
Compiler Te
hniques for Code Compa
tionSAUMYA K. DEBRAY and WILLIAM EVANSThe University of ArizonaROBERT MUTHCompaq Computer Corp.andBJORN DE SUTTERUniversity of GhentIn re
ent years there has been an in
reasing trend toward the in
orporation of
omputers into avariety of devi
es where the amount of memory available is limited. This makes it desirable totry to redu
e the size of appli
ations where possible. This arti
le explores the use of
ompilerte
hniques to a

omplish
ode
ompa
tion to yield smaller exe
utables. The main
ontributionof this arti
le is to show that
areful, aggressive, interpro
edural optimization, together withpro
edural abstra
tion of repeated
ode fragments,
an yield signi�
antly better redu
tions in
odesize than previous approa
hes, whi
h have generally fo
used on abstra
tion of repeated instru
tionsequen
es. We also show how \equivalent"
ode fragments
an be dete
ted and fa
tored out using
onventional
ompiler te
hniques, and without having to resort to purely linear treatments of
odesequen
es as in suÆx-tree-based approa
hes, thereby setting up a framework for
ode
ompa
tionthat
an be more
exible in its treatment of what
ode fragments are
onsidered equivalent.Our ideas have been implemented in the form of a binary-rewriting tool that redu
es the size ofexe
utables by about 30% on the average.Categories and Subje
t Des
riptors: D.3.4 [Programming Languages℄: Pro
essors|
ode gen-eration;
ompilers; optimization; E.4 [Coding and Information Theory℄: Data Compa
tionand Compression|program representationGeneral Terms: Experimentation, Performan
eAdditional Key Words and Phrases: Code
ompa
tion,
ode
ompression,
ode size redu
tion
The work of Saumya Debray and Robert Muth was supported in part by the National S
ien
eFoundation under grants CCR-9711166, CDA-9500991, and ASC-9720738. The work of Bjorn DeSutter was supported in part by the Fund for S
ienti�
 Resear
h|Flanders under grant 3G001998.Authors' addresses: S. Debray and W. Evans, Department of Computer S
ien
e, Univer-sity of Arizona, Tu
son, AZ 85721; email: fdebray, willg�
s.arizona.edu; R. Muth, Al-pha Development Group, Compaq Computer Corporation, Shrewsbury, MA 01749; email:Robert.Muth�
ompaq.
om; B. De Sutter, Department of Ele
troni
s and Information Systems,University of Ghent, B-9000 Gent, Belgium; email: brdsutte�elis.rug.a
.be.Permission to make digital/hard
opy of all or part of this material without fee is grantedprovided that the
opies are not made or distributed for pro�t or
ommer
ial advantage, theACM
opyright/server noti
e, the title of the publi
ation, and its date appear, and noti
e is giventhat
opying is by permission of the Asso
iation for Computing Ma
hinery, In
. (ACM). To
opyotherwise, to republish, to post on servers, or to redistribute to lists requires prior spe
i�
permission and/or a fee.

2000 ACM ???

2 � Saumya Debray et al.1. INTRODUCTIONIn re
ent years there has been an in
reasing trend towards the in
orporation of
omputers into a wide variety of devi
es, su
h as palm-tops, telephones, embedded
ontrollers, et
. In many of these devi
es, the amount of memory available islimited due to
onsiderations su
h as spa
e, weight, power
onsumption, or pri
e.At the same time, there is an in
reasing desire to use more and more sophisti
atedsoftware in su
h devi
es, su
h as en
ryption software in telephones, or spee
h orimage pro
essing software in laptops and palm-tops. Unfortunately, an appli
ationthat requires more memory than is available on a parti
ular devi
e will not beable to run on that devi
e. This makes it desirable to try to redu
e the size ofappli
ations where possible. This arti
le explores the use of
ompiler te
hniques toa

omplish this
ode
ompa
tion.Previous work in redu
ing program size has explored the
ompressiblity of a widerange of program representations: sour
e languages, intermediate representations,ma
hine
odes, et
. [van de Wiel 2000℄. The resulting
ompressed form eithermust be de
ompressed (and perhaps
ompiled) before exe
ution [Ernst et al. 1997;Franz 1997; Franz and Kistler 1997℄, or it
an be exe
uted (or interpreted [Fraserand Proebsting 1995; Proebsting 1995℄) without de
ompression [Cooper and M
In-tosh 1999; Fraser et al. 1984℄. The �rst method results in a smaller
ompressedrepresentation than the se
ond, but requires the overhead of de
ompression beforeexe
ution. De
ompression time may be negligible and, in fa
t, may be
ompensatedfor by the savings in transmission or retrieval time [Franz and Kistler 1997℄. A moresevere problem is the spa
e required to pla
e the de
ompressed
ode. This also hasbeen somewhat mitigated by te
hniques of partial de
ompression or de
ompression-on-the-
y [Bene�s et al. 1998; Ernst et al. 1997℄, but these te
hniques require alteringthe run-time operation or the hardware of the
omputer. In this arti
le, we explore\
ompa
tion," i.e.,
ompression to an exe
utable form. The resulting form is largerthan the smallest
ompressed representation of the program, but we do not payany de
ompression overhead or require more spa
e in order to exe
ute.Mu
h of the earlier work on
ode
ompa
tion to yield smaller exe
utables treatedan exe
utable program as a simple linear sequen
e of instru
tions, and used pro-
edural abstra
tion to eliminated repeated
ode fragments. Early work by Fraseret al. [1984℄ used a suÆx tree
onstru
tion to identify repeated sequen
es within asequen
e of assembly instru
tions, whi
h were then abstra
ted out into fun
tions.Applied to a range of Unix utilities on a Vax pro
essor, this te
hnique managedto redu
e
ode size by about 7% on the average. A short
oming of this approa
his that sin
e it relies on a purely textual interpretation of a program, it is sensi-tive to super�
ial di�eren
es between
ode fragments, e.g., due to di�eren
es inregister names, that may not a
tually have any e�e
t on the behavior of the
ode.This short
oming was addressed by Baker [1993℄ using parameterized suÆx trees,by Cooper and M
Intosh [1999℄ using register renaming (Baker and Manber [1998℄dis
uss a similar approa
h), and by Zastre [1993℄ using parameterized pro
eduralabstra
tions. The main idea is to rewrite instru
tions so that instead of usinghard-
oded register names, the (register) operands of an instru
tion are expressed,if possible, in terms of a previous referen
e (within the same basi
 blo
k) to thatregister. Further, bran
h instru
tions are rewritten, where possible, in PC-relative

Compiler Te
hniques for Code Compa
tion � 3form. These transformations allow the suÆx tree
onstru
tion to dete
t the rep-etition of similar but not lexi
ally identi
al instru
tion sequen
es. Cooper andM
Intosh obtain a
ode size redu
tion of about 5% on the average using thesete
hniques on
lassi
ally optimized
ode (in their implementation,
lassi
al opti-mizations a
hieve a
ode size redu
tion of about 18%
ompared to unoptimized
ode). These approa
hes nevertheless su�er from two weaknesses. The �rst is thatby fo
using solely on eliminating repeated instru
tion sequen
es, they ignore other,potentially more pro�table, sour
es of
ode size redu
tion. The se
ond is that anyapproa
h that treats a program as a simple linear sequen
e of instru
tions, as inthe suÆx-tree-based approa
hes mentioned above, will su�er from the disadvan-tage of having to work with a parti
ular ordering of instru
tions. The problem isthat two \equivalent"
omputations may map to di�erent instru
tion sequen
es indi�erent parts of a program, due to di�eren
es in register usage and bran
h la-bels, instru
tion s
heduling, and pro�le-dire
ted
ode layout to improve instru
tion
a
he utilization [Pettis and Hansen 1990℄.This arti
le des
ribes a somewhat di�erent approa
h to
ode
ompa
tion, basedon a \whole-system" approa
h to the problem. Its main
ontribution is to showthat by using aggressive interpro
edural optimization together with pro
edural ab-stra
tion of repeated
ode fragments, it is possible to obtain signi�
antly greaterredu
tions in
ode size than have been a
hieved to date. For the identi�
ation andabstra
tion of repeated
ode fragments, moreover, it shows how \equivalent"
odefragments
an be dete
ted and fa
tored out without having to resort to purely lin-ear treatments of
ode sequen
es as in suÆx-tree-based approa
hes. Thus, insteadof treating a program as a simple linear sequen
e of instru
tions, we work with its(interpro
edural)
ontrol
ow graph. Instead of using a suÆx tree
onstru
tion toidentify repeated instru
tion sequen
es, we use a �ngerprinting s
heme to identify\similar" basi
 blo
ks. This sets up a framework for
ode
ompa
tion that
an bemore
exible in its treatment of what
ode fragments are
onsidered \equivalent."We use the notions of dominators and postdominators to dete
t identi
al subgraphsof the
ontrol
ow graph, larger than a single basi
 blo
k, that
an be abstra
ted outinto a pro
edure. Finally, we identify and take advantage of ar
hite
ture-spe
i�

ode idioms, e.g., for saving and restoring spe
i�
 sets of registers at the entry to andreturn from fun
tions. Among the bene�ts of su
h an approa
h is that it simpli�esthe development of
ode
ompa
tion systems by using information already availablein most
ompilers, su
h as the
ontrol
ow graph and dominator/postdominatortrees, thereby making it unne
essary to resort to extraneous stru
tures su
h assuÆx trees.Our ideas have been implemented in the form of a binary-rewriting tool basedon alto, a post-link-time
ode optimizer [Muth et al. 1998℄. The resulting sys-tem,
alled squeeze, is able to a
hieve signi�
antly better
ompa
tion than previousapproa
hes, redu
ing the size of
lassi
ally optimized
ode by about 30%. Ourideas
an be in
orporated fairly easily into
ompilers
apable of interpro
edural
ode transformations. The
ode size redu
tions we a
hieve
ome from two sour
es:aggressive interpro
edural appli
ation of
lassi
al
ompiler analyses and optimiza-tions; and
ode fa
toring, whi
h refers to a variety of te
hniques to identify and\fa
tor out" repeated instru
tion sequen
es. Se
tion 2 dis
usses those
lassi
al op-timizations, and their supporting analyses, that are useful for redu
ing
ode size.

4 � Saumya Debray et al.This is followed, in Se
tion 3, by a dis
ussion of the
ode fa
toring te
hniques usedwithin squeeze. In Se
tion 4, we dis
uss intera
tions between
lassi
al optimizationsand fa
toring transformations. Se
tion 5
ontains our experimental results.A prototype of our system is available at www.
s.arizona.edu/alto/squeeze.2. CLASSICAL ANALYSES AND OPTIMIZATIONS FOR CODE COMPACTIONIn the
ontext of
ode
ompa
tion via binary rewriting, it makes little sense toallow the
ompiler to in
ate the size of the program, via transformations su
has pro
edure inlining or loop unrolling, or to keep obviously unne
essary
ode byfailing to perform, for example,
ommon-subexpression elimination and registerallo
ation. We assume therefore that before
ode
ompa
tion is
arried out atlink time, the
ompiler has already been invoked with the appropriate options togenerate reasonably
ompa
t
ode. Nevertheless, many opportunities exist for link-time
ode transformations to redu
e program size. This se
tion dis
usses
lassi
alprogram analyses and optimizations that are most useful for
ode size redu
tion.In general, the optimizations implemented within squeeze have been engineered soas to avoid in
reases in
ode size. For example, pro
edure inlining is limited tothose pro
edures that have a single
all site, and no alignment no-ops are insertedduring instru
tion s
heduling and instru
tion
a
he optimization.2.1 Optimizations for Code Compa
tionClassi
al optimizations that are e�e
tive in redu
ing
ode size in
lude the elimina-tion of redundant, unrea
hable, and dead
ode, as well as
ertain kinds of strengthredu
tion.2.1.1 Redundant-Code Elimination. A
omputation in a program is redundantat a program point if it has been
omputed previously and its result is guaranteedto be available at that point. If su
h
omputations
an be identi�ed, they
anobviously be eliminated without a�e
ting the behavior of the program.A large portion of
ode size redu
tions at link time in squeeze
omes from theappli
ation of this optimization to
omputations of a hardware register
alled theglobal pointer (gp) register whi
h points to a
olle
tion of 64-bit
onstants
alled aglobal address table. The Alpha pro
essor, on whi
h squeeze is implemented, is a 64-bit ar
hite
ture with 32-bit instru
tions. When a 64-bit
onstant must be loadedinto a register, the appropriate global address table is a

essed via the gp regis-ter, together with a 16-bit displa
ement.1 A

essing a global obje
t, i.e., loadingfrom or storing to a global variable, or jumping to a pro
edure, therefore involvestwo steps: loading the address of the obje
t from the global address table, andthen a

essing the obje
t via the loaded address. Ea
h pro
edure in an exe
utableprogram has an asso
iated global address table, though di�erent pro
edures mayshare the same table. Sin
e di�erent pro
edures|whi
h are generally
ompiled1On a typi
al 32-bit ar
hite
ture, with 32-bit instru
tion words and 32-bit registers, a (32-bit)
onstant is loaded into a register via two instru
tions, one to load the high 16 bits of the registerand one for the low 16 bits; in ea
h of these instru
tions, the 16 bits to be loaded are en
oded aspart of the instru
tion word. However, sin
e the Alpha has 32-bit instru
tions but 64-bit registers,this me
hanism is not adequate for loading a 64-bit
onstant (e.g., the address of a pro
edure ora global variable) into a register.

Compiler Te
hniques for Code Compa
tion � 5independently|may need di�erent global pointer values, the value of the gp regis-ter is
omputed whenever a fun
tion is entered, as well as whenever
ontrol returnsafter a
all to another fun
tion. At link time, it is possible to determine whether aset of fun
tions has the same gp value, and therefore whether the re
omputation ofgp is ne
essary. It turns out that most fun
tions in a program are able to use thesame value of gp, making the re
omputation of gp redundant in most
ases. Ea
hsu
h
omputation of gp involves just one or two register operations, with no sig-ni�
ant laten
y. On a supers
alar pro
essor su
h as the Alpha, the
orrespondinginstru
tions
an generally be issued simultaneously with those for other
omputa-tions, and hen
e do not in
ur a signi�
ant performan
e penalty. Be
ause of this,the elimination of gp
omputations generally does not lead to any signi�
ant im-provements in speed. However, be
ause there are so many re
omputations of gpin a program, the elimination of redundant gp
omputations
an yield signi�
antredu
tions in size.2.1.2 Unrea
hable-Code Elimination. A
ode fragment is unrea
hable if there isno
ontrol
ow path to it from the rest of the program. Code that is unrea
hable
annever be exe
uted, and
an therefore be eliminated without a�e
ting the behaviorof the program.At link time, unrea
hable
ode arises primarily from the propagation of infor-mation a
ross pro
edure boundaries. In parti
ular, the propagation of the valuesof a
tual parameters in a fun
tion
all into the body of the
alled fun
tion
anmake it possible to stati
ally resolve the out
omes of
onditional bran
hes in the
allee. Thus, if we �nd, as a result of interpro
edural
onstant propagation, thata
onditional bran
h within a fun
tion will always be taken, and there is no other
ontrol
ow path to the
ode in the bran
h that is not taken, then the latter
odebe
omes unrea
hable and
an be eliminated.Unrea
hable
ode analysis involves a straightforward depth-�rst traversal of the
ontrol
ow graph, and is performed as soon as the
ontrol
ow graph of the programhas been
omputed. Initially, all basi
 blo
ks are marked as unrea
hable, ex
eptfor the entry blo
k for the whole program, and a dummy blo
k
alled Bunknown ,whi
h has an edge to ea
h basi
 blo
k whose prede
essors are not all known (seeSe
tion 2.2.1). The analysis then traverses the interpro
edural
ontrol
ow graphand identi�es rea
hable blo
ks: a basi
 blo
k is marked rea
hable if it
an be rea
hedfrom another blo
k that is rea
hable. Fun
tion
alls and the
orresponding returnblo
ks are handled in a
ontext-sensitive manner: the basi
 blo
k that follows afun
tion
all is marked rea
hable only if the
orresponding
all site is rea
hable.2.1.3 Dead-Code Elimination. Dead
ode refers to
omputations whose resultsare never used. The notion of \results not used" must be
onsidered broadly. Forexample, if it is possible for a
omputation to generate ex
eptions or raise signalswhose handling
an a�e
t the behavior of the rest of the program, then we
annot
onsider that
omputation to be dead. Code that is dead
an be eliminated withouta�e
ting the behavior of the program.Link-time opportunities for dead-
ode elimination arise primarily as a result ofunrea
hable-
ode elimination that transforms partially dead
omputations (
om-putations whose results are used along some exe
ution paths from a program pointbut not others) into fully dead ones.

6 � Saumya Debray et al.2.1.4 Strength Redu
tion. Strength redu
tion refers to the repla
ement of a se-quen
e of instru
tions by an equivalent but
heaper (typi
ally, faster) sequen
e.In general, the
heaper instru
tion sequen
e may not be shorter than the origi-nal sequen
e (e.g., multipli
ation or division operations where one of the operandsis a known
onstant
an be repla
ed by a
heaper but longer sequen
e of bit-manipulation operations su
h as shifts and adds). The bene�ts for
ode
ompa
tion
ome from situations where the repla
ement sequen
e happens to be shorter thanthe original sequen
e.In squeeze,
ode size improvements from strength redu
tion
ome primarily fromits appli
ation to fun
tion
alls. Like many pro
essors, the Alpha has two di�erentfun
tion
all instru
tions: the bsr (\bran
h subroutine") instru
tion, whi
h usesPC-relative addressing and is able to a

ess targets within a �xed displa
ement ofthe
urrent lo
ation; and the jsr (\jump subroutine") instru
tion, whi
h bran
hesindire
tly through a register and
an target any address. The
ompiler typi
allypro
esses programs a fun
tion at a time and generates
ode for fun
tion
alls with-out knowledge of how far away in memory the
allee is. Be
ause of this, fun
tion
alls are translated to jsr instru
tions. This, in turn, requires that the 64-bitaddress of the
allee be loaded into a register prior to the jsr. As dis
ussed inSe
tion 2.1.1, this is done by loading the address of the
allee from a global addresstable. The
ode generated for a fun
tion
all
onsists therefore of a load instru
tionfollowed by a jsr instru
tion. If this
an be strength-redu
ed to a bsr instru
tion,we obtain a savings in
ode size as well as an improvement in exe
ution speed.2.2 Program Analyses for Code Compa
tionThree program analyses turn out to be of fundamental importan
e for the trans-formations dis
ussed above, and are dis
ussed in this se
tion.2.2.1 Control Flow Analysis. Control
ow analysis is essential for all of the op-timizations dis
ussed in Se
tion 2.1. It is ne
essary for redundant-
ode elimination,sin
e, in order to identify a
omputation as redundant at a program point, we haveto verify that it has been
omputed along every exe
ution path up to that point.It is ne
essary for unrea
hable-
ode elimination as well as dead-
ode eliminationbe
ause the
lassi�
ation of
ode as unrea
hable or dead relies fundamentally onknowing the
ontrol
ow behavior of the program. Finally, the strength redu
tiontransformation for fun
tion
alls dis
ussed in Se
tion 2.1.4 relies on the knowledgeof the targets of su
h
alls.Traditional
ompilers generally
onstru
t
ontrol
ow graphs for individual fun
-tions, based on some intermediate representation of the program, in a straightfor-ward way [Aho et al. 1985℄. Things are somewhat more
omplex at link time be
ausema
hine
ode is harder to de
ompile. In squeeze, we
onstru
t the interpro
edural
ontrol
ow graph for a program as follows:(1) The start address of the program appears at a �xed lo
ation within the headerof the �le (this lo
ation may be di�erent for di�erent �le formats). Using this asa starting point, we use the \standard" algorithm [Aho et al. 1985℄ to identifyleaders and basi
 blo
ks, as well as fun
tion entry blo
ks. We use the relo
ationinformation of the exe
utable to identify additional leaders, su
h as jump tabletargets, whi
h might otherwise not be dete
ted, and we mark these basi
 blo
ks

Compiler Te
hniques for Code Compa
tion � 7as relo
atable. At this stage, we make two assumptions: (1) that ea
h fun
tionhas a single entry blo
k and (2) that all of the basi
 blo
ks of a fun
tion arelaid out
ontiguously. If the �rst assumption turns out to be in
orre
t, we\repair" the
ow graph at a later stage. If the se
ond assumption does nothold, the
onstru
ted
ontrol
ow graph may
ontain (safe) impre
isions whi
hmay
ause less e�e
tive (size) optimizations.(2) We add edges to the
ow graph. If the exa
t target of a
ontrol transferinstru
tion
annot be resolved, we assume that the transfer is to a spe
ial blo
kBunknown (in the
ase of indire
t jumps) or fun
tion Funknown (in the
ase ofindire
t fun
tion
alls). We
onservatively assume that Bunknown and Funknownde�ne and use all registers, et
. Any basi
 blo
k whose start address is markedas relo
atable may be the target of any unresolved indire
t jump. Thus, weadd an edge from Bunknown to ea
h su
h blo
k. Any fun
tion whose entry pointis marked as relo
atable may be the target of any unresolved indire
t fun
tion
all. Thus, we add a
all edge to it from Funknown . (This is safe, but overly
onservative. We dis
uss, below, how this
an be improved.)(3) We
arry out interpro
edural
onstant propagation on the resulting
ontrol
owgraph, as des
ribed in Se
tion 2.2.2. We use the results to determine addressesthat are loaded into registers. This information is used, in turn, to resolvethe targets of indire
t jumps and fun
tion
alls. If we
an resolve su
h targetsunambiguously, we repla
e the edge to Funknown or Bunknown by an edge to theappropriate target.(4) Thus far, we have assumed that a fun
tion
all returns to its
aller at theinstru
tion immediately after the
all instru
tion. At the level of exe
utable
ode, this assumption
an be violated in two ways.2 The �rst involves es
ap-ing bran
hes|ordinary (i.e., non-fun
tion-
all) jumps from one fun
tion intoanother|that arise either due to tail
all optimization, or be
ause of
ode shar-ing in hand-written assembly
ode (su
h as is found in, for example, some nu-meri
al libraries). The se
ond involves nonlo
al
ontrol transfers via fun
tionssu
h as setjmp and longjmp. Both these
ases are handled by the insertionof additional
ontrol
ow edges, whi
h we
all
ompensation edges, into the
ontrol
ow graph. In the former
ase, es
aping bran
hes from a fun
tion fto a fun
tion g result in a single
ompensation edge from the exit node of gto the exit node of f . In the latter
ase, a fun
tion
ontaining a setjmp hasan edge from Funknown to its exit node, while a fun
tion
ontaining a longjmphas a
ompensation edge from its exit node to Funknown . The e�e
t of these
ompensation edges is to for
e the various data
ow analyses to approximatesafely the
ontrol
ow e�e
ts of these
onstru
ts.(5) Finally, squeeze attempts to resolve indire
t jumps through jump tables, whi
harise from
ase or swit
h statements. The essential idea is to use
onstantpropagation to identify the start address of the jump table, and the bounds2In some ar
hite
tures, the
allee may expli
itly manipulate the return address under some
ir-
umstan
es. For example, the SPARC
alling
onvention allows an extra word to follow a
allinstru
tion. In su
h a
ase, the
allee in
rements the return address to skip over this word. (Weare grateful to an anonymous referee for pointing this out to us.) Su
h situations do not arise inthe Alpha ar
hite
ture, and are not handled by squeeze.

8 � Saumya Debray et al.
he
k instru
tion(s) to determine the extent of the jump table. The edge fromthe indire
t jump to Bunknown is then repla
ed by a set of edges, one for ea
hentry in the jump table. If all of the indire
t jumps within a fun
tion
an beresolved in this way, any remaining edges from Bunknown to basi
 blo
ks withinthat fun
tion are deleted.Potentially, any pro
edure whose entry-point address is stored in a data se
tion
an have this (relo
atable) address used somewhere in the program as the targetof an indire
t fun
tion
all. Be
ause of this, as mentioned in step (2) above, su
hpro
edures must be assumed to be rea
hable via indire
t
alls as long as the pro-gram
ontains any
all whose target is unknown. While this is safe, it is overly
onservative. As dis
ussed in Se
tion 2.1.4, the
ode generated by the
ompiler fora fun
tion
all typi
ally
onsists of a load from a global address table followed by anindire
t
all. (A
ompiler
an, in prin
iple, optimize this to a dire
t
all when the
aller and
allee are within the same module, but su
h a s
heme is still ne
essary forinter-module
alls.) This means that any pro
edure that is a

essible from outsideits own module has its relo
atable address stored in the global address table (whi
his in a data se
tion) and hen
e will be
onsidered to be
alled from Funknown . Asan indi
ation of how
onservative this simple te
hnique is, we note that for theprograms in the SPECint-95 ben
hmark suite, about 65% of all fun
tions, on theaverage, are
onsidered to be
alled from Funknown .Alpha exe
utables
ontain fun
tion relo
ation information that we use to improvethe pre
ision of our
ontrol
ow analysis. The
ompiler uses spe
ial relo
ation en-tries, referred to as literal relo
ations, to tag every instru
tion that loads a fun
tionaddress from a global address table, and every instru
tion that uses this loadedaddress. (These relo
ation entries play a purely informational role, in that they
an be ignored by the linker without a�e
ting program behavior.) If every load of afun
tion's address is used simply to jump to that address, we remove the edge fromFunknown to the fun
tion, and repla
e it with
all edges from the basi
 blo
ks that
ontain the jump instru
tions. If a load of a fun
tion address is not followed by ajump, the address may be stored and, thus, may equal any unresolved target. Inthis
ase, we preserve the edge from Funknown to the fun
tion. For the SPECint-95ben
hmarks, this results in fewer than 14% of the pro
edures having a
all fromFunknown . The resulting improvement in
ontrol
ow information has a very sig-ni�
ant e�e
t on the amount of
ode that
an be eliminated as unrea
hable, andleads to a signi�
ant improvement in the amount of
ode
ompa
tion that
an berealized.2.2.2 Interpro
edural Constant Propagation. As mentioned above, we as-sume that standard
ompiler analyses and optimizations|in
luding
onstantpropagation|have already been
arried out prior to link-time
ode
ompa
tion.Where do opportunities for link-time
onstant propagation then arise? It turnsout, not surprisingly, that
onstant values that are propagated at
ompile time arethose that are present in sour
e-level
ompilation units, while those propagated atlink time are either values that are not available at
ompile time, e.g., addresses ofglobal names, or those that the
ompiler is unable to propagate a
ross
ompilationunit boundaries, e.g., from a
aller to a
allee. Link-time
onstant propagationopportunities also arise from ar
hite
ture-spe
i�

omputations that are not visible

Compiler Te
hniques for Code Compa
tion � 9at the intermediate
ode representation level typi
ally used by
ompilers for mostoptimizations. An example of this is the
omputation of the gp register on theAlpha pro
essor.The analysis we use in squeeze is essentially standard iterative
onstant prop-agation, limited to registers but
arried out a
ross the
ontrol
ow graph of theentire program. This has the e�e
t of
ommuni
ating information about
onstantarguments from a
alling pro
edure to the
allee. To improve pre
ision, squeeze at-tempts to determine the registers saved on entry to a fun
tion and restored at theexit from it. If a register r that is saved and restored by a fun
tion in this manner
ontains a
onstant
 just before the fun
tion is
alled, r is inferred to
ontain thevalue
 on return from the
all.Constant propagation turns out to be of fundamental importan
e for the rest ofthe system, sin
e many
ontrol and data
ow analyses rely on the knowledge of
onstant addresses
omputed in the program. For example, the
ode generated bythe
ompiler for a fun
tion
all typi
ally �rst loads the address of the
alled fun
tioninto a register, then uses a jsr instru
tion to jump indire
tly through that register.If
onstant propagation determines that the address being loaded is a �xed valueand the
allee is not too far away, the indire
t fun
tion
all
an be repla
ed by adire
t
all using a bsr instru
tion, as dis
ussed in Se
tion 2.1.4. This is not only
heaper, but also vital for improving the pre
ision of the interpro
edural
ontrol
ow graph of the program, sin
e it lets us repla
e a pair of
all/return edges toFunknown with a pair of su
h edges to the (known)
allee. Another example of theuse of
onstant address information involves the identi�
ation of possible targetsof indire
t jumps through jump tables. Unless this
an be done, we must assumethat the indire
t jump is
apable of jumping to any basi
 blo
k of a fun
tion,3and this
an signi�
antly hamper optimizations. Finally, knowledge of
onstantaddresses is useful for optimizations su
h as the removal of unne
essary memoryreferen
es. We �nd that on the average, link-time
onstant propagation is able todetermine the values of the arguments and results for about 18% of the instru
tionsof a program. (This does not mean that these \evaluated" instru
tions
an all beremoved, sin
e very often they represent address
omputations for indexing intoarrays or stru
tures or for
alling fun
tions.)2.2.3 Interpro
edural Register Liveness Analysis. Code fa
toring, dis
ussed inSe
tion 3, involves abstra
ting repeated instru
tion sequen
es into pro
edures. To
all su
h pro
edures it is ne
essary to �nd a register that
an be used to hold thereturn address. Squeeze implements a relatively straightforward interpro
eduralliveness analysis, restri
ted to registers, to determine whi
h registers are live atany given program point. The analysis is
ontext-sensitive in that it maintainsinformation about whi
h return edges
orrespond to whi
h
all sites, and propa-gates information only along realizable
all/return paths. The \standard" data
owequations for liveness analysis are extended to deal with idiosyn
ra
ies of the Alphainstru
tion set. For example, the
all pal instru
tion, whi
h a
ts as the interfa
ewith the host operating system, has to be handled spe
ially, sin
e the registers thatmay be used by this instru
tion are not visible as expli
it operands of the instru
-3More pre
isely, any basi
 blo
k that is marked as \relo
atable," as dis
ussed in Se
tion 2.2.1.

10 � Saumya Debray et al.tion. Our implementation
urrently uses the node Bunknown as the target for su
h
alls. The
onditional move instru
tion also requires spe
ial attention, sin
e thedestination register must also be
onsidered as a sour
e register.In order to propagate data
ow information only along realizable
all/returnpaths, squeeze
omputes summary information for ea
h fun
tion, and models thee�e
t of fun
tion
alls using these summaries. Given the site of a
all to a fun
tionf ,
onsisting of a
all node n
 and a return node nr, the e�e
ts of the fun
tion
allon liveness information are summarized via two pie
es of information:(1) mayUse[f ℄ is the set of registers that may be used by f . A register r may beused by f if there is a realizable path from the entry node of f to a use of rwithout an intervening de�nition of r. Hen
e mayUse [f ℄ des
ribes the set ofregisters that are live at the entry to f independent of the
alling
ontext, andwhi
h are therefore ne
essarily live at the
all node n
.(2) byPass [f ℄ is the set of registers whose liveness depends on the
alling
ontextfor f . This
onsists of those registers r su
h that, if r is live at nr, then r isalso live at n
.The analysis pro
eeds in three phases. The �rst two phases
ompute summaryinformation for fun
tions, i.e., their mayUse and byPass sets. The third phase thenuses this information to do the a
tual liveness
omputation.It turns out that even
ontext-sensitive liveness analyses may be overly
onser-vative if they are not
areful in handling register saves and restores at fun
tion
allboundaries. Consider a fun
tion that saves the
ontents of a register, then restoresthe register before returning. A register r that is saved in this manner will appear asan operand of a store instru
tion, and therefore appear to be used by the fun
tion.In the subsequent restore operation, register r will appear as the destination of aload instru
tion, and therefore appear to be de�ned by the fun
tion. A straightfor-ward analysis will infer that r is used by the fun
tion before it is de�ned, and thiswill
ause r to be inferred as live at every
all site for f . To handle this problem,squeeze attempts to determine, for ea
h fun
tion, the set of registers it saves andrestores.4 If the set of
allee-saved registers of fun
tion f
an be determined, we
anuse it to improve the pre
ision of the analysis by removing this set from mayUse [f ℄and adding it to byPass[f ℄ whenever those values are updated during the �xpoint
omputation.3. CODE FACTORINGCode fa
toring involves (1) �nding a multiply-o

urring sequen
e of instru
tions,(2) making one representative sequen
e that
an be used in pla
e of all o

urren
es,and (3) arranging, for ea
h o

urren
e, that the program exe
utes the representativeinstead of the o

urren
e. The third step
an be a
hieved by expli
it
ontrol transfer(via a
all or jump), or by moving the representative of several o

urren
es to apoint that dominates every o

urren
e. We �rst exploit the latter form of
odefa
toring, sin
e it involves no added
ontrol transfer instru
tions.4We do not assume that a program will ne
essarily respe
t the
alling
onventions with regardto
allee-saved registers, sin
e su
h
onventions are not always respe
ted in libraries
ontaininghand-written assembly
ode. This approa
h is safe, though sometimes overly
onservative.

Compiler Te
hniques for Code Compa
tion � 11
B’ C’

E’

D’

A’

stq r7,4(r30)

sub r5,r6,r9
stq r9,8(r30)
ldq r9,12(r30)
xor r5,r6,r0

xor r19,r19,r19

cmp r2,r1,r0
add r5,r6,r8
beq r0

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r30)
xor r5,r6,r0

ldq r19,22(r22)

stq r9,16(r23)

D

ldq r19,22(r22)
stq r9,16(23)

B

stq r7,4(r30)

stq r9,8(r30)
ldq r9,12(r22)

xor r19,r19,r19
stq r9,16(r23)
xor r5,r6,r0

add r5,r6,r8
sub r5,r6,r9

C

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r22)
xor r5,r6,r0
stq r9,16(r23)

add r5,r6,r8

A

cmp r2,r1,r0

beq r0

E Fig. 1. Lo
al
ode fa
toring.3.1 Lo
al Fa
toring TransformationsInspired by an idea of Knoop et al. [1994℄, we try to merge identi
al
ode fragmentsby moving them to a point that pre- or postdominates all the o

urren
es of thefragments. We have implemented a lo
al variant of this s
heme whi
h we des
ribeusing the example depi
ted in Figure 1. The left hand side of the �gure shows anassembly
ode
ow
hart with a
onditional bran
h (beq r0) in blo
k A. Blo
ks Band C
ontain the same instru
tion add r5,r6,r8. Sin
e these instru
tions do nothave ba
kward dependen
ies with any other instru
tion in B or C, we
an safelymove them into blo
k A just before the beq instru
tion, as shown in the right-handside of Figure 1. Similarly, blo
ks B, C, and D share the same store instru
tionstq r9,r16(r23), and sin
e these instru
tions do not have forward dependen
ieswith any other instru
tion in B, C, and D, they
an be safely moved into blo
k E.In this
ase, it is not possible to move the store instru
tion from B and C into Abe
ause, due to the la
k of aliasing information, there are ba
kward dependen
iesto the load instru
tions (ldq) in B and C. In general, however, it might be possibleto move an instru
tion either up or down. In this
ase, we prefer to move it down,sin
e moving it up, over a two-way bran
h, will eliminate one
opy while moving itdown to a blo
k that has many prede
essors might eliminate several
opies.Our s
heme uses register reallo
ation to make this transformation more e�e
tive.For example, the sub instru
tions in B and C write to di�erent registers (r9 andr19). We
an, however, rename r9 to r19 in B, thereby making the instru
tionsidenti
al. Another opportunity rests with the xor instru
tions in B and C. Eventhough they are identi
al, we
annot move them into A be
ause they write registerr0 whi
h is used by the
onditional bran
h. Reallo
ating r0 in A to another registerwhi
h is dead at the end of A will make the transformation possible.3.2 Pro
edural Abstra
tionGiven a single-entry, single-exit
ode fragment C, pro
edural abstra
tion of C in-volves (1)
reating a pro
edure fC whose body is a
opy of C and (2) repla
ingthe appropriate o

urren
es of C in the program text by a fun
tion
all to fC .While the �rst step is not very diÆ
ult, the se
ond step, at the level of assembly

12 � Saumya Debray et al.or ma
hine
ode, involves a little work.In order to
reate a fun
tion
all using some form of \jump-and-link" instru
tionthat transfers
ontrol to the
allee and at the same time puts the return address intoa register, it is ne
essary to �nd a free register for that purpose. A simple methodis to
al
ulate, for ea
h register r, the number of o

urren
es of
ode fragment Cthat
ould use r as a return register. A register with the highest su
h �gure ofmerit is
hosen as the return register for fC . If a single instan
e of fC , using aparti
ular return register, is not enough to abstra
t out all of the o

urren
es of Cin the program, we may
reate multiple instan
es of fC that use di�erent returnregisters. We use a more
ompli
ated s
heme when abstra
ting fun
tion prologs(see Se
tion 3.5.1) and regions of multiple basi
 blo
ks (see Se
tion 3.4).3.3 Pro
edural Abstra
tion for Individual Basi
 Blo
ksCentral to our approa
h is the ability to apply pro
edural abstra
tion to individualbasi
 blo
ks. In this se
tion, we dis
uss how
andidate basi
 blo
ks for pro
eduralabstra
tion are identi�ed.3.3.1 Fingerprinting. To redu
e the
ost of
omparing basi
 blo
ks to determinewhether they are identi
al (or similar), we use a �ngerprint fun
tion to
ompute a�ngerprint for ea
h basi
 blo
k, su
h that two blo
ks with di�erent �ngerprints areguaranteed to be di�erent. In general, su
h �ngerprint fun
tions are de�ned withrespe
t to the notion of \equality" between basi
 blo
ks. For example, in our
urrentimplementation, two blo
ks are
onsidered to be equal if the instru
tion sequen
esin them are the same. Thus, the �ngerprint fun
tion of a blo
k is based on thesequen
e of instru
tions in the blo
k. On the other hand, if a
ode
ompa
tions
heme de�nes equality of basi
 blo
ks with respe
t to de�nition-use
hains thena �ngerprint based on the number of o

urren
es of ea
h type of op
ode may beused.In our
urrent implementation, a �ngerprint is a 64-bit value formed by
on
ate-nating 4-bit en
odings of the op
odes of the �rst 16 instru
tions in the blo
k. Sin
emost \systems" appli
ations tend to have short basi
 blo
ks,
hara
terizing the �rst16 instru
tions seems enough for most basi
 blo
ks. This means that two blo
ksthat are di�erent, but whi
h have the same sequen
e of op
odes for their �rst 16instru
tions, will have the same �ngerprint: we will dis
over them to be di�erentlater, when we a
tually
ompare them instru
tion by instru
tion.With 4 bits per instru
tion, we
an en
ode 15 di�erent op
odes and reserve one
ode for \other." We de
ide whi
h 15 will be expli
itly represented by
onsidering astati
 instru
tion
ount of the program. The 15 most frequently o

urring op
odesare given distin
t 4-bit patterns. The remaining pattern, 0000, represents op
odesthat are not in the top 15 in frequen
y.To redu
e the number of pairwise
omparisons of �ngerprints that must be
arriedout, we use a hashing s
heme su
h that basi
 blo
ks in di�erent hash bu
kets areguaranteed to have di�erent �ngerprints, and so need not be
ompared.3.3.2 Register Renaming within Basi
 Blo
ks. When we �nd two basi
 blo
ksthat are \similar," i.e., have the same �ngerprint and the same number of instru
-tions, but whi
h are not identi
al, we attempt to rename the registers in one ofthem so as to make the two identi
al. The basi
 idea is very simple: we rename

Compiler Te
hniques for Code Compa
tion � 13
r5 = r4+1
r3 = r5+r2
r6 = r5*r3

B1

r4 = r6*2
r0 = r3-r6

{r1,r2} live

{r3,r4} live

r0 = r1+1

r5 = r0*r1
r3 = r1-r5
r4 = r5*2

r1 = r0+r2

B0

r4 = r1

B1
r5 = r4+1
r3 = r5+r2
r6 = r5*r3

r4 = r6*2
r0 = r3-r6

B0
r5 = r4+1
r3 = r5+r2
r6 = r5*r3

r4 = r6*2
r0 = r3-r6

r3 = r0(a) before (b) afterFig. 2. Example of basi
-blo
k-level register renaming.registers \lo
ally," i.e., within the basi
 blo
k; and if ne
essary, we insert register-to-register moves, in new basi
 blo
ks inserted immediately before and after theblo
k being renamed, so as to preserve program behavior. An example of this isshown in Figure 2, where blo
k B0 is renamed to be the same as blo
k B1.For soundness, we have to ensure that the renaming does not alter any use-de�nition relationships. We do this by keeping tra
k of the set of registers thatare live at ea
h point in the basi
 blo
k, as well as the set of registers that havealready been subje
ted to renaming. These sets are then used to dete
t and dis-allow renamings that
ould alter the program's behavior. The pseudo
ode for ourrenaming algorithm is given in Appendix A.The renaming algorithm keeps tra
k of the number of expli
it register-to-registermoves that have to be inserted before and after a basi
 blo
k that is being renamed.The renaming is undone if, at the end of the renaming pro
ess, the
ost of renaming,i.e., the number of register moves required together with a fun
tion
all instru
tion,ex
eeds the savings from the renaming, i.e., the number of instru
tions in the blo
k.Cooper and M
Intosh [1999℄ des
ribe a di�erent approa
h to register renaming.They
arry out register renaming at the level of entire live ranges. That is, whenrenaming a register r0 to a di�erent register r1, the renaming is applied to anentire live range for r0. This has the advantage of not requiring additional registermoves before and after a renamed blo
k, as our approa
h does. However, it hasthe problem that register renaming to allow the abstra
tion of a parti
ular pair ofbasi
 blo
ks may interfere with the abstra
tion of a di�erent pair of blo
ks. Thisis illustrated in Figure 3, where solid double arrows indi
ate identi
al basi
 blo
ks,while dashed double arrows indi
ate blo
ks that are not identi
al but whi
h
an bemade identi
al via register renaming. Blo
ks B0, B1, and B2
omprise a live rangefor register r0, while B3 and B5
omprise a live range for r1. We
an rename r0to r5 in this live range, so as to make blo
ks B1 and B3 identi
al, but this will
ause blo
ks B2 and B4 to not be identi
al and therefore not abstra
table into afun
tion. We
an also rename r5 to r0 in blo
k B3 so as to make it identi
al toB1, but this will interfere with the abstra
tion of blo
ks B5 and B6. Be
ause ofsu
h interferen
e e�e
ts, it is not
lear whether live-range-level renaming produ
esresults that are ne
essarily superior to basi
-blo
k-level renaming. Noti
e that the

14 � Saumya Debray et al.
r2 = r3+r0

r1 = r0+r2

r2 = r1*r0

r1 = r0+r1

r3 = r1+r2

r2 = r3+r0

r1 = r0+r2

r2 = r1*r0

B4

r1 = r5+r1

r3 = r1+r2

B3

B5

r1 = r3-r5

r2 = r0+r5

r3 = r5*r4

B0

B1

B2

r0 = load(...)

r1 = r3-r5

r2 = r0+r5

r3 = r5*r4

B6

r0 r5

r0 r5

Live range for

Live range for

r0

r1

Fig. 3. Interferen
e e�e
ts in live-range-level register renaming.problem
ould be addressed by judi
iously splitting the live ranges. Indeed, thelo
al renaming we use
an be seen as the limiting
ase of live-range-level renamingif splitting is applied until no live range spans more than one basi
 blo
k.3.3.3 Control Flow Separation. The approa
h des
ribed above will typi
ally notbe able to abstra
t two basi
 blo
ks that are identi
al ex
ept for an expli
it
ontroltransfer instru
tion at the end. The reason for this is that if the
ontrol transfersare to di�erent targets, the blo
ks will be
onsidered to be di�erent and so will notbe abstra
ted. Moreover, if the
ontrol transfer instru
tion is a
onditional bran
h,pro
edural abstra
tion be
omes
ompli
ated by the fa
t that two possible returnaddresses have to be
ommuni
ated.To avoid su
h problems, basi
 blo
ks that end in an expli
it
ontrol transferinstru
tion are split into two blo
ks: one blo
k
ontaining all the instru
tions inthe blo
k ex
ept for the
ontrol transfer, and another blo
k that
ontains only the
ontrol transfer instru
tion. The �rst of this pair of blo
ks
an then be subje
tedto renaming and/or pro
edural abstra
tion in the usual way.The next se
tion des
ribes how
ode fragments larger than a single basi
 blo
k
an be subje
ted to pro
edural abstra
tion.3.4 Single-Entry/Single-Exit RegionsThe dis
ussion thus far has fo
used on the pro
edural abstra
tion of individualbasi
 blo
ks. In general, however, we may be able to �nd multiple o

urren
es ofa
ode fragment
onsisting of more than one basi
 blo
k. In order to apply pro
e-dural abstra
tion to su
h a region R, at every o

urren
e of R in the program, wemust be able to identify a single program point at whi
h
ontrol enters R, and asingle program point at whi
h
ontrol leaves R. It isn't hard to see that any set ofbasi
 blo
ks R with a single entry point and a single exit point
orresponds to apair of points (d; p) su
h that d dominates every blo
k in R and p postdominatesevery blo
k in R. Conversely, a pair of program points (d; p), where d dominates pand p postdominates d, uniquely identi�es a set of basi
 blo
ks with a single entrypoint and single exit point. Two su
h single-entry, single-exit regions R and R0 are
onsidered to be identi
al if it is possible to set up a 1-1
orresponden
e ' between

Compiler Te
hniques for Code Compa
tion � 15their members su
h that B1 ' B01 if and only if (1) B1 is identi
al to B01, and (2) ifB2 is a (immediate) su

essor of B1 under some
ondition C, and B02 is a (imme-diate) su

essor of B01 under the same
ondition C, then B2 ' B02. The algorithmto determine whether two regions are identi
al works by re
ursively traversing thetwo regions, starting at the entry node, and verifying that
orresponding blo
ks areidenti
al.In squeeze, after we apply pro
edural abstra
tion to individual basi
 blo
ks, weidentify pairs of basi
 blo
ks (d; p) su
h that d dominates p and p postdominatesd. Ea
h su
h pair de�nes a single-entry, single-exit set of basi
 blo
ks. We thenpartition these sets of basi
 blo
ks into groups of identi
al regions, whi
h thenbe
ome
andidates for further pro
edural abstra
tion.As in the
ase of basi
 blo
ks, we
ompute a �ngerprint for ea
h region so thatregions with di�erent �ngerprints will ne
essarily be di�erent. These �ngerprintsare, again, 64-bit values. There are 8 bits for the number of basi
 blo
ks in theregion and 8 bits for the total number of instru
tions, with the bit pattern 11...1being used to represent values larger than 256. The remaining 48 bits are used toen
ode the �rst (a

ording to a parti
ular preorder traversal of the region) 8 basi
blo
ks in the region, with ea
h blo
k en
oded using 6 bits: two bits for the typeof the blo
k,5 and four bits for the number of instru
tions in the blo
k. Again, asin the
ase of basi
 blo
ks, the number of pairwise
omparisons of �ngerprints isredu
ed by distributing the regions over a hash table.It turns out that applying pro
edural abstra
tion to a set of basi
 blo
ks isnot as straightforward as for a single basi
 blo
k, espe
ially in a binary rewritingimplementation su
h as ours. The reason is that, in general, when the pro
edure
orresponding to su
h a single-entry, single-exit region is
alled, the return addresswill be put into a register whose value
annot be guaranteed to be preserved throughthat entire pro
edure, e.g., be
ause the region may
ontain fun
tion
alls, or be
ausethe region may
ontain paths along whi
h that register is overwritten. This meansthat the return address register has to be saved somewhere, e.g., on the sta
k.However, allo
ating an extra word on the sta
k, to hold the return address,
an
ause problems unless we are
areful. Allo
ating this spa
e at the top of the sta
kframe
an
ause
hanges in the displa
ements of other variables in the sta
k frame,relative to the top-of-sta
k pointer, while allo
ating it at the bottom of the sta
kframe
an
hange the displa
ements of any arguments that have been passed on thesta
k. If there is any address arithmeti
 involving the sta
k pointer, e.g., for address
omputations for lo
al arrays, su
h
omputations may be a�e
ted by
hanges indispla
ements within the sta
k frame. These problems are somewhat easier tohandle if the pro
edural abstra
tion is being
arried out before
ode generation,e.g., at the level of abstra
t syntax trees [Franz 1997℄. At the level of assembly
ode [Cooper and M
Intosh 1999; Fraser et al. 1984℄ or ma
hine
ode (as in ourwork), it be
omes
onsiderably more
ompli
ated. There are, however, some simple
ases where it is possible to avoid the
ompli
ations asso
iated with having to saveand restore the return address when introdu
ing pro
edural abstra
tions. Here,we identify two su
h situations. In both
ases, let (d0; p0) and (d1; p1) de�ne two5In essen
e, the type of a blo
k des
ribes its
ontrol
ow behavior, i.e., whether it
ontains apro
edure
all, a
onditional bran
h, an indire
t jump through a jump table, et
.

16 � Saumya Debray et al.
return

d0

p
0

d

p
1

1

return (a) before return

d0

p
0 (b) afterFig. 4. Merging regions ending in returns via
ross-jumping.identi
al regions.The �rst
ase involves situations where p0 and p1 are return blo
ks, i.e., blo
ksfrom whi
h
ontrol returns to the
aller. In this
ase there is no need to usepro
edural abstra
tion to
reate a separate fun
tion for the two regions. Instead,we
an use a transformation known as
ross-jumping [Mu
hni
k 1997℄, where the
ode in the region (d1; p1) is simply repla
ed by a bran
h to d0. The transformationis illustrated in Figure 4.In the se
ond
ase, suppose that it is possible to �nd a register r that (1) is notlive at entry to either region, and (2) whose value
an be guaranteed to be preservedup to the end of the regions (r may be a general-purpose register that is not de�nedwithin either region, or a
allee-saved register that is already saved and restoredby the fun
tions in whi
h the regions o

ur). In this
ase, when abstra
ting theseregions into a pro
edure p, it is not ne
essary to add any
ode to expli
itly save andrestore the return address for p. The instru
tion to
all p
an simply put the returnaddress in r, and the return instru
tion(s) within p
an simply jump indire
tlythrough r to return to the
aller.If neither of these
onditions is satis�ed, squeeze tries to determine whether thereturn address register
an be safely saved on the sta
k at entry to p, and restored atthe end. For this, it uses a
onservative analysis to determine whether a fun
tionmay have arguments passed on the sta
k, and whi
h, if any, registers may bepointers into the sta
k frame. Given a set of
andidate regions to be abstra
tedinto a representative pro
edure, it
he
ks the following:(1) for ea
h fun
tion that
ontains a
andidate region, it must be safe, with respe
tto the problems mentioned above, to allo
ate a word on the sta
k frame of thefun
tion;(2) a register r0 must be free at entry to ea
h of the regions under
onsideration;(3) a register r1 must be free at the end of ea
h of the regions under
onsideration;and(4) there should not be any
alls to setjmp()-like fun
tions that
an be a�e
tedby a
hange in the stru
ture of the sta
k frame.

Compiler Te
hniques for Code Compa
tion � 17If these
onditions are satis�ed then, on entry, p allo
ates an additional word onthe sta
k and saves the return address (passed via r0) into this lo
ation; and, onexit, loads the return address from this lo
ation (using r1) and restores the sta
kframe. The
urrent implementation of the safety
he
k des
ribed above is quite
onservative in its treatment of fun
tion
alls within a region. In prin
iple, if we�nd that spa
e
an be allo
ated on the sta
k but have no free registers for thereturn address at entry or exit from the abstra
ted fun
tion, it should be possibleto allo
ate an extra word on the sta
k in order to free up a register, but we havenot implemented this.3.5 Ar
hite
ture-Spe
i�
 IdiomsApart from the general-purpose te
hniques des
ribed earlier for dete
ting and ab-stra
ting out repeated
ode fragments, there are ma
hine-spe
i�
 idioms that
anbe pro�tably exploited. In parti
ular, the instru
tions to save and restore registers(the return address and
allee-saved registers) in the prolog and epilog of ea
h fun
-tion generally have a predi
table stru
ture and are saved at predi
table lo
ationswithin the sta
k frame. For example, the standard
alling
onvention for the Com-paq Alpha AXP ar
hite
ture under Tru64 Unix6 treats register r26 as the returnaddress register (ra) and registers r9 through r15 as
allee-saved registers. Theseare saved at lo
ations 0x0(sp), 0x8(sp), 0x10(sp), and so on. Abstra
ting outsu
h instru
tions
an yield
onsiderable savings in
ode size. Su
h ar
hite
ture-spe
i�
 save/restore sequen
es are re
ognized and handled spe
ially by squeeze, fortwo reasons: �rst, these instru
tions often do not form a
ontiguous sequen
e inthe
ode stream; and se
ond, handling them spe
ially allows us to abstra
t themout of basi
 blo
ks that may not be identi
al to ea
h other.3.5.1 Abstra
ting Register Saves. In order to abstra
t out the register save in-stru
tions in the prolog of a fun
tion f into a separate fun
tion g, it is ne
essary toidentify a register that
an be used to hold the return address for the
all from f tog. For ea
h register r, we �rst
ompute the savings that would be obtained if r wereto be used for the return address for su
h
alls. This is done by totaling up, for ea
hfun
tion f where r is free at entry to f , the number of registers saved in f 's prolog.We then
hoose a register r with maximum savings (whi
h must ex
eed 0), andgenerate a family of fun
tions Saver15; : : : ;Saver9;Saverra that save the
allee-savedregisters and the return address register, and then return via register r. The ideais that fun
tion Saveri saves register i and then falls through to fun
tion Saveri�1.As an example, suppose we have two fun
tions f0() and f1(), su
h that f0()saves registers r9, . . . , r14, and f1() saves only register r9. Assume that registerr0 is free at entry to both these fun
tions and is
hosen as the return addressregister. The
ode resulting from the transformation des
ribed above is shown inFigure 5.It may turn out that the fun
tions subje
ted to this transformation do not useall of the
allee-saved registers. For example, in Figure 5, suppose that none of thefun
tions using return address register r0 save register r15. In this
ase, the
odefor the fun
tion Save015 be
omes unrea
hable and is subsequently eliminated.6Tru64 Unix was formerly known as Digital Unix.

18 � Saumya Debray et al.
Save0

15

Save0
14

Save0
9

Save0
ra

Save0
14

sp = sp - 32
bsr r0, Save0

9

. . .

f0:

bsr r0,
sp = sp - 40

f1:

stq r15, 0x38(sp)

stq r14, 0x30(sp)

stq r9, 0x8(sp)

stq ra, 0x0(sp)
ret (r0)Fig. 5. Example
ode from abstra
tion of register save a
tions from fun
tion prologs.A parti
ular
hoi
e of return address register, as des
ribed above, may not a
-
ount for all of the fun
tions in a program. The pro
ess is therefore repeated,using other
hoi
es of return address registers, until either no further bene�t
anbe obtained, or all fun
tions are a

ounted for.3.5.2 Abstra
ting Register Restores. The
ode for abstra
ting out register re-store sequen
es in fun
tion epilogs is
on
eptually analogous to that des
ribedabove, but with a few di�eren
es. If we were simply to do the opposite of whatwas done for register saves in fun
tion prologs, the
ode resulting from pro
eduralabstra
tion at ea
h return blo
k for a fun
tion might have the following stru
ture,with three instru
tions to manage the
ontrol transfers and sta
k pointer update:...bsr r1, Restore /*
all fun
tion that restores registers */sp = sp + k /* deallo
ate sta
k frame */ret (ra) /* return */If we
ould somehow move the instru
tion for deallo
ating the sta
k frame intothe fun
tion that restores saved registers, there would be no need to return to thefun
tion f whose epilog we are abstra
ting:
ontrol
ould return dire
tly to f 's
aller (in e�e
t realizing tail
all optimization). The problem is that the
ode torestore saved registers is used by many di�erent fun
tions, whi
h in general havesta
k frames of di�erent sizes, and hen
e need to adjust the sta
k pointer by di�erentamounts. The solution to this problem is to pass, as an argument to the fun
tionthat restores registers, the amount by whi
h the sta
k pointer must be adjusted.Sin
e the return address register ra is guaranteed to be free at this point|it isabout to be overwritten with f 's return address prior to returning
ontrol to f 's
aller|it
an be used to pass this argument.7 Sin
e there is now no need for
ontrolto return to f after the registers have been restored|it
an return dire
tly to f 's
aller|we
an simply jump from fun
tion f to the fun
tion that restores registers,instead of using a fun
tion
all. The resulting
ode requires two instru
tions insteadof three in ea
h fun
tion return blo
k:7In pra
ti
e not all fun
tions
an be guaranteed to follow the standard
alling
onvention, so it isne
essary to verify that register ra is, in fa
t, being used as the return address register by f .

Compiler Te
hniques for Code Compa
tion � 19
to f0’s caller(s) to ’s caller(s)f1

. . .

15

14

9

ra

ldq r15, 0x38(sp)

ldq r14, 0x30(sp)

ldq r9, 0x8(sp)

Restore

Restore

Restore

Restore

ra = 32 ra = 40
f0: f1:

sp = sp + ra
stq ra, 0x8(sp)
ldq ra, 0(sp)
ldq sp, 0x8(sp)
ret (ra)Fig. 6. Example
ode from abstra
tion of register restore a
tions from fun
tion epilogs.ra = k /* sp needs to be adjusted by k */br Restore /* jump to fun
tion that restores registers */The
ode in the fun
tion that restores registers is pretty mu
h what one wouldexpe
t. Unlike the situation for register save sequen
es dis
ussed in Se
tion 3.5.1,we need only one fun
tion for restoring registers. The reason for this is that there isno need to
all this fun
tion:
ontrol
an jump into it dire
tly, as dis
ussed above.This means that we do not have to generate di�erent versions of the fun
tion withdi�erent return address registers. The overall stru
ture of the
ode is analogous tothat for saving registers: there is a
hain of basi
 blo
ks, ea
h of whi
h restores a
allee-saved register, with
ontrol falling through into the next blo
k, whi
h savesthe next (lower-numbered)
allee-saved register, and so on. The last member ofthis
hain adjusts the sta
k pointer appropriately, loads the return address into aregister, and returns. There is, however, one minor twist at the end. The amountby whi
h the sta
k pointer must be adjusted is passed in register ra, so this register
annot be overwritten until after it has been used to adjust the sta
k pointer. Onthe other hand, sin
e the memory lo
ation from whi
h f 's memory address is tobe restored is in f 's sta
k frame, we
annot adjust the sta
k pointer until after thereturn address has been loaded into ra. At �rst glan
e, it seems that the problem
an be addressed using something like the following instru
tion sequen
e:sp = sp + ra /* sp = sp + ra � new sp */ra = sp - ra /* ra = sp - ra � old sp */ra = load 0(ra) /* ra = return address */ret (ra)This
ode is in
orre
t, however, be
ause the sta
k pointer is updated|i.e., the sta
kframe is deallo
ated|before the return address is loaded from the sta
k frame. Asa result, if an interrupt o

urs between the end of the �rst instru
tion and thebeginning of the third instru
tion, the return address may be overwritten, resultingin in
orre
t behavior. To avoid this, we have to ensure that the sta
k pointer updateis the last instru
tion before the ret instru
tion. We do this by �rst
omputing thenew value of the sta
k pointer and storing it in the sta
k frame (in the slot where the�rst
allee-saved register, was originally stored), then updating the return address

20 � Saumya Debray et al.register, and �nally loading the new value of the sta
k pointer from memory:8ra = sp + ra /* ra = sp + ra � new sp */8(sp) = store ra /* new sp saved at lo
ation 8(sp) */ra = load 0(sp) /* ra = return address */sp = load 8(sp) /* sp = new sp */ret (ra)The resulting
ode for restoring saved registers, for the fun
tions
onsidered in theexample illustrated in Figure 5, is shown in Figure 6.We go through these
ontortions in order to minimize the number of registersused. If we
ould �nd another register that is free at the end of every fun
tion, we
ould load the return address into this register, resulting in somewhat simpler
ode.However, in general it is not easy to �nd a register that is free at the end of everyfun
tion. The reason we go to su
h lengths to eliminate a single instru
tion fromea
h return blo
k is that there are a lot of return blo
ks in the input programs,typi
ally amounting to about 3%{7% of the basi
 blo
ks in a program, ex
ludingreturn blo
ks for leaf routines that do not allo
ate/deallo
ate a sta
k frame (thereis usually at least one|and, very often, more than one|su
h blo
k for ea
h fun
-tion). The elimination of one instru
tion from ea
h su
h blo
k translates to a
odesize redu
tion of about 1%{2% overall. (This may seem small, but to put it in per-spe
tive,
onsider that Cooper and M
Intosh report an overall
ode size redu
tionof about 5% using suÆx-tree-based te
hniques.)3.6 Abstra
ting Partially Mat
hed Blo
ksAs dis
ussed in the pre
eding se
tions, the smallest
ode unit
onsidered for pro-
edural abstra
tion by squeeze is the basi
 blo
k. In other words, squeeze will notattempt to
arry out any form of pro
edural abstra
tion on two blo
ks that arenot the same, even though there may be a signi�
ant amount of \partial mat
h"between them, i.e., the blo
ks may share
ommon subsequen
es of instru
tions.This is illustrated by the pair of basi
 blo
ks shown in Figure 7(a), with mat
hedinstru
tions indi
ated by lines drawn between them. Our experiments, des
ribed inthis se
tion, indi
ate that abstra
tion of partially mat
hed blo
ks is
omputation-ally quite expensive but adds very little additional savings in
ode size. For thisreason we have
hosen not to in
lude partial mat
hing within squeeze.There are two issues that have to be addressed when
onsidering pro
edural ab-stra
tion of partially mat
hed blo
ks: �rst, how to identify partially mat
hed blo
ksto abstra
t; and se
ond, how to transform the
ode to e�e
t this abstra
tion. Inour experiments, abstra
tion of partially mat
hed blo
ks was
arried out after pro-
edural abstra
tion of \fully mat
hed" blo
ks, dis
ussed in Se
tion 3.3. In general,a parti
ular basi
 blo
k B0 may be partially mat
hed against many di�erent blo
ks,whi
h may mat
h di�erent subsequen
es of its instru
tions. The savings obtainedfrom pro
edural abstra
tion in this
ase depends on the blo
k B1 that is
hosen as amat
h. On
e a blo
k B1 is partially mat
hed with B0 and subje
ted to pro
eduralabstra
tion, B1 is not available for partial mat
hing against other basi
 blo
ks. This8We are indebted to Anders Lindgren for pointing out the problem in our original
ode, as wellas suggesting the solution shown.

Compiler Te
hniques for Code Compa
tion � 21r1 = r2+1r1 = r1+r3ld r2, 0(r2)r3 = r1+8r4 = r0+4r1 = r4+r2st r1, 12(sp) r1 = r2+1r1 = r1+r3st r1, 16(r0)r3 = r1+8ld r7, 8(sp)r2 = r7*r3r1 = r4+r2st r1, 12(sp)hhhhhhhhhhhhhhh(a) A pair of partially mat
hed blo
ks.
ld r2, 0(r2)

B1
st r1, 16(r0)

r4 = r0+4 ld r7, 8(sp)
r2 = r7*r3

r1 = r2+1
r1 = r1+r3

r3 = r1+8

st r1, 12(sp)
r1 = r4+r2

B0

B2

B3

B4 B5

B6

return

ld r2, 0(r2)
B1

r3 = r1+8
r4 = r0+4

r1 = r2+1
r1 = r1+r3

B0

B2
st r1, 16(r0)
r3 = r1+8
ld r7, 8(sp)
r2 = r7*r3

st r1, 12(sp)
r1 = r4+r2

B6

return(b) Pro
edure obtained from the maximalmat
hing (
) Pro
edure obtained after unmat
hingunpro�table instru
tionsFig. 7. Pro
edural abstra
tion of partially mat
hed blo
ks.means that even though, from B0's perspe
tive, B1 may yield the largest savingswhen pro
edural abstra
tion is
arried out, this may not be the best
hoi
e globally,sin
e we may have obtained greater savings by mat
hing B1 with some other blo
k.The problem of
omputing a globally optimal set of partial mat
hes for a set ofbasi
 blo
ks, i.e., one that maximizes the savings obtained from their pro
eduralabstra
tion, is
omputationally diÆ
ult (the related longest
ommon subsequen
eproblem is NP-
omplete [Garey and Johnson 1979℄). We therefore take a greedyapproa
h, pro
essing basi
 blo
ks in de
reasing order of size. When pro
essing ablo
k B0, we
ompare it against all other blo
ks and
hoose a blo
k B1 that yieldsmaximal savings (
omputed as dis
ussed below) when pro
edural abstra
tion is
arried out based on partial mat
hing of B0 and B1: B1 is then put into a partitionasso
iated with B0. When all blo
ks have been pro
essed in this manner, all of theblo
ks in the same partition are abstra
ted into a single pro
edure.The bene�t obtained from the pro
edural abstra
tion of two partially mat
hedblo
ks B0 and B1 is determined as follows. First, we use dynami
 programming todetermine the minimum edit distan
e between the two blo
ks, and thus the best

22 � Saumya Debray et al.mat
h between them. Now
onsider the se
ond issue mentioned above, namely,
arrying out the program transformation. Sin
e we have a partial mat
h betweenthese blo
ks, there will have to be multiple exe
ution paths through the resultingpro
edure, su
h that the
all from B0 will take one path while that from B1 willtake another. We
an do this by passing an argument to the abstra
ted pro
edureindi
ating, for any
all, whi
h
all site it originated from, and therefore whi
hinstru
tions it should exe
ute. When s
anning down blo
ks B0 and B1, wheneverwe �nd a mismat
hed sequen
e of instru
tions in either blo
k, we generate
odein the abstra
ted pro
edure to test this argument and exe
ute the appropriateinstru
tion sequen
e based on the out
ome. Figure 7(b) shows the
ontrol
owgraph of the resulting pro
edure. In addition to the instru
tions shown, we alsohave to manage
ontrol
ow. For this, we need a
onditional bran
h at the end ofblo
ks B0 and B3 (in general, if there are more than two blo
ks in the partitionbeing abstra
ted, we may need expli
it
omparison operations to determine whi
hof a set of alternatives to exe
ute), and an un
onditional bran
h for ea
h of thepairs of blo
ks fB1, B2g and fB4, B5g, for a total of 15 instru
tions. Noti
ethat by designating the instru
tion in blo
k B3 as a \mat
h" between the twooriginal blo
ks, and thereby having B3 be
ommon to the exe
ution paths for bothof the
all sites of the pro
edure, we save a single
opy of this instru
tion, butpay a penalty of two bran
h instru
tions for managing
ontrol
ow around it. Inthis
ase, it turns out to be better, when determining the original partial mat
h,to ignore the fa
t that the two r3 = r1+8 instru
tions
an be mat
hed. Thiswould yield the
ode shown in Figure 7(
), with a total of 14 instru
tions. On theother hand, if instead of the single mat
hed instru
tion in B3 we had a sequen
eof, say, 10 mat
hed instru
tions, the savings in
urred from
ombining them intoa single blo
k within the abstra
ted pro
edure would outweigh the
ost of theadditional instru
tions needed to manage
ontrol
ow. As this example illustrates,the minimal edit distan
e between the two blo
ks does not ne
essarily yield thegreatest savings: sometimes we
an do better by ignoring some mat
hes. It is notobvious that the dynami
 programming algorithm for
omputing minimum editdistan
e
an be modi�ed in a straightforward way to a

ommodate this. Insteadwe use a postpro
essing phase to \unmat
h" instru
tions that in
ur too great a
ontrol
ow penalty.Even with the improvement of unmat
hing instru
tions where a mat
h is notdeemed pro�table, the
ost of
ontrol
ow management signi�
antly lowers theoverall bene�ts of pro
edural abstra
tion based on partial mat
hes. In the exampleshown in Figure 7, for example, at ea
h
all site for the resulting pro
edure wewould need two additional instru
tions|one to set the argument register identifyingthe
all site, another to
arry out the
ontrol transfer|for an overall total of 18instru
tions. By
ontrast, the two original basi
 blo
ks shown in Figure 7(a)
ontaina total of 15 instru
tions. Thus, despite the signi�
ant partial mat
h between thesetwo blo
ks, it is not pro�table in this
ase to abstra
t them out into a pro
edure.In general, we found that pro
edural abstra
tion based on partial mat
hes in
urs alarge
omputational
ost, but yields overall
ode size savings of around 0.4{0.6%.We obtained similar results with a number of other variations on this s
heme,su
h as fa
toring out only
ommon suÆxes or pre�xes of blo
ks. Be
ause of thehigh
omputational
ost of this transformation and the low bene�t it produ
es, we

Compiler Te
hniques for Code Compa
tion � 23de
ided not to in
lude it within squeeze.4. INTERACTIONS BETWEEN CLASSICAL OPTIMIZATIONS AND CODE FAC-TORINGThere is
onsiderable eviden
e that (appropriately
ontrolled) optimization
anyield signi�
ant redu
tions in
ode size. Compiler \folklore" has it that someamount of peephole optimization
an speed up the overall
ompilation pro
ess be-
ause of the resulting redu
tion in the number of instru
tions that have to be pro-
essed by later phases.9 Cooper and M
Intosh [1999℄ observe
ode size redu
tionsof about 18% due to
ompiler optimizations, while our own experiments, dis
ussedin Se
tion 5, indi
ate that enabling optimizations that do not in
rease
ode sizeyield a
ode size redu
tion of about 20% on the average.However, sin
e
lassi
al
ompiler optimizations are aimed primarily at in
reas-ing exe
ution speed, the redu
tions in size they produ
e are, in many
ases, thehappy but
oin
idental out
ome of transformations whose primary goal is a redu
-tion in exe
ution time. Examples of transformations that
an, in some situations,lead to an in
rease in
ode size in
lude ma
hine-independent optimizations su
h aspartial-redundan
y elimination, pro
edure inlining, and shrink wrapping, as wellas ma
hine-dependent optimizations su
h as instru
tion s
heduling and instru
tion
a
he optimization, both of whi
h
an result in the insertion of no-ops for align-ment purposes. Even for transformations that lead to
ode size redu
tions, usingexe
ution speed improvement as the primary goal of optimization
an yield smallersize redu
tions than might be possible otherwise. For example, in the lo
al fa
tor-ing transformation dis
ussed in Se
tion 3.1, if an instru
tion
an be hoisted eitherupward or downward, it is preferable to hoist it downward, sin
e this
an yieldgreater size redu
tions. However, if our primary goal is in
reasing exe
ution speed,we would prefer to hoist it upward instead, so as to hide laten
ies.This dis
ussion does not take into a

ount intera
tions between
lassi
al opti-mizations, whose primary goal is a redu
tion in exe
ution time, and
ode-fa
toringtransformations, whose primary goal is a redu
tion in
ode size. As a simple exam-ple,
onsider the
ode sequen
es in the following two basi
 blo
ks:Blo
k B1 Blo
k B2load r1, 8(sp) load r1, 8(sp)add r1, r2, r3 add r1, r2, r3load r1, 12(sp) (*)add r4, r5, r6 add r4, r5, r6add r1, r4, r1 (*)mul r3, r6, r3 mul r3, r6, r3add r3, r5, r3 add r3, r5, r3store r3, 16(sp) store r3, 16(sp)As presented, these two blo
ks are di�erent, and
annot be subje
ted to pro
edu-ral abstra
tion into the same pro
edure. If the
ompiler determines that the twoinstru
tions in blo
k B2 marked as (*) are dead (e.g., due to
ode-eliminating op-timizations elsewhere that
ause r1 to be
ome dead at the end of blo
k B2), andeliminates them, the two blo
ks then be
ome identi
al and
an be fa
tored out into9We believe this observation is due to W. A. Wulf.

24 � Saumya Debray et al.a pro
edure. However, if the
ompiler does an even better job of optimization,and is able to �nd a free register in blo
k B1 that allows it to eliminate the loadinstru
tion in that blo
k, the two blo
ks again be
ome di�erent and
annot be ab-stra
ted into a pro
edure. Noti
e that in the latter
ase, the
ompiler's de
isionto eliminate the load instru
tion is a lo
ally good de
ision|it redu
es
ode size byone instru
tion and is likely to improve speed|but, from the standpoint of
ode
ompa
tion, not su
h a good de
ision globally.Intera
tions su
h as these give rise to a phase-ordering problem between size-oriented and speed-oriented transformations. One possible way to deal with thiswould be to iterate the transformations to a �xpoint. However, this is not a sat-isfa
tory solution, be
ause transformations su
h as
ode fa
toring require a lot of
ode sequen
e
omparisons to identify repeated instru
tion sequen
es that
an befa
tored out, and therefore are quite expensive; iterating over them is likely to beso expensive as to be impra
ti
al. We
urrently do not do perform su
h iteration.5. EXPERIMENTAL RESULTSTo evaluate our ideas, we used the eight SPEC-95 integer ben
hmarks, aswell as six embedded appli
ations, adp
m, epi
, gsm, mpeg2de
, mpeg2en
,and rasta, obtained from the MediaBen
h ben
hmark suite from UCLA(http://www.
s.u
la.edu/~lee
/mediaben
h). We evaluated squeeze on
odeobtained from two di�erent C
ompilers: the vendor-supplied C
ompiler

 V5.2-036, invoked as

 -O1, and the GNU C
ompiler g

 version 2.7.2.2, at optimizationlevel -O2. The programs were
ompiled with additional
ags instru
ting the linkerto retain relo
ation information and to produ
e stati
ally linked exe
utables.10 Theoptimization level
hosen for ea
h
ompiler was sele
ted to allow \standard" op-timizations ex
ept for those, su
h as pro
edure inlining and loop unrolling, that
an in
rease
ode size. At optimization level -O1, the vendor-supplied
ompiler

arries out lo
al optimizations and re
ognition of
ommon subexpressions; globaloptimizations in
luding
ode motion, strength redu
tion, and test repla
ement; splitlifetime analysis; and
ode s
heduling; but not size-in
reasing optimizations su
h asinlining; integer multipli
ation and division expansion using shifts; loop unrolling;and
ode repli
ation to eliminate bran
hes. Similarly, at the -O2 level of optimiza-tion, the g

ompiler
arries out most supported optimizations that do not involvea spa
e-speed trade-o�. In parti
ular, loop unrolling and fun
tion inlining are not
arried out.The baseline for our measurements is
ode optimized by the
ompiler as dis-
ussed above, but with unrea
hable
ode and no-ops removed and pro�le-guided
ode layout|whi
h
an improve performan
e signi�
antly, but is not
arried outby either of the
ompilers we used for our experiments|
arried out. This elimi-nates library routines that are not referen
ed by the program but whi
h get linkedinto the program be
ause of referen
es to other routines in the library, and ex-
ludes size redu
tions that
ould be trivially obtained by a traditional
ompiler.We in
lude pro�le-dire
ted
ode layout in the baseline to allow a fair
omparison:10The requirement for stati
ally linked exe
utables is a result of the fa
t that squeeze relies on thepresen
e of relo
ation information for its
ontrol
ow analysis. The Tru64 Unix linker ld refusesto retain relo
ation information for exe
utables that are not stati
ally linked.

Compiler Te
hniques for Code Compa
tion � 25Table I. Code Size Improvements Due To Di�erent TransformationsTransformation Savings (%)redundant
omputation elimination 34.14Basi
 blo
k and region abstra
tion 27.42Useless
ode elimination 22.43Register save/restore abstra
tion 9.95Other inter-pro
edural optimizations 6.06squeeze
arries out this optimization, and we do not want the resulting performan
eimprovements to unduly in
ate the exe
ution speed of the resulting exe
utables.To obtain instru
tion
ounts, we �rst disassemble the exe
utable �les and dis
ardunrea
hable
ode and no-op instru
tions. This eliminates library routines that arelinked in but are not a
tually
alled, as well as any no-op instru
tions that may havebeen inserted by the
ompiler for instru
tion s
heduling or alignment purposes. Toidentify unrea
hable
ode, we
onstru
t a
ontrol
ow graph for the entire programand then
arry out a rea
hability analysis. In the
ourse of
onstru
ting the
ontrol
ow graph, we dis
ard un
onditional bran
hes. We reinsert those that are ne
essaryafter all the
ode transformations have been
arried out: during
ode layout, justbefore the transformed
ode is written out. To get a

urate
ounts, therefore, wegenerate the �nal
ode layout in ea
h
ase (i.e., with and without
ompa
tion) and
ount the total number of instru
tions.5.1 Code SizeThe overall
ode size redu
tions a
hieved using our te
hniques are summarized inFigure 8. The
orresponding raw data are given in Debray et al. [2000℄. Figure8(a) shows the e�e
ts of squeeze on
ode
ompiled using the vendor-supplied C
ompiler

, while Figure 8(b) shows the e�e
ts of squeeze on
ode
ompiled usingthe GNU C
ompiler g

. The
olumns labeled \Unoptimized" refer to programs
ompiled at optimization level -O0, where no optimization is
arried out, and serveas a referen
e point to indi
ate how mu
h
ode size redu
tion is realized using onlyoptimizations
arried out by the
ompiler, while the
olumns labeled \Base" refer to
ode optimized at the appropriate level, as dis
ussed above, with unrea
hable
odeand no-ops removed. It
an be seen from Figure 8 that by using
lassi
al
ompileroptimizations, ea
h of these
ompilers is able to a
hieve signi�
ant improvementsin
ode size
ompared to the unoptimized
ode:

 obtains a size redu
tion of justover 10% on the average, while g

 is able to a
hieve an average size redu
tionof about 20%. More importantly, however, it
an be seen that, even when giventhe already optimized exe
utables as input, squeeze is able to a
hieve signi�
antfurther redu
tions in size. For the

-
ompiled programs it a
hieves an average sizeredu
tion of just over 30%, while for the g

-
ompiled programs the average sizeredu
tion is a little over 28%. The greatest redu
tion in size is about 40% for theadp
m program, while the smallest is about 15{17% for the go program.Table I gives a breakdown of the average
ontribution of di�erent kinds of
odetransformations toward the
ode size redu
tions we a
hieve. Four
lasses of transfor-mations a

ount for most of these savings. About a third of the savings
omes from

26 � Saumya Debray et al.

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

1.5
N

or
m

al
iz

ed
 c

od
e

si
ze

Unoptimized
Base
Squeezed

(a) Compiler:

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 c
od

e
si

ze

Unoptimized
Base
Squeezed

(b) Compiler: g

Fig. 8. E�e
ts of
ompa
tion on
ode size (normalized).the elimination of redundant
omputations of the global pointer register gp; about27%
omes from \ordinary" pro
edural abstra
tion; ar
hite
ture-spe
i�
 abstra
-tion of register save/restore sequen
es a

ounts for another 10%; and useless-
odeelimination a

ounts for about 22% of the savings. (Re
all that our baseline pro-grams have already had unrea
hable
ode and no-ops removed. The �gure givenhere refers to
ode that subsequently be
omes useless, due to interpro
edural opti-mization, as dis
ussed in Se
tion 2.1.) The remainder of the savings arise due to avariety of interpro
edural optimizations.We also measured the extent to whi
h basi
 blo
ks of di�erent sizes
ontributeto the overall savings due to pro
edural abstra
tion. For small basi
 blo
ks, thesavings per blo
k abstra
ted tend to be small, but the likelihood of �nding othersimilar blo
ks, and thereby in
reasing the total resulting savings, is large. The

Compiler Te
hniques for Code Compa
tion � 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16+

0.0

5.0

10.0

15.0

20.0

Sa
vi

ng
s

(%
)

0.0

5.0

10.0

15.0

20.0

Sa
vi

ng
s

(%
)

Basic block sizeFig. 9. Contribution to pro
edural abstra
tion savings for basi
 blo
ks of di�erent sizes.opposite is true for large blo
ks: ea
h basi
 blo
k that is abstra
ted a

rues asigni�
ant savings, but the likelihood of �nding similar or identi
al blo
ks that
anbe abstra
ted is not as high. The distribution of the average savings we observedfor our ben
hmarks is shown in Figure 9. It
an be seen that small blo
ks a

ountfor a signi�
ant amount of the savings: about 7% of the savings
omes from blo
ks
ontaining just two instru
tions, while
lose to 15%
omes from blo
ks
ontainingthree instru
tions. Beyond this the savings generally drop o� as the number ofinstru
tions in
reases, ex
ept for a large bump at basi
 blo
ks of size 10. The reasonfor this, it turns out, is that very often there is a large number of return blo
ks thatrestore all the
allee-saved registers and the return address register from memory,deallo
ate the sta
k frame, and then return from the fun
tion. These a
tions require10 instru
tions on the pro
essor we used. The
ontribution of large basi
 blo
ks|those ex
eeding 12 instru
tions in length|is, on the average, quite small, eventhough o

asionally we are able to abstra
t blo
ks that are quite long. (In the g

and vortex ben
hmarks, basi
 blo
ks of up to 25 instru
tions are abstra
ted. In therasta ben
hmark, su
h blo
ks
an be up to 44 instru
tions long.)As mentioned earlier, our experiments use stati
ally linked exe
utables, wherethe
ode for the library routines is linked into the exe
utable by the linker prior to
ompa
tion. It is possible that library
ode is more (or less)
ompressible than user
ode. This
ould happen, for example, if the libraries are
ompiled using di�erent
ompilers or
ompiler optimization levels. It is desirable to identify, therefore, theextent to whi
h the presen
e of library
ode in
uen
es our results. For example, ifit turns out that library
ode is highly
ompressible while user
ode is not, then ourresults would not be readily appli
able to exe
utables that are not stati
ally linked.To this end, we instrumented squeeze to re
ord, for ea
h addition or deletion of
odeduring its run, the fun
tion(s) with whi
h the size
hange should be asso
iated. Forthe
lassi
al optimizations implemented within squeeze, this is straightforward. Forpro
edural abstra
tion, we use the following approa
h. Suppose that n di�erentinstan
es of a parti
ular
ode fragment were abstra
ted into a pro
edure, resultingin a net savings in
ode size of m, then the fun
tion
ontaining ea
h of these in-stan
es is
redited with a savings of m=n instru
tions (not ne
essarily an integralquantity). We then use a list of fun
tions in the user
ode, obtained using a modi-

28 � Saumya Debray et al.
compress gcc go

ijpeg li

m88ksim perl
vortex

adpcm gsm

mpeg2dec

mpeg2enc
rasta

0.0

10.0

20.0

30.0

40.0

50.0

C
od

e
si

ze
 r

ed
uc

ti
on

 (
%

)

0.0

10.0

20.0

30.0

40.0

50.0

C
od

e
si

ze
 r

ed
uc

ti
on

 (
%

)

User code

Libraries

Fig. 10. Contributions to
ode size redu
tion: User
ode versus libraries.�ed version of the l

ompiler [Fraser and Hanson 1995℄, to estimate the total sizeof user
ode and the
ode savings attributable to it. These measurements do nota

ount for indire
t e�e
ts of having the library
ode available for inspe
tion, su
has improved pre
ision of data
ow analyses, whi
h may give rise to additional op-portunities for optimization. Nevertheless, this information is useful for obtainingqualitative estimates of the in
uen
e of library
ode on our overall numbers. Ourresults are shown in Figure 10. The bars labeled \User
ode" represent the fra
tionof instru
tions in user
ode, relative to the total number of user
ode instru
tions,that were deleted in the pro
ess of
ode
ompa
tion, while those labeled \Libraries"give the
orresponding �gures for library
ode. For both the user
ode and libraries,the amount of redu
tion in
ode size typi
ally ranges from around 25% to around30%, with an average redu
tion of about 27% for user
ode and about 26% forlibrary
ode.11 There are a few programs (li, perl, vortex, adp
m) where the user
ode is noti
eably more
ompressible than the libraries, and a few others (go, gsm,rasta) where the libraries are more
ompressible. In general, however, the user andlibrary
ode are more or less
omparable in their
ontribution to the overall
odesize redu
tion measured.5.2 Code SpeedOne intuitively expe
ts the programs resulting from the
ode
ompa
tion te
hniquesdes
ribed here to be slower than the original
ode, primarily be
ause of the addi-tional fun
tion
alls resulting from the pro
edural abstra
tion that o

urs. A more
areful
onsideration indi
ates that the situation may be murkier than this simpleanalysis suggests, for a number of reasons. First, mu
h of the
ode size redu
tion isdue to aggressive interpro
edural optimizations that also improve exe
ution speed.Se
ond, transformations su
h as pro�le-dire
ted
ode layout, whi
h need not have alarge e�e
t on
ode size,
an nevertheless have a signi�
ant positive e�e
t on speed.On the other hand, on a supers
alar pro
essor su
h as the Alpha 21164, slow-downs
an o

ur in the
ompressed
ode for reasons other than pro
edural abstra
tion,e.g., due to the elimination of no-ops inserted by the instru
tion s
heduler in order11These numbers refer to the
ontrol
ow graph prior to
ode layout, i.e., before un
onditionalbran
hes are added while linearizing the graph.

Compiler Te
hniques for Code Compa
tion � 29to align the instru
tions so as to in
rease the number of instru
tions issued per
y
le.To determine the a
tual e�e
t of our transformations on our ben
hmarks, we
ompared the exe
ution times of the original optimized exe
utables with thoseresulting from the appli
ation of squeeze to these exe
utables. Exe
ution pro�les,in the form of basi
 blo
k exe
ution
ounts, were obtained for ea
h program usingpixie, and these were fed ba
k to squeeze during
ode
ompa
tion. The SPECben
hmarks were pro�led using the SPEC training inputs and subsequently timedon the SPEC referen
e inputs. For ea
h of the remaining ben
hmarks, we used thesame input for both pro�ling and subsequent timing. The timings were obtained ona lightly loaded Compaq Alpha workstation with a 300-MHz Alpha 21164 pro
essorwith a split primary dire
t mapped
a
he (8 KB ea
h of instru
tion and data
a
he), 96 KB of on-
hip se
ondary
a
he, 2 MB of o�-
hip se
ondary
a
he, and512 Mbytes of main memory, running Tru64 Unix 4.0. Our results are shownin Figure 11. The
orresponding raw data are given in Debray et al. [2000℄. Inea
h
ase, the exe
ution time was measured as the smallest time of 10 runs. The
olumns labeled \Original" refer to the exe
ution times of the inputs optimizedat the appropriate level for ea
h
ompiler, as dis
ussed earlier, but without theelimination of unrea
hable
ode and no-ops. These are provided as a referen
epoint. The
olumns labeled \Base" refer to exe
utables obtained by removingunrea
hable
ode and no-ops from the original exe
utables and then performingpro�le-dire
ted
ode layout. The exe
ution times of the exe
utables produ
ed bysqueeze
orrespond to the
olumns labeled \Squeezed."The results of our timing experiments indi
ate that it is by no means a foregone
on
lusion that squeezed
ode will be slower than original
ode. For many of ourben
hmarks, the squeezed
ode runs signi�
antly faster than the original. Forexample, for the
ompress ben
hmark
ompiled using

, the squeezed exe
utableis about 11% faster than the base and original exe
utables, and using g

, it isabout 23% faster than the base and original exe
utables. For m88ksim
ompiledusing

, the squeezed exe
utable is about 35% faster than the base and about36% faster than the original, and using g

, it is about 30% faster than both thebase and original. For perl
ompiled using

, it is about 28% faster than the baseand about 22% faster than the original, and using g

, it is about 13% faster thanthe base and original. Only two programs su�er slow-downs as a result of
ode
ompa
tion: vortex and epi
, both under the g

ompiler. The former slows downby about 10%, the latter by about 23%. The reasons for these slow-downs aredis
ussed in Se
tion 5.3. Overall, for the set of ben
hmarks
onsidered, the averagespeedup,
ompared to both the base and original programs, is about 16% for the

-
ompiled exe
utables and about 10% for the exe
utables obtained using g

. Inother words,
ode
ompa
tion yields signi�
ant speed improvements overall, andthe
ompressed
ode performs favorably even when the performan
e of the original
ode is enhan
ed via pro�le-guided
ode layout. The reasons for this, exploredin Se
tion 5.3, are generally that for most of our ben
hmarks, the squeezed
odeexperien
es signi�
ant de
reases in the number of instru
tion
a
he misses and theaverage amount of instru
tion-level parallelism that
an be sustained.

30 � Saumya Debray et al.

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

Original
Base
Squeezed

(a) Compiler:

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

Original
Base
Squeezed

(b) Compiler: g

Fig. 11. E�e
ts of
ompa
tion on exe
ution time (normalized).5.3 Low-Level Dynami
 BehaviorTo better understand the dynami
 behavior of programs subje
ted to
ode
om-pa
tion, we examined various aspe
ts of their low-level exe
ution
hara
teristi
s.Our results, whi
h are summarized in Figure 12, were obtained using hardware
ounters on the pro
essor, in ea
h
ase using the smallest of three runs of theprogram.5.3.1 Total Instru
tions Exe
uted. Code size redu
tions during
ode
ompa
tion
ome from two sour
es: interpro
edural optimization and
ode fa
toring. Some in-terpro
edural optimizations redu
e the number of instru
tions exe
uted: for exam-ple, the elimination of unne
essary gp register
omputations, elimination of no-opsinserted for alignment and instru
tion s
heduling, dead-
ode elimination, and inlin-ing of pro
edures
alled from a single
all site. Other optimizations, in parti
ularthe elimination of unrea
hable
ode, have no e�e
t on the number of instru
tionsexe
uted. Code fa
toring, on the other hand, leads to the exe
ution of additional

Compiler Te
hniques for Code Compa
tion � 31
compress gcc go

ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

0.5

1.0
T

ot
al

 in
st

ru
ct

io
ns

 e
xe

cu
te

d

 {O1 compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

0.5

1.0

T
ot

al
 in

st
ru

ct
io

ns
 e

xe
cu

te
d

g

 {O2(a) Instru
tions exe
uted (normalized)
compress gcc go

ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

1.0

2.0

3.0

In
st

ru
ct

io
n

ca
ch

e
m

is
se

s

 {O1 compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

1.0

2.0

3.0

In
st

ru
ct

io
n

ca
ch

e
m

is
se

s

g

 {O2(b) Instru
tion
a
he misses (normalized)
compress gcc go

ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

0.5

1.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

 {O1 compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

0.5

1.0

1.5

In
st

ru
ct

io
ns

 p
er

 c
yc

le

g

 {O2(
) Instru
tion-level parallelism
Original Base SqueezedKey: Fig. 12. Low-level dynami
 behavior.bran
h instru
tions for the pro
edure
alls and returns, and so always results in anin
rease in the number of instru
tions exe
uted.Figure 12(a) shows the relative number of instru
tions exe
uted by the originaland the squeezed programs,
ompared to the base program. As one might ex-pe
t, sin
e the only di�eren
e between the original and base programs is that thebase program has had unrea
hable
ode and no-ops eliminated, the base programalways exe
utes fewer instru
tions than the original. Moreover, the di�eren
e be-tween these|due entirely to eliminated no-ops|is typi
ally not large, ranging fromabout 1% to 9% and averaging about 4%. More interestingly, when we
onsider the
ode generated by squeeze, we �nd that for many programs, the squeezed version

32 � Saumya Debray et al.exe
utes fewer instru
tions than the base programs. For these programs, the re-du
tion in instru
tions exe
uted resulting from optimizations by squeeze o�set anydynami
 in
reases due to fa
toring. For other programs, the e�e
ts of
ode fa
tor-ing outweigh those due to optimizations, and result in a net in
rease in the numberof instru
tions exe
uted. Overall, we �nd that for the ben
hmarks
onsidered, thesqueezed versions of the
ode obtained for

 exe
ute about 3% fewer instru
tionson the average than the base versions, while for the g

-
ompiled binaries theyexe
ute a little over 3% more instru
tions, on the average.5.3.2 Instru
tion Ca
he Misses. Sin
e modern CPUs are signi�
antly fasterthan memory, delivering instru
tions to them is a major bottlene
k. A high instru
-tion
a
he hit-rate is therefore essential for good performan
e. Primary instru
tion
a
hes, in order to be fast, tend to be relatively small and have low asso
iativity.This makes it advantageous to lay out the basi
 blo
ks in a program in su
h a waythat frequently exe
uted blo
ks are positioned
lose to ea
h other, sin
e this is lesslikely to lead to
a
he
on
i
ts [Pettis and Hansen 1990℄. However,
ode fa
toring
an undo the e�e
ts of pro�le-dire
ted
ode layout, by \pulling out" a
ode frag-ment into a pro
edure that
annot be positioned
lose to its
all site. The problemarises when, for example, we have two instan
es of a repeated
ode fragment thatare not
lose to ea
h other but where both
ode fragments are frequently exe
uted.If these
ode fragments are fa
tored out into a pro
edure, there will be two fre-quently exe
uted
all sites for the resulting pro
edure, and it may not be possibleto lay out the
ode in a way that positions the body of the pro
edure
lose to bothof these
all sites. This
an lead to an in
rease in instru
tion
a
he misses.Figure 12(b) shows the e�e
t of
ode
ompa
tion on instru
tion
a
he misses. Forthe

-
ompiled programs, the
ompress ben
hmark experien
es a large in
rease inthe number of instru
tion
a
he misses as a result of fa
toring. For the binariesobtained from g

, two programs|ijpeg and vortex|su�er large in
reases in thenumber of
a
he misses, while two others|g

 and go|experien
e smaller butnevertheless noti
eable in
reases. The number of instru
tion
a
he misses goesdown for the remaining programs; in a few
ases|notably,
ompress, li, m88ksim,epi
, and mpeg2de
|quite dramati
ally. Overall, the squeezed programs in
ur 36%fewer instru
tion
a
he misses, on the average, for the

-
ompiled binaries, and 40%fewer misses for the g

-
ompiled binaries, than the
orresponding base programs.5.3.3 Instru
tion-Level Parallelism. The Alpha 21164 pro
essor, on whi
h ourexperiments were run, is a supers
alar ma
hine that
an exe
ute up to four in-stru
tions per
y
le, provided that various s
heduling
onstraints are satis�ed. Forexample, at most two integer and two
oating-point instru
tions
an be issued in a
y
le; and no more than one instru
tion in a group of simultaneously issued instru
-tions should try to a

ess memory or a

ess the same fun
tional unit. Instru
tionsare fet
hed in groups of four, and ea
h su
h group is then examined for opportuni-ties for multiple issues by evaluating to what extent they satisfy these
onstraints.This means that it is possible for a plausible
ode transformation, su
h as the dele-tion of a no-op instru
tion, to alter the instru
tion sequen
e in su
h a way thatopportunities for multiple instru
tion issues are redu
ed dramati
ally, with a
orre-sponding loss in performan
e (
onversely, the judi
ious insertion of no-ops
an leadto an in
rease in the level of instru
tion-level parallelism that
an be exploited).

Compiler Te
hniques for Code Compa
tion � 33To address this problem, squeeze
arries out instru
tion s
heduling after all othertransformations have been applied and the �nal
ode layout has been determined.Sin
e squeeze eliminates no-ops inserted by the
ompiler for s
heduling and align-ment purposes, there is the potential for a signi�
ant loss in instru
tion-level par-allelism in the
ode it produ
es. To evaluate whether this is the
ase, we measuredthe average number of instru
tions issued per
y
le for the various exe
utables. Theresults are shown in Figure 12(
). It
an be seen that the elimination of no-opsin
urs a pri
e in the base program, where the average number of instru
tions is-sued per
y
le is slightly smaller (by about 1% for

 and 0.5% for g

) than theoriginal program. However, the instru
tion s
heduler in squeeze is able to over
omethis problem and, for almost all of the programs tested, is able to attain a highernumber of instru
tions per
y
le. On the average, the instru
tions issued per
y
lein the squeezed programs,
ompared to the base programs, improves by about 6%for the

-
ompiled binaries and about 8% for the g

-
ompiled binaries.5.3.4 Summary. As Figure 11 shows, two of the 14 ben
hmarks we used, vortexand epi

ompiled under g

, su�er a slowdown as a result of
ode
ompa
tion.Their low-level exe
ution
hara
teristi
s indi
ate the possible reasons for this. Likemany of the other programs,
ode
ompa
tion
auses an in
rease in the total num-ber of instru
tions exe
uted for both of these programs. While the other programsare generally able to
ompensate for this by improvements elsewhere, vortex su�ersan in
rease in instru
tion
a
he misses, and epi
 su�ers a redu
tion in the averagenumber of instru
tions issued per
y
le. Some of the other programs in
ur degrada-tions in some dynami
 exe
ution
hara
teristi
s but are able to
ompensate for thiswith improvements in other
hara
teristi
s. For example,
ompress under

 andijpeg under g

, both of whi
h su�er dramati
 in
reases in the number of instru
tion
a
he misses, are nevertheless able to eke out overall improvements in speed due toa
ombination of a redu
tion in the total number of instru
tions exe
uted and|forijpeg
ompiled with g

|an in
rease in the average number of instru
tions issuedper
y
le.5.4 The E�e
ts of Code Fa
toringFigure 13 shows the e�e
t of
ode fa
toring by itself on
ode size and exe
utiontime. The raw data are given in Debray et al. [2000℄. The graphs
ompare squeezeperforming all
ode transformations ex
ept for
ode fa
toring, against squeeze with
ode fa
toring enabled. It
an be seen that fa
toring redu
es the size of the programsby about 5{6%. An interesting aspe
t of this
omparison is that the eliminationof
ode due to various optimizations within squeeze has the e�e
t of redu
ing theapparent eÆ
a
y of
ode fa
toring, sin
e
ode that might otherwise have beenfa
tored is eliminated as useless or unrea
hable. The result of this is that thegreater the
ode-shrinking e�e
ts of
lassi
al optimizations, the smaller we �nd thebene�ts due to fa
toring.Sin
e the smallest
ode unit we
onsider for pro
edural abstra
tion is the basi
blo
k, our approa
h does not pi
k out and abstra
t instru
tion sequen
es that aresubparts of a blo
k. By
omparison, suÆx-tree based approa
hes su
h as those ofCooper and M
Intosh [1999℄ are able to abstra
t out repeated-instru
tion sequen
esthat are subsequen
es of a blo
k. Despite this limitation in our approa
h to
ode

34 � Saumya Debray et al.
incompress gcc go

ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

 {O1 compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

g

 {O2(a) Code size (normalized)
compress gcc go

ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

 {O1 compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

g

 {O2(b) Exe
ution time (normalized)
without factoring with factoringKey:Fig. 13. Relative impa
t of
ode fa
toring on
ode size and exe
ution time.fa
toring, the relative size redu
tions we obtain via fa
toring are essentially thesame as those of Cooper and M
Intosh. A possible explanation for this is thatthe ability to abstra
t out subsequen
es within a basi
 blo
k is likely to make adi�eren
e only for large basi
 blo
ks, and the proportion of su
h blo
ks generallytends to be small in most programs.As one would expe
t, fa
toring
auses an in
rease in the number of instru
tionsexe
uted. On the average, this results in an in
rease in exe
ution time of about 4%for the

-
ompiled binaries, and about 10% for the g

-
ompiled binaries. Someg

-
ompiled binaries experien
e signi�
ant slow-downs, with vortex slowing downby about 37%, epi
 by about 23%, and perl by about 18%.6. CONCLUSIONSThis arti
le fo
uses on the problem of
ode
ompa
tion to yield smaller exe
uta-bles. It des
ribes a \whole-system" approa
h to the problem, where the use ofaggressive interpro
edural optimization, together with pro
edural abstra
tion ofrepeated-
ode fragments, yields signi�
antly greater redu
tions in
ode size thanhave been a
hieved to date. For the identi�
ation and abstra
tion of repeated
ode

Compiler Te
hniques for Code Compa
tion � 35fragments, it departs from
lassi
al suÆx-tree-based approa
hes. Instead, it usesinformation already available in most
ompilers, su
h as the
ontrol
ow graph anddominator/postdominator trees. Be
ause it does not treat the program as a simplelinear sequen
e of instru
tions, it
an be more
exible in its treatment of what
odefragments may be
onsidered \equivalent." This simpli�es the implementation andsets up a framework for
ode
ompa
tion that
an be more
exible in its treatmentof what
ode fragments are
onsidered \equivalent." This results in a system thatis able to obtain
onsiderably greater
ompa
tion, even on optimized
ode, thanprevious approa
hes, without in
urring signi�
ant performan
e penalties.APPENDIXA. THE LOCAL REGISTER-RENAMING ALGORITHMSuppose we want to rename the registers in a basi
 blo
k Bfrom , if possible, to makeit identi
al to a blo
k Bto . Pseudo
ode for the algorithm used by squeeze for this isshown in Figure 14. For simpli
ity of exposition, we assume that instru
tions areof the form reg3 = reg1 op reg2. The ith operand of an instru
tion I is given byI:Op[i℄. We assume that operands 1 and 2 are the sour
e operands, and operand3 is the destination operand. In addition, ea
h instru
tion I has �elds I:oldOp[i℄that are used to keep tra
k of the operand register before renaming. These �eldsare used to undo the renaming if ne
essary, and are all initialized to ?. Thealgorithm maintains two global arrays, InSubst and OutSubst, that keep tra
k ofregister moves that have to be inserted at the entry to and exit from the blo
k,respe
tively, if the renaming is su

essful. Ea
h element of these arrays is initializedto ?.The main routine that
arries out the renaming is RenameBlo
k, illustrated inFigure 14. The basi
 idea is to work through ea
h instru
tion in Bfrom and tryto rename its operands to make it identi
al to the
orresponding instru
tion inBto without violating any semanti

onstraints. If this
annot be done, or if thetotal number of move instru
tions that must be inserted before and after the blo
kex
eeds the savings that would be obtained from pro
edural abstra
tion of theblo
k, the renaming is abandoned. In this
ase,
ontrol is transferred to the labelbailout, where the renaming of ea
h instru
tion in the blo
k is undone.The pseudo
ode for renaming individual operands is shown in Figure 15. The ideais to re
ord the original value of the operand in the appropriate oldOp �eld of theinstru
tion being renamed, rename the operand, and then propagate this renamingforward in the basi
 blo
k until the register that is being renamed be
omes rede�nedor the end of the blo
k is rea
hed.ACKNOWLEDGEMENTSWe are grateful to Anders Lindgren and Johan Runeson (IAR Systems, Sweden)for pointing out some errors in an earlier version of this paper. Thanks are also dueto Nathaniel M
Intosh for helpful dis
ussions, and for pointing us to the UCLAMediaben
h ben
hmark programs. Comments by the anonymous reviewers werevery helpful in improving the
ontents of the arti
le.

36 � Saumya Debray et al.fun
tion RenameBlo
k(Bfrom , Bto)beginif NumInstr(Bfrom) 6= NumInstr(Bto) return fail;n := NumInstr(Bfrom);LiveIn := fr j r is live at entry to Bfromg;LiveRegs := fr j r is live at entry to Bfromg;NumMoves := 0;SavedRegs := fr j r is a
allee-saved register that is saved by the fun
tion
ontaining Bfromg;Forbidden := LiveRegs [fr j r is
allee-saved and r 62 SavedRegsg;for i := 1 to n doinsfrom := Bfrom [i℄ � `reg from3 = reg from1 op reg from2 ';insto := Bto [i℄ � `reg to3 = reg to1 op reg to2 ';if (insfrom 6= insto) thenfor j 2 f1; 2g doif reg fromj 6= reg toj and reg fromj 2 LiveIn thenif (InSubst[reg fromj ℄ 6= ?) goto bailout;InSubst[reg fromj ℄ := reg toj ;NumMoves += 1;�if (Repla
eOp(j; insfrom ; insto ; LiveIn) = fail) goto bailout;odif the de�nition insfrom rea
hes the end of Bfrom thenif the de�nition insto does not rea
h the end of Bto goto bailout;OutSubst[regfrom3 ℄ := reg to3 ;NumMoves += 1;�if (Repla
eOp(3; insfrom ; insto ;Forbidden) = fail) goto bailout;if (insfrom 6= insto) goto bailout;LiveIn := LiveIn � freg from3 g;LiveRegs := (LiveRegs � freg from3 g) [freg to3 g;�odif (NumMoves + 1 < n) then /* the `+1' is for the bsr that will be added */InsertMoves(Bfrom ; InSubst; OutSubst);return su

ess;�bailout:for i := 1 to n doinsfrom := Bfrom [i℄;if (insfrom :oldOp[1℄ 6= ?) then insfrom :Op[1℄ := insfrom :oldOp[1℄;if (insfrom :oldOp[2℄ 6= ?) then insfrom :Op[2℄ := insfrom :oldOp[2℄;if (insfrom :oldOp[3℄ 6= ?) then insfrom :Op[3℄ := insfrom :oldOp[3℄;odreturn fail;end Fig. 14. Algorithm for lo
al register renaming.

Compiler Te
hniques for Code Compa
tion � 37fun
tion Repla
eOp(k, insfrom , insto , Forbidden)beginrfrom := insfrom :Op[k℄;rto := insto :Op[k℄;if (rfrom = rto) return su

ess;if (rto 2 Forbidden) return fail;insfrom :oldOp[k℄ := rfrom ;insfrom :Op[k℄ := rto ;for ea
h instru
tion I after insfrom to the end of the blo
k dofor j 2 f1; 2g doif (I:Op[j℄ = rfrom) thenif (I:oldOp[j℄ 6= ?) return fail;I:oldOp[j℄ := rfrom ;I:Op[j℄ := rto ;�odif (I:Op[3℄ = rfrom) break;odreturn su

ess;endfun
tion InsertMoves(Bfrom ; InSubst; OutSubst)beginif 9r : InSubst[r℄ 6= ? thenif Bfrom has multiple prede
essors then
reate a new basi
 blo
k B0 and redire
t all edges entering Bfrom to enter B0 instead;add an edge from B0 to Bfrom ;elseB0 := Bfrom ;�for ea
h r0 = InSubst[r℄ s.t. r0 6= ? doinsert an instru
tion `r0 := r' in B0;od�if 9r : OutSubst[r℄ 6= ? thenif Bfrom has multiple su

essors then
reate a new basi
 blo
k B00 and redire
t all edges out of Bfrom to be out of B00 instead;add an edge from Bfrom to B00 ;elseB00 := Bfrom ;�for ea
h r0 = OutSubst[r℄ s.t. r0 6= ? doinsert an instru
tion `r0 := r' in B00;od�end Fig. 15. Pseudo
ode for operand repla
ement and move insertion.

38 � Saumya Debray et al.REFERENCESAho, A. V., Sethi, R., and Ullman, J. D. 1985. Compilers|Prin
iples, Te
hniques, and Tools.Addison-Wesley, Reading, Mass.Baker, B. S. 1993. A theory of parameterized pattern mat
hing: Algorithms and appli
ations(extended abstra
t). In Pro
. ACM Symposium on Theory of Computing. ACM Press, NewYork, N.Y., 71{80.Baker, B. S. and Manber, U. 1998. Dedu
ing similarities in Java sour
es from byte
odes. InPro
. USENIX Annual Te
hni
al Conferen
e. Usenix, Berkeley, CA, 179{190.Bene�s, M., Nowi
k, S. M., and Wolfe, A. 1998. A fast asyn
hronous Hu�man de
oder for
ompressed-
ode embedded pro
essors. In Pro
. International Symposium on Advan
ed Re-sear
h in Asyn
hronous Cir
uits and Systems. IEEE Computer So
iety, Washington, D.C.Cooper, K. D. and M
Intosh, N. 1999. Enhan
ed
ode
ompression for embedded RISC pro
es-sors. In ACM Conferen
e on Programming Language Design and Implementation. ACM Press,New York, N.Y., 139{149.Debray, S., Evans, W., Muth, R., and De Sutter, B. 2000. Compiler te
hniques for
ode
ompa
tion. Te
h. Rep. 00-04, Dept. of Computer S
ien
e, The University of Arizona. Mar.Ernst, J., Evans, W., Fraser, C., Lu

o, S., and Proebsting, T. 1997. Code
ompression.In ACM Conferen
e on Programming Language Design and Implementation. ACM Press, NewYork, N.Y.Franz, M. 1997. Adaptive
ompression of syntax trees and iterative dynami

ode optimization:Two basi
 te
hnologies for mobile-obje
t systems. In Mobile Obje
t Systems: Towards theProgrammable Internet, J. Vitek and C. Ts
hudin, Eds. Number 1222 in Springer Le
ture Notesin Computer S
ien
e. Springer, Heidelberg, Germany, 263{276. Te
h. Report 97-04, Departmentof Information and Computer S
ien
e, University of California, Irvine.Franz, M. and Kistler, T. 1997. Slim binaries. Commun. ACM 40, 12 (De
.), 87{94.Fraser, C. and Proebsting, T. 1995. Custom instru
tion sets for
ode
ompression. Unpublishedmanus
ript. http://resear
h.mi
rosoft.
om/ toddpro/papers/pldi2.ps.Fraser, C., Myers, E., and Wendt, A. 1984. Analyzing and
ompressing assembly
ode. InPro
. of the ACM SIGPLAN Symposium on Compiler Constru
tion. Vol. 19. ACM Press, NewYork, N.Y., 117{121.Fraser, C. W. and Hanson, D. R. 1995. A Retargetable C Compiler: Design and Implementa-tion. Addison-Wesley, Reading, Mass.Garey, M. R. and Johnson, D. S. 1979. Computers and Intra
tability: A Guide to the Theoryof NP-Completeness. W. H. Freeman, New York, N.Y.Knoop, J., R�uthing, O., and Steffen, B. 1994. Optimal
ode motion: Theory and pra
ti
e.ACM Trans. Program. Lang. Syst. 16, 4 (July), 1117{1155.Mu
hni
k, S. S. 1997. Advan
ed Compiler Design and Implementation. Morgan Kaufman, SanFran
is
o, CA.Muth, R., Debray, S. K., Watterson, S., and Boss
here, K. D. 1998. alto : A link-timeoptimizer for the DEC Alpha. Te
h. Rep. 98-14, Dept. of Computer S
ien
e, The University ofArizona. De
. To appear in Software Pra
ti
e and Experien
e.Pettis, K. and Hansen, R. C. 1990. Pro�le-guided
ode positioning. In ACM Conferen
e onProgramming Language Design and Implementation. ACM Press, New York, N.Y., 16{27.Proebsting, T. 1995. Optimizing an ANSI C interpreter with superoperators. In Pro
. Symp.on Prin
iples of Programming Languages. ACM Press, New York, N.Y., 322{332.van de Wiel, R. 2000. The \Code Compa
tion" Bibliography.http://www.win.tue.nl/
s/pa/rikvdw/bibl.html.Zastre, M. J. 1993. Compa
ting obje
t
ode via parameterized pro
edural abstra
tion. M.S.thesis, Dept. of Computing S
ien
e, University of Vi
toria.

