmember (n) = SOlmember (n - 1) + 1.
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The problem is that there is no base case from which this equation can be solved. In this case, we must
explicitly account for the fact that the base case fails and yields no solutions: this requires adding the

equation
SOlmember (0) =0.

The resulting equations can be solved to give the expected result.

4.2 Linear Arithmetic Constraints

We now present a simple algorithm for estimating the relation size for predicates which can be “un-
folded” into a conjunction and/or disjunction of linear arithmetic constraints on a set of variables. The
constraints may involve any of the following comparison operators: =, #,>,>, <, and <. The types of

the variables in the predicates are assumed to be given as integer intervals.

Since the manipulation of general n-ary constraints (involving n variables) can incur exponential
cost [30], we approximate the set of n-ary constraints by a set of binary constraints (involving at most
2 variables) through the “projection” of an n-ary relation onto a set of binary relations. As shown in
[30], the set of projected binary constraints is a minimal extra relation of the original n-ary constraints.
If the set of n-ary arithmetic constraints is linear and the types for the variables can be represented
as integer intervals, then a set of binary constraints can be easily projected from n-ary constraints via

interval arithmetic manipulation.

The set of binary arithmetic constraints can be represented as a graph G = (V| E), called a consis-
tency graph. Each vertex v; ; in V' denotes the variable binding of a value d; to a variable z;, z; + d;,
for 1 <i<mnand1l<j<m Thereis an edge (v, 4,74 ) between two vertices v, 4 and vy, if the
two bindings z, < dg and x4 < d; satisfy all the constraints involving variables z, and z,. The two
bindings are then said to be consistent. The set of vertices V; = {v;1,...,v; m} corresponding to a
variable x; is called the binding set of z;. The order of a consistency graph G is (n, m) if G corresponds
to a set of constraints involving n variables and m values. Because two distinct values cannot be bound
to the same variable at the same time, no pair of vertices in a binding set are adjacent. Therefore, the

consistency graph of a set of constraints involving n variables is an n-partite graph.

A clique of a graph G 1s a subgraph of G whose vertices are pairwise adjacent. An n-clique is a clique
with n vertices. Because a solution S for a set of constraints C' involving n variables is an n-tuple of
bindings of values to variables such that all the constraints are satisfied, every pair of variable bindings
in S is consistent. Thus S corresponds to an n-clique of the consistency graph of C', and the number of

solutions for C' is equal to the number of n-cliques in the consistency graph of C'.

From now on we will concentrate on describing an algorithm for estimating the number of n-cliques
in a consistency graph. The basic idea behind the algorithm is to identify the number of n-cliques each
vertex and edge in the graph may belong to. To this end, we associate a weight with each edge in the
graph. A weighted consistency graph G = (V, E, W) is a consistency graph associated with a function
WV x V — N such that W assigns a positive integer to an edge (u,v) if (u,v) € F, and assigns 0 to
(u, vy if (u,v) & E.

The number of n-cliques, K (G, n), in a weighted consistency graph G of order (n,m) is defined as
follows: let S be the set of n-cliques of G and H = (Vi, Eg,Wg) € S be an n-clique. We define
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K(H,n) = min{Wg(e) | e € Eg}, and K(G,n) = ) p.q K(H,n). Initially every edge is assigned a
weight of 1.

The number of n-cliques a vertex may belong to depends on the connectivity with its adjacent
vertices. Let G = (V, E,W) be a weighted consistency graph and Ng, = {w € V | {(v,w) € E}
be the neighbors of a vertex v. The adjacency graph of v, Adjs(v), is the subgraph of G induced by
N¢ v, namely, Adjg(v) = (Naw, Eg v, Ec ), where Eg , is the set of edges in E that join the vertices
in Ng, and Wea o, ((u, w)) = min(W({v,u)), W({v, w)), W({u,w))), for each edge (u,w) € Eq,. The
following theorem shows the relationship between the number of n-cliques in a graph and the number

of (n — 1)-cliques in the adjacency graphs corresponding to the vertices in a binding set.

Theorem 4.7 Let G be a weighted consistency graph of order (n,m). Then for each binding set V =

{v1, ..., vm},

m

K(G,n) =" K(Adja(vi),n - 1). (1)

i=1

Proof Let G; = (V;, E;, W;) be the subgraph of G induced by Ng ., U{v;}. Since no two vertices
in V are adjacent, K(G,n) = >0, K(G;,n). Let Adjg(v;) = (Va, Ea,Wa). Because v; is adjacent
to every vertex in Ng.,, min{Wi(e) | e € E;} = min{Wa(e) | ¢ € E4}. Therefore, K(G;,n) =
[{(Adjg(vz), n— 1) (]

Theorem 4.7 says that the problem of computing the number of n-cliques in a consistency graph of
order (n,m) can be transformed into m subproblems of computing the number of (n — 1)-cliques in a
consistency graph of order (n— 1, m). However, a direct computation requires exponential time O(m™).
Therefore, we define an operator to combine the set of subgraphs Adjg(v1),. .., Adjig(vm) in Formula
(1) into a graph H such that K(H,n — 1) is an upper bound on K (G, n).

We define a binary operator &, called graph addition, on two weighted consistency graphs as follows:
let Gy = (V, E1,W1) and Go = (V, E2, Wa) be two weighted consistency graphs with the same set of
vertices. Then Gy & G2 = (V, E1a2, Wigs), where Ei1g2 = Ey U Ey, and Wiga(e) = Wi(e) + Wale),
for all e € Eig2. The effect of graph addition on the number of n-cliques is shown in the following
theorems:

Theorem 4.8 Let G = (V, E1, W1) and Go = (V, Eq, Wa) be two weighted consistency graphs of order
(n,m). Then

Proof By a straightforward case analysis. O

Theorem 4.9 Let G be a weighted consistency graph of order (n,m). Then for each binding set V =

{vla"'avm}7

K(G,n) < K(EP Adja(vi),n — 1). (3)

i=1
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Let G = (V, E, W) be a weighted consistency graph of order (n, m). The algorithm proceeds as follows:

begin
G =G /¥ Gy = (W, By, Wh) */
fori:=1ton—2do
Gipr1 = D)2, Adja, (vij); /* Gigr = (Vigr, Bigr, Wiga) */
od
K(G,n) =3 cen,_, Wniile);
end

Figure 6: An algorithm for estimating the number of n-cliques in a weighted consistency graph

Proof By Theorems 4.7 and 4.8. O

We now summarize the algorithm for computing an upper bound on K(G, n) for a weighted con-
sistency graph G of order (n,m). We apply Theorem 4.9 repeatedly to a sequence of consecutively
smaller graphs. By starting with the graph G, at each iteration, one binding set is removed from the
graph, and a smaller graph is constructed by performing graph addition on the set of adjacency graphs
corresponding to the vertices in the removed binding set. This binding set elimination process continues
until there are only two binding sets left. The resultant graph is now a bipartite graph. By definition,
the number of 2-cliques in a bipartite weighted consistency graph is the sum of the weights of the edges
(2-cliques) in the graph. This algorithm is shown in Figure 6. The time complexity for this algorithm
is O(n®m?3) for a graph of order (n,m) [24].

Example 4.4 Consider the following predicate which specifies a set of precedence constraints among
a set of tasks:

schedule(SA, SB, SC, SD, SE, SF, SEnd) :—
SB > SA + 1, SC > SA + 1, SD
SE > SC + 3, SF > SD + 5, SF

> SA + 1, SE > SB + B,

> SE + 2, SEnd > SF + 1.
Suppose the integer interval [0, 10] is given as the type for each of the variables SA,SB, ... SEnd, we
can then use the algorithm to estimate the number of legal schedules or the relation size for predicate
schedule/7 to be 71. In this case, this estimate is exact. O

4.3 Binary Nonequality Constraints

We now present a simple algorithm for estimating the relation size for predicates which can be “unfolded”
into a conjunction of binary nonequality constraints on a set of variables. The constraints are in the
form of X # Y for any two variables X and Y. The types of the variables in a predicate are assumed

to be the same finite set of constants.

We first show that the problem of computing the number of bindings that satisfy a set of binary
nonequality constraints on a set of variables with the same type can be transformed into the problem of

computing the chromatic polynomial of a graph. The chromatic polynomial of a graph G, denoted by
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C(G, k), is a polynomial in k and represents the number of different ways G can be colored by using no
more than k colors. The transformation of the problem goes as follows: let G be the graph consisting
of a set of vertices, each of them corresponds to a variable, and there is an edge between two vertices
if there 1s a binary nonequality constraint between the corresponding two variables. If the size of the
type for variables is &, then the number of ways of coloring G using no more than % colors is exactly

the number of bindings that satisfy the set of binary nonequality constraints.

Unfortunately, the problem of computing the chromatic polynomial of a graph is NP-hard, because
the problem of k-colorability of a graph G is equivalent to the problem of deciding whether C'(G, k) > 0
and the problem of graph k-colorability is NP-complete [19]. However, it turns out that if we can
efficiently compute a lower bound on the chromatic number of a graph, then we can efficiently compute
an upper bound on the chromatic polynomial of a graph. The chromatic number of a graph G, written
as x((), is the minimum number of colors necessary to color GG so that adjacent vertices have different

colors. The following theorem by Bondy [1] gives a lower bound on the chromatic number of a graph.

Theorem 4.10 Let G be a graph with m vertices {1,... m}, with the degree of vertex i denoted by
d(i), such that d(1) > --- > d(n). Let o; be defined recursively by

L1

o5 = n—d(ZUi +1).
i=1

Suppose k < n is some integer satisfying

k11

Zaj < n. (4)
j=1
Then x(G) > k. O

Let p(G) denote the largest integer k satisfying Equation (4) for a graph G. Then we can design an
algorithm to compute an upper bound on the chromatic polynomial of a graph G. The basic idea is to
start with a subgraph that consists of only a single vertex of the graph, then repeatedly build larger
and larger subgraphs by adding a vertex at a time into the previous subgraph. When a vertex is added,
the edges connecting that vertex to vertices in the previous subgraph are also added. At each iteration,
the chromatic polynomial for the corresponding subgraph is computed using the computed polynomial

for the previous subgraph and the number of ways of coloring the current added vertex.

Let G = (V, E) be a graph with n vertices. Suppose w = v1,...,v, is an ordering of V. We define
two sequences of subgraphs of (G according to w. The first is a sequence of subgraphs G, ..., Gy, called
accumulating subgraphs, where G; = (Vi, E;), Vi ={v1,..., v}, and F; is the set of edges of GG that join

!

5, called interfacing

the vertices of Vj, for 1 < i < n, The second is a sequence of subgraphs G, ..., G
subgraphs, where G, = (V| El), V! is the set of vertices of GG; 11 that are adjacent to vertex v;, and E

is the set of edges of G 1 that join the vertices of V/, for 1 < i < n.

An algorithm for computing the chromatic polynomial of a graph, based on the construction of
accumulating subgraphs and interfacing subgraphs, is shown in Figure 7. This algorithm constructs the

accumulating subgraphs according to an ordering on the set of vertices. At each iteration, the number
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Let G = (V, E) be a graph with n vertices. The algorithm proceeds as follows:

begin

generate an ordering w = vy, ..., v, of V;

C(G, k)=

Gri= ({u}, 0);

for i := 2 tondo
compute the interfacing subgraph G%;
C(G, k) := C(G, k) x (k= pl(G);
compute the accumulating subgraph Gj;

od

end

Figure 7: An algorithm for computing the chromatic polynomial of a graph

Figure 8: An example

of ways of coloring the new added vertex is computed based on a lower bound on the chromatic number

of the corresponding interfacing subgraph.

Example 4.5 Consider the graph shown in Figure 8. The imposed ordering is denoted by the labels of
vertices. The corresponding accumulating subgraphs and interfacing subgraphs are shown in Figure 9.
The computed chromatic polynomial is k(k — 1)(k — 2)3. In this case, that is also the exact chromatic
polynomial of the graph. O

Theorem 4.11 Let G = (V, E) be a graph with n vertices and w be an ordering of V. Suppose the
interfacing subgraphs of G corresponding to w are GY, ..., G,. Then

C(G k) <k Hk p(G)). (5)

Proof Suppose G, ..., G, are the accumulating subgraphs of GG corresponding to w. The proof is by
induction on Gy, for 1 < j < n. In base case, G is a graph consisting of one vertex v1, so C(G1, k) = k.

Suppose Equation (5) is satisfied by G; for some j, 1 < j < n. Then consider adding the vertex n;4q
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Figure 9: The accumulating and interfacing subgraphs of the graph in Figure 8

and associated edges into G; to form Gj11. Since X(G}H) is the least number of colors necessary for

coloring (41, we have
C(Gjy1, k) < (k= x(G40))C(Gy k).
By Theorem 4.10, we have
(k= x(G511))C(Gy k) < (k= p(G541))C (G, k).
Therefore, C'(Gy41, k) < (k= p(G41))C(Gj, k). From the hypothesis, we obtain

C(Gyon 0) <K T (k= p(G1).

1=2
Since (G, = G, the theorem is proved. 0O

Since the bound in Equation (5) may depend on the ordering of the vertices in the graph, we use
a heuristic to find a “good” ordering. The intuition is that if the degrees of the interfacing subgraphs
are smaller, then the lower bound of the chromatic number is more likely to be closer to the chromatic
number. Therefore, we use the decreasing order on the degrees of vertices. This is also the ordering
proposed by Welsh and Powell for coloring a graph [43]. The ordering in the graph of Figure 8 is
such an ordering. The complexity of the algorithm for computing chromatic polynomial of a graph is

O(n?logn + nm) for a graph with n vertices and m edges [23].
Example 4.6 Consider the following predicate:
map_color(X1i, X2, X3, X4, X5) :—
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color(X1), color(X2), color(X3), color(X4), color(X5s),
X1 # X2, X1 # X3, X1 # X4, X1 # X5, X2 # X3, X2 # X4, X3 # X5.

Suppose a finite set of colors is given as the type for variables X1, ..., X5. We can then use the algorithm
for computing chromatic polynomial of a graph to estimate the number of solutions generated by
predicate map_color/5. The corresponding graph for predicate map_color/5 is that in Example 4.5.
From Example 4.5, we know that the number of solutions generated by predicate map_color/5 is
bounded above by k(k — 1)(k — 2)3, where k is the number of colors in the type. In particular, we can
immediately conclude that no solutions are possible for this predicate if fewer than 3 colors are used.
O

4.4 Combining the Algorithms

We now show how to properly combine the algorithms described above in relation size analysis. When
type information is available for a predicate, each of its clauses is first checked to see if it can be unfolded
into a conjunction of binary nonequality constraints where the variables range over the same finite set of
constants. In this case, the constraint graph is constructed and the algorithm for estimating chromatic
polynomial of a graph is utilized to estimate the number of solutions possible for those variables.
Otherwise, the clause is checked to see if it can be unfolded into a conjunction and/or disjunction
of linear arithmetic constraints, and if the types of variables are represented as integer intervals. In
this case, the algorithm for estimating the number of n-cliques of a consistency graph is employed to
estimate the number of bindings possible. In other cases, the general algorithm 1s used. As in the case of
size relationships, recursive literals are handled by using symbolic expressions to denote the number of
solutions generated by them, and solving (or giving upper bound estimates to) the resulting difference

equations.

The number of solutions for a predicate can then be obtained by combining the expressions for the
number of solutions obtained for each of its clauses. Notice that the combining operation for argument
size relations 1s maximization, while summation is used for the expressions for the number of solutions.
The number of solutions a predicate can generate is the maximum of the number of solutions that can
be generated by each mutually exclusive cluster of clauses; the number of solutions any cluster can
generate 1s bounded by the sum of the number of solutions that can be generated by each clause within

the cluster.

5 Time Complexity

This section presents the analysis for estimating the time complexity of predicates. Let T, : Nf,oo —
No be a function that denotes the time complexity for a predicate p with n input positions. The time
complexity of a clause can be bounded by the time complexity of head unification together with the
time complexity of each of its body literals. Consider a clause C' defined as ‘H :— Li,...,L,, . Because
of backtracking, the number of times a literal will be executed depends on the number of solutions that
the literals preceding i1t can generate. Suppose that the input size to clause C'is n, and the input size

to literal L; is n;. Then the time complexity of clause C' can be expressed as

Te(n) <7+ Y ([ Sol; (7)) Te. (mi), (6)

i=1 j<i
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where 7 is the time needed to resolve the head H of the clause with the literal being solved. Here we

use j < ¢ to denote that L; precedes L; in the literal dependency graph for the clause.

There are a number of different metrics that can be used as the unit of time complexity in these
expressions, e.g., the number of resolutions, the number of unifications, or the number of instructions
executed. If the time complexity metric is the number of resolutions, then 7 is 1; if it is the number of

unifications, then 7 is the arity of the clause head.

Example 5.1 Consider again the predicate perm/2 defined in Example 2.1. The time complexity of

the recursive clause of perm/2 can be expressed as

Toern (head[1]) = 7 + Tyerecs (head[1]) + Solseroc (head[1]) X Tperm (S22 ace (head[1])).
Assume the time complexity metric is the number of resolutions, the time complexity for predicate
select/3 has been computed as Tge1ect = Az.22 (see the Appendix A for details), and Solge1ect = A0
and Szg‘:’%ect = Az.z — 1 have been computed as in previous sections. Then the time complexity for the
recursive clause of perm/2 can be simplified to

Tporn (Read[1]) = head[l] X Tpern(head[1] — 1) 4+ 2 x head[1] + 1.

This equation can be solved to obtain the time complexity

8

Trorm = Az. > (3a!/il) + 3! — 2.

i=1

with the boundary condition Tperm(0) = 1 from the first clause. O

As in the case of estimating the number of solutions, the clauses are partitioned into mutually
exclusive clusters. The time complexity for each such cluster can be obtained by summing the time
complexity for each of its clauses. In addition to that, however, we also need to take into account the
failure cost introduced by trying to solve the clauses in other clusters. The failure cost from solving a
clause in another cluster can be estimated by considering the sources leading to the mutual exclusion
among clauses. This information can be easily produced by mutual exclusion analysis. After the failure
costs are added into the time complexity for each cluster, the time complexity of a predicate is then

obtained as the maximum of the time complexities of these clusters.

As for the analysis for the number of solutions, it may be necessary to explicitly account for implicit
failures, e.g., for the predicate member/2 discussed earlier, in order to produce difference equations that

can be solved. This can be done in a manner analogous to that for the number of solutions analysis.

6 Automatic Solution of Difference Equations

Algorithms for the automatic solution of difference equations have been studied by a number of re-
searchers [5, 16, 31]. It is always possible to reduce a system of linear difference equations to a single
linear difference equation in one variable; so i1t suffices to consider the solution of a single linear dif-
ference equation in one variable. The programs in [5, 16, 31] solve linear difference equations with

constant coefficients using either characteristic equations or generating functions. Using exponential
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generating functions, the problem of solving linear difference equations with polynomial coefficients can
be reduced to that of solving ordinary differential equations. Moreover, for first order linear difference
equations, there 1s a simple explicit closed form solution that depends on closed form solutions of sums

and products.

Nonlinear difference equations may arise in the analysis for argument size functions, where the
size functions for a literal that succeeds a recursive literal are nonlinear. They may also arise in the
analysis for the number of solutions, where multiplication is applied to compute the number of instances
of arguments. Furthermore, maximum and minimum functions also introduce nonlinearity into the
equations. The solution of nonlinear difference equations is generally much more difficult than the
solution of linear difference equations. There is, however, a large class of nonlinear difference equations
that can be transformed into linear equations by transformation of variables. For example, by taking the
logarithm of both sides of an equation, products can be transformed into sums. In addition, although
there is no algorithm for solving arbitrary nonlinear difference equations, there are many special form

nonlinear difference equations which have known solutions.

Finally, to automate the whole analysis, it is necessary to return a closed form solution for all the
difference equations. Since we are computing upper bounds on complexity, it suffices to compute an
upper bound on the solution of a set of difference equations, rather than an exact solution. This can
be done by simplifying the equations using transformations such that a solution to the transformed
equations is guaranteed to be an upper bound on the solution to the original equations. In particular,
difference equations involving maz and min—which occur frequently when analyzing logic programs—
are considered to be nonlinear, and there is no general method for solving them. However, since we
are interested in computing upper bounds, such equations can be simplified to eliminate occurrences of
mazx and min such that solutions to the resulting equation will be an upper bound on solutions to the
original equation. The essential idea here is the following: in an expression maz(e1,es2), if one of the
(non-negative) expressions is provably an upper bound on the other for all assignments of values to the
variables occurring in them, then this expression is clearly the maximum; otherwise, the maximum is
bounded above by the sum e; + e3. The situation is somewhat simpler for min: if neither expression is
a provable lower bound on the other, then either of the two expressions can be chosen as a conservative
upper bound on the minimum. There are many possible ways to generalize this basic approach to
more than two expressions: the main concern is the tradeoff between the precision and efficiency of the

computation, and the appropriate choice is left to the implementors.

It is, unfortunately, rather difficult to syntactically characterize the classes of programs that can
be analyzed by our approach. The reason is that such a characterization basically boils down to
characterizing programs that give rise to difference equations of a certain kind, namely, linear difference
equations with constant or polynomial equations. Now the exact form of the difference equations that
are obtained for a predicate depend on the size measures under consideration, i.e., it is difficult to give
an abstract characterization of programs that are analyzable without a careful consideration of the
particular size measures involved, and this can become a rather lengthy discussion. To make matters
worse, even nonlinear equations can sometimes be transformed into linear equations that can be solved
and the solutions transformed back solutions for the original equation. So a discussion of what programs
can be analyzed would have to get into these kinds of transformations as well. The details get quite

messy, and are beyond the scope of this paper.
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7 Implementation

CASLOG (Complexity Analysis System for LOGic) is a prototype implementation of the techniques
described in previous sections. It consists of five major components: a preprocessor, argument size
analyzer, number of solution analyzer, time complexity analyzer and difference equation solver. The
organization of CASLOG is shown in Figure 10.

The preprocessor consists of five modules: mode analysis, data dependency analysis, mutual exclu-
sion analysis, type analysis and size measure analysis. At this time, mode analysis, type analysis and
size measure analysis have not been implemented (as indicated by dashed boxes in Figure 10) and the
users have to supply this information via declarations in the program. Data dependency analysis uses
mode information to build an argument dependency graph and a literal dependency graph for each
clause, while mutual exclusion analysis classifies the clauses into mutually exclusive clusters for each

predicate.

The argument size analyzer applies size measure information to derive the set of argument size
relations associated with each clause, and computes the argument size functions for each output position

in the clause head by performing normalization on the set of argument size relations.

The number of solution analyzer is divided into two subcomponents: the relation size analyzer and
the solution size analyzer. In relation size analysis, when type information is available for a predicate,
the predicate is checked to see if it can be unfolded into a conjunction of binary nonequality constraints,
or a conjunction and/or disjunction of linear arithmetic constraints. In this case, the appropriate special
algorithm is used to estimate the relation size of the predicate. Otherwise, the general algorithm is used

to estimate the relation size of the predicate. The general algorithm is used for solution size analysis.

The time complexity analyzer combines information about argument sizes and number of solutions

to estimate the time complexity function for each predicate.

In argument size analysis, solution size analysis and time complexity analysis, the cost expressions
for recursive clauses are in the form of difference equations. A difference equation solver has been im-
plemented in CASLOG. It can solve a number of common classes of difference equations, e.g., first order
linear difference equations, second order linear difference equations with constant coefficients, difference
equations from divide-and-conquer paradigm and a special class of difference equations derivable from
clauses with the size measure term-size. Apart from this, we have incorporated the Maple Symbolic
Computation System [4] into CASLOG, so that the system can resort to Maple when the difference
equations encountered cannot be handled by its difference equation solver. If neither our difference
equation solver nor Maple can deal with the difference equations encountered, a conservative upper

bound, Az.co, is returned.

The core modules of the system consists of the argument size analyzer, the relation size and solu-
tion size analyzer, and the time complexity analyzer. These modules share several common features:
depending on data dependency information to compute the complexity expressions for each clause, re-
lying on mutual exclusion information to compose the complexity expressions for a predicate from the
expressions of its clauses, and resorting to difference equation solver to analyze recursive clauses. These
common features allow the analyses be performed in a unified framework that simplifies proofs of cor-
rectness and the implementation of the algorithms. This framework is then enhanced by incorporating

two special algorithms to improve the relation size analysis for two special classes of predicates. The
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system is implemented on top of SICStus Prolog [2]. Preliminary results on the speed of the system,

running on a Sparcstation-2 with 64 Mbytes of memory, is given in Appendix B.

There are some programs that the system cannot deal with very well. These include transitive
closure programs, where the problem is that it is not clear what size measures to use; chain programs,
i.e., programs where the output of a recursive literal is used as input by another recursive literal, as
is the case, for example, in a doubly recursive transitive closure program—such programs are not well
connected, and as a result yield difference equations that cannot be solved; and programs that use
accumulators, where the resultant complexity functions may not be solvable (however, these programs
are analyzable provided that the user indicates, in the size measure annotations, which arguments are
being used as accumulators and should therefore be ignored). The system also suffers an undesirable loss
in precision when dealing with some divide-and-conquer programs, where the sizes of output positions
for “divide” predicates may be dependent, while we handle them independently: because of this, the
complexity of the gsort/2 predicate in Example 5 of Appendix B is inferred to be exponential rather

than quadratic.

8 Soundness

In this section we sketch a soundness proof of our method. We call a predicate size-monotonic if its
argument size functions are monotonic on its input size. Here we assume that all the predicates in the

program are size-monotonic.

The size relations in argument size analysis are sound because if size(t) is defined on ¢ and diff(t1, )
is defined on (1,%2), then by definition size(0(t)) = size(t) and diff (0(¢1),0(t2)) = diff (t1,t2) for any
substitution #. Since the transformations applied during normalization replace a term by another equal
or larger term, and all the predicates are size-monotonic, the normalization is also sound. Therefore,
the soundness of argument size analysis is reduced to the soundness of difference equation solver. A
sound difference equation solver can be achieved by always returning an upper bound of the solution

to the original equations, as described in Section 6.

In Theorems 4.1 — 4.6, 4.9 and 4.11, all the properties described satisfy the upper bound requirement.
Since the computation for relation size and solution size involves only the summations and products of
positive quantities, and the expression for an input term is the sum of the expressions for its subterms for
recursive clauses (i.e., monotonicity is satisfied), the soundness of number of solutions analysis follows

immediately from the soundness of argument size analysis and difference equation solver.

Equation (6), which is used to compute time complexity, involves only summations and products of
positive quantities, and the expression for an input term is the sum of the expressions for its subterms
for recursive clauses (i.e., monotonicity is satisfied), Consequently, the soundness of time complexity
analysis follows immediately from the soundness of argument size analysis, number of solutions analysis

and difference equation solver.

9 An Application: Task Granularity Analysis

While logic programming languages offer a great deal of scope for parallelism, there is usually some
overhead associated with the execution of goals in parallel because of the work involved in task creation,
communication, scheduling, migration and so on. In practice, therefore, the “granularity” of a goal, i.e.

an estimate of the work available under it, should be taken into account when deciding whether or not
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to execute a goal concurrently as a separate task. The cost analysis described in the previous sections
can be applied to this problem: the idea is to compute a estimate of the time complexity T,(n) of a
predicate p on an input of size n at compile time. This expression is evaluated at runtime, when the
size of the input is known, and yields an estimate of the work available in a call to the predicate. For

example, given a predicate defined by

p(L[1).
p([HIL]) :— q(H), pL).

assume that the literals q(H) and p(L) in the body of the second clause can be shown to be independent,
so that these literals are candidates for concurrent execution. Suppose the expression T,(n) giving the
cost of ¢ on an input of size n is 3n?, and suppose the cost of creating a concurrent task is 48 units of

computation. Then, the code generated for the second clause might be of the form

n := size(H);
if 3n? < 48 then erecute q and p sequentially as a single task

else execute q and p concurrently as separate tasks

Of course, this could be simplified further at compile time, so that the code actually executed at runtime
might be of the form

if size(H) < 4 then execute q and p sequentially as a single task

else execute q and p concurrently as separate tasks

The 1deas described above were tested by experiments on a four-processor Sequent Symmetry, using two
different Prolog systems: ROLOG [17] and &-Prolog [14]. Most programs reported some performance
improvement due to granularity control: the speedups ranged from 2% to 32% on ROLOG, and from
0% to 29% on &-Prolog. On a few programs, there was a net slowdown (19.5% in one case in ROLOG,
and about 16% in one &-Prolog benchmark), because the cost analysis did not take into account the
additional cost of maintaining input size information and testing it at each level of recursion. The
interested reader is referred to [9] for details. While many of the compilation and code generation
issues remain to be worked out in full detail, these experiments suggest that reasonable performance

improvements can be obtained from appropriate control of task granularity in parallel logic programs.
10 Related Work

Van Gelder has investigated an approach to reasoning about the constraints between the argument sizes
of predicates, using concepts from computational geometry [39]. To reasoning about the termination
of procedures, he uses linear inequalities to represent the size relationships among the arguments of a
predicate, while for each output argument we represent its size as a function in terms of the input size

and the function may be nonlinear.

Lipton and Naughton have applied adaptive sampling techniques to estimate the number of solutions
of database query [25]. Their method estimates the query size dynamically at run-time, in contrast our

method is a static analysis performed at compile-time.

Much of the work on automatic complexity analysis is in the context of functional programming
languages [12, 15, 21, 34, 37, 41, 44]. We extend their work by being able to handle nondeterminism and
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the generation of multiple solutions via backtracking in logic programs. Kaplan considers the analysis
of the average-case complexity of logic programs [18], but his approach cannot handle programs that

can produce multiple solutions, thereby excluding many interesting programs.

Knuth [20] and Purdom [33] have exploited random sampling techniques to estimate the efficiency of
backtracking algorithms. The primary difference is that their method is dynamic, whereas our method

1s static.

11 Conclusions

This paper develops a method for (semi-)automatic analysis of the worst-case cost of a large class of
logic programs. The primary contribution of this paper is that it shows how to deal with nondeter-
minism and the generation of multiple solutions via backtracking. Nondeterminism and the ability
to backtrack and produce multiple solutions complicates control flow in logic programs considerably,
making cost analysis of nondeterministic programs much harder than for traditional languages. It turns
out that knowledge about the number of solutions each predicate can generate is required in addition to
knowledge about the size relationships between arguments of predicates. The method is sound for pred-
icates whose argument size functions are monotonic on the size of input. Applications include program

transformation, automatic program synthesis, software engineering and parallelization of programs.
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A An Example

This appendix considers in detail the analysis of the perm program. This example has been chosen
because it is simple, yet shows the interaction of different recursive predicates. The program is as

follows:

perm([1, [1).
perm(X, [RIRs]) :- select(R, X, Y), perm(Y, Rs).

select (X, [XIXs], Xs).
select(X, [YIYs], [Y|Zs]) :- select(X, Ys, Zs).

We start with the analysis for argument size functions. First, consider the predicate select/3, called
with the second argument as the input argument. Using the size measure list_length, the size relations

for the body literal of the recursive clause are

bodyi[1] < Sz4ac, (body [2]),

body,[2] < size(Ys) = head[2] + diff ([Y|Ys], Ys) = head[2] — 1,
body [3] < Sl ec: (body [2]),

where and hereafter the expressions being substituted for during normalization are underlined for clarity.

The size relations for the output positions in the head of the recursive clause are

head[1] < size(X) = body, [1] + diff (X, X) = body[1],
head[3] < size([Y|Zs]) = size(Zs) + 1 = body1[3] + diff (Zs,Zs) + 1 = body1[3] + 1.

Normalization then yields the relations

head[1] < Sz}, (head[2] - 1),
head[3] < Sz03). . (head[2] — 1) + 1.

In addition, from the first clause, we can obtain the following relations as boundary conditions

head[1] < size(X) = head|2] + diff ([X|Xs],X) = —,
head[3] < size(Xs) = head[2] + diff ([X|Xs], Xs) = head[2] — 1.

Therefore, we have the following two sets of equations
SZgiI)Lect (l‘) = SZgiI)Lect (l‘ - 1)’
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stelect( ) =

stelect (l‘) stelect( - 1) + 1a

stelect (l‘) =x—1

= \z.— and Sz

select -

= Az.x— 1.

These equations are solved to obtain Szl Select =

Next, consider the predicate perm/2, called with the first argument as the input argument. The size

relations for the body literals of the recursive clause are

bodyy [1] < Sz, (bodys [2)),

body,[2] < size(X) = head[1]+ diff (X,X) = head[1],
bodyy[3] < Sz, (bodys [2)),

bodys[1] < size(Y) = bodyr[3] + diff (Y, Y) = body[3],
bodys(2] < Sz{2), (bodys[1]),

and the size relation for the output position in the head of the recursive clause 1s
head[2] < size([R|Rs]) = size(Rs) + 1 = bodys[2] + diff (Rs,Rs) + 1 = bodys[2] + 1.
When normalized, this yields the relation
head[2] < Szperm(head[l] -1 +1

In addition, from the first clause, we can obtain the relation head[2] < 0 as a boundary condition. Thus

we have the following set of equations

Szperm (l‘)
Szperm (0)

perm

Sz(2) (x—1) 41,
0

These equations can be solved to obtain Szperm = Az.z, i.e. the size of the output of predicate perm/2

1s bounded by the size of its input.

This shows how normalization of size relations can be used to track argument sizes. We then continue
with the analysis for the number of solutions a predicate can generate. First, consider the predicate
select/3. Since predicate select/3 is recursive, we obtain Relgeiect = 00. To compute Solgeect, given
the size relations and functions computed earlier, the number of bindings possible for variables in the
recursive clause can be computed as follows. We first set N{y} = N{YS} = 1. Using Theorem 4.1, we

obtaln

0O, = N{YS} X Solserect (body1[2]) = Solserect (head[2] — 1),
Nixy = Nizsy = min{O1, Relgarect } = Solserect (head[2] — 1).

Using Theorem 4.4, the number of possible outputs for the head is
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instance((X, [Y|Zs])) = min{ Ny x Nyyy x Byzsy, O1} = Solserect (head[2] — 1).
Thus we have the equation

SOlselect (l‘) = SOlselect (l‘ - 1)

In addition, from the first clause, we obtain the equation Solseiect (#) = 1. Because the two clauses are

in the same mutually exclusive cluster, we sum these two equations, and obtain
SOlselect (l‘) = SOlselect (l‘ - 1) + 1.

This equation can be solved, with boundary condition Solseect (0) = 0 (accounting explicitly for implicit
failure in the base case) to obtain Solserect = Ax., i.e. the predicate select/3 will generate at most x

solutions for an input of size z.

Next, consider the predicate perm/2. As in the case of predicate select/3, we obtain Relpem = co.

To compute Solyern, we first set Nyyy = 1. Using Theorem 4.1, we obtain

O1 = Nix3 X Solsetect (bodyi1[2]) = head[1],

Nipy = min{O1, Rels1ees } = head[1],
N{Y} = min{ola Relselecta Relperm} = head[l],

O3z = Niy} X Solpern(bodys[1]) = head[1] x Solpern(head[1] — 1),
Nirsy = min{Oz, Relpern } = head[1] x Solyern (head[1] — 1),

Using Theorem 4.5, Since {Y} C {R,X,Y}, instance(Y) = head[l] = 01, instance(Y) < Relpern, and
instance(Y) x Solpern(head[1l] — 1) = head[1] X Solperm (head[l] — 1) < Relpern, we obtain

instance([R|Rs]) = min{Nipy X Nygs}, Oz} = head[1] X Solpern (head[1] — 1).
Thus, we have the equation
Solpern () = & X Solpern (2 — 1).

This equation can be solved, with the boundary condition Solperm (0) = 1 from the first clause of perm/2,

to obtain Solpern = Az.z!.

The analysis for time complexity now proceeds as follows: first, we consider the clauses defining
predicate select/3. Using the number of resolutions as the time complexity metric, the difference

equations representing the time complexity for the clauses are

Tsetect (Read[2]) = 1,
Tselect (head[Q]) = Tselect (bOdyl [2]) + 1= Tselect (head[Q] - 1) + 1.

Summing these two equations, we obtain
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Tsetect (head[2]) = Tserect (head[2] — 1) + 2.

This equation can be solved, with the boundary condition Tgeiect (0) = 0, from the implicit failure, to

yield
Teelect = Az.22.

This is then applied to the clauses defining predicate perm/2. The difference equations representing the

time complexity for the clauses are

Tperm(o) = 1a
Toern(head[1]) = Toarecs (bodyi [2]) + Solserecs (b0dy1 [2]) X Tporn(Sziagecs (body1 [2]))

= head[1] x Tyern(head[1] — 1) + 2 X head[1] + 1.

These equations can then be solved to obtain the time complexity

xr

Trorm = Az. Y (3a!/il) + 3! — 2.

i=1

B Examples

This appendix contains several examples of programs analyzed by the CASLOG system. In each case,
we show the input program (including mode and size measure declarations that are currently necessary),
the cost expressions inferred by CASLOG, and the total analysis time on a Sparcstation-2. The measure

of time complexity, for each example, is the number of resolutions (procedure calls).

1. Naive Reverse: A very simple recursive program with two recursive predicates:

Input:

:— mode(nrev/2, [+,-1).

:— measure(nrev/2, [length,length]).
nrev([1,[1).

nrev([HIL],R) :- nrev(L,R1), append(R1, [H],R).

:— mode(append/3, [+,+,-1).

:— measure(append/3, [length,length,lengthl).
append([1,L,L).

append([H|L],L1,[HIR]) :- append(L,L1,R).

Cost Expressions Inferred:

Szﬁlv = Az.x;
Relorey = 03
Solprey = Az.1;

Torev = Az.0.522 + 1.5z + 1.
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Szgiz)end = /\<l‘, y>l‘ + Y;
Relappend = o0

Solappend = A{z, y).1;
Tappena = Az, y).z + 1.

Total Analysis Time: 0.20 secs.

2. Fibonacci: A simple program illustrating double recursion:

Input:

:— mode(fib/2, [+,-]1).

:— measure(fib/2, [int,int]).

£ib(0,0).

£ib(1,1).

£fib(M,N)} :- M > 1, M1 is M-1, M2 is M-2, fib(Mi,N1), £ib(M2,N2), N is N1+N2.

Cost Expressions Inferred:
Sz2{3) = A2.0.447 x 1.618% — 0.447 x (—0.618);
Relsip, = oo
Solsip = Ax.1;
Teip = Az.1.447 x 1.618" 4+ 0.552 x (—0.618)" — 1.

Total Analysis Time: 0.20 secs.

3. Flatten: This program flattens nested lists into a “flat” list. It shows how CASLOG uses
knowledge about the behavior of control constructs such as cut (‘) to infer mutual exclusion between

clauses, thereby allowing a more precise analysis.

Input:

:— mode(flatten/2,[+,-]1).

:- measure(flatten/2, [size,length]).

flatten(X,[X]) :- atomic(X), X \== [],!.

flatten([1,[1).

flatten([X|Xs],¥s) :- flatten(X,Y¥sl), flatten(Xs,¥Ys2), append(V¥s1,¥s2,Y¥s).

Cost Expressions Inferred:
(2) = .
Szflatten = Al‘.l‘,
Relflatten = o0
Solf1atten = Ax.1;

Tflatten = Al‘05l‘2 + x4+ 05

Total Analysis Time: 0.21 secs.
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4. Towers of Hanoi:

Input:

:— mode(hanoi/5, [+,+,+,+,-1).
:— measure(hanoi/5, [int,void,void,void,length]).
hanoi(1,4,B,C,[mv(4,C)]).
hanoi(N,A,B,C,M) :-—
N > 1, N1 is N-1,
hanoi(N1,A,C,B,M1), hanoi(N1i,B,A,C,M2),
append (M1, [mv(A,C)],T), append(T,M2,M).

Cost Expressions Inferred:
Szl(l‘zr)loi = Az.2" — 1
Relpane: = o0;
Solpanei = Az.1;
Thanoi = Az.22% 4+ 2541 _ 9

Total Analysis Time: 0.49 secs.

5. Quicksort: A divide-and-conquer program. CASLOG has trouble with this one because it does
not keep track of the fact that the size of the two outputs of part/4 are not independent, and as a

result gives a rather pessimistic estimate of the time complexity of gsort/2.

Input:

:- mode(qgsort/2, [+,-1).

:- measure(qgsort/2,[length,length]).

gsort([1,[]1).

gsort([First|L1],L2) :-
part(First,L1,Ls,Lg),
gsort(Ls,Ls2), gsort(Lg,Lg2),
append(Ls2, [First|Lg2],L2).

:- mode(part/4, [+,+,-,-1).

:— measure(part/4,[void,length,length,lengthl).
part(F,[1,[1,01).

part(F, [X|Y],[XIY1],Y2) :- X =< F, part(F,Y,¥1,Y2).
part(F, [X|Y],¥1,[XI¥Y2]) :- X > F, part(F,Y,¥Y1,Y2).

Cost Expressions Inferred:
Szgz(),rt = A.2% — 1;
Relgsort = 00;

Solgsors = Az.1;

quort = Arx. Zf:l(leJ_Z) + x?xj_l 4 2@‘-]—1 _1
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SZSBM; = Az.x;
Sz}()gt = Az.z;
Relpare = 005

Solpary = Az.1;

Tpare = Az.xz + 1.

Total Analysis Time: 0.55 secs.

6. N-Queens: A nondeterministic predicate that can generate multiple solutions via backtracking:

Input:

:- mode(safe/2,[+,-1).
:— measure(safe/2, [int,length]).

safe(N,Queens) :- extend(N,N,Queens).

:— mode(extend/3, [+,+,-]1).
:— measure(extend/3, [int,int,length]).
extend(0,_,[]1).
extend(M,N, [q(M,Q) |Selected]) :-
M >0, M1 is M-1,
extend(M1,N,Selected), choose(N,Q), consistent(q(lM,Q),Selected).

:- mode(consistent/2, [+,+]).

:— measure(consistent/2, [void,length]).

consistent(_,[]).

consistent(Q, [Q1|Rest]) :- noattack(Q,Q1l), consistent(Q,Rest).

:— mode(noattack/2, [+,+]).
:— measure(noattack/2, [void,void]).
noattack(q(X1,Y1),q(X2,Y2)) :-
Y1 =\= Y2, X is X1-X2, Y is Y1-Y2, Z is Y2-Y1, X =\= Y, X =\= Z.

:— mode(choose/2,[+,-]1).

:— measure(choose/2, [int,int]).

choose(N,N) :- N > 0.

choose(N,M) :- N > 0, N1 is N-1, choose(N1,M).

Cost Expressions Inferred:

S(z) —

safe — Al‘l‘,

Relsafe = o0
Solgate = Ax.2%;

Teate = Azx. Zle(Qixi) +2"t (e —1)—z/(z—1)+2+2.

528 = Az, y).x;

extend —

Relextend = 005
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T .

SOlextend = /\<l‘, y>y )
Textena = M, y). 02y (i) + 974/ (y = 1) = y/ly = 1) + 2+ 1.

Relconsistent = o0
SOlconsistent = A$1a

Tconsistent = Az.2z + 1.

Relnoattack = o0
SOlnoattack = A$1a
Tnoattack = Azl
Szgilose = Ax.x;
Relchoose = o0
Solchoose = Az.x;

Tehoose = Az.22.

Total Analysis Time: 0.83 secs

7. Permutation: A nondeterministic program that generates permutations of a list. Note that for

the predicate select/3, implicit failure in the base case has to be accounted for explicitly.

Input:

:- mode(perm/2, [+,-]).

:— measure(perm/2, [length,length]).

perm([1,[1).

perm([X|Xs],[RIRs]) :- select(R,[X|Xs],Y), perm(Y,Rs).

:— mode(select/3,[-,+,-1).

:— measure(select/3, [void,length,lengthl).
select(X,[X1Xs],Xs).
select(X,[YIlYs],[Y|Zs]) :- select(X,Ys,Zs).

Cost Expressions Inferred:

2) _
Sz}()elm = Ar.x;
Relpern = 00;

Solpern = Az.!;

Tpern = Az. Y i (3z!/dl) + 32! — 2.

SZgiI)Lect = Al‘.—;
st‘:’lect =Az.z—1;
Relselect = o0
SOlselect = A$$a

Teelect = Az.22.

Total Analysis Time: 0.33 secs
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8. Eight-Queens: A very different program from the n-queens program shown above, this illustrates
how linear arithmetic constraints are handled. This program is only the “test” portion of a generate-
and-test program: for this reason, all arguments of queen/8 are inputs, the number of solutions per

input is 1, and the time complexity for queen/8 is much smaller than its relation size.

Input:

:- mode(queen/8, [+,+,+,+,+,+,+,+]).

:— measure(queen/8, [int,int,int,int,int,int,int,int]).

:- domain(queen/8,[1-8,1-8,1-8,1-8,1-8,1-8,1-8,1-8]).
queen(X1,X2,X3,X4,X5,X6,X7,X8) :- safe([X1,X2,X3,X4,X5,X6,X7,X8]).

:— mode(safe/1,[+]).

:— measure(safe/1,[lengthl).

safe([1).

safe([X|L]) :- noattacks(L,X,1), safe(L).

:— mode(noattacks/3, [+,+,+]).

:— measure(noattacks/3,[length,int,void]).

noattacks([1,_,_).

noattacks([Y|L],X,D) :- noattack(X,Y,D), D1 is D+1, noattacks(L,X,D1).

:— mode(noattack/3, [+,+,+]).
:— measure(noattack/3, [int, int,void]).
noattack(X,Y,D) :- X =\=Y, Y-X =\= D, Y-X =\= -D.

Cost Expressions Inferred:
Relgueen = 46312;
Solqueen = A(21, 22, 23, L4, 5, T, T7, Ts).1;

Tqueen = A<l31a L2,X3,T4,T5,Le, L7, $8>83

Relsafe = o0
Solgate = Ax.1;
Teate = Az.22+ 2+ 1.

Relnoattacks = SN
SOlnoattacks = /\<l°, y>1,
Tnoattacks = /\<l‘, y>2$ + 1.

Relnoattack = o0
SOlnoattack = A<$a y>1a
Tnoattack = /\<l‘, y>1

Total Analysis Time: 5.32 secs.

9. Map Coloring: A simple program that illustrates the handling of binary nonequality constraints.

The predicate ¢/3 is included to illustrate the use of unfolding during analysis. As for the previous
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example, this program is only the “test” component of a generate-and-test program.

Input:

:— mode(color/5, [+,+,+,+,+]).

:— measure(color/5, [int,int,int,int,int]).

:- domain(color/s,[[1,2,3,4,5],[1,2,3,4,5],[1,2,3,4,5],[1,2,3,4,5],[1,2,3,4,51]).
color(A,B,C,D,E) :- A =\=B, A =\=C, A =\=D, A =\=E, c(B,C,D), C =\=E.

:— mode(c/3,[+,+,+]).

:— measure(c/3, [int,int,int]).

:- domain(c/3,[[1,2,3,4,5],[1,2,3,4,5],[1,2,3,4,511).
c(X,Y,2) :- X =\= Y, X =\= Z.

Cost Expressions Inferred:
Relco1or = 540;
Solcorer = A1, T2, 23, 24, T5).1;

Tcolor = A<l31a L2, I3, T4, $5>2

Rel. = 80;
Sol, = Muwy, 22, 3).1;
TC = A<l‘1,l‘2,l‘3>.1.

Total Analysis Time: 0.21 secs.

10. Precedence Scheduling: A program that illustrates the handling of arithmetic constraints.

This program only tests whether the inputs given satisfy the precedence constraints given.

Input:

:— mode(schedule/7, [+,+,+,+,+,+,+]1).
:— measure(schedule/7, [int, int,int,int,int, int,int]).
:— domain(schedule/7,[0-10,0-10,0-10,0-10,0-10,0-10,0-10]).
schedule(4,B,C,D,E,F,G) :-
B >= A+1, C >= A+1, D >= A+1, E >= B+5,
E >= C+3, F >= D+5, F >= E+2, G >= F+1.

Cost Expressions Inferred:
Relschedule = 71a
SOlschedule = A<l31a L2,L3,T4,Ts5,Le, l‘7>1,

Tscheauie = A1, T2, &3, T4, L5, L6, 7).1.

Total Analysis Time: 1.42 secs.
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