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It is widely held that there is a correlation between complexity and precision in dataflow analysis,
in the sense that the more precise an analysis algorithm, the more computationally expensive it
must be. The details of this relationship, however, appear to not have been explored extensively.
This article reports some results on this correlation in the context of logic programs. A formal
notion of the “precision” of an analysis algorithm is proposed, and this is used to characterize
the worst-case computational complexity of a number of dataflow analyses with different degrees
of precision. While this article considers the analysis of logic programs, the technique proposed,
namely the use of “exactness sets” to study relationships between complexity and precision of
analyses, is not specific to logic programming in any way, and is equally applicable to flow analyses
of other language families.
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1. INTRODUCTION

It is widely held that there is a correlation, in dataflow analysis, between precision
and complexity: at one extreme, there are very efficient algorithms that rarely give
useful information about any program; at the other extreme are highly precise al-
gorithms that may sometimes be very expensive computationally. Most algorithms
for dataflow analysis tend to fall in between these extremes: some are generally
quite efficient but may fail to be very precise under some circumstances, while oth-
ers tend to be fairly precise but may not always be very efficient. The details of
this tradeoff, however, do not appear to have been explored extensively. Some re-
searchers have given complexity results for specific analyses (e.g., Jones and Much-
nick [1981] and Myers [1981] for imperative languages, Hudak and Young [1986] for
functional languages, Aiken and Lakshman [1994] for logic programs). However,
these have typically addressed the complexity of particular analyses, rather than
explore the correlation between precision and complexity of dataflow analysis in a
systematic way. In the logic programming context, a variety of dataflow analysis
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algorithms have been proposed, with varying degrees of precision, and worst-case
complexities ranging from linear time [Debray 1992] to exponential in the input size
[Codish et al. 1990; Jacobs and Langen 1989; Marriott et al. 1994; Muthukumar
and Hermenegildo 1989; 1991]. These results do not, however, really give us any
understanding of intrinsic tradeoffs between precision and complexity, in the sense
of how expensive any “sufficiently precise” analysis must be.

A problem that arises immediately is that of making the notion of an analysis
being “sufficiently precise” sufficiently precise. For example, it 1s important to be
able to characterize the complexity/precision results in an algorithm-independent
way, in order to avoid the possibility of being misled by design deficiencies in a
particular algorithm. In the next section, we offer one simple way to address this
problem, namely, to examine the class of programs for which an analysis gives ex-
act results. We do not claim that this is the only possible characterization of the
precision of dataflow analysis algorithms, or even that it is the best characteriza-
tion. However, it appears to be suitable for our immediate objective, which is to
explore the relationship between precision and complexity. The basic approach to
examining the “intrinsic complexity” of an analysis is conceptually straightforward:

(1) Tdentify situations under which the analysis gives up information. Presumably,
a program that does not give rise to any of these situations will not suffer any
loss of information, i.e., the analysis will produce “exact” results for it. By
carefully examining the analysis in this way, we can characterize the class of
programs for which it produces exact results.

(2) Examine the complexity of extracting exact information about programs in this
class. This typically involves examining how problems with known complexity
can be encoded using these programs.

The results so obtained do not depend on specific choices of data structures or
algorithms, and therefore are, in some sense, “portable” across analyses. This im-
plies, on the other hand, that our results describe what is (or is not) possible, in an
abstract sense, rather than give specific complexity results for particular analysis
algorithms. For example, Theorem 5.3.1 of this article implies that the worst-case
complexity of any analysis whose precision matches that of a groundness analysis
using the Prop domain, described by Marriott et al. [1994], cannot be better than
exponential in the size of the program. However, this does not rule out the pos-
sibility that a particularly stupid implementation of such an analysis may have a
worst-case complexity much worse than this. The overall approach is quite general,
in the sense that the examination of the relation between precision and complexity
of dataflow analyses using classes of programs for which analyses are exact is ap-
plicable to any language family. The approach described here can also be used to
examine independent sources of complexity in an analysis algorithm separately, and
study their contributions to the overall complexity of the algorithm. The basic idea
is similar to that described above: to examine the complexity contribution of some
aspect of an analysis—for example, keeping track of aliasing between variables—we
consider programs that do not give rise to the property being considered and ex-
amine the complexity of this class. This is illustrated in Section 5.3 via groundness
analysis using the Prop domain [Marriott et al. 1994].

From the practitioner’s perspective, complexity-theoretic results are open to the
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criticism that they may not say much about the “actual” behavior of an algorithm.
This is certainly true of the particular complexity results given in this article. Nev-
ertheless, we believe that theoretical worst-case complexity results are useful for
practitioners. The difference between the gloomy complexity results given here
and the encouraging behavior observed “in practice” by experimental studies (see,
for example, Le Charlier and Van Hentenryck [1994] and Van Hentenryck et al.
[1994]) is that the former say what could happen, while the latter describe what
does happen. Reconciling these apparently contradictory truths requires that we
specify what we mean by the phrase “in practice” much more carefully than most
empirical studies usually do. An important shortcoming of purely experimental
studies is that, even if we discount the effects of different hardware platforms, im-
plementation languages, and implementor skills, we are left with the problem that
it 1s difficult to say anything rigorous about how representative a particular col-
lection of benchmarks is. The methodology of this article suggests, however, that
we can characterize specific classes of programs in a precise way and consider the
complexity and precision of analyses on programs in these classes. The question of
whether or not a collection of programs is “representative” for a particular applica-
tion domain is, in our opinion, easier to consider objectively and verify empirically
for classes of programs characterized in this manner than it is for a more or less
arbitrarily chosen set of benchmark programs. An example of this is given by Mar-
riott and Sgndergaard [1993], who show that even though dataflow analysis using
the Prop domain is EXPTIME-complete in general (see Section 5.3), it can be done
in polynomial time for programs where the number of variables in any clause is
bounded. The claim that “groundness analysis using Prop is reasonably efficient in
practice” can then be reduced to the assertion that “it is possible, in most cases,
to bound the number of variables appearing in a clause,” which is somewhat easier
to understand and to verify empirically. Apart from this, some researchers have
considered an approach to program analysis where properties of input programs
are computed, not by examining them directly, but by first transforming them to
other (simpler) programs and then computing exact properties of the transformed
programs [Codish and Demoen 1993; Hermenegildo et al. 1992]; it seems plausible
(see Giacobazzi et al. [1992]) that other analyses may also be understandable in
terms of exact analysis of transformed programs. The study of programs on which
analyses give exact results can give insights into the algorithmic behavior of such
analyses.

The remainder of the article examines various classes of dataflow analyses of logic
programs and gives characterizations of their worst-case complexities. We consider
two broad classes of dataflow analyses of logic programs. The first class, which
distinguishes between different function symbols and constants, is important in the
context of type inference (not all of the type analyses proposed in the logic program-
ming literature maintain enough information about relationships among different
program components to meet our assumptions about precision; type analyses that
keep track of relationships between different components of terms and argument
positions of predicates, and therefore are relevant for our purposes, include Cortesi
et al. [1994], Janssens [1990], Mulkers et al. [1994], Winsborough [1988], and
Van Hentenryck et al. [1994]) and sharing analysis [Bruynooghe 1986; King 1994;
Mulkers et al. 1994]. The second class, which typically does not distinguish be-
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tween different function symbols but focuses instead on groundness of variables and
on dependencies between them, is important in the context of compile-time par-
allelization and optimization of logic programs [Chang et al. 1985; Debray 1989;
Jacobs and Langen 1989; Marriott et al. 1994; Muthukumar and Hermenegildo
1989; 1991; Marriott and Sgndergaard 1993]. Of the various dataflow analyses we
have seen proposed in the literature, the vast majority tend to belong to one of
these two classes. To keep the article self-contained, various concepts and notation
used in the rest of the article are given in Section 2. Sections 3 and 4 discuss
complexity results for analyses in the first class discussed above, while Section 5
considers analyses of the second class. Section 6 considers the effects of bounding
the amount of information maintained about different possible execution behaviors
of any predicate in a program, and Section 7 concludes.

2. PRELIMINARIES
2.1 Logic Programming: An Overview

Most logic programming languages are based on a subset of the first-order pred-
icate calculus known as Horn clause logic. We assume an acquaintance with the
usual terminology of first-order predicate logic. Following convention, a nullary
function symbol will be referred to as a constant in the remainder of the article,
while the phrase function symbol will be used for function symbols of nonzero arity.
A definite Horn clause is of the form Gy :— G4,..., ), and is read declaratively
as “Go if Gy and ... and G,.” Here, each (; is an atomic formula and has the
form p(t1,...,t,), where p is an n-ary predicate symbol, and ¢;,...,t, are terms.
The atoms Gy, ..., G, constitute the body of the clause. A goal 1s a set of atomic
formulae G4, ..., Gy, and is read declaratively as “=(G or...or=G,.” A predicate
definition consists of a finite number of definite clauses whose heads all have the
same predicate symbol. A logic program consists of a finite set of predicate defini-
tions. Following the syntax of Edinburgh Prolog, we write the names of variables
starting with uppercase letters, and the names of nonvariable (i.e., function and
predicate) symbols starting with lowercase letters. The set of variables occurring
in a term (goal, clause) ¢ is denoted by vars(t).

A substitution is an idempotent mapping from a finite set of variables to terms.
A substitution oy is said to be more general than a substitution oo if there is a
substitution @ such that o9 = 6 o 1. Two terms #; and ¢, are said to be unifiable
if there exists a substitution ¢ such that o(t1) = o(t2); in this case, ¢ is said to be
a unifier for the terms. If two terms t; and ¢4 have a unifier, then they have a most
general unifier mgu(ty,t2) that is unique up to variable renaming.

The operational behavior of logic programs can be described by means of
SLD-derwations.  An SLD-derivation for a goal G with respect to a program
P is a sequence of goals Gy,...,G;,Giq1, ... such that Gy = G, and if G; =
ay, ..., an, then Gip1 = 0(a1, ..., ai-1,b01, ... b, @ig1, ..., apn) such that 1 < i < n;
b .— by,... by, 18 a variant of a clause in P that has no variable in common with
any of the goals Gg,...,Gy; and 6 = mgu(a;,b). The goal G4 is said to be ob-
tained from G; by means of a resolution step, and a; is said to be the resolved atom.
Intuitively, each resolution step corresponds to a procedure call. Let G, ..., G, be
an SLD-derivation for a goal G with respect to a program P, and let §; be the unifier
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obtained when resolving the goal (G;_; to obtain Gy, 1 < i < n; if this derivation is
finite and maximal, i.e., one in which it is not possible to resolve the goal (,, with
any of the clauses in P, then it corresponds to a terminating computation for G
in this case, if G, is the empty goal then the computation is said to succeed with
answer substitution #, where 6 is the substitution obtained by restricting the sub-
stitution 6, o --- o f; to the variables occurring in GG. If GG, is not the empty goal,
then the computation is said to fail. If the derivation is infinite, the computation
does not terminate.

Given a Horn program P, let Hp denote the set of all ground atoms that can
be constructed from predicate and function symbols in P. Consider an immediate-
consequence operator Tp : P(Hp) — P(Hp), where P(S) denotes the powerset
of a set S: given a set of atoms R known to be true, Tp(R) gives the set of atoms
that can immediately be inferred to be true from the clauses of the program P,
read declaratively as implications. This operator is defined as follows: for any

ReP(Hp),

Tp(R)={A| A :— By,..., By is a ground instance of a clause in P and
{BlaaBn}gR}

It can be shown that for any program P, the least fixpoint {fp(Tp) of the operator
Tp exists and is unique, and is given by fp(Tp) = Ui»oTh(8) [Apt and van Emden
1982]. The fixpoint semantics of a logic program P is usually defined to be Ifp(Tp).
For any Horn program P, let SS(P) C Hp denote the set of ground atoms that have
successful SLD-derivations in P: Apt and van Emden [1982] show that SS(P) =
lfp(Tp).

Most logic programming languages, in practice, allow clause bodies to contain
negated goals, and extend the operational semantics to SLDNF-resolution, which
deals with such goals using the negation-as-failure rule. The essential idea here is
that the execution of a negated goal not(() succeeds if GG is a ground goal all whose
SLDNF-derivations are finite and failed (for a more precise definition, see Apt and
Doets [1994]). Programs in this article that contain negated goals will be assumed
to be handled using this rule.

For dataflow analysis purposes, we assume sometimes that a program may addi-
tionally specify a set of “exported” predicates, possibly with descriptions of their
arguments. The intent here is to restrict our attention to possible program execu-
tions starting from goals that involve only such exported predicates and where the
arguments to such predicates satisfy the specified descriptions.

2.2 Dataflow Analysis

Dataflow analysis is concerned with the inference, at compile time, of properties
that hold at different points of a program when it is executed. Such properties can
be specified by associating, with each program point, the set of all “environments”
that may be obtained when execution reaches that point, over all possible executions
of the program (possibly starting from some given initial state of interest): such a
semantics for a program is referred to as its collecting semantics. Unfortunately, the
sets of environments associated with program points cannot be guaranteed to be
finite in general, making it impractical to carry out dataflow analyses by computing
the collecting semantics. Instead, the collecting semantics is approximated using
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“descriptions,” and analyses carried out by simulating the execution of the program

using these descriptions. The domain of descriptions is often referred to as the
abstract domain. Many dataflow analyses can be formalized in terms of a framework
for program analysis known as abstract interpretation [Cousot and Cousot 1977,
1979; Marriott et al. 1994].

For purposes of dataflow analysis, predicates in a program are often treated as
procedures that are called and from which control eventually returns to the caller,
so an operational characterization of logic programs that is slightly different from
SLDNF-resolution turns out to be convenient. Let p(f) be the resolved atom in
some SLDNF-derivation of a goal G in a program P, then we say that p(?) is a call
that arises in the computation of GG in the program. If the goal p(f) can succeed
with answer substitution #, then we also say that it can return with its arguments
bound to #(¢). The description of a call, in terms of abstract domain elements,
is referred to as a calling pattern, while the description of a return from a call is
referred to as a success pattern (for more precise definitions of these terms, see
Debray [1992]). Since a predicate can be called from many different points in a
program, there may be more than one calling pattern for it; and since it may be
defined by a number of different clauses, any given calling pattern may correspond
to more than one success pattern. Let Gy, ..., G, be an SLDNF-derivation for a
goal GG in a program P, and let 8; be the unifier obtained when resolving the goal
G;_1 to obtain G;, 1 < i < n. Let ¢; denote the substitution #; o --- o #y. If there
are variables z,y € vars(G;), such that ¢;(x) = ¢;(y) =t for some ¢, 0 < ¢ < n,
and some nonground term ¢, then & and y are said to be aliased together in G;: in
this case, we also say that x and y are aliases of each other.

2.3 On the Precision of Dataflow Analyses

A natural characterization of the precision of a flow analysis algorithm 1s relative
to some other algorithm: the first is more precise than the second if and only if for
every program and every input the results obtained using the first algorithm are
uniformly more precise than those obtained from the second. Cousot and Cousot
[1977; 1979] use such a characterization to show that for any given language and
abstract domain the space of all possible abstract interpretations forms a complete
lattice when ordered according to this notion of precision, and thereby infer the
existence of a “most precise” abstract interpretation. Because this expresses the
precision of an analysis in terms of that of other analysis algorithms, we refer to
this notion of precision as relative precision.

Such a characterization i1s unsuitable for our needs, however, because it is not
immediately obvious how 1t can be used to obtain insights into the computational
costs associated with analyses of different degrees of precision. What we need,
rather, is a way to characterize the precision of an analysis in a way that does not
require any reference to any other analysis algorithm. Our approach is to consider
the precision of an analysis to be given by the class of programs for which the
analysis is exact, i.e., where the analysis is sound (everything that can happen at
runtime is predicted by the analysis) and minimal (everything that is predicted by
the analysis can, in fact, happen at runtime). We refer to the class of programs for
which an analysis algorithm A gives exact results as the exactness set of A. In the
language of abstract interpretation, the exactness set of an analysis algorithm A is
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the class of programs for which the concretization of the fixpoint computed by A
coincides with the collecting semantics of the program.* The following result is not
difficult to see:

ProPoOsITION 2.3.1. Given two analysis algorithms A and B, if A s relatively
more precise than B, then the exactness set of B is contained in that of A.

The converse, however, need not hold. To see this, consider the following pair
of analyses. A is an analysis that pattern-matches on its input to determine if
it is the usual append program to concatenate two lists: if so, A produces a pre-
computed exact result; otherwise it does not produce any information at all. B
is an analysis that proceeds as follows: for any input program P, B first uses a
subsidiary analysis using depth-3 abstraction to analyze P; if this encounters a
term with depth exceeding 3, resulting in some loss of information due to depth
abstraction, B returns all of the information computed by the subsidiary analysis;
otherwise, if no information was lost during the subsidiary analysis, B discards all of
the information obtained from the subsidiary analysis and produces no information
at all. A yields nontrivial information only for the append program, for which it
produces exact results; B produces nontrivial information about a large number
of programs but does not yield exact information about any program. Thus, even
though the exactness set of A properly contains that of B, it is clear that A is
not relatively more precise than B. However, all of the counterexamples to the
converse of Proposition 2.3.1 that we have been able to construct—for example, the
analysis B above—discard information gratuitiously and therefore appear bizarre
and unnatural. Based on this, and on the analyses that we have seen proposed
in the literature, we conjecture that the converse of Proposition 2.3.1 holds for
all “natural” static analysis algorithms, and that exactness sets are a reasonable
measure of precision for practical purposes.

2.4 Some Simple but Interesting Classes of Programs

Certain classes of programs are especially interesting for examining the tradeoff be-
tween precision and complexity of dataflow analyses. Intuitively, they attempt to
capture assumptions that are common in dataflow analysis algorithms. The follow-
ing list enumerates the main classes of programs we consider, and the motivation
for considering them.

Failure-Free Programs. This class contains programs that do not contain failed
execution branches at runtime. This class is considered to deal with the complexity
and precision of dataflow analyses, such as those of Chang et al. [1985], Debray
[1989], Jacobs and Langen [1989], Marriott et al. [1994], and Muthukumar and
Hermenegildo [1989; 1991], that ignore the possibility of failure.

Function-Free Programs. This class consists of programs that do not contain any
function symbols or constants, i.e., where every argument of every literal is a vari-
able. It is motivated by a variety of groundness and alias analyses used in compile-
time optimization and parallelization, such as those of Chang et al. [1985], Marriott

INote that this notion of “exactness” is strictly stronger than, for example, that proposed by
Mannila and Ukkonen [1987].
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et al. [1994], and Muthukumar and Hermenegildo [1989; 1991], which ignore the
distinction among different function symbols.

Datalog Programs. This class consists of programs that do not contain any func-
tion symbols of nonzero arity. It is motivated by a variety of program analyses
that rely on depth abstraction (see, for example, Codish et al. [1994], King [1994],
Marriott and Sgndergaard [1988], Santos Costa et al. [1991], Sato and Tamaki
[1984], and Taylor [1989]). Any nontrivial depth abstraction must retain informa-
tion about at least the principal functors of terms, and so will not discard any
information about constants. Thus, by examining programs where there are no
function symbols of nonzero arity, we can study the complexity of analyses using
depth abstraction.

Recursion-Free Programs. This class consists of programs that contain no recur-
sion. It is motivated by the desire to study the complexity and precision of dataflow
analysis algorithms that sacrifice precision at recursive calls for efficiency reasons,
e.g., Debray [1989].

Alias-Free Programs. This consists of programs that do not, at any point during
execution, alias together two distinct variables. It is motivated by the fact that
tracking aliasing may be expensive, so that we may be interested in discussing
the extent to which an analysis problem may be simplified by not having to track
aliasing precisely (see, for example, Debray [1992]).

Bounded-Arity Programs. This is a family of sets of programs: for each n > 0, the
class of arity-n programs consists of programs where every predicate and function
symbol has arity at most n. In analyzing the complexity of their algorithms, some
researchers have argued that in most programs encountered in practice, the arities
of predicates do not increase as program size increases (see, for example, Debray
[1989; 1992], Sagiv and Ullman [1984], and Ullman [1988]). Bounded-arity programs
are used to study the complexity/precision behavior of various dataflow analyses
under this assumption.

2.5 Some Useful Complexity Results

It is well known that the Satisfiability problem for propositional clauses, i.e.; the
problem of deciding whether an arbitrary propositional clause is satisfiable 1s NP-
complete [Cook 1971]. In addition, certain other kinds of Boolean formulae are of
particular interest to us for reasoning about computational complexity. These in-
clude Quantified Boolean Formulae, Monotone Boolean Formulae, Recursive Mono-
tone Boolean Functions, and Schonfinkel-Bernays formulae.

Definition 2.5.1. A quantified Boolean formula is of the form Q1z1 -+ Qnrazn e,
where each of the @); is one of the quantifiers V and 3, and ¢ is a propositional
formula over the variables xq, ..., x,.

We assume that the quantified variables z; are all distinct, i.e.; ¢ # j implies
x; # x;: this is not a serious restriction, since the formula can be processed, in
linear time, to rename variables and obtain an equivalent formula satisfying this
requirement. The following result is due to Stockmeyer and Meyer [1973]:

THEOREM 2.5.2. The problem QBF of determining whether an arbitrary quan-
tified Boolean formula s true is PSPACE-complete.
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Definition 2.5.3. A Boolean formula ¢ is said to be monotone if and only if the
only connectives in ¢ are A (“and”) and Vv (“or”).

The following result is due to Bloniarz et al. [1984]:

THEOREM 2.5.4. The Equivalence problem for monotone Boolean formulae, 1.e.,
the problem of deciding, given two arbitrary monotone propositional formulae ¢ and
Y, whether ¢ and ¢ take on the same truth value for every truth assignment, is
co-NP-complete.?

Definition 2.5.5. A recursive monotone Boolean function (RMBF) is an equation
flz1,...,2,) = E, where F is an expression over the variables z1, ..., z, with the
syntax:

E=true|false | z;(1 <i<n) | E1AEy | E1V By | f(Ey, ..., En).

An instance of RMBF is a pair (eq, a), where eq is an equation eq = f(zy,...,2,) =
E, and a is a tuple of n arguments a = {(a1,...,a,). Let B denote the Boolean
domain {true, false} with the ordering false C true. The instance (eq,a) is true
if and only if f(ai,...,a,) = true in the least fixpoint of the equation eq on the
domain of Boolean functions B” — B (with the ordering C extended pointwise in
the usual way).

The following result is due to Hudak and Young [1986]:

THEOREM 2.5.6. RMBF s EXPTIME-complete in the length of the instance
(eq, a), where EXPTIME = UcZODTIME[Q”C].

Definition 2.5.7. A Schonfinkel-Bernays formula is a first-order formula of the
form Jzq - -z, Vy1 - - - Vyo F, where F' is a quantifier-free first-order formula over
the variables {@1,..., 2m,y1,...,yn} that does not contain any function symbols

of nonzero arity nor any occurrences of the equality predicate ‘=’.

The following result is due to Lewis [1980]:

THEOREM 2.5.8. The problem of deciding the satisfiability of an arbitrary
Schonfinkel-Bernays formula s NEXPTIME-complete, where NEXPTIME =
Ueso NTIME[27].

2.6 Complexity Results for Analysis of Logic Programs: A Summary

Our complexity results for dataflow analysis of logic programs may be summarized
as follows:

(1) Precise analysis of programs that contain no aliasing, where there are only
two distinct constants and no function symbols of nonzero arity, is EXPTIME-
complete. It follows that any analysis that is precise enough to give exact results
for this class of programs has a worst-case complexity that is exponential in
the size of the input program. This addresses, in particular, the complexity
of various analyses that use depth abstraction, e.g., Codish et al. [1994], King

2 Actually, Bloniarz, Hunt and Rosenkrantz prove a different but equivalent result, namely that
the Inequivalence problem for monotone Boolean formulae is NP-complete.
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[1994], Marriott and Sgndergaard [1988], Santos Costa et al. [1991], Sato and
Tamaki [1984], and Taylor [1989].

The problem is PSPACE-hard if analyses are required to deliver precise
results only under the additional constraint that there is no recursion.

The problem is NP-complete if, in addition to the constraints listed above,
we require also that the maximum arity of any predicate symbol is O(1); it
remains NP-complete even if the maximum arity is restricted to 3.

If we allow function symbols of nonzero arity, then precise analysis of programs
that contain negation, but contain no recursion or aliasing, is NEXPTIME-
hard. This addresses the complexity of analyses that attempt to treat negation
in a precise way, e.g., Marriott and Sendergaard [1988; 1992], and Marriott
et al. [1990].

The problem is PSPACE-hard if precise results are required only for programs
that contain no negation, recursion, or aliasing, and satisfy the additional con-
straint that the maximum arity of predicate and function symbols is O(1). Tt
remains PSPACE-hard even if the maximum arity of any function or predicate
symbol is restricted to 2, and the maximum number of literals in the body of
any clause is restricted to 2. This addresses the complexity of analyses that

sacrifice precision only on encountering recursion, in particular a type analysis
described by Van Hentenryck et al. [1994].

Precise groundness and alias analysis of programs that contain no function
symbols, where there are no failed execution branches at runtime, is EXPTIME-
complete. The implication is that there are no fundamental improvements to
the worst-case complexity even for analyses that are careful not to incur any
overhead for keeping track of whether certain execution branches may fail at
runtime. This result also addresses (one aspect of) the worst-case complexity of
groundness analysis using the Prop domain, discussed by Marriott et al. [1994].

The problem is co-NP-complete if, in addition to the above constraints, we
require also that there be no recursion, and that the maximum arity of any
predicate be O(1); it remains co-NP-complete even if the maximum arity of
any predicate is restricted to 6.

The problem remains co-NP-complete even if the number of distinct call-
ing and success patterns per predicate is O(1). This addresses the worst-case
complexity of any algorithm whose precision is similar to that of a groundness
analysis proposed by Codish et al. [1990].

Analysis algorithms with polynomial-time worst-case complexities can be ob-
tained if dependencies between variables can be ignored or if such dependencies
can be assumed to be transitive, and if the number of distinct calling and suc-
cess patterns for any predicate is O(1) Debray [1989; 1992].

3. ANALYSIS OF PROGRAMS WITH NONZERO-ARITY FUNCTION SYMBOLS

This section considers the analysis of programs that contain function symbols of

nonzero arity. Information about constants and function symbols is of interest in
the context of type inference and depth abstraction.
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3.1 General Programs

It is well known that, in general, Horn programs containing both recursion and
nonzero-arity function symbols are undecidable: indeed, Tarnlund [1977] shows
that even the class of alias-free Horn programs containing at most one body literal
per clause, with one binary function symbol and one constant, is Turing-complete.
Since any analysis algorithm capable of precise analysis of arbitrary Horn clause
programs would, as a special case, be able to determine whether the success set of
a program is nonempty, and thereby infer whether or not the corresponding Turing
machine has a terminating computation, this immediately implies the following:

THEOREM 3.1.1. Precise analysis of alias-free Horn programs is undecidable. The
problem remains undecidable even if we restrict ourselves to programs containing at
most one binary function symbol and one constant, and one body literal per clause.

3.2 Recursion-Free Programs Containing Negation

The first class of decidable Horn programs we consider is the class of alias-free
recursion-free programs: our intent is to investigate the complexity of dataflow
analysis algorithms that strive not to sacrifice precision except when recursion or
aliasing is involved. We first consider programs that contain negated goals, in
part to examine the complexity of dataflow analyses that attempt to take negation
by finite failure into account (e.g., see Barbuti and Martelli [1988], Marriott and
Sgndergaard [1988; 1992], and Marriott et al. [1990]). We show that in this case,
precise dataflow analysis is NEXPTIME-hard. To this end, we first describe a
procedure that, given a Schonfinkel-Bernays formula ¢, generates a logic program
P, that can be used to establish whether ¢ is satisfiable. Let ¢ be the formula
Jzy - FxpVaepyr - Ve, F where F'is quantifier free, and does not contain any
function symbols of nonzero arity or any occurrences of the equality predicate. It
1s known that such a formula has a model if and only if it has a model of size at
most k (Lewis [1980, Section 8]). One way to check whether there is a model for
@, therefore; 1s to guess an interpretation of size at most & and check whether it
satisfies . Our goal, therefore, is to devise a procedure whereby, for any given
Schonfinkel-Bernays formula ¢, we can generate a Prolog program P, that can be
executed to determine whether ¢ is satisfiable.

We first define a mapping S that takes a quantifier-free first-order formula ¢,
which may contain the connectives A, V, and = (it is easy to extend the definition
to include other connectives), and yields a pair (G, V). Here, GG is a Prolog goal,
and V is a variable in (G, such that ¢ is true (respectively, false) if the goal G
succeeds with answer substitution {V — t} (respectively, {V — £}). We assume
that each variable z; in ¢ is associated with a logic variable X;; each n-ary predicate
symbol p in ¢ is associated with an n 4 l-ary predicate symbol p; and each atom A;
in ¢ is associated with a logic variable 4; that represents its truth value (different
occurrences of the same atom are associated with the same logic variable). The
transformation & is defined as follows:

(1) Tf ¢ is a variable # with associated logical variable X, then S(p) = (¢, X}, where
¢ 1s the empty sequence of goals.

(2) If ¢ is a constant true, then S(y) = (X = t,X); if ¢ is a constant false, then
S(e) =X =1,X).
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(3) If ¢ is of the form ¢ A ¢, with S(¢) = (G1, X1) and S(¢) = (G2, X3), then
S(p) = (G, X), where G = ‘G, G3,and( X, X2, X)’ such that X, ¢ vars(G2),
Xy & vars(Gh), and X & vars(G1) U vars(Ga).

(4) Tf ¢ is of the form ¢ V ¢, with S(¢) = (G1, X1) and S(¢) = (G2, X3), then
S(p) = (G, X), where G = ‘G, Ga,0r(X1, X2, X))’ such that Xy ¢ vars(G2),
Xy & vars(Gh), and X & vars(G1) U vars(Ga).

(5) If ¢ is of the form —¢, with S(¢) = (G1, X1), then S(¢) = (G, X), where G =
‘G'1,neg(X1, X) such that X & vars(Gy).

(6) If ¢ is an atom A = p(¢1,...,¢n) with associated logic variable &, and
S(¢:) = (G;, X5), Xi # A1 < i < n, then S(p) = (G,4), where G =
‘(;1,...,(;n,p()(l,...,)(n,A){

In the discussion that follows, we will sometimes abuse notation by applying &
to Boolean formulae involving function applications as well, treating a function
application f(t1,...,%,) similarly to an atom with n arguments. These will be
clear from the context, and hopefully will not cause any confusion.

Ezample 3.2.1. Let o = [r(u, v, w)As(v, w, 2)]V-r(u, v, w). Let the logic variables
corresponding to the variables u, v, w, 2 in S(p) be U, V,W, X respectively, and let
the logic variables associated with the atoms r(u, v, w) and s(v, w, ) be A1 and A2
respectively. Then, S(¢) = (G, T), where G is the goal:

r(U, V, W, A1), s(V, W, X, A2), and(Al, A2, T1),
r(U, V, W, A1), neg(Al, T2),
or(T1, T2, T).

Recall that our immediate objective is to define a translation procedure from
Schonfinkel-Bernays formulae to Prolog programs such that the exact analysis of a
program P, yields satisfiability information about the formula ¢ it was generated
from. Any such procedure must be able to “guess” bindings for the existentially
quantified variables in ¢ and then consider all possible bindings for the universally
quantified variables. Moreover, it is necessary to associate truth values with atomic
subformulae of ¢. Moreover, in order that the execution of P, define an inter-
pretation for ¢, it is important to ensure that such atomic formulae are assigned
consistent truth values after bindings have been chosen for the variables. This can
be accomplished by maintaining a “symbol table” associating truth values with
atomic formulae. Finally, since we are interested in recursion-free programs, the
programs generated by the translation procedure should not contain recursion. The
use of backtracking to simulate the “guessing” of bindings for existentially quanti-
fied variables, and of negation-by-failure to consider all possible bindings for univer-
sally quantified ones, is fairly straightforward. The only part of the translation that
is somewhat delicate is the generation of routines for managing the “symbol tables,”
since (1) a symbol table for an n-ary predicate in a universe with & constants must
accommodate k™ entries, one for each possible atom for that predicate, but in order
for the reduction to work we must be able to generate these routines in polynomial
time; and (2) for our purposes we cannot use recursion—this precludes, for exam-
ple, the simple (and textually succinct) approach of using a list representation for
the table and a recursive membership-checking predicate for lookups.
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For simplicity, we maintain a different symbol table for each predicate symbol
in the formula. The symbol table for an n-ary predicate p; is structured as a tree
of depth n. Fach internal node of the tree has & children, corresponding to the &
different choices for atoms for an argument, and the leaves give truth values. Each
path from the root of the tree to a leaf traces out a particular choice of constants for
each of the n argument positions of the predicate, i.e., speficies a ground atom for
that predicate, and the leaf node gives a truth value for that atom. Table lookups
for p; are managed by a group of n 4+ 1 predicates lookup, ;: for each 7, 1 < 5 < n,
lookup, ; uses the value of the jth argument of an atom to select the appropriate
branch in the portion of the symbol table it is given. Suppose that the universe
contains k constants aj, ..., a; then these predicates are defined as follows:

lookup”(Atom, Table, Tval) :—

Atom = p; (A1, ..., Ay, ..., An),
Ay = ai,
Table = table(Tab.l, 2, ..., _k),

lookupi7]+1(Atom, Tab_1, Tval).
lookup; ; (Atom, Table, Tval) :—

Atom = p; (A1, ..., Ay, ..., An),
Ay = az,
Table = table(_1, Tab2, ..., _k),

lookup; ;,, (Atom, Tab_2, Tval).

lookup”(Atom, Table, Tval) :—

Atom = p; (A1, ..., Ay, ..., An),
Ay = ay,
Table = table(.1, -2, ..., Tab_k),

lookup; ;,, (Atom, Tab_k, Tval).

Finally, lookup; , . corresponds to the case where a path has been traced from
the root of a symbol table all the way to a leaf. This predicate 1s therefore defined
by the single clause

lookup; ., (_, Tval, Tval).

We are now in a position to describe the translation of a Schonfinkel-Bernays for-
mula ¢ to a Prolog program F,. Let ¢ be the formula 3% - - -z Va4 - - -V, .
With each predicate symbol p; in ¢, the program P, associates a variable ST_p, that
corresponds to the symbol table for p;. The program P, is given by the following:

(1) P, contains a predicate main/0 defined by the clause

main :— choose(X;), ..., choose(Xy), not(q(Xy,...,Xs,£)).
(2) The predicate q/k + 1 is defined by the clause
q(X1,..., X5, Y) :— choose(Xp41), ..., choose(X.,), GG, SymTabLookups

where: S(¢) = (G, Y); and SymTabLookups is a set of literals for symbol table
lookups. For each literal A = p;(Xy,...,X,,T) in G, corresponding to an
atom with an n-ary predicate symbol p; in ¢ with associated logic variable T,
Sym TabLookups contains a literal
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lookup.p, , (A, 8Tp;, T)

where ST_p, is the variable corresponding to the symbol table for the predicate
symbol p;. These symbol table lookups force the execution of the Prolog pro-
gram P, to assign consistent truth values to atomic subformulae of the original
formula .

) P, contains a predicate choose/1 defined by k clauses
choose(ay).
choose(az).
where ay, ..., a; are constants not appearing elsewhere in F,.

) Corresponding to each n-ary predicate symbol p in ¢, P, contains an n+ l-ary
predicate p defined by the clauses

p(Xl7 oy X, t).

p(X1, ..., Xn, £).
Intuitively, these predicates are used to select truth values for the ground atoms
when “guessing” a model for .

(5) P, contains definitions of the predicates and/3, or/3, and neg/2:

or(t, t, t). and(t, t, t). neg(t, ).
or(t, £, t). and(t, £, f). neg(f, t).
or(f, t, t). and(f, t, f).
or(f, £, f). and(f, £, f).

(6) The only exported predicate is main/0.

Ezample 3.2.2. Let ¢ = FuwidwoVasVasVas[(r(ry, 20, 23) A s(we, 24, 25)) V

—r(21, 22, 23)]. Then the program P, contains, apart from the definitions of symbol
table management routines and of the predicates and/3, or/3, neg/2, the following
clauses:

main :- choose(X1), choose(X2), not( q(X1, X2, £f) ).

q(X1, X2, V) :-
choose(X3), choose(X4), choose(X5),
r(X1, X2, X3, A1), s(X2, X4, X5, A2),
and (A1, A2, T1),
r(X1, X2, X3, A1),
neg(Al, T2),
or(T1, T2, Y),
lookup_ri(r(X1, X2, X3), ST_r, Al),
lookup_s1(s(X2, X4, X5), ST_s, A2),
lookup_ri(r(X1, X2, X3), ST_r, Al).

choose(al).
choose(a2).

r(_, _, _, t).
r(_, _, _, £).
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s(_, _, _, t).
s(_, _, _, ).

The following result is not difficult to see:

LEMMA 3.2.3. Gwen any Schonfinkel-Bernays formula ¢, the program P, can be
generated in time polynomial in |p|.

LEMMA 3.2.4. For any Schonfinkel-Bernays formula @, the program P, con-
structed as described above is alias free.

ProoF (SKETCH). To see that the execution of P, cannot cause two distinct
variables to become aliased together at any point, it suffices to verify that none of
the predicates in the program causes any two variables to become aliased in any
execution starting from any exported predicate (there is only one, main/0). This is
obvious for choose/1, and/3, or/3, and neg/2. For each n-ary predicate symbol p
in ¢, the fact that the corresponding n + 1-ary predicate p in P, does not alias any
variables together follows from the fact that such a predicate p is necessarily called
with its first n arguments bound to constants (defined by choose/1), and all that
p does 1s bind its last argument to a constant.

It remains only to show that symbol table lookups do not give rise to any aliasing.
For each n-ary predicate p, consider the lookup routines lookupp, ;, 0 <j < n.
The first argument of each of these lookup routines is ground by the time it is
called, since all of the arguments to this term have been bound to constants by
choose/1. Similarly, the third argument to each lookup routine is bound to one of
the constants {t, £} by the time it is called. It is then a straightforward induction
on n—j to show that the symbol tables constructed for any predicate do not contain
repeated occurrences of any variable, and that because of this lookup._p; ; does not
cause any aliasing to occur. O

THEOREM 3.2.5. Ezact analysis of recursion-free, alias-free logic programs con-
taining negation s NEXPTIME-hard.

Proor. By reduction from the problem of deciding the satisfiability of
Schonfinkel-Bernays formulae, which, from Theorem 2.5.8, is NEXPTIME-
complete.  From Lemma 3.2.2, given any Schonfinkel-Bernays formula ¢ =
Jzy - FepVegpyr - Ve, we can, in polynomial time, construct the program
P, as described above. Let the k constants that are arguments of the predicate
choose/1 in P, be A = {aj1,...,a5}. Further, for any X C vars(¢), given any
substitution ¢ : X — A, let 0 denote the “corresponding” substitution over the
logic variables in P,, i.e., X = {X; | #; € X}, where X; is the logic variable in
P, associated with the variable z; in ¢, then § : X —s A is the substitution
HA(XZ) =0(»;) foreach X; in X. The proof proceeds as follows:

Let o : {@1,...,2x} —> A be any substitution that grounds the variables
{@1,...,2,}. Since ¢ contains the variables {@1,..., &g, 2g41,...,Zm}, a ground
instance of the formula o(¢) is false if and only if there is a substitution ¢ :
{€k41,...,2m} —> A such that (( o 0)(¢) is false. Tt is a simple structural in-
duction on ¥ to show that this can happen if and only if there is a substitution

Esuch that execution of the the goal (¢ o @)(G), where S(¢) = (G, X), binds X
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to £. This, in turn, can happen if and only if there are bindings for the variables
Xk+41,-- -, Xm such that execution of the the goal

choose(Xx41),...,choose(Xy,), G, SymTabLookups,

where S(¢) = (G, X) and SymTabLookups is as defined earlier, binds X to £. Tt
follows, from the definition of the predicate q in P,, that a ground instance of o ()
is false if and only if there is a successful derivation for the goal (q(X1, ..., Xx, £)).
Since P, does not contain any recursion, every derivation for queries involving only
predicates defined in P, must be finite. It follows that every ground instance of ¢(¢)
is true if and only if there is no successful derivation for the goal (q(X1, ..., Xx, £)),
i.e., that every derivation of this goal is finitely failed. But this can happen if and
only if there are bindings for the variables Xy, ..., X such that the goal

choose(X;), ..., choose(Xx),not(q(X1, ..., Xs, )) (1)

has a successful SLDNF-derivation.

It is known that a Schonfinkel-Bernays formula 321 - - - FxiVaeryq, ..., 2t has
a model; i.e., is satisfiable, if and only if it has a model of size at most k (see
Lewis [1980, Section 8]). Tt follows, therefore, that this formula is satisfiable if and
only if the goal (1) has a successful SLDNF-derivation. From the definition of the
predicate main/0 in P, it then follows that the predicate main/0 in the program
P, has a successful derivation—or, equivalently, has nonempty type—if and only if
the formula ¢ is satisfiable. The program P, is recursion free by construction, and
from Lemma 3.2.4 is alias free. It follows that precise analysis of recursion-free,
alias-free logic programs containing negation is NEXPTIME-hard. O

We do not know, at this time, whether precise analysis of recursion-free logic pro-
grams containing negation is in NEXPTIME. Intuitively, since there is no recursion,
one expects such programs to be decidable. However, because there may be func-
tion symbols with nonzero arity, a question about dataflow analysis information
will generally correspond to a (possibly infinite) set of possible “concrete” queries,
and 1t 1s not clear whether such questions can be answered in nondeterministic
exponential time.

It is possible to strengthen Theorem 3.2.5 slightly. Some authors, for example,
Mannila and Ukkonen [1987], have argued that a flow analysis algorithm whose
complexity is exponential in the number of literals in a clause body may be tol-
erable in practice because in most commonly encountered programs the number
of literals in clause bodies is small, and may be assumed to be O(1). Now given
any program P, we can derive from it an “equivalent” program P’ where no clause
has more than two literals in its body. We compute a series of programs Py, P,
ooy By oo, as follows: Py = P, and P;yq is obtained from P; as follows: let €' =
p(t) :— q1(t1),92(t2), ..., qn(t,) be any clause in P; whose body contains more
than two literals. Let U be the set of variables

(vars(t) U vars(ty)) N (vars(ta) U - - U vars(ty,)),

and let u be some enumeration of U/. Let p’ be a new predicate symbol, with
arity |U], not appearing elsewhere in P;. Define the clauses €y and Cy as follows:
Cy =p@) :— q(t1),p'(w); and Ca = p'(a) :— ¢q2(t2),...,qn(fs). Then, Pyq =
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(P, \{C}) U {Cy,C3}. The program P’ is the limit of the sequence of programs
Py, Pi, ..., obtained in this way. Since each application of this transformation
replaces a clause in P’ with two clauses each containing fewer body literals, P’
can be computed in a finite number of steps, and does not contain any clause
with more than two body literals. It is not difficult to see that the program P’
is equivalent to P in the sense that for any predicate p defined in P, a goal p(¢)
succeeds in P with answer substitution @ if and only if it succeeds in P’ with answer
substitution #. Further, each clause C in the original program P with n > 2 body
literals is replaced by n — 2 clauses in the transformed program P’, each having
two body literals, each of these literals being no larger than the original clause C":
this means that the transformed program is no more than quadratically larger than
the original program, i.e., there is at most a polynomial growth in program size as
a result of the transformation. We can therefore use the programs resulting from
this transformation in the proof of Theorem 3.2.5 to obtain the following result:

THEOREM 3.2.6. Ezact analysis of recursion-free, alias-free logic programs con-
taining negation is NEXPTIME-hard. It remains NEXPTIME-hard even if no
clause in the program contains more than two body literals.

This shows that, depending on how precise an analysis strives to be, it may have
a bad worst-case complexity even if we assume that the number of literals per clause

is O(1).

3.3 Recursion-Free Programs without Negation

Since most dataflow analysis algorithms reported in the logic programming litera-
ture do not attempt to deal with negation very precisely, we next consider the analy-
sis of programs that do not contain negation, i.e., Horn programs. We first consider
analyses, such as the type analysis of Van Hentenryck et al. [1994], that sacrifice
precision only when recursion is involved. We show that for such analyses, precise
dataflow analysis is PSPACE-hard. To this end, we first describe a procedure that,
given a quantified Boolean formula ¢, generates a logic program P, that can be used
to establish the truth of . Let ¢ be the formula @11 - - - @, 2,1, where each of the
Q; i1s a quantifier V or 3, and let s; denote the formula Q;x;Q;41%;41 - - QnTnt),
1 < ¢ < n. We assume that each variable z; in ¢ is associated with a logic variable
X;. The program P, is given by the following:

(1) P, contains a “root predicate” main/0 that evaluates whether or not the for-
mula ¢ is true. This predicate is defined by the following clause:

main :— p1([], t).
This predicate is the only exported predicate in P,.

(2) For each s;,1 < i < n, P, contains a predicate p;(V;, Tval). Here, V; is a
variable that, at runtime, gets bound to a list of truth values [X;,_1,...,%X;]
corresponding to assignments to the variables @;_1,..., z; that are bound by
the quantifiers “before,” i.e.; to the left of, @); in ¢; and Twal is either t or £
depending on whether or not the corresponding instance of s; is true. These

predicates are defined as follows:

(a) If @; =V, then p; is defined as follows:
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piVi, £) = pipr (Lt | Vi1, t), pipa (L | VI, t).
pi(Vi, £) :— pipi ([t | Vi1, £).
pi(Vi, £) :— pip ([£ | Vi1, £).
(b) If @; = 3, then p; is defined as follows:
piVi, £) = pipr ([t | Vi1, ).
piVi, t) = pipr (L | Vi1, ).
pi(Vi, £) = pipr (Lt | Vi1, £), pipa (L | VI, £).
The predicate pp41 is defined by the clause
Pr+t1 ([Xn,...,X1], Tval) :— eval(Fmla, Tval).

where Fmla = T () is a Prolog term representing the formula ¢. The mapping
T is defined as follows:

— T (=) =X%;, where X; is the logic variable associated with x; in Py;

— T (true) = t, and 7 (false) = £;

— T(aApB) =and(A, B), where A = T(«) and B =T (5);

— T(aVp) =or(A,B), where A= T (a) and B = T (5);

— T () = neg(A), where A = T (a).

The program P, contains the definition for the predicate eval/2. The idea
here is that, given a ground term 7T representing a propositional formula, the
execution of eval(T, t) succeeds if and only if ¢ is true, while that of eval(7), f)
succeeds if and only if ¢ is false. The obvious definition of such a predicate
would contain clauses such as

eval (and(F1, F2), t) :— eval(F1, t), eval(F2, t).
eval (and(F1, _), £f) :— eval(F1, f).
eval(and(_, F2), £f) :— eval(F2, f).

and so on. The problem with such a definition is that it is recursive, while
we are considering only recursion-free programs. One could imagine partial
evaluation of the eval predicate above with respect to the input formula in
order to remove the recursion, but a straightforward approach to this would
result in a clause with size proportional to the input formula. With a little more
effort, it is possible to take (a representation of) any particular propositional
formula and produce a recursion-free program, where each clause has bounded
size, to determine its truth value: if ¢ = Q121 - - - @ x,9, where ¢ is quantifier
free, and the number of logical connectives in ¢ 1s &k, then the truth value of any
ground instance of ¢ can be evaluated using a recursion-free program containing
k + 1 predicates evalp/2, ..., evaly/2. Intuitively, for each i, 0 < i < k, the
predicate eval; is capable of evaluating the truth of propositions containing
at most ¢ logical connectives. The predicates eval;, 1 < < k, are defined as
follows:

eval;(and(F1, F2), t) :— eval,_;(F1, t), eval;,_; (F2, t).
eval;(and(F1, _), £f) :— eval;_;(F1, f).
eval;(and(_, F2), £f) :— eval;_;(F2, f).
eval;(or(F1, ), t) :— eval;_;(F1, t).
eval;(or(_, F2), t) :— eval;_;(F2, t).

eval;(or(F1, F2), £f) :— eval,_;(F1, f), eval,_,(F2, ).
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eval; (neg(F), t) :— eval,_(F, ).
eval; (neg(F), f) :— eval,—1(F, t).
eval;(t, t).
eval; (f, f).

The predicate evaly/2 is defined by the clauses

evalo(t, t).
evalog (£, £).

Finally, the predicate eval/2 is defined as
eval (X, Y) :— evalx(X, Y).

Ezample 3.3.1. Let ¢ = VaIyVz[x A =(y V z)]. Then, apart from the definitions
of the various eval;/2 predicates, the program P, contains the following clauses:

main :- p1([1, t).

pl(vi, t) :- p2(LtlVvi]l, t), p2([£lVi], ¢). /* universal x/
pl(vi, £) :- p2([tlVvi], £).
pl(vi, £) :- p2([£lVvi], £).

p2(V2, t) :- p3([tl1Vv2l, t). /* existential */
p2(V2, t) :- p3(L[£lv2], t).
p2(v2, £) :- p3([tlv2l, £), p3(L[flv2al, £).

p3(V3, t) :- pa([t1v3l, t), pa([fIV3], t). /% universal */
p3(V3, f) :- p4a([tlv3], £).
p3(V3, f) :- p4a(L[£lv3], £).

p4(LZ, Y, X1, Tval) :- eval(and(X, neg(or(Y, Z))), Tval).

Each clause in the program P, has a fixed structure and can be generated in O(1)
time. The total number of predicates in P, is O(]¢]), so the reduction requires
O(log |¢]) space to keep track of them. The following result is then straightforward:

LEMMA 3.3.2. For any quantified Boolean formula ¢, the program P, can be
constructed in polynomial time using logarithmic space.

We observe that given any quantified Boolean formula ¢, the program F, con-
structed as above is recursion free and has bounded arity (the arity of every predi-
cate and function symbol is bounded by 2), and each clause contains at most two
body literals. Further, it is easy to verify, by inspection, that the program is alias
free. This leads immediately to the following result:

THEOREM 3.3.3. Ezact analysis of recursion-free, alias-free Horn programs is
PSPACE-hard. The problem remains PSPACE-hard even if the arity of each func-
tion and predicate symbol is restricted to at most 2, and there are at most 2 literals
i the body of any clause.

PrOOF (SKETCH). By reduction from QBF, which, from Theorem 2.5.2, is
PSPACE-complete. From Lemma 3.3.2, given any quantified Boolean formula ¢,
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we can, in logarithmic space, construct the program P, as described above. The
proof proceeds in two parts. First we show, by induction on m, that for any proposi-
tional formula v containing at most m logical connectives the goal eval,, (T, Tval),
where T'= T (), evaluates correctly the truth value Tval of ¢ for any given truth
assignment for its variables. The base case, with m = 0, involves only truth val-
ues (since, by assumption, all propositional variables in ¢ have truth assignments
already), and is trivial from the definition of evalp/2. The inductive case then
uses a straightforward structural induction on the formula ¢. After this, given a
quantified Boolean formula ¢ with n quantifiers; it is a simple induction on n to
show that ¢ is true if and only if the execution of p succeeds, i.e., if and only if
main/0 has nonempty type. O

Note that here, as in the case of Theorem 3.2.6, bounding the number of body
literals per clause does not improve the worst-case complexity of precise dataflow
analysis.

4. ANALYSIS OF DATALOG PROGRAMS

The construction used in Theorem 3.3.3 relies on the existence of a binary function
symbol, which is used to represent truth assignments as lists of truth values. In this
section we examine the extent to which disallowing function symbols with nonzero
arity simplifies dataflow analysis. As discussed in Section 2.4, these results are
applicable to analyses that use depth abstraction, such as Codish et al. [1994],
King [1994], Marriott and Sgndergaard [1988], Santos Costa et al. [1991], Sato and
Tamaki [1984], and Taylor [1989].

4.1 Recursive Datalog Programs

Consider the translation of a recursive monotone Boolean function (RMBF) to
a Horn program. Let ¢ = ({eq,a) be an instance of RMBF, where eq =
flz1,...,2,) = FE is a recursive equation and a = (ai,...,a,) is a tuple of n
arguments. We can construct a program P, to evaluate ¢, as follows:

(1) Let S(E) = (G, Tval), where the mapping § is defined above, then P, contains
a clause £(X1,...,%X,,Tval) :— G.

(2) Let S(f(a1,...,an)) = (G,X), then P, contains a “root predicate” main/0
defined by the clause main :— G, X = t. This is the only exported predicate

in P.
(3) P, contains definitions of the predicates and/3, or/3, and neg/2:
or(t, t, t). and(t, t, t). neg(t, £).
or(t, £, t). and(t, £, ). neg(f, t).
or(f, t, t). and(f, t, ).
or(f, £, ). and(f, £, ).

Ezample 4.1.1. Let ¢ = (eq,a) be an instance of RMBF, where eq is given by
g(z1, 22, 23) = 21 V (22 A g(g(3 V 72, 73, 1), T3, 1 A ¥2))

and a = (true, false, false). Then, P, contains, apart from the definitions of the
predicates and/3, or/3, and neg/2, the following clauses:
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g(X1, X2, X3, Tval) :-
or (X3, X2, U1),
g(U1l, X3, X1, U2), and(X1, X2, U3),
g(U2, X3, U3, U4),
and (X2, U4, U5), or(X1, U5, Tval).

main :- X1 = t, X2 = £, X3 = f, g(X1, X2, X3, X), X = t.

LEmMa 4.1.2. Let ¢ = (eq,a) be an instance of RMBF. Then, the program P,
can be constructed in time polynomial in | ¢ |.

THEOREM 4.1.3. FEzact analysis of alias-free Datalog programs containing at
least two distinct constants is EXPTIME-complete.

ProoF (SKETCH). The proof follows by reduction from RMBF, which, from
Theorem 2.5.6, is EXPTIME-complete. From Lemma 4.1.2, given an instance ¢ of
RMBEF, the program P, can be generated in time polynomial in the length of ¢. It
is then a straightforward fixpoint induction to show that the root predicate main/0
in P, has nonempty type if and only if ¢ is true. This shows that the problem is
EXPTIME-hard.

To see that the problem is in EXPTIME, consider the execution of a program P
containing p different predicates and ¢ distinct constants. Without loss of generality,
assume that each predicate has arity a (we can always add dummy arguments to
predicates that have too few arguments in order to comply with this assumption).
The execution of P can be simulated via a program P’ that has one predicate of
arity a+1 and ¢+ p constants: the idea is to add one argument to each literal in P’
to indicate which predicate in P is being referred to, e.g., a literal ¢(t1,...,%,) in
P corresponds to a literal interp(q,t1,...,t,), where interp is the single predicate
appearing in P’. Thus, the complexity of evaluating P is no larger than that of P’.

Now consider the complexity of evaluating P’: to simplify notation, let b = a + 1
and n = ¢+ p, i.e., P/ has n constants and a single predicate of arity b. Then, the
total number of distinct atoms possible for interpis n®, and the computational cost
for exact analysis of P’ can be no greater than that of evaluating all of P’ explicitly.
First, consider the cost of evaluating Ifp(Tr+) = U;»0Th(0) by iteratively computing
the limit of the sequence Tp(B), T3(0), ..., T5(B), ...: this can take no more than
n® iterations, with each iteration examining no more than O(nb) atoms, and hence
involves O(n?®) work. Apt and van Emden [1982] show that the set SS(P’) of
ground atoms of P’ that have successful derivations coincides with Ifp(Tp/), so the
cost of evaluating SS(P’) is also O(n?*). Since n?® is O(Q”b), it follows that the
evaluation of P’—and, therefore, that of the original program P—is in EXPTIME.
O

It is straightforward to use the transformation discussed at the end of Section 3.2
to extend this result to programs where no clause has more than two body literals.

4.2 Recursion-Free Datalog Programs

As Theorem 4.1.3 shows, precise analysis of programs can be expensive even if
the analysis algorithm does not try to deal with compound terms and aliasing.
Now it may not be unreasonable for an analysis algorithm to try to be precise for



22 . S. K. Debray

nonrecursive programs, but to surrender some precision when dealing with recursive
calls. To examine the complexity of such analyses, we next consider the case where
the exactness sets of the analyses do not contain recursive programs. For this, we
first describe a procedure that takes a quantified Boolean formula ¢ and generates
a program P, that can be used to determine whether ¢ is true. The basic idea
behind this construction is very similar to that used in the proof of Theorem 3.3.3.
Let ¢ be the formula Q21 - - - Qnxpy, where each of the @; is a quantifier V or 3,
and let s; denote the formula Q;x; - - - Qnznt, 1 < ¢ < n. The program P, is given
by the following:

(1) Corresponding to the variable ; in ¢ we associate a variable X; in P,.

(2) P, contains a “root predicate” main/0 that evaluates whether or not the for-
mula ¢ is true. This predicate is defined by the following clause:

main :— pi1(t).
The only exported predicate in P, is main/0.

(3) For each s;,1 < i < n, P, contains a predicate p;(V1,...,V;_1, Tval). Here,
Vy,...,V;_1 are variables that, at runtime, get bound to truth values that
correspond to truth assignments to the variables z1,...,2;_1 bound by the
quantifiers “before,” i.e.; to the left of, @; in ¢; and Twal is either t or £
depending on whether or not the corresponding instance of s; is true. These
predicates are defined as follows:

(a) If @; =V, then p; is defined as follows:
p,‘(Vl,...,V,'_l, t) —
p,‘+1(V1,...,V,‘_1, t, t) s Pit1 (Vl,...,\/,‘_l, f, t).
p,‘(Vl,...,V,'_l, f) - p,‘+1(V1,...,V,‘_1, t, £).
p,‘(Vl,...,V,'_l, f) L= p,‘+1(V1,...,V,‘_1, f, f).

(b) If @; = 3, then p; is defined as follows:
p,‘(Vl,...,V,'_l, t) — p,‘+1(V1,...,V,‘_1, t, t).
p,‘(Vl,...,V,'_l, t) — p,‘+1(V1,...,V,‘_1, f, t).
p,‘(Vl,...,V,'_l, f) =
p,‘+1(V1,...,V,‘_1, t, f) s Pit1 (Vl,...,\/,‘_l, f, f).

(4) The predicate py, 41 is defined by the clause ppy1(X1,..., Xy, A) :— G where
S(¥) = (G,A), S being the mapping defined at the beginning of Section 3.2,
and X; 4,1 <i<n.

(5) P, contains definitions for the predicates and/3, or/3, and neg/2:

or(t, t, t). and(t, t, t). neg(t, £).
or(t, £, t). and(t, £, ). neg(f, t).
or(f, t, t). and(f, t, ).
or(f, £, £). and(f, £, ).

Ezample 4.2.1. Let ¢ = VeIyVz[z A =(y V z)]. Then the program P, contains,
apart from the definitions for and/3, or/3, and neg/2, the following clauses:

main :- pl(t).

pl(t) :- p2(t, t), p2(f, t).
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pl(f) :- p2(¢t, £).
pl(f) :- p2(f, £).

p2(V1, t) - p3(V1, t, t).
p2(V1, t) :- p3(VL, £, t).
p2(V1, £) :- p3(Vi, t, £), p3(Vi, £, £).

p3(Vi, V2, t) :- pa(Vi, V2, t, t), pa(Vl, V2, £, t).
p3(V1, V2, £) :- pa(Vi, V2, t, £).
p3(Vi, V2, £) :- pa(Vi, V2, £, £).

pdX, Y, Z, A) :- or(Y, Z, Ul), neg(Ul, U2), and(X, U2, A).

THEOREM 4.2.2. Ezxact analysis of recursion-free, alias-free Datalog programs
containing at least two distinct constants 1s PSPACE-hard.

Proor. Similar to that of Theorem 3.2.7. O

Again, we can use the transformation discussed at the end of Section 3.2 to
extend this result to programs where no clause has more than two body literals.

4.3 Recursion-Free Bounded-Arity Datalog Programs

In the construction used in the proof of Theorem 4.2.2, the maximum arity of pred-
icates increases as the number of quantifiers increases. In the literature on dataflow
analysis of logic programs, some researchers have assumed that the maximum arity
of predicates in any program is bounded, i.e., O(1). We next consider the effect
of imposing this additional restriction on the complexity of analyses. For this, we
describe a procedure that, given a Boolean formula ¢, generates a logic program
P, that can be used to test whether or not ¢ is satisfiable.

(1) P, contains a predicate choose_tval/2, defined by the clauses

choose_tval(t).
choose_tval(f).

Let the variables occurring in ¢ be 21, ..., z,, and let them be associated with
n logic variables X4, ..., X,. P, contains a clause for the root predicate main/0,
defined by the clause

main :— choose_tval(X;), ..., choosetval(X,), G, U = t.

where S(p) = (G, U), with the mapping § as defined at the beginning of Section
3.2.

(2) P, contains definitions for the predicates and/3, or/3, and neg/2, as shown
earlier.

(3) The only exported predicate in P, is main/0.

Erample 4.2.3. Let ¢ = (e A—y)V (- (2 V-yV-z)A(meVyVz)). Let the variables
z,y, and z in ¢ be associated with the logic variables X Y, and Z, respectively, in
P,. Then, P, contains, apart from the definitions of the predicates choose_tval/l,
and/3, or/3, and neg/2, the following clause:
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main :-
choose_tval (X), choose_tval(Y), choose_tval(Z),
neg(Y,T1), and(X,T1,T2),
neg(Y,U1), or(X,U1,U2), neg(Z,U3), or(U2,U3,U4), neg(U4,U5),
neg(X,V1), or(vi,Y,v2), or(v2,Z,V3),
and (U5,V3,W1),
or (T2,W1,W2),
W2 = t.

LEMMA 4.2.4. Gwen any Boolean formula ¢, the program P, can be constructed
wn time polynomaal in the size of .

THEOREM 4.2.5. Precise analysis of recursion-free, alias-free, bounded-arity Dat-
alog programs containing at least two distinct constants ts NP-complete. It remains
NP-complete even if no predicate has arity exceeding 3.

PrROOF (SKETCH). The proof is by reduction from the satisfiability problem
for propositional clauses. For any propositional clause ¢, we show, by structural
induction on ¢, that ¢ is satisfiable if and only if the type for the predicate main/0
in the program P, is nonempty. This shows that the problem is NP-hard.

To show that the problem is in NP, consider any recursion-free, alias-free,
bounded-arity Datalog program P that contains ¢ > 2 distinct constants. Let
a be the maximum arity of any predicate in P. For any predicate p, to determine
whether a particular tuple of constants is in the relation of p, it suffices to “guess”
an execution path in the program, then verify that this path does generate that
tuple. Since there is no recursion, such a path can be given by simply selecting, for
each literal ¢(...) in the body of a clause, which clause for ¢ to use during resolu-
tion. The total length of such an execution path is no greater than the size of the
program. Since the arity of each predicate is bounded, the total number of variables
involved in the execution is also no larger than the size of the program. Thus, for
each n-ary predicate and n-tuple of constants, verifying whether that tuple is in
the relation of the predicate can be carried out in time polynomial in the size of P.
Now the number of tuples for any predicate is O(¢®), which is polynomial in the
size of the program since @ is O(1); and further, the number of predicates in P is
no greater than the size of the program. The theorem follows. O

5. ANALYSIS OF FUNCTION-FREE PROGRAMS

As seen from the discussion of the previous section, precise analysis of programs
containing function symbols can be quite difficult. In this section, we consider
programs that do not contain any function symbols and do not have any failed
execution branches. This is motivated by a variety of groundness and aliasing
analyses that have been proposed in the literature in recent years, primarily in
the context of compiler parallelization and code optimization of logic programs
[Chang et al. 1985; Debray 1989; Jacobs and Langen 1989; Marriott et al. 1994;
Muthukumar and Hermenegildo 1989; 1991]. Such analyses typically do not keep
track of the function symbols of the various terms that a variable might be bound
to, and as a result may not be able to detect execution branches that fail at runtime.
The precision of such algorithms can be examined by considering programs that do
not contain any function symbols or constants, and also do not contain any failed
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execution branches (it may seem strange to consider the precision of groundness
analyses by considering programs where all terms are variables: the idea is to see
how well an analysis is able to propagate ground values that are given as arguments
in a query in order to determine what other variables become ground at different
program points).

For the complexity results of this section, we rely on aliasing to mimic the eval-
uation of monotone Boolean formulae. The essential idea here is to associate, with
each proposition ¢, two logic variables X, and X,gr. A truth value of true is
denoted by having X,; and X,g aliased together, while a truth value of false is
denoted by having these variables independent, i.e., not aliases. If the variables
associated with a formula ¢ are X, 7 and X g, then we say that ¢ is evaluated
into the pair (X,r, Xor). As a special case, each variable x in a proposition ¢ is
associated with two logic variables X7 and Xg.

Conjunction is simulated by a predicate and/6 that is defined as follows:

and (X1, Xr, Y1, Yr, X1, Yr) :- Xr = Y1.

The first two argument positions of and/6 correspond to the truth value for one
of the conjuncts; the third and fourth arguments correspond to the truth value for
the other conjunct; and the last two arguments are the truth value of the entire
conjunction. The intuition is that the last two argument positions are aliased
together (denoting a truth value of true) if and only if the first two arguments are
aliased (indicating that the first conjunct has truth value true) and that the third
and fourth arguments are also aliased (indicating that the second conjunct also has
a truth value true).
Disjunction is simulated by a predicate or/6 that defined as follows:

or(X1, Xr, _, _, X1, Xr).
or(_, _, Y1, Yr, Y1, Yr).

The argument positions of or/6 have the same significance as for and/6: the first
two arguments correspond to one disjunct, the third and fourth arguments to the
other disjunct, and the last two argument positions denote the truth value of the
disjunction itself. It is not difficult to see that the last two argument positions of
or/6 can be aliased together (denoting a truth value of true) if and only if either the
first and second arguments are aliased together, or the third and fourth arguments
are aliased together, or both, i.e., if and only if at least one of the disjuncts has a
truth value of true.

5.1 Function-Free, Failure-Free Programs Containing Recursion

We now describe a mapping F that, given any (recursive) monotone Boolean for-
mula ¢, yields a triple (G, X, Y). Here, G is a Prolog goal, and XY are variables
in G, such that ¢ is true if and only if X and Y become aliased together when G
is executed. The construction proceeds as follows:

(1) Tf ¢ is a propositional variable # associated with the logic variables Xy and
Xr, then F(p) = (¢, X1, Xg), where € denotes the empty sequence of goals.

(2) Tf ¢ is the constant true, then F(p) = (X =V, X,Y); if ¢ is the constant
false, then F(p) = (¢, X, Y).
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(3) If ¢ is of the form ¢ A ¢, with F(¢) = (G4, Xor,Xsr) and F(y) =
<G¢,X¢L,X¢R>, then ]-"(go) = <G,X¢L,X¢R>, where

G = ‘G¢, G¢, and(X¢L,X¢R,X¢L,X¢R,X¢L,X¢R)7
where Xy7, and Xyg are not in vars(Gy); Xyr and Xyg are not in vars(Gy);
and X,y and X, g are not in vars(Gy) U vars(Gy).

(4) If ¢ is of the form ¢ V ¢, with F(¢) = (G4, Xor, Xpr) and F(y) =
<G¢,X¢L,X¢R>, then ]-"(go) = <G,X¢L,X¢R>, where

G =Gy, Gy, or(Xyr, X¢r, Xy, Xyr, Xor, XpR)’

where Xy7, and Xyg are not in vars(Gy); Xyr and Xyg are not in vars(Gy);
and X,y and X, g are not in vars(Gy) U vars(Gy).

(5) If ¢ is of the form f(¢1,...,¢n), with F(¢;) = (G4, Xir, XiRr), then F(p) =
(G, Xor, Xyr), where

G= ‘Gla M "Gna f(XlLaXlRa M "XTLL;XHR’XLPL’XLPR),

where X5 and X g are not in vars(G;),1 < ¢ < n; and ¢ # j implies Xz,
Xir are not in vars(G;), 1 <i,j <n.

Ezample 5.1.1. Let ¢ = (# Ay) V (y A (2 V z)), then

f(go) = and(XL, Xr,Yr, YR,UL,UR),
or(XL, XR,Z21,Zp,V, VR),
and(YL, Ygr, VL, VR,WL,WR),
Or(UL,UR,WL,WR, Ap, AR)

It is not difficult to see that the following lemma is true:

LEMMA 5.1.2. Given any (recursive)} monotone Boolean formula ¢, the sequence
of atoms F(p) can be constructed in time polynomial in the size of .

We first consider the translation of a recursive monotone Boolean function
(RMBF) to a function-free Horn program. Let ¢ = (eq, a) be an instance of RMBF,
where eq = f(x1,...,2,) = E is a recursive equation, and a = (a,...,a,) is a
tuple of n arguments. We construct a program P, to evaluate ¢, as follows:

(1) Let F(E) = (G,Ur,UR); then P, contains a clause

f(leale) .. 'aanaanaUL’UR) . G

(2) Let F(f(a1,...,a,)) = (G,Ur,Ug); then P, contains a “root predicate” p/2
defined by the clause p(Uz,Ug) :— G.

(3) P, contains the definitions for the predicates and/6 and or/6 defined earlier.

(4) The only exported predicate in P, is p/2.

Ezample 5.1.3. Consider the RMBF of Example 4.1.1, with ¢ = (eq, a), where
eq is given by
f(z1, @0, 23) = 21V (22 A f(f(23 V 22,23, 21), 73, 1 A 22)

and a = (true, false, false). Then, P, contains, apart from the definitions of the
predicates and/6 and or/6, the following clauses:
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f£(X11, Xir, X21, X2r, X31, X3r, V1, Vr) :-
or(X31, X3r, X21, X2r, U1l, Ulr),
£(U11, Ulr, X31, X3r, X11, Xir, U21, U2r),
and(X11, X1r, X21, X2r, U3l, U3r),
£(U21, U2r, X31, X3r, U3l, U3r, U4l, U4r),
and(X21, X2r, U4l, U4r, U51, Ubr),
or(X11, Xir, U51, U5r, V1, Vr).

p(Ul, Ur) :-X =Y, £X, Y, _, _, _, _, UL, Ur).

LEmMma 5.1.4. Let P, be the program obtained from any (recursive) monotone
Boolean formula ¢ as described above, and let () be the query ?- p(U, V) where U
and V are distinct variables. Then, the SLD-tree for the query @ and the program
P, does not contain any failed execution branches.

ProoF. From the definition of the function F' that generates P, there are no
nonvariable terms in any of the clauses in P,. Then, if the query @) does not contain
any nonvariable terms, then SLD-resolution cannot give rise to any nonvariable
terms at any point. This implies that unification cannot fail at any point in the
SLD-resolution. Hence the SLD-tree for the query @) and the program P, does not
contain any failed branches. O

THEOREM 5.1.5. Ezact alias analysis of function-free, failure-free Horn programs
1s EXPTIME-complete.

ProoOF (SKETCH). The proof is by reduction from RMBF, which from Theorem
2.5.6 is EXPTIME-complete. Given an instance ¢ of RMBF, a function-free pro-
gram P, whose execution mimics the evaluation of ¢ can be generated, as described
above: from Lemma 5.1.2 this construction takes time polynomial in the size of .
Now consider a query ?- p(U, V) where U and V are distinct variables: from Lemma
5.1.4 the SLD-tree for this query does not contain any failed execution branches.
Further, the evaluation of this query results in U and V becoming aliased together
if and only if ¢ is true (the details of this argument are essentially similar to that
for Theorem 4.1.3). Thus, any analysis that gives exact results for function-free,
failure-free Horn programs will infer that U and V are aliases after the evaluation of
this query if and only if ¢ is true. Since, from Theorem 2.5.6, RMBF is EXPTIME-
complete, it follows that precise alias analysis of function-free, failure-free programs
is EXPTIME-hard.

The argument that the problem is in EXPTIME is a generalization of that for
Theorem 4.1.3. The main issue is that in this case we have to deal with nonground
atoms. This can be done using an immediate-consequence operator based on non-
ground atoms, which can be obtained as a modification of the s-semantics presented

by Falaschi et al. [1989]. O

It is straightforward to use the transformation discussed at the end of Section 3.2
to extend this result to programs where no clause has more than two body literals.
5.2 Function-Free Programs without Recursion

We next consider the complexity of dataflow analysis of function-free, failure-free
programs if precision is sacrificed at recursive calls. To this end, we describe a
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procedure that, given two monotone Boolean formulae ¢ and v, generates a logic
program P,y that can be used to establish whether or not ¢ and ¢ are equivalent.
The construction goes as follows:

(1) P,y contains the clauses
choose_truth_val (X, X).
choose_truth_val (X, Y).
This simulates the two truth values that any variable in ¢ and ¥ may take on.
(2) P,y contains the clauses defining the predicates and/6 and or/6 given earlier.
(3) P,y contains a clause for a predicate p/4 defined as follows:
P(Xor, Xer, Xy, XyR) i —
choose_tval(Xir,X1R), - .., choosetval(Xnr,Xnr), Gy, Gy.
where F(¢) = (Gy,Xor, Xor), F(¥) = (Gy,Xyr,Xyr), Xor and X, g are not
in vars(Gy) U {Xir,X1R, ..., XnL, Xnr}, and where Xy; and Xypg are not in
vars(Gw) U {XIL, XiR, -, XnL, XnR}~
(4) The only exported predicate in P,y is p/4.

Ezample 5.2.1. Let ¢ = e Ay V z) and ¢ = (z Ay) V (y A z) V x; then the
program P,y contains, apart from the definitions of the predicates and/6, or/6,
and choose_tval/2, the following predicate:

p(A_l, A_r, B_1, B_r) :-
choose_truth_val(X_1, X_r),
choose_truth_val(Y_1l, Y_r),
choose_truth_val(Z_1l, Z_r),
or(Y_1l, Y.r, Z_1, Z_r, U_1, U_r), /* begin Formula 1 */

and(X_1, X_r, U_1, U_r, A_1, A_r), /* end Formula 1 */
and(X_1, X_r, Y_1, Y_r, V_1, V_r), /* begin Formula 2 */
and(Y_1, Y_r, Z_1, Z_r, W_1, W_r),
or(V_1, V_r, W.1, W_r, T_1, T_r),
or(T_1, T_r, X_1, X_r, B_1, B_1r). /* end Formula 2 */

LEMMA 5.2.2. Let ¢ and i be any pair of monotone Boolean formulae; then ¢
and ¢ are equivalent of and only if, given the program P,y and the query

- p(XL,XR,YL,YR)

the analysis infers that X1 and Xg are aliased at the point tmmediately after the
query if and only if Yr and Yr are aliased.

PrOOF. The proof proceeds via a straightforward structural induction to show
that given a monotone Boolean formula ¢ and a truth assignment for its variables
(in the form of certain pairs of variables being aliased or not) the evaluation of
the goal G, where F(p) = (G, X1, XRr), results in X1 and Xp becoming aliased
together if and only if ¢ evaluates to true for that truth assignment. It follows
immediately that given two monotone Boolean formulae ¢ and ¢ these formulae
are equivalent if and only if for every possible choice of truth assignments to the
variables occurring in these formulae the evaluation of the goal ‘G, Gy’, where
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Flp) = (Gy, X1, XRr) and F(¢) = (Gy,Yr,Yr), results in X; and Xgr becoming
aliased together when and only when Y7 and Yg become aliased. Suppose the set
of variables occurring in ¢ and v is {Uy, ..., U,}; then this is equivalent to saying
that for every branch in the SLD-tree for the goal

choose_tval(Uiz,Uir), ..., choosetval(Unr,Unr), Gy, Gy

X1 and Xp are aliases if and only if Y7, and Yy are aliases. Given the definition of
the predicate p/4 in the program P,, the lemma follows readily from this. O

We are now in a position to prove the following result:

THEOREM 5.2.3. Ezxact alias analysis for recursion-free, function-free, failure-
free, bounded-arity programs is co-NP-complete. It remains co-NP-complete even if
no predicate has arity exceeding 6.

ProoF. The proof is by reduction from the Equivalence problem for monotone
Boolean formulae, which, from Theorem 2.5.4, is co-NP-complete. Given any two
monotone Boolean formulae ¢ and #, it follows from Lemma 5.1.2 that the program
P,y can be constructed in time polynomial in the size of ¢ and . It follows, from
Lemma 5.2.2, that exact alias analysis for recursion-free, function-free, failure-free,
bounded arity programs is co-NP-hard.

To show that the problem is in co-NP, we show that the complement of the
problem is in NP. To this end, consider any recursion-free, function-free, failure-
free, bounded arity program: we wish to show that if there is some execution branch
of the program which aliases together two variables Xy and Xg but which leaves
two other variables Yz and Yg unaliased (intuitively, such an execution branch
corresponds to a “witness” that two formulae are not equivalent), then this can
be found in polynomial time by a nondeterministic Turing machine. It is possible
to “guess” nondeterministically an execution path that aliases Xp and Xpg but
not Yz and Yg by guessing, for each literal in the program, which clause of the
corresponding predicate to choose, and then verify that this execution path does,
in fact, cause the appropriate aliasing behavior. Since there i1s no recursion, the
total length of such an execution path is linear in the size of the program. Since
the programs under consideration have bounded arity, the total number of variables
that may involved is also linear in the size of the program. Thus, the verification
step can be carried out in time polynomial in the size of the program. The theorem
follows. O

5.3 Groundness Analysis

Groundness analyses seek to determine which variables are guaranteed to be bound
to ground terms at various program points. In general, this requires reasoning about
the groundness of arguments to predicates, and about sharing and aliasing between
these arguments, at the time of a call and when that call returns. It turns out
that even if all we have is an analysis that only gives information about groundness
of different argument positions at entry and exit from a predicate (i.e., does not
provide any sharing or aliasing information), it is possible to extract enough aliasing
information to obtain the following results:
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THEOREM 5.3.1. Ezact groundness analysis for function-free, failure-free Horn
programs is EXPTIME-complete.

ProoF. The proof is by reduction from RMBF, and is essentially similar to
that of Theorem 5.1.5. Given an instance ¢ of RMBF, a function-free program P,
whose execution mimics the evaluation of ¢ can be generated in polynomial time,
as described earlier. Now consider a query 7- p(U, V), where U and V are distinct
variables. Any groundness analysis that gives exact results for function-free, failure-
free Horn programs will infer that the groundness of U and V are equivalent after
the evaluation of this query—i.e., U is ground if and only if V is ground—if and
only if ¢ 1s true. It follows, from Theorem 2.5.6, that precise groundness analysis
of function-free, failure-free programs is EXPTIME-hard. The argument that the
problem is in EXPTIME is similar to that in the proof of Theorem 5.1.5. O

Similarly, proceeding as in Theorem 5.2.3, it is not difficult to show the following:

THEOREM b5.3.2. Ezact groundness analysis for recursion-free, function-free,
failure-free, bounded-arity programs is co-NP-complete.

While most groundness and alias analyses proposed in the logic programming lit-
erature are not precise enough to include the class of recursion-free, function-free,
failure-free, bounded-arity programs in their exactness sets, we know of at least one
analysis algorithm, proposed by Marriott et al. [1994], that appears to be precise
enough to give exact results for this class of programs. This analysis requires the
solution of a co-NP-hard problem at each iteration to determine whether a fixpoint
has been attained (the analysis manipulates propositional formulae containing the
connectives A, V, and < and checking to see whether a fixpoint has been attained
involves deciding the equivalence of two such formulae: this is a proper general-
1zation of the equivalence problem for monotone Boolean formulae, and therefore,
from Theorem 2.5.4, is co-NP-hard). However, this source of complexity is absent
in recursion-free programs, and one may reasonably inquire after the worst-case
complexity of this analysis in this case. Thus, Theorem 5.3.2 illustrates that there
are at least two independent sources of complexity in this algorithm, a fact that
is by no means obvious from the description of the algorithm. This demonstrates
how our techniques can be used to separate out different sources of complexity in
an analysis algorithm.

6. BOUNDING THE NUMBER OF CALLING AND SUCCESS PATTERNS

One possible reason an analysis may be imprecise is that, for efficiency reasons, it
may not keep track of all the different calling and/or success patterns it encoun-
ters for a predicate—it may instead compute a single worst-case summary for each
predicate to obtain a conservative approximation to these sets. Such a strategy is
used in a number of analyses, for example, Chang et al. [1985], Debray and Warren
[1988], and Mellish [1985]: it does not appear too unreasonable if we believe that
for most programs encountered in practice, predicates have specific argument posi-
tions used consistently with the same mode, type, etc. (see, for example, Drabent
[1987]). In this section, we examine whether such a strategy can lead to fundamen-
tal improvements in the worst-case behavior of analysis algorithms.
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If an analysis approximates a set of calling and/or success patterns by their least
upper bound in the abstract domain, there will be a loss in precision in general.
However, if every predicate in the program under consideration has at most one
calling pattern and one success pattern, then there is no loss of precision due to
this approximation. To examine complexity issues for analyses that compute worst-
case approximations in this way, we focus on programs where each predicate has
a bounded number of calling and success patterns. Of course, whether or not this
is true for a given program depends partly on the program, and partly on the
abstract domain under consideration, since a single calling pattern for one abstract
domain may correspond to a number of different calling patterns for a different
abstract domain that is larger and has finer granularity. However, when we refer
to an analysis algorithm we assume implicitly that the algorithm is defined with
respect to some specific abstract domain, so it makes sense to talk about the class
of programs that, for a given analysis, have a bounded number of calling and/or
success patterns.

The first such restriction we consider is described by Codish et al. [1990], who
describe a bottom-up analysis that maintains at most one success pattern per pro-
gram clause (since the analysis is a bottom-up one, there is no notion of calling
patterns). The worst-case complexity of the resulting analysis is O(2"), where n is
the size of the program [Codish et al. 1990]. We show that unless P = NP, it may
not be possible to do better than this:

THEOREM 6.1. Ezact groundness and alias analyses of recursion-free, function-
free, failure-free programs, where the number of distinct calling and success patterns
for any predicate is O(1), is co-NP-complete.

ProoF. Identical to that of Theorem 5.2.3. We observe that in the program
P,y constructed there, each predicate has arity at most 6, and so for an abstract
domain of fixed size k can have at most O(k°) = O(1) calling and success patterns.
The result follows. O

If, however, variable dependency information is used in a fairly limited way, it is
possible to obtain analysis algorithms with polynomial-time worst-case complexity.
One of the properties that complicates the handling of sharing among variables
is that sharing is not transitive in general: the fact that a program variable X
may share variables with a program variable Y at runtime, and that ¥ may share
variables with a program variable Z, does not imply that X shares with Z. The
representation and processing of sharing and dependency information can be sim-
plified considerably, at the cost of some precision, by assuming that sharing is
transitive. Define the class of transitive-sharing programs to be those programs
where all sharing among variables is transitive. Then, the results of Debray [1989]
imply the following:

THEOREM 6.2. There exist polynomial-time dataflow analysis algorithms whose
eractness sets are contained tn the class of function-free, failure-free, bounded-arity,
transitive-sharing programs where each predicate has at most one calling and one
success pattern.

If aliasing can be disregarded entirely, analyses can be carried out quite efficiently:
it is shown, in Debray [1992], that abstract domains that allow aliasing to be ignored
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Fig. 1. The correlation between precision and complexity in dataflow analysis of logic programs.

admit sound flow analysis algorithms whose worst-case complexity, assuming O(1)
calling and success patterns per predicate, is linear in program size. Define a
program to satisfy the variable-free calls property if none of the calls arising during
the execution of that program contain variables. We have the following result

[Debray 1992]:

THEOREM 6.3. There exist linear-time dataflow analysis algorithms whose exact-
ness sets are contained in the class of alias-free, failure-free, bounded-arity programs
that satisfy the variable-free calls property and where each predicate has at most one
calling and one success pattern.

Analyses satisfying these requirements include the rigid type analysis of Janssens
[1990], and Sato and Tamaki’s depth-abstraction analysis [Sato and Tamaki 1984].

7. CONCLUSIONS

While it is generally believed that there is a correlation between complexity and
precision of flow analysis algorithms, in the sense that “sufficiently precise” analyses
must also be correspondingly expensive, little work appears to have been done on
quantifying this correlation. This article takes a step toward formally addressing
this issue in the context of logic programming. We offer a formal characterization
of the “precision” of dataflow analyses. We consider the implications, with regard
to the precision/complexity tradeoff, of some of the different ways in which various
analysis algorithms may sacrifice precision. Qur results, which are summarized
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in Figure 1, indicate, somewhat surprisingly, that even for classes of programs
whose syntactic structure is extremely simple, the worst-case complexity of precise
dataflow analysis can be exponential in the program size for a wide variety of
dataflow analyses. The implication is that the complexity cannot be any better
when considering the entire Prolog language, even for relatively modest dataflow
analyses of logic programs.
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