
On the Complexity of Data
ow Analysis of LogicProgramsSAUMYA K. DEBRAYThe University of ArizonaIt is widely held that there is a correlation between complexity and precision in data
ow analysis,in the sense that the more precise an analysis algorithm, the more computationally expensive itmust be. The details of this relationship, however, appear to not have been explored extensively.This article reports some results on this correlation in the context of logic programs. A formalnotion of the \precision" of an analysis algorithm is proposed, and this is used to characterizethe worst-case computational complexity of a number of data
ow analyses with di�erent degreesof precision. While this article considers the analysis of logic programs, the technique proposed,namely the use of \exactness sets" to study relationships between complexity and precision ofanalyses, is not speci�c to logic programming in any way, and is equally applicable to 
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ow analysis, between precisionand complexity: at one extreme, there are very e�cient algorithms that rarely giveuseful information about any program; at the other extreme are highly precise al-gorithms that may sometimes be very expensive computationally. Most algorithmsfor data
ow analysis tend to fall in between these extremes: some are generallyquite e�cient but may fail to be very precise under some circumstances, while oth-ers tend to be fairly precise but may not always be very e�cient. The details ofthis tradeo�, however, do not appear to have been explored extensively. Some re-searchers have given complexity results for speci�c analyses (e.g., Jones and Much-nick [1981] and Myers [1981] for imperative languages, Hudak and Young [1986] forfunctional languages, Aiken and Lakshman [1994] for logic programs). However,these have typically addressed the complexity of particular analyses, rather thanexplore the correlation between precision and complexity of data
ow analysis in asystematic way. In the logic programming context, a variety of data
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2 � S. K. Debrayalgorithms have been proposed, with varying degrees of precision, and worst-casecomplexities ranging from linear time [Debray 1992] to exponential in the input size[Codish et al. 1990; Jacobs and Langen 1989; Marriott et al. 1994; Muthukumarand Hermenegildo 1989; 1991]. These results do not, however, really give us anyunderstanding of intrinsic tradeo�s between precision and complexity, in the senseof how expensive any \su�ciently precise" analysis must be.A problem that arises immediately is that of making the notion of an analysisbeing \su�ciently precise" su�ciently precise. For example, it is important to beable to characterize the complexity/precision results in an algorithm-independentway, in order to avoid the possibility of being misled by design de�ciencies in aparticular algorithm. In the next section, we o�er one simple way to address thisproblem, namely, to examine the class of programs for which an analysis gives ex-act results. We do not claim that this is the only possible characterization of theprecision of data
ow analysis algorithms, or even that it is the best characteriza-tion. However, it appears to be suitable for our immediate objective, which is toexplore the relationship between precision and complexity. The basic approach toexamining the \intrinsic complexity" of an analysis is conceptually straightforward:(1) Identify situations under which the analysis gives up information. Presumably,a program that does not give rise to any of these situations will not su�er anyloss of information, i.e., the analysis will produce \exact" results for it. Bycarefully examining the analysis in this way, we can characterize the class ofprograms for which it produces exact results.(2) Examine the complexity of extracting exact information about programs in thisclass. This typically involves examining how problems with known complexitycan be encoded using these programs.The results so obtained do not depend on speci�c choices of data structures oralgorithms, and therefore are, in some sense, \portable" across analyses. This im-plies, on the other hand, that our results describe what is (or is not) possible, in anabstract sense, rather than give speci�c complexity results for particular analysisalgorithms. For example, Theorem 5.3.1 of this article implies that the worst-casecomplexity of any analysis whose precision matches that of a groundness analysisusing the Prop domain, described by Marriott et al. [1994], cannot be better thanexponential in the size of the program. However, this does not rule out the pos-sibility that a particularly stupid implementation of such an analysis may have aworst-case complexity much worse than this. The overall approach is quite general,in the sense that the examination of the relation between precision and complexityof data
ow analyses using classes of programs for which analyses are exact is ap-plicable to any language family. The approach described here can also be used toexamine independent sources of complexity in an analysis algorithm separately, andstudy their contributions to the overall complexity of the algorithm. The basic ideais similar to that described above: to examine the complexity contribution of someaspect of an analysis|for example, keeping track of aliasing between variables|weconsider programs that do not give rise to the property being considered and ex-amine the complexity of this class. This is illustrated in Section 5.3 via groundnessanalysis using the Prop domain [Marriott et al. 1994].From the practitioner's perspective, complexity-theoretic results are open to the



Complexity of Data
ow Analysis of Logic Programs � 3criticism that they may not say much about the \actual" behavior of an algorithm.This is certainly true of the particular complexity results given in this article. Nev-ertheless, we believe that theoretical worst-case complexity results are useful forpractitioners. The di�erence between the gloomy complexity results given hereand the encouraging behavior observed \in practice" by experimental studies (see,for example, Le Charlier and Van Hentenryck [1994] and Van Hentenryck et al.[1994]) is that the former say what could happen, while the latter describe whatdoes happen. Reconciling these apparently contradictory truths requires that wespecify what we mean by the phrase \in practice" much more carefully than mostempirical studies usually do. An important shortcoming of purely experimentalstudies is that, even if we discount the e�ects of di�erent hardware platforms, im-plementation languages, and implementor skills, we are left with the problem thatit is di�cult to say anything rigorous about how representative a particular col-lection of benchmarks is. The methodology of this article suggests, however, thatwe can characterize speci�c classes of programs in a precise way and consider thecomplexity and precision of analyses on programs in these classes. The question ofwhether or not a collection of programs is \representative" for a particular applica-tion domain is, in our opinion, easier to consider objectively and verify empiricallyfor classes of programs characterized in this manner than it is for a more or lessarbitrarily chosen set of benchmark programs. An example of this is given by Mar-riott and S�ndergaard [1993], who show that even though data
ow analysis usingthe Prop domain is EXPTIME-complete in general (see Section 5.3), it can be donein polynomial time for programs where the number of variables in any clause isbounded. The claim that \groundness analysis using Prop is reasonably e�cient inpractice" can then be reduced to the assertion that \it is possible, in most cases,to bound the number of variables appearing in a clause," which is somewhat easierto understand and to verify empirically. Apart from this, some researchers haveconsidered an approach to program analysis where properties of input programsare computed, not by examining them directly, but by �rst transforming them toother (simpler) programs and then computing exact properties of the transformedprograms [Codish and Demoen 1993; Hermenegildo et al. 1992]; it seems plausible(see Giacobazzi et al. [1992]) that other analyses may also be understandable interms of exact analysis of transformed programs. The study of programs on whichanalyses give exact results can give insights into the algorithmic behavior of suchanalyses.The remainder of the article examines various classes of data
ow analyses of logicprograms and gives characterizations of their worst-case complexities. We considertwo broad classes of data
ow analyses of logic programs. The �rst class, whichdistinguishes between di�erent function symbols and constants, is important in thecontext of type inference (not all of the type analyses proposed in the logic program-ming literature maintain enough information about relationships among di�erentprogram components to meet our assumptions about precision; type analyses thatkeep track of relationships between di�erent components of terms and argumentpositions of predicates, and therefore are relevant for our purposes, include Cortesiet al. [1994], Janssens [1990], Mulkers et al. [1994], Winsborough [1988], andVan Hentenryck et al. [1994]) and sharing analysis [Bruynooghe 1986; King 1994;Mulkers et al. 1994]. The second class, which typically does not distinguish be-



4 � S. K. Debraytween di�erent function symbols but focuses instead on groundness of variables andon dependencies between them, is important in the context of compile-time par-allelization and optimization of logic programs [Chang et al. 1985; Debray 1989;Jacobs and Langen 1989; Marriott et al. 1994; Muthukumar and Hermenegildo1989; 1991; Marriott and S�ndergaard 1993]. Of the various data
ow analyses wehave seen proposed in the literature, the vast majority tend to belong to one ofthese two classes. To keep the article self-contained, various concepts and notationused in the rest of the article are given in Section 2. Sections 3 and 4 discusscomplexity results for analyses in the �rst class discussed above, while Section 5considers analyses of the second class. Section 6 considers the e�ects of boundingthe amount of information maintained about di�erent possible execution behaviorsof any predicate in a program, and Section 7 concludes.2. PRELIMINARIES2.1 Logic Programming: An OverviewMost logic programming languages are based on a subset of the �rst-order pred-icate calculus known as Horn clause logic. We assume an acquaintance with theusual terminology of �rst-order predicate logic. Following convention, a nullaryfunction symbol will be referred to as a constant in the remainder of the article,while the phrase function symbol will be used for function symbols of nonzero arity.A de�nite Horn clause is of the form G0 :� G1; : : : ; Gn and is read declarativelyas \G0 if G1 and : : : and Gn." Here, each Gi is an atomic formula and has theform p(t1; : : : ; tn), where p is an n-ary predicate symbol, and t1; : : : ; tn are terms.The atoms G1; : : : ; Gn constitute the body of the clause. A goal is a set of atomicformulaeG1; : : : ; Gn, and is read declaratively as \:G1 or : : :or :Gn." A predicatede�nition consists of a �nite number of de�nite clauses whose heads all have thesame predicate symbol. A logic program consists of a �nite set of predicate de�ni-tions. Following the syntax of Edinburgh Prolog, we write the names of variablesstarting with uppercase letters, and the names of nonvariable (i.e., function andpredicate) symbols starting with lowercase letters. The set of variables occurringin a term (goal, clause) t is denoted by vars(t).A substitution is an idempotent mapping from a �nite set of variables to terms.A substitution �1 is said to be more general than a substitution �2 if there is asubstitution � such that �2 = � � �1. Two terms t1 and t2 are said to be uni�ableif there exists a substitution � such that �(t1) = �(t2); in this case, � is said to bea uni�er for the terms. If two terms t1 and t2 have a uni�er, then they have a mostgeneral uni�er mgu(t1; t2) that is unique up to variable renaming.The operational behavior of logic programs can be described by means ofSLD-derivations. An SLD-derivation for a goal G with respect to a programP is a sequence of goals G0; : : : ; Gi; Gi+1; : : : such that G0 = G, and if Gi =a1; : : : ; an, then Gi+1 = �(a1; : : : ; ai�1; b1; : : : ; bm; ai+1; : : : ; an) such that 1 � i � n;b :� b1; : : : ; bm is a variant of a clause in P that has no variable in common withany of the goals G0; : : : ; Gi; and � = mgu(ai; b). The goal Gi+1 is said to be ob-tained from Gi by means of a resolution step, and ai is said to be the resolved atom.Intuitively, each resolution step corresponds to a procedure call. Let G0; : : : ; Gn bean SLD-derivation for a goalG with respect to a program P , and let �i be the uni�er



Complexity of Data
ow Analysis of Logic Programs � 5obtained when resolving the goal Gi�1 to obtain Gi, 1 � i � n; if this derivation is�nite and maximal, i.e., one in which it is not possible to resolve the goal Gn withany of the clauses in P , then it corresponds to a terminating computation for G:in this case, if Gn is the empty goal then the computation is said to succeed withanswer substitution �, where � is the substitution obtained by restricting the sub-stitution �n � � � � � �1 to the variables occurring in G. If Gn is not the empty goal,then the computation is said to fail. If the derivation is in�nite, the computationdoes not terminate.Given a Horn program P , let HP denote the set of all ground atoms that canbe constructed from predicate and function symbols in P . Consider an immediate-consequence operator TP : P(HP ) �! P(HP ), where P(S) denotes the powersetof a set S: given a set of atoms R known to be true, TP (R) gives the set of atomsthat can immediately be inferred to be true from the clauses of the program P ,read declaratively as implications. This operator is de�ned as follows: for anyR 2 P(HP ),TP (R) = fA j A :� B1; : : : ; Bn is a ground instance of a clause in P andfB1; : : : ; Bng � Rg:It can be shown that for any program P , the least �xpoint lfp(TP ) of the operatorTP exists and is unique, and is given by lfp(TP ) = [i�0T iP (;) [Apt and van Emden1982]. The �xpoint semantics of a logic program P is usually de�ned to be lfp(TP ).For any Horn programP , let SS (P ) � HP denote the set of ground atoms that havesuccessful SLD-derivations in P : Apt and van Emden [1982] show that SS (P ) =lfp(TP ).Most logic programming languages, in practice, allow clause bodies to containnegated goals, and extend the operational semantics to SLDNF-resolution, whichdeals with such goals using the negation-as-failure rule. The essential idea here isthat the execution of a negated goal not(G) succeeds if G is a ground goal all whoseSLDNF-derivations are �nite and failed (for a more precise de�nition, see Apt andDoets [1994]). Programs in this article that contain negated goals will be assumedto be handled using this rule.For data
ow analysis purposes, we assume sometimes that a program may addi-tionally specify a set of \exported" predicates, possibly with descriptions of theirarguments. The intent here is to restrict our attention to possible program execu-tions starting from goals that involve only such exported predicates and where thearguments to such predicates satisfy the speci�ed descriptions.2.2 Data
ow AnalysisData
ow analysis is concerned with the inference, at compile time, of propertiesthat hold at di�erent points of a program when it is executed. Such properties canbe speci�ed by associating, with each program point, the set of all \environments"that may be obtained when execution reaches that point, over all possible executionsof the program (possibly starting from some given initial state of interest): such asemantics for a program is referred to as its collecting semantics. Unfortunately, thesets of environments associated with program points cannot be guaranteed to be�nite in general, making it impractical to carry out data
ow analyses by computingthe collecting semantics. Instead, the collecting semantics is approximated using



6 � S. K. Debray\descriptions," and analyses carried out by simulating the execution of the programusing these descriptions. The domain of descriptions is often referred to as theabstract domain. Many data
ow analyses can be formalized in terms of a frameworkfor program analysis known as abstract interpretation [Cousot and Cousot 1977;1979; Marriott et al. 1994].For purposes of data
ow analysis, predicates in a program are often treated asprocedures that are called and from which control eventually returns to the caller,so an operational characterization of logic programs that is slightly di�erent fromSLDNF-resolution turns out to be convenient. Let p(�t) be the resolved atom insome SLDNF-derivation of a goal G in a program P , then we say that p(�t) is a callthat arises in the computation of G in the program. If the goal p(�t) can succeedwith answer substitution �, then we also say that it can return with its argumentsbound to �(�t). The description of a call, in terms of abstract domain elements,is referred to as a calling pattern, while the description of a return from a call isreferred to as a success pattern (for more precise de�nitions of these terms, seeDebray [1992]). Since a predicate can be called from many di�erent points in aprogram, there may be more than one calling pattern for it; and since it may bede�ned by a number of di�erent clauses, any given calling pattern may correspondto more than one success pattern. Let G0; : : : ; Gn be an SLDNF-derivation for agoal G in a program P , and let �i be the uni�er obtained when resolving the goalGi�1 to obtain Gi, 1 � i � n. Let  i denote the substitution �i � � � � � �1. If thereare variables x; y 2 vars(Gi), such that  i(x) =  i(y) = t for some i, 0 � i � n,and some nonground term t, then x and y are said to be aliased together in Gi: inthis case, we also say that x and y are aliases of each other.2.3 On the Precision of Data
ow AnalysesA natural characterization of the precision of a 
ow analysis algorithm is relativeto some other algorithm: the �rst is more precise than the second if and only if forevery program and every input the results obtained using the �rst algorithm areuniformly more precise than those obtained from the second. Cousot and Cousot[1977; 1979] use such a characterization to show that for any given language andabstract domain the space of all possible abstract interpretations forms a completelattice when ordered according to this notion of precision, and thereby infer theexistence of a \most precise" abstract interpretation. Because this expresses theprecision of an analysis in terms of that of other analysis algorithms, we refer tothis notion of precision as relative precision.Such a characterization is unsuitable for our needs, however, because it is notimmediately obvious how it can be used to obtain insights into the computationalcosts associated with analyses of di�erent degrees of precision. What we need,rather, is a way to characterize the precision of an analysis in a way that does notrequire any reference to any other analysis algorithm. Our approach is to considerthe precision of an analysis to be given by the class of programs for which theanalysis is exact, i.e., where the analysis is sound (everything that can happen atruntime is predicted by the analysis) and minimal (everything that is predicted bythe analysis can, in fact, happen at runtime). We refer to the class of programs forwhich an analysis algorithm A gives exact results as the exactness set of A. In thelanguage of abstract interpretation, the exactness set of an analysis algorithm A is



Complexity of Data
ow Analysis of Logic Programs � 7the class of programs for which the concretization of the �xpoint computed by Acoincides with the collecting semantics of the program.1 The following result is notdi�cult to see:Proposition 2.3.1. Given two analysis algorithms A and B, if A is relativelymore precise than B, then the exactness set of B is contained in that of A.The converse, however, need not hold. To see this, consider the following pairof analyses. A is an analysis that pattern-matches on its input to determine ifit is the usual append program to concatenate two lists: if so, A produces a pre-computed exact result; otherwise it does not produce any information at all. Bis an analysis that proceeds as follows: for any input program P , B �rst uses asubsidiary analysis using depth-3 abstraction to analyze P ; if this encounters aterm with depth exceeding 3, resulting in some loss of information due to depthabstraction, B returns all of the information computed by the subsidiary analysis;otherwise, if no information was lost during the subsidiary analysis, B discards all ofthe information obtained from the subsidiary analysis and produces no informationat all. A yields nontrivial information only for the append program, for which itproduces exact results; B produces nontrivial information about a large numberof programs but does not yield exact information about any program. Thus, eventhough the exactness set of A properly contains that of B, it is clear that A isnot relatively more precise than B. However, all of the counterexamples to theconverse of Proposition 2.3.1 that we have been able to construct|for example, theanalysis B above|discard information gratuitiously and therefore appear bizarreand unnatural. Based on this, and on the analyses that we have seen proposedin the literature, we conjecture that the converse of Proposition 2.3.1 holds forall \natural" static analysis algorithms, and that exactness sets are a reasonablemeasure of precision for practical purposes.2.4 Some Simple but Interesting Classes of ProgramsCertain classes of programs are especially interesting for examining the tradeo� be-tween precision and complexity of data
ow analyses. Intuitively, they attempt tocapture assumptions that are common in data
ow analysis algorithms. The follow-ing list enumerates the main classes of programs we consider, and the motivationfor considering them.Failure-Free Programs. This class contains programs that do not contain failedexecution branches at runtime. This class is considered to deal with the complexityand precision of data
ow analyses, such as those of Chang et al. [1985], Debray[1989], Jacobs and Langen [1989], Marriott et al. [1994], and Muthukumar andHermenegildo [1989; 1991], that ignore the possibility of failure.Function-Free Programs. This class consists of programs that do not contain anyfunction symbols or constants, i.e., where every argument of every literal is a vari-able. It is motivated by a variety of groundness and alias analyses used in compile-time optimization and parallelization, such as those of Chang et al. [1985], Marriott1Note that this notion of \exactness" is strictly stronger than, for example, that proposed byMannila and Ukkonen [1987].



8 � S. K. Debrayet al. [1994], and Muthukumar and Hermenegildo [1989; 1991], which ignore thedistinction among di�erent function symbols.Datalog Programs. This class consists of programs that do not contain any func-tion symbols of nonzero arity. It is motivated by a variety of program analysesthat rely on depth abstraction (see, for example, Codish et al. [1994], King [1994],Marriott and S�ndergaard [1988], Santos Costa et al. [1991], Sato and Tamaki[1984], and Taylor [1989]). Any nontrivial depth abstraction must retain informa-tion about at least the principal functors of terms, and so will not discard anyinformation about constants. Thus, by examining programs where there are nofunction symbols of nonzero arity, we can study the complexity of analyses usingdepth abstraction.Recursion-Free Programs. This class consists of programs that contain no recur-sion. It is motivated by the desire to study the complexity and precision of data
owanalysis algorithms that sacri�ce precision at recursive calls for e�ciency reasons,e.g., Debray [1989].Alias-Free Programs. This consists of programs that do not, at any point duringexecution, alias together two distinct variables. It is motivated by the fact thattracking aliasing may be expensive, so that we may be interested in discussingthe extent to which an analysis problem may be simpli�ed by not having to trackaliasing precisely (see, for example, Debray [1992]).Bounded-Arity Programs. This is a family of sets of programs: for each n � 0, theclass of arity-n programs consists of programs where every predicate and functionsymbol has arity at most n. In analyzing the complexity of their algorithms, someresearchers have argued that in most programs encountered in practice, the aritiesof predicates do not increase as program size increases (see, for example, Debray[1989; 1992], Sagiv and Ullman [1984], and Ullman [1988]). Bounded-arity programsare used to study the complexity/precision behavior of various data
ow analysesunder this assumption.2.5 Some Useful Complexity ResultsIt is well known that the Satis�ability problem for propositional clauses, i.e., theproblem of deciding whether an arbitrary propositional clause is satis�able is NP-complete [Cook 1971]. In addition, certain other kinds of Boolean formulae are ofparticular interest to us for reasoning about computational complexity. These in-clude Quanti�ed Boolean Formulae, Monotone Boolean Formulae, Recursive Mono-tone Boolean Functions, and Sch�on�nkel-Bernays formulae.De�nition 2.5.1. A quanti�ed Boolean formula is of the form Q1x1 � � �Qnxn',where each of the Qi is one of the quanti�ers 8 and 9, and ' is a propositionalformula over the variables x1; : : : ; xn.We assume that the quanti�ed variables xi are all distinct, i.e., i 6= j impliesxi 6= xj : this is not a serious restriction, since the formula can be processed, inlinear time, to rename variables and obtain an equivalent formula satisfying thisrequirement. The following result is due to Stockmeyer and Meyer [1973]:Theorem 2.5.2. The problem QBF of determining whether an arbitrary quan-ti�ed Boolean formula is true is PSPACE-complete.



Complexity of Data
ow Analysis of Logic Programs � 9De�nition 2.5.3. A Boolean formula ' is said to be monotone if and only if theonly connectives in ' are ^ (\and") and _ (\or").The following result is due to Bloniarz et al. [1984]:Theorem 2.5.4. The Equivalence problem for monotone Boolean formulae, i.e.,the problem of deciding, given two arbitrary monotone propositional formulae ' and , whether ' and  take on the same truth value for every truth assignment, isco-NP-complete.2De�nition 2.5.5. A recursive monotone Boolean function (RMBF) is an equationf(x1; : : : ; xn) = E, where E is an expression over the variables x1; : : : ; xn with thesyntax:E ::= true j false j xi(1 � i � n) j E1 ^E2 j E1 _E2 j f(E1; : : : ; En):An instance of RMBF is a pair heq; ai, where eq is an equation eq � f(x1; : : : ; xn) =E, and a is a tuple of n arguments a = ha1; : : : ; ani. Let B denote the Booleandomain ftrue; falseg with the ordering false v true. The instance heq; ai is trueif and only if f(a1; : : : ; an) = true in the least �xpoint of the equation eq on thedomain of Boolean functions Bn �! B (with the ordering v extended pointwise inthe usual way).The following result is due to Hudak and Young [1986]:Theorem 2.5.6. RMBF is EXPTIME-complete in the length of the instanceheq; ai, where EXPTIME = [c�0DTIME [2nc].De�nition 2.5.7. A Sch�on�nkel-Bernays formula is a �rst-order formula of theform 9x1 � � �9xm8y1 � � � 8ynF , where F is a quanti�er-free �rst-order formula overthe variables fx1; : : : ; xm; y1; : : : ; yng that does not contain any function symbolsof nonzero arity nor any occurrences of the equality predicate `='.The following result is due to Lewis [1980]:Theorem 2.5.8. The problem of deciding the satis�ability of an arbitrarySch�on�nkel-Bernays formula is NEXPTIME-complete, where NEXPTIME =[c�0NTIME [2nc].2.6 Complexity Results for Analysis of Logic Programs: A SummaryOur complexity results for data
ow analysis of logic programs may be summarizedas follows:(1) Precise analysis of programs that contain no aliasing, where there are onlytwo distinct constants and no function symbols of nonzero arity, is EXPTIME-complete. It follows that any analysis that is precise enough to give exact resultsfor this class of programs has a worst-case complexity that is exponential inthe size of the input program. This addresses, in particular, the complexityof various analyses that use depth abstraction, e.g., Codish et al. [1994], King2Actually, Bloniarz, Hunt and Rosenkrantz prove a di�erent but equivalent result, namely thatthe Inequivalence problem for monotone Boolean formulae is NP-complete.



10 � S. K. Debray[1994], Marriott and S�ndergaard [1988], Santos Costa et al. [1991], Sato andTamaki [1984], and Taylor [1989].The problem is PSPACE-hard if analyses are required to deliver preciseresults only under the additional constraint that there is no recursion.The problem is NP-complete if, in addition to the constraints listed above,we require also that the maximum arity of any predicate symbol is O(1); itremains NP-complete even if the maximum arity is restricted to 3.(2) If we allow function symbols of nonzero arity, then precise analysis of programsthat contain negation, but contain no recursion or aliasing, is NEXPTIME-hard. This addresses the complexity of analyses that attempt to treat negationin a precise way, e.g., Marriott and S�ndergaard [1988; 1992], and Marriottet al. [1990].The problem is PSPACE-hard if precise results are required only for programsthat contain no negation, recursion, or aliasing, and satisfy the additional con-straint that the maximum arity of predicate and function symbols is O(1). Itremains PSPACE-hard even if the maximum arity of any function or predicatesymbol is restricted to 2, and the maximum number of literals in the body ofany clause is restricted to 2. This addresses the complexity of analyses thatsacri�ce precision only on encountering recursion, in particular a type analysisdescribed by Van Hentenryck et al. [1994].(3) Precise groundness and alias analysis of programs that contain no functionsymbols, where there are no failed execution branches at runtime, is EXPTIME-complete. The implication is that there are no fundamental improvements tothe worst-case complexity even for analyses that are careful not to incur anyoverhead for keeping track of whether certain execution branches may fail atruntime. This result also addresses (one aspect of) the worst-case complexity ofgroundness analysis using the Prop domain, discussed by Marriott et al. [1994].The problem is co-NP-complete if, in addition to the above constraints, werequire also that there be no recursion, and that the maximum arity of anypredicate be O(1); it remains co-NP-complete even if the maximum arity ofany predicate is restricted to 6.The problem remains co-NP-complete even if the number of distinct call-ing and success patterns per predicate is O(1). This addresses the worst-casecomplexity of any algorithm whose precision is similar to that of a groundnessanalysis proposed by Codish et al. [1990].(4) Analysis algorithms with polynomial-time worst-case complexities can be ob-tained if dependencies between variables can be ignored or if such dependenciescan be assumed to be transitive, and if the number of distinct calling and suc-cess patterns for any predicate is O(1) Debray [1989; 1992].3. ANALYSIS OF PROGRAMS WITH NONZERO-ARITY FUNCTION SYMBOLSThis section considers the analysis of programs that contain function symbols ofnonzero arity. Information about constants and function symbols is of interest inthe context of type inference and depth abstraction.



Complexity of Data
ow Analysis of Logic Programs � 113.1 General ProgramsIt is well known that, in general, Horn programs containing both recursion andnonzero-arity function symbols are undecidable: indeed, T�arnlund [1977] showsthat even the class of alias-free Horn programs containing at most one body literalper clause, with one binary function symbol and one constant, is Turing-complete.Since any analysis algorithm capable of precise analysis of arbitrary Horn clauseprograms would, as a special case, be able to determine whether the success set ofa program is nonempty, and thereby infer whether or not the corresponding Turingmachine has a terminating computation, this immediately implies the following:Theorem 3.1.1. Precise analysis of alias-free Horn programs is undecidable. Theproblem remains undecidable even if we restrict ourselves to programs containing atmost one binary function symbol and one constant, and one body literal per clause.3.2 Recursion-Free Programs Containing NegationThe �rst class of decidable Horn programs we consider is the class of alias-freerecursion-free programs: our intent is to investigate the complexity of data
owanalysis algorithms that strive not to sacri�ce precision except when recursion oraliasing is involved. We �rst consider programs that contain negated goals, inpart to examine the complexity of data
ow analyses that attempt to take negationby �nite failure into account (e.g., see Barbuti and Martelli [1988], Marriott andS�ndergaard [1988; 1992], and Marriott et al. [1990]). We show that in this case,precise data
ow analysis is NEXPTIME-hard. To this end, we �rst describe aprocedure that, given a Sch�on�nkel-Bernays formula ', generates a logic programP' that can be used to establish whether ' is satis�able. Let ' be the formula9x1 � � � 9xk8xk+1 � � �8xmF where F is quanti�er free, and does not contain anyfunction symbols of nonzero arity or any occurrences of the equality predicate. Itis known that such a formula has a model if and only if it has a model of size atmost k (Lewis [1980, Section 8]). One way to check whether there is a model for', therefore, is to guess an interpretation of size at most k and check whether itsatis�es '. Our goal, therefore, is to devise a procedure whereby, for any givenSch�on�nkel-Bernays formula ', we can generate a Prolog program P' that can beexecuted to determine whether ' is satis�able.We �rst de�ne a mapping S that takes a quanti�er-free �rst-order formula ',which may contain the connectives ^;_, and : (it is easy to extend the de�nitionto include other connectives), and yields a pair hG; V i. Here, G is a Prolog goal,and V is a variable in G, such that ' is true (respectively, false) if the goal Gsucceeds with answer substitution fV 7! tg (respectively, fV 7! fg). We assumethat each variable xi in ' is associated with a logic variable Xi; each n-ary predicatesymbol p in ' is associated with an n+1-ary predicate symbol p; and each atomAiin ' is associated with a logic variable Ai that represents its truth value (di�erentoccurrences of the same atom are associated with the same logic variable). Thetransformation S is de�ned as follows:(1) If ' is a variable x with associated logical variable X, then S(') = h"; Xi, where" is the empty sequence of goals.(2) If ' is a constant true, then S(') = hX = t; Xi; if ' is a constant false, thenS(') = hX = f; Xi.



12 � S. K. Debray(3) If ' is of the form � ^  , with S(�) = hG1; X1i and S( ) = hG2; X2i, thenS(') = hG;Xi, where G = `G1; G2; and(X1; X2; X)' such that X1 62 vars(G2),X2 62 vars(G1), and X 62 vars(G1) [ vars(G2).(4) If ' is of the form � _  , with S(�) = hG1; X1i and S( ) = hG2; X2i, thenS(') = hG;Xi, where G = `G1; G2; or(X1; X2; X)' such that X1 62 vars(G2),X2 62 vars(G1), and X 62 vars(G1) [ vars(G2).(5) If ' is of the form :�, with S(�) = hG1; X1i, then S(') = hG;Xi, where G =`G1; neg(X1; X)' such that X 62 vars(G1).(6) If ' is an atom A � p(�1; : : : ; �n) with associated logic variable A, andS(�i) = hGi; Xii, Xi 6= A; 1 � i � n, then S(') = hG; Ai, where G =`G1; : : : ; Gn; p(X1; : : : ; Xn; A)'.In the discussion that follows, we will sometimes abuse notation by applying Sto Boolean formulae involving function applications as well, treating a functionapplication f(t1; : : : ; tn) similarly to an atom with n arguments. These will beclear from the context, and hopefully will not cause any confusion.Example 3.2.1. Let ' = [r(u; v; w)^s(v; w; x)]_:r(u; v; w). Let the logic variablescorresponding to the variables u; v; w; x in S(') be U; V; W; X respectively, and letthe logic variables associated with the atoms r(u; v; w) and s(v; w; x) be A1 and A2respectively. Then, S(') = hG; Ti, where G is the goal:r(U, V, W, A1), s(V, W, X, A2), and(A1, A2, T1),r(U, V, W, A1), neg(A1, T2),or(T1, T2, T).Recall that our immediate objective is to de�ne a translation procedure fromSch�on�nkel-Bernays formulae to Prolog programs such that the exact analysis of aprogram P' yields satis�ability information about the formula ' it was generatedfrom. Any such procedure must be able to \guess" bindings for the existentiallyquanti�ed variables in ' and then consider all possible bindings for the universallyquanti�ed variables. Moreover, it is necessary to associate truth values with atomicsubformulae of '. Moreover, in order that the execution of P' de�ne an inter-pretation for ', it is important to ensure that such atomic formulae are assignedconsistent truth values after bindings have been chosen for the variables. This canbe accomplished by maintaining a \symbol table" associating truth values withatomic formulae. Finally, since we are interested in recursion-free programs, theprograms generated by the translation procedure should not contain recursion. Theuse of backtracking to simulate the \guessing" of bindings for existentially quanti-�ed variables, and of negation-by-failure to consider all possible bindings for univer-sally quanti�ed ones, is fairly straightforward. The only part of the translation thatis somewhat delicate is the generation of routines for managing the \symbol tables,"since (1) a symbol table for an n-ary predicate in a universe with k constants mustaccommodate kn entries, one for each possible atom for that predicate, but in orderfor the reduction to work we must be able to generate these routines in polynomialtime; and (2) for our purposes we cannot use recursion|this precludes, for exam-ple, the simple (and textually succinct) approach of using a list representation forthe table and a recursive membership-checking predicate for lookups.



Complexity of Data
ow Analysis of Logic Programs � 13For simplicity, we maintain a di�erent symbol table for each predicate symbolin the formula. The symbol table for an n-ary predicate pi is structured as a treeof depth n. Each internal node of the tree has k children, corresponding to the kdi�erent choices for atoms for an argument, and the leaves give truth values. Eachpath from the root of the tree to a leaf traces out a particular choice of constants foreach of the n argument positions of the predicate, i.e., spe�cies a ground atom forthat predicate, and the leaf node gives a truth value for that atom. Table lookupsfor pi are managed by a group of n+ 1 predicates lookupi;j: for each j, 1 � j � n,lookupi;j uses the value of the jth argument of an atom to select the appropriatebranch in the portion of the symbol table it is given. Suppose that the universecontains k constants a1; : : : ; ak; then these predicates are de�ned as follows:lookupi;j(Atom, Table, Tval) :�Atom = pi(A 1, : : :, A j, : : :, A n),A j = a1,Table = table(Tab 1, 2, : : :, k),lookupi;j+1(Atom, Tab 1, Tval).lookupi;j(Atom, Table, Tval) :�Atom = pi(A 1, : : :, A j, : : :, A n),A j = a2,Table = table( 1, Tab 2, : : :, k),lookupi;j+1(Atom, Tab 2, Tval).: : :lookupi;j(Atom, Table, Tval) :�Atom = pi(A 1, : : :, A j, : : :, A n),A j = ak,Table = table( 1, 2, : : :, Tab k),lookupi;j+1(Atom, Tab k, Tval).Finally, lookupi;n+1 corresponds to the case where a path has been traced fromthe root of a symbol table all the way to a leaf. This predicate is therefore de�nedby the single clauselookupi;n+1( , Tval, Tval).We are now in a position to describe the translation of a Sch�on�nkel-Bernays for-mula ' to a Prolog program P'. Let ' be the formula 9x1 � � �9xk8xk+1 � � �8xm .With each predicate symbol pi in  , the program P' associates a variable ST pi thatcorresponds to the symbol table for pi. The program P' is given by the following:(1) P' contains a predicate main/0 de�ned by the clausemain :� choose(X1), : : :, choose(Xk), not(q(X1; : : : ;Xk;f)).(2) The predicate q=k + 1 is de�ned by the clauseq(X1; : : : ;Xk; Y) :� choose(Xk+1), : : :, choose(Xm), G, SymTabLookupswhere: S( ) = hG; Yi; and SymTabLookups is a set of literals for symbol tablelookups. For each literal A � pi(X1; : : : ; Xn; T) in G, corresponding to anatom with an n-ary predicate symbol pi in ' with associated logic variable T,SymTabLookups contains a literal



14 � S. K. Debraylookup pi;1(A, ST pi, T)where ST pi is the variable corresponding to the symbol table for the predicatesymbol pi. These symbol table lookups force the execution of the Prolog pro-gram P' to assign consistent truth values to atomic subformulae of the originalformula '.(3) P' contains a predicate choose/1 de�ned by k clauseschoose(a1).: : :choose(ak).where a1; : : : ; ak are constants not appearing elsewhere in P'.(4) Corresponding to each n-ary predicate symbol p in ', P' contains an n+1-arypredicate p de�ned by the clausesp(X1; : : : ;Xn;t).p(X1; : : : ;Xn;f).Intuitively, these predicates are used to select truth values for the ground atomswhen \guessing" a model for '.(5) P' contains de�nitions of the predicates and/3, or/3, and neg/2:or(t, t, t). and(t, t, t). neg(t, f).or(t, f, t). and(t, f, f). neg(f, t).or(f, t, t). and(f, t, f).or(f, f, f). and(f, f, f).(6) The only exported predicate is main/0.Example 3.2.2. Let ' = 9x19x28x38x48x5[(r(x1; x2; x3) ^ s(x2; x4; x5)) _:r(x1; x2; x3)]. Then the program P' contains, apart from the de�nitions of symboltable management routines and of the predicates and/3, or/3, neg/2, the followingclauses:main :- choose(X1), choose(X2), not( q(X1, X2, f) ).q(X1, X2, Y) :-choose(X3), choose(X4), choose(X5),r(X1, X2, X3, A1), s(X2, X4, X5, A2),and(A1, A2, T1),r(X1, X2, X3, A1),neg(A1, T2),or(T1, T2, Y),lookup_r1(r(X1, X2, X3), ST_r, A1),lookup_s1(s(X2, X4, X5), ST_s, A2),lookup_r1(r(X1, X2, X3), ST_r, A1).choose(a1).choose(a2).r(_, _, _, t).r(_, _, _, f).



Complexity of Data
ow Analysis of Logic Programs � 15s(_, _, _, t).s(_, _, _, f).The following result is not di�cult to see:Lemma 3.2.3. Given any Sch�on�nkel-Bernays formula ', the program P' can begenerated in time polynomial in j'j.Lemma 3.2.4. For any Sch�on�nkel-Bernays formula ', the program P' con-structed as described above is alias free.Proof (Sketch). To see that the execution of P' cannot cause two distinctvariables to become aliased together at any point, it su�ces to verify that none ofthe predicates in the program causes any two variables to become aliased in anyexecution starting from any exported predicate (there is only one, main/0). This isobvious for choose/1, and/3, or/3, and neg/2. For each n-ary predicate symbol pin ', the fact that the corresponding n+1-ary predicate p in P' does not alias anyvariables together follows from the fact that such a predicate p is necessarily calledwith its �rst n arguments bound to constants (de�ned by choose/1), and all thatp does is bind its last argument to a constant.It remains only to show that symbol table lookups do not give rise to any aliasing.For each n-ary predicate p, consider the lookup routines lookup pi;j, 0 � j � n.The �rst argument of each of these lookup routines is ground by the time it iscalled, since all of the arguments to this term have been bound to constants bychoose/1. Similarly, the third argument to each lookup routine is bound to one ofthe constants ft, fg by the time it is called. It is then a straightforward inductionon n�j to show that the symbol tables constructed for any predicate do not containrepeated occurrences of any variable, and that because of this lookup pi;j does notcause any aliasing to occur. 2Theorem 3.2.5. Exact analysis of recursion-free, alias-free logic programs con-taining negation is NEXPTIME-hard.Proof. By reduction from the problem of deciding the satis�ability ofSch�on�nkel-Bernays formulae, which, from Theorem 2.5.8, is NEXPTIME-complete. From Lemma 3.2.2, given any Sch�on�nkel-Bernays formula ' �9x1 � � � 9xk8xk+1 � � �8xm , we can, in polynomial time, construct the programP' as described above. Let the k constants that are arguments of the predicatechoose/1 in P' be A = fa1; : : : ; akg. Further, for any X � vars( ), given anysubstitution � : X �! A, let b� denote the \corresponding" substitution over thelogic variables in P', i.e., bX = fXi j xi 2 Xg, where Xi is the logic variable inP' associated with the variable xi in ', then b� : bX �! A is the substitutionb�(Xi) = �(xi) for each Xi in bX. The proof proceeds as follows:Let � : fx1; : : : ; xkg �! A be any substitution that grounds the variablesfx1; : : : ; xkg. Since  contains the variables fx1; : : : ; xk; xk+1; : : : ; xmg, a groundinstance of the formula �( ) is false if and only if there is a substitution � :fxk+1; : : : ; xmg �! A such that (� � �)( ) is false. It is a simple structural in-duction on  to show that this can happen if and only if there is a substitutionb� such that execution of the the goal (b� � b�)(G), where S( ) = hG;Xi, binds X



16 � S. K. Debrayto f. This, in turn, can happen if and only if there are bindings for the variablesXk+1; : : : ; Xm such that execution of the the goalchoose(Xk+1); : : : ;choose(Xm); G; SymTabLookups,where S( ) = hG;Xi and SymTabLookups is as de�ned earlier, binds X to f. Itfollows, from the de�nition of the predicate q in P', that a ground instance of �( )is false if and only if there is a successful derivation for the goal b�(q(X1; : : : ; Xk; f)).Since P' does not contain any recursion, every derivation for queries involving onlypredicates de�ned in P' must be �nite. It follows that every ground instance of �( )is true if and only if there is no successful derivation for the goal b�(q(X1; : : : ; Xk; f)),i.e., that every derivation of this goal is �nitely failed. But this can happen if andonly if there are bindings for the variables X1; : : : ; Xk such that the goalchoose(X1); : : : ;choose(Xk);not(q(X1; : : : ;Xk;f)) (1)has a successful SLDNF-derivation.It is known that a Sch�on�nkel-Bernays formula 9x1 � � � 9xk8xk+1; : : : ; xm hasa model, i.e., is satis�able, if and only if it has a model of size at most k (seeLewis [1980, Section 8]). It follows, therefore, that this formula is satis�able if andonly if the goal (1) has a successful SLDNF-derivation. From the de�nition of thepredicate main/0 in P', it then follows that the predicate main/0 in the programP' has a successful derivation|or, equivalently, has nonempty type|if and only ifthe formula ' is satis�able. The program P' is recursion free by construction, andfrom Lemma 3.2.4 is alias free. It follows that precise analysis of recursion-free,alias-free logic programs containing negation is NEXPTIME-hard. 2We do not know, at this time, whether precise analysis of recursion-free logic pro-grams containing negation is in NEXPTIME. Intuitively, since there is no recursion,one expects such programs to be decidable. However, because there may be func-tion symbols with nonzero arity, a question about data
ow analysis informationwill generally correspond to a (possibly in�nite) set of possible \concrete" queries,and it is not clear whether such questions can be answered in nondeterministicexponential time.It is possible to strengthen Theorem 3.2.5 slightly. Some authors, for example,Mannila and Ukkonen [1987], have argued that a 
ow analysis algorithm whosecomplexity is exponential in the number of literals in a clause body may be tol-erable in practice because in most commonly encountered programs the numberof literals in clause bodies is small, and may be assumed to be O(1). Now givenany program P , we can derive from it an \equivalent" program P 0 where no clausehas more than two literals in its body. We compute a series of programs P0, P1,: : : , Pi, : : : , as follows: P0 = P , and Pi+1 is obtained from Pi as follows: let C �p(�t) :� q1(�t1); q2(�t2); : : : ; qn(�tn) be any clause in Pi whose body contains morethan two literals. Let U be the set of variables(vars(�t) [ vars(�t1)) \ (vars(�t2) [ � � � [ vars(�tn));and let �u be some enumeration of U . Let p0 be a new predicate symbol, witharity jU j, not appearing elsewhere in Pi. De�ne the clauses C1 and C2 as follows:C1 � p(�t) :� q1(�t1); p0(�u); and C2 � p0(�u) :� q2(�t2); : : : ; qn(�tn). Then, Pi+1 =



Complexity of Data
ow Analysis of Logic Programs � 17(Pi n fCg) [ fC1; C2g. The program P 0 is the limit of the sequence of programsP0, P1, : : : , obtained in this way. Since each application of this transformationreplaces a clause in P 0 with two clauses each containing fewer body literals, P 0can be computed in a �nite number of steps, and does not contain any clausewith more than two body literals. It is not di�cult to see that the program P 0is equivalent to P in the sense that for any predicate p de�ned in P , a goal p(�t)succeeds in P with answer substitution � if and only if it succeeds in P 0 with answersubstitution �. Further, each clause C in the original program P with n > 2 bodyliterals is replaced by n � 2 clauses in the transformed program P 0, each havingtwo body literals, each of these literals being no larger than the original clause C:this means that the transformed program is no more than quadratically larger thanthe original program, i.e., there is at most a polynomial growth in program size asa result of the transformation. We can therefore use the programs resulting fromthis transformation in the proof of Theorem 3.2.5 to obtain the following result:Theorem 3.2.6. Exact analysis of recursion-free, alias-free logic programs con-taining negation is NEXPTIME-hard. It remains NEXPTIME-hard even if noclause in the program contains more than two body literals.This shows that, depending on how precise an analysis strives to be, it may havea bad worst-case complexity even if we assume that the number of literals per clauseis O(1).3.3 Recursion-Free Programs without NegationSince most data
ow analysis algorithms reported in the logic programming litera-ture do not attempt to deal with negation very precisely, we next consider the analy-sis of programs that do not contain negation, i.e., Horn programs. We �rst consideranalyses, such as the type analysis of Van Hentenryck et al. [1994], that sacri�ceprecision only when recursion is involved. We show that for such analyses, precisedata
ow analysis is PSPACE-hard. To this end, we �rst describe a procedure that,given a quanti�ed Boolean formula', generates a logic programP' that can be usedto establish the truth of '. Let ' be the formulaQ1x1 � � �Qnxn , where each of theQi is a quanti�er 8 or 9, and let si denote the formula QixiQi+1xi+1 � � �Qnxn ,1 � i � n. We assume that each variable xi in ' is associated with a logic variableXi. The program P' is given by the following:(1) P' contains a \root predicate" main/0 that evaluates whether or not the for-mula ' is true. This predicate is de�ned by the following clause:main :� p1([], t).This predicate is the only exported predicate in P'.(2) For each si; 1 � i � n, P' contains a predicate pi(Vi;Tval). Here, Vi is avariable that, at runtime, gets bound to a list of truth values [Xi�1; : : : ; X1]corresponding to assignments to the variables xi�1; : : : ; x1 that are bound bythe quanti�ers \before," i.e., to the left of, Qi in '; and Tval is either t or fdepending on whether or not the corresponding instance of si is true. Thesepredicates are de�ned as follows:(a) If Qi = 8, then pi is de�ned as follows:



18 � S. K. Debraypi(Vi, t) :� pi+1([t | Vi], t), pi+1([f | Vi], t).pi(Vi, f) :� pi+1([t | Vi], f).pi(Vi, f) :� pi+1([f | Vi], f).(b) If Qi = 9, then pi is de�ned as follows:pi(Vi, t) :� pi+1([t | Vi], t).pi(Vi, t) :� pi+1([f | Vi], t).pi(Vi, f) :� pi+1([t | Vi], f), pi+1([f | Vi], f).(3) The predicate pn+1 is de�ned by the clausepn+1([Xn; : : : ;X1], Tval) :� eval(Fmla, Tval).where Fmla � T ( ) is a Prolog term representing the formula  . The mappingT is de�ned as follows:| T (xi) = Xi; where Xi is the logic variable associated with xi in P';| T (true) = t, and T (false) = f;| T (� ^ �) = and(A;B), where A = T (�) and B = T (�);| T (� _ �) = or(A;B), where A = T (�) and B = T (�);| T (:�) = neg(A), where A = T (�).(4) The program P' contains the de�nition for the predicate eval/2. The ideahere is that, given a ground term T representing a propositional formula, theexecution of eval(T; t) succeeds if and only if ' is true, while that of eval(T; f)succeeds if and only if ' is false. The obvious de�nition of such a predicatewould contain clauses such aseval(and(F1, F2), t) :� eval(F1, t), eval(F2, t).eval(and(F1, ), f) :� eval(F1, f).eval(and( , F2), f) :� eval(F2, f).and so on. The problem with such a de�nition is that it is recursive, whilewe are considering only recursion-free programs. One could imagine partialevaluation of the eval predicate above with respect to the input formula inorder to remove the recursion, but a straightforward approach to this wouldresult in a clause with size proportional to the input formula. With a little moree�ort, it is possible to take (a representation of) any particular propositionalformula and produce a recursion-free program, where each clause has boundedsize, to determine its truth value: if ' � Q1x1 � � �Qnxn , where  is quanti�erfree, and the number of logical connectives in  is k, then the truth value of anyground instance of  can be evaluated using a recursion-free program containingk + 1 predicates eval0/2, : : : , evalk/2. Intuitively, for each i, 0 � i � k, thepredicate evali is capable of evaluating the truth of propositions containingat most i logical connectives. The predicates evali; 1 � i � k, are de�ned asfollows:evali(and(F1, F2), t) :� evali�1(F1, t), evali�1(F2, t).evali(and(F1, ), f) :� evali�1(F1, f).evali(and( , F2), f) :� evali�1(F2, f).evali(or(F1, ), t) :� evali�1(F1, t).evali(or( , F2), t) :� evali�1(F2, t).evali(or(F1, F2), f) :� evali�1(F1, f), evali�1(F2, f).
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ow Analysis of Logic Programs � 19evali(neg(F), t) :� evali�1(F, f).evali(neg(F), f) :� evali�1(F, t).evali(t, t).evali(f, f).The predicate eval0/2 is de�ned by the clauseseval0(t, t).eval0(f, f).Finally, the predicate eval/2 is de�ned aseval(X, Y) :� evalk(X, Y).Example 3.3.1. Let ' = 8x9y8z[x ^ :(y _ z)]. Then, apart from the de�nitionsof the various evali/2 predicates, the program P' contains the following clauses:main :- p1([], t).p1(V1, t) :- p2([t|V1], t), p2([f|V1], t). /* universal */p1(V1, f) :- p2([t|V1], f).p1(V1, f) :- p2([f|V1], f).p2(V2, t) :- p3([t|V2], t). /* existential */p2(V2, t) :- p3([f|V2], t).p2(V2, f) :- p3([t|V2], f), p3([f|V2], f).p3(V3, t) :- p4([t|V3], t), p4([f|V3], t). /* universal */p3(V3, f) :- p4([t|V3], f).p3(V3, f) :- p4([f|V3], f).p4([Z, Y, X], Tval) :- eval(and(X, neg(or(Y, Z))), Tval).Each clause in the program P' has a �xed structure and can be generated in O(1)time. The total number of predicates in P' is O(j'j), so the reduction requiresO(log j'j) space to keep track of them. The following result is then straightforward:Lemma 3.3.2. For any quanti�ed Boolean formula ', the program P' can beconstructed in polynomial time using logarithmic space.We observe that given any quanti�ed Boolean formula ', the program P' con-structed as above is recursion free and has bounded arity (the arity of every predi-cate and function symbol is bounded by 2), and each clause contains at most twobody literals. Further, it is easy to verify, by inspection, that the program is aliasfree. This leads immediately to the following result:Theorem 3.3.3. Exact analysis of recursion-free, alias-free Horn programs isPSPACE-hard. The problem remains PSPACE-hard even if the arity of each func-tion and predicate symbol is restricted to at most 2, and there are at most 2 literalsin the body of any clause.Proof (Sketch). By reduction from QBF, which, from Theorem 2.5.2, isPSPACE-complete. From Lemma 3.3.2, given any quanti�ed Boolean formula ',



20 � S. K. Debraywe can, in logarithmic space, construct the program P' as described above. Theproof proceeds in two parts. First we show, by induction onm, that for any proposi-tional formula  containing at mostm logical connectives the goal evalm(T; Tval),where T = T ( ), evaluates correctly the truth value Tval of  for any given truthassignment for its variables. The base case, with m = 0, involves only truth val-ues (since, by assumption, all propositional variables in  have truth assignmentsalready), and is trivial from the de�nition of eval0/2. The inductive case thenuses a straightforward structural induction on the formula  . After this, given aquanti�ed Boolean formula ' with n quanti�ers, it is a simple induction on n toshow that ' is true if and only if the execution of p succeeds, i.e., if and only ifmain/0 has nonempty type. 2Note that here, as in the case of Theorem 3.2.6, bounding the number of bodyliterals per clause does not improve the worst-case complexity of precise data
owanalysis.4. ANALYSIS OF DATALOG PROGRAMSThe construction used in Theorem 3.3.3 relies on the existence of a binary functionsymbol, which is used to represent truth assignments as lists of truth values. In thissection we examine the extent to which disallowing function symbols with nonzeroarity simpli�es data
ow analysis. As discussed in Section 2.4, these results areapplicable to analyses that use depth abstraction, such as Codish et al. [1994],King [1994], Marriott and S�ndergaard [1988], Santos Costa et al. [1991], Sato andTamaki [1984], and Taylor [1989].4.1 Recursive Datalog ProgramsConsider the translation of a recursive monotone Boolean function (RMBF) toa Horn program. Let ' = heq; ai be an instance of RMBF, where eq �f(x1; : : : ; xn) = E is a recursive equation and a � ha1; : : : ; ani is a tuple of narguments. We can construct a program P' to evaluate ', as follows:(1) Let S(E) = hG; Tvali, where the mapping S is de�ned above, then P' containsa clause f(X1; : : : ; Xn; Tval) :� G.(2) Let S(f(a1; : : : ; an)) = hG; Xi, then P' contains a \root predicate" main/0de�ned by the clause main :� G; X = t. This is the only exported predicatein P'.(3) P' contains de�nitions of the predicates and/3, or/3, and neg/2:or(t, t, t). and(t, t, t). neg(t, f).or(t, f, t). and(t, f, f). neg(f, t).or(f, t, t). and(f, t, f).or(f, f, f). and(f, f, f).Example 4.1.1. Let ' = heq; ai be an instance of RMBF, where eq is given byg(x1; x2; x3) = x1 _ (x2 ^ g(g(x3 _ x2; x3; x1); x3; x1 ^ x2))and a = htrue; false; falsei. Then, P' contains, apart from the de�nitions of thepredicates and/3, or/3, and neg/2, the following clauses:



Complexity of Data
ow Analysis of Logic Programs � 21g(X1, X2, X3, Tval) :-or(X3, X2, U1),g(U1, X3, X1, U2), and(X1, X2, U3),g(U2, X3, U3, U4),and(X2, U4, U5), or(X1, U5, Tval).main :- X1 = t, X2 = f, X3 = f, g(X1, X2, X3, X), X = t.Lemma 4.1.2. Let ' = heq; ai be an instance of RMBF. Then, the program P'can be constructed in time polynomial in j ' j.Theorem 4.1.3. Exact analysis of alias-free Datalog programs containing atleast two distinct constants is EXPTIME-complete.Proof (Sketch). The proof follows by reduction from RMBF, which, fromTheorem 2.5.6, is EXPTIME-complete. From Lemma 4.1.2, given an instance ' ofRMBF, the program P' can be generated in time polynomial in the length of '. Itis then a straightforward �xpoint induction to show that the root predicate main/0in P' has nonempty type if and only if ' is true. This shows that the problem isEXPTIME-hard.To see that the problem is in EXPTIME, consider the execution of a program Pcontaining p di�erent predicates and c distinct constants. Without loss of generality,assume that each predicate has arity a (we can always add dummy arguments topredicates that have too few arguments in order to comply with this assumption).The execution of P can be simulated via a program P 0 that has one predicate ofarity a+1 and c+p constants: the idea is to add one argument to each literal in P 0to indicate which predicate in P is being referred to, e.g., a literal q(t1; : : : ; tn) inP corresponds to a literal interp(q; t1; : : : ; tn), where interp is the single predicateappearing in P 0. Thus, the complexity of evaluating P is no larger than that of P 0.Now consider the complexity of evaluating P 0: to simplify notation, let b = a+1and n = c+ p, i.e., P 0 has n constants and a single predicate of arity b. Then, thetotal number of distinct atoms possible for interp is nb, and the computational costfor exact analysis of P 0 can be no greater than that of evaluating all of P 0 explicitly.First, consider the cost of evaluating lfp(TP 0 ) = [i�0T iP (;) by iteratively computingthe limit of the sequence TP (;), T 2P (;), : : : , T iP (;), : : : : this can take no more thannb iterations, with each iteration examining no more than O(nb) atoms, and henceinvolves O(n2b) work. Apt and van Emden [1982] show that the set SS (P 0) ofground atoms of P 0 that have successful derivations coincides with lfp(TP 0 ), so thecost of evaluating SS (P 0) is also O(n2b). Since n2b is O(2nb), it follows that theevaluation of P 0|and, therefore, that of the original program P|is in EXPTIME.2 It is straightforward to use the transformation discussed at the end of Section 3.2to extend this result to programs where no clause has more than two body literals.4.2 Recursion-Free Datalog ProgramsAs Theorem 4.1.3 shows, precise analysis of programs can be expensive even ifthe analysis algorithm does not try to deal with compound terms and aliasing.Now it may not be unreasonable for an analysis algorithm to try to be precise for



22 � S. K. Debraynonrecursive programs, but to surrender some precision when dealing with recursivecalls. To examine the complexity of such analyses, we next consider the case wherethe exactness sets of the analyses do not contain recursive programs. For this, we�rst describe a procedure that takes a quanti�ed Boolean formula ' and generatesa program P' that can be used to determine whether ' is true. The basic ideabehind this construction is very similar to that used in the proof of Theorem 3.3.3.Let ' be the formula Q1x1 � � �Qnxn , where each of the Qi is a quanti�er 8 or 9,and let si denote the formula Qixi � � �Qnxn , 1 � i � n. The program P' is givenby the following:(1) Corresponding to the variable xi in ' we associate a variable Xi in P'.(2) P' contains a \root predicate" main/0 that evaluates whether or not the for-mula ' is true. This predicate is de�ned by the following clause:main :� p1(t).The only exported predicate in P' is main/0.(3) For each si; 1 � i � n, P' contains a predicate pi(V1; : : : ; Vi�1;Tval). Here,V1; : : : ; Vi�1 are variables that, at runtime, get bound to truth values thatcorrespond to truth assignments to the variables x1; : : : ; xi�1 bound by thequanti�ers \before," i.e., to the left of, Qi in '; and Tval is either t or fdepending on whether or not the corresponding instance of si is true. Thesepredicates are de�ned as follows:(a) If Qi = 8, then pi is de�ned as follows:pi(V1; : : : ;Vi�1, t) :�pi+1(V1; : : : ;Vi�1, t, t), pi+1(V1; : : : ;Vi�1, f, t).pi(V1; : : : ;Vi�1, f) :� pi+1(V1; : : : ;Vi�1, t, f).pi(V1; : : : ;Vi�1, f) :� pi+1(V1; : : : ;Vi�1, f, f).(b) If Qi = 9, then pi is de�ned as follows:pi(V1; : : : ;Vi�1, t) :� pi+1(V1; : : : ;Vi�1, t, t).pi(V1; : : : ;Vi�1, t) :� pi+1(V1; : : : ;Vi�1, f, t).pi(V1; : : : ;Vi�1, f) :�pi+1(V1; : : : ;Vi�1, t, f), pi+1(V1; : : : ;Vi�1, f, f).(4) The predicate pn+1 is de�ned by the clause pn+1(X1; : : : ; Xn, A) :� G whereS( ) = hG; Ai, S being the mapping de�ned at the beginning of Section 3.2,and Xi 6= A; 1 � i � n.(5) P' contains de�nitions for the predicates and/3, or/3, and neg/2:or(t, t, t). and(t, t, t). neg(t, f).or(t, f, t). and(t, f, f). neg(f, t).or(f, t, t). and(f, t, f).or(f, f, f). and(f, f, f).Example 4.2.1. Let ' = 8x9y8z[x ^ :(y _ z)]. Then the program P' contains,apart from the de�nitions for and/3, or/3, and neg/2, the following clauses:main :- p1(t).p1(t) :- p2(t, t), p2(f, t).



Complexity of Data
ow Analysis of Logic Programs � 23p1(f) :- p2(t, f).p1(f) :- p2(f, f).p2(V1, t) :- p3(V1, t, t).p2(V1, t) :- p3(V1, f, t).p2(V1, f) :- p3(V1, t, f), p3(V1, f, f).p3(V1, V2, t) :- p4(V1, V2, t, t), p4(V1, V2, f, t).p3(V1, V2, f) :- p4(V1, V2, t, f).p3(V1, V2, f) :- p4(V1, V2, f, f).p4(X, Y, Z, A) :- or(Y, Z, U1), neg(U1, U2), and(X, U2, A).Theorem 4.2.2. Exact analysis of recursion-free, alias-free Datalog programscontaining at least two distinct constants is PSPACE-hard.Proof. Similar to that of Theorem 3.2.7. 2Again, we can use the transformation discussed at the end of Section 3.2 toextend this result to programs where no clause has more than two body literals.4.3 Recursion-Free Bounded-Arity Datalog ProgramsIn the construction used in the proof of Theorem 4.2.2, the maximumarity of pred-icates increases as the number of quanti�ers increases. In the literature on data
owanalysis of logic programs, some researchers have assumed that the maximum arityof predicates in any program is bounded, i.e., O(1). We next consider the e�ectof imposing this additional restriction on the complexity of analyses. For this, wedescribe a procedure that, given a Boolean formula ', generates a logic programP' that can be used to test whether or not ' is satis�able.(1) P' contains a predicate choose tval/2, de�ned by the clauseschoose_tval(t).choose_tval(f).Let the variables occurring in ' be x1; : : : ; xn, and let them be associated withn logic variables X1; : : : ; Xn. P' contains a clause for the root predicate main/0,de�ned by the clausemain :� choose tval(X1), : : :, choose tval(Xn), G, U = t.where S(') = hG; Ui, with the mapping S as de�ned at the beginning of Section3.2.(2) P' contains de�nitions for the predicates and/3, or/3, and neg/2, as shownearlier.(3) The only exported predicate in P' is main/0.Example 4.2.3. Let ' = (x^:y)_(:(x_:y_:z)^(:x_y_z)). Let the variablesx; y, and z in ' be associated with the logic variables X, Y, and Z, respectively, inP'. Then, P' contains, apart from the de�nitions of the predicates choose tval/1,and/3, or/3, and neg/2, the following clause:



24 � S. K. Debraymain :-choose_tval(X), choose_tval(Y), choose_tval(Z),neg(Y,T1), and(X,T1,T2),neg(Y,U1), or(X,U1,U2), neg(Z,U3), or(U2,U3,U4), neg(U4,U5),neg(X,V1), or(V1,Y,V2), or(V2,Z,V3),and(U5,V3,W1),or(T2,W1,W2),W2 = t.Lemma 4.2.4. Given any Boolean formula ', the program P' can be constructedin time polynomial in the size of '.Theorem 4.2.5. Precise analysis of recursion-free, alias-free, bounded-arity Dat-alog programs containing at least two distinct constants is NP-complete. It remainsNP-complete even if no predicate has arity exceeding 3.Proof (Sketch). The proof is by reduction from the satis�ability problemfor propositional clauses. For any propositional clause ', we show, by structuralinduction on ', that ' is satis�able if and only if the type for the predicate main/0in the program P' is nonempty. This shows that the problem is NP-hard.To show that the problem is in NP, consider any recursion-free, alias-free,bounded-arity Datalog program P that contains c � 2 distinct constants. Leta be the maximum arity of any predicate in P . For any predicate p, to determinewhether a particular tuple of constants is in the relation of p, it su�ces to \guess"an execution path in the program, then verify that this path does generate thattuple. Since there is no recursion, such a path can be given by simply selecting, foreach literal q(: : :) in the body of a clause, which clause for q to use during resolu-tion. The total length of such an execution path is no greater than the size of theprogram. Since the arity of each predicate is bounded, the total number of variablesinvolved in the execution is also no larger than the size of the program. Thus, foreach n-ary predicate and n-tuple of constants, verifying whether that tuple is inthe relation of the predicate can be carried out in time polynomial in the size of P .Now the number of tuples for any predicate is O(ca), which is polynomial in thesize of the program since a is O(1); and further, the number of predicates in P isno greater than the size of the program. The theorem follows. 25. ANALYSIS OF FUNCTION-FREE PROGRAMSAs seen from the discussion of the previous section, precise analysis of programscontaining function symbols can be quite di�cult. In this section, we considerprograms that do not contain any function symbols and do not have any failedexecution branches. This is motivated by a variety of groundness and aliasinganalyses that have been proposed in the literature in recent years, primarily inthe context of compiler parallelization and code optimization of logic programs[Chang et al. 1985; Debray 1989; Jacobs and Langen 1989; Marriott et al. 1994;Muthukumar and Hermenegildo 1989; 1991]. Such analyses typically do not keeptrack of the function symbols of the various terms that a variable might be boundto, and as a result may not be able to detect execution branches that fail at runtime.The precision of such algorithms can be examined by considering programs that donot contain any function symbols or constants, and also do not contain any failed
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ow Analysis of Logic Programs � 25execution branches (it may seem strange to consider the precision of groundnessanalyses by considering programs where all terms are variables: the idea is to seehow well an analysis is able to propagate ground values that are given as argumentsin a query in order to determine what other variables become ground at di�erentprogram points).For the complexity results of this section, we rely on aliasing to mimic the eval-uation of monotone Boolean formulae. The essential idea here is to associate, witheach proposition ', two logic variables X'L and X'R. A truth value of true isdenoted by having X'L and X'R aliased together, while a truth value of false isdenoted by having these variables independent, i.e., not aliases. If the variablesassociated with a formula ' are X'L and X'R, then we say that ' is evaluatedinto the pair (X'L; X'R). As a special case, each variable x in a proposition ' isassociated with two logic variables XL and XR.Conjunction is simulated by a predicate and/6 that is de�ned as follows:and(Xl, Xr, Yl, Yr, Xl, Yr) :- Xr = Yl.The �rst two argument positions of and/6 correspond to the truth value for oneof the conjuncts; the third and fourth arguments correspond to the truth value forthe other conjunct; and the last two arguments are the truth value of the entireconjunction. The intuition is that the last two argument positions are aliasedtogether (denoting a truth value of true) if and only if the �rst two arguments arealiased (indicating that the �rst conjunct has truth value true) and that the thirdand fourth arguments are also aliased (indicating that the second conjunct also hasa truth value true).Disjunction is simulated by a predicate or/6 that de�ned as follows:or(Xl, Xr, _, _, Xl, Xr).or(_, _, Yl, Yr, Yl, Yr).The argument positions of or/6 have the same signi�cance as for and/6: the �rsttwo arguments correspond to one disjunct, the third and fourth arguments to theother disjunct, and the last two argument positions denote the truth value of thedisjunction itself. It is not di�cult to see that the last two argument positions ofor/6 can be aliased together (denoting a truth value of true) if and only if either the�rst and second arguments are aliased together, or the third and fourth argumentsare aliased together, or both, i.e., if and only if at least one of the disjuncts has atruth value of true.5.1 Function-Free, Failure-Free Programs Containing RecursionWe now describe a mapping F that, given any (recursive) monotone Boolean for-mula ', yields a triple hG;X; Y i. Here, G is a Prolog goal, and X;Y are variablesin G, such that ' is true if and only if X and Y become aliased together when Gis executed. The construction proceeds as follows:(1) If ' is a propositional variable x associated with the logic variables XL andXR, then F(') = h";XL; XRi, where " denotes the empty sequence of goals.(2) If ' is the constant true, then F(') = hX = Y;X; Y i; if ' is the constantfalse, then F(') = h";X; Y i.



26 � S. K. Debray(3) If ' is of the form � ^  , with F(�) = hG�; X�L; X�Ri and F( ) =hG ; X L; X Ri, then F(') = hG;X'L; X'Ri, whereG = `G�; G ; and(X�L; X�R; X L; X R; X'L; X'R)'where X�L and X�R are not in vars(G ); X L and X R are not in vars(G�);and X'L and X'R are not in vars(G�) [ vars(G ).(4) If ' is of the form � _  , with F(�) = hG�; X�L; X�Ri and F( ) =hG ; X L; X Ri, then F(') = hG;X'L; X'Ri, whereG = `G�; G ; or(X�L; X�R; X L; X R; X'L; X'R)'where X�L and X�R are not in vars(G ); X L and X R are not in vars(G�);and X'L and X'R are not in vars(G�) [ vars(G ).(5) If ' is of the form f(�1; : : : ; �n), with F(�i) = hGi; XiL; XiRi, then F(') =hG;X'L; X'Ri, whereG = `G1; : : : ; Gn; f(X1L; X1R; : : : ; XnL; XnR; X'L; X'R)'where X'L and X'R are not in vars(Gi); 1 � i � n; and i 6= j implies XiL,XiR are not in vars(Gj), 1 � i; j � n.Example 5.1.1. Let ' = (x ^ y) _ (y ^ (x _ z)), thenF(') = and(XL; XR; YL; YR; UL; UR);or(XL; XR; ZL; ZR; VL; VR);and(YL; YR; VL; VR; WL; WR);or(UL; UR; WL; WR; AL; AR):It is not di�cult to see that the following lemma is true:Lemma 5.1.2. Given any (recursive) monotone Boolean formula ', the sequenceof atoms F(') can be constructed in time polynomial in the size of '.We �rst consider the translation of a recursive monotone Boolean function(RMBF) to a function-free Horn program. Let ' = heq; ai be an instance of RMBF,where eq � f(x1; : : : ; xn) = E is a recursive equation, and a � ha1; : : : ; ani is atuple of n arguments. We construct a program P' to evaluate ', as follows:(1) Let F(E) = hG; UL; URi; then P' contains a clausef(X1L; X1R; : : : ; XnL; XnR; UL; UR) :� G:(2) Let F(f(a1; : : : ; an)) = hG; UL; URi; then P' contains a \root predicate" p/2de�ned by the clause p(UL; UR) :� G.(3) P' contains the de�nitions for the predicates and/6 and or/6 de�ned earlier.(4) The only exported predicate in P' is p/2.Example 5.1.3. Consider the RMBF of Example 4.1.1, with ' = heq; ai, whereeq is given byf(x1; x2; x3) = x1 _ (x2 ^ f(f(x3 _ x2; x3; x1); x3; x1 ^ x2)and a = htrue; false; falsei. Then, P' contains, apart from the de�nitions of thepredicates and/6 and or/6, the following clauses:



Complexity of Data
ow Analysis of Logic Programs � 27f(X1l, X1r, X2l, X2r, X3l, X3r, Vl, Vr) :-or(X3l, X3r, X2l, X2r, U1l, U1r),f(U1l, U1r, X3l, X3r, X1l, X1r, U2l, U2r),and(X1l, X1r, X2l, X2r, U3l, U3r),f(U2l, U2r, X3l, X3r, U3l, U3r, U4l, U4r),and(X2l, X2r, U4l, U4r, U5l, U5r),or(X1l, X1r, U5l, U5r, Vl, Vr).p(Ul, Ur) :- X = Y, f(X, Y, _, _, _, _, Ul, Ur).Lemma 5.1.4. Let P' be the program obtained from any (recursive) monotoneBoolean formula ' as described above, and let Q be the query ?- p(U, V) where Uand V are distinct variables. Then, the SLD-tree for the query Q and the programP' does not contain any failed execution branches.Proof. From the de�nition of the function F that generates P', there are nononvariable terms in any of the clauses in P'. Then, if the query Q does not containany nonvariable terms, then SLD-resolution cannot give rise to any nonvariableterms at any point. This implies that uni�cation cannot fail at any point in theSLD-resolution. Hence the SLD-tree for the query Q and the program P' does notcontain any failed branches. 2Theorem 5.1.5. Exact alias analysis of function-free, failure-free Horn programsis EXPTIME-complete.Proof (Sketch). The proof is by reduction from RMBF, which from Theorem2.5.6 is EXPTIME-complete. Given an instance ' of RMBF, a function-free pro-gram P' whose execution mimics the evaluation of ' can be generated, as describedabove: from Lemma 5.1.2 this construction takes time polynomial in the size of '.Now consider a query ?- p(U, V) where U and V are distinct variables: from Lemma5.1.4 the SLD-tree for this query does not contain any failed execution branches.Further, the evaluation of this query results in U and V becoming aliased togetherif and only if ' is true (the details of this argument are essentially similar to thatfor Theorem 4.1.3). Thus, any analysis that gives exact results for function-free,failure-free Horn programs will infer that U and V are aliases after the evaluation ofthis query if and only if ' is true. Since, from Theorem 2.5.6, RMBF is EXPTIME-complete, it follows that precise alias analysis of function-free, failure-free programsis EXPTIME-hard.The argument that the problem is in EXPTIME is a generalization of that forTheorem 4.1.3. The main issue is that in this case we have to deal with nongroundatoms. This can be done using an immediate-consequence operator based on non-ground atoms, which can be obtained as a modi�cation of the s-semantics presentedby Falaschi et al. [1989]. 2It is straightforward to use the transformation discussed at the end of Section 3.2to extend this result to programs where no clause has more than two body literals.5.2 Function-Free Programs without RecursionWe next consider the complexity of data
ow analysis of function-free, failure-freeprograms if precision is sacri�ced at recursive calls. To this end, we describe a



28 � S. K. Debrayprocedure that, given two monotone Boolean formulae ' and  , generates a logicprogram P' that can be used to establish whether or not ' and  are equivalent.The construction goes as follows:(1) P' contains the clauseschoose_truth_val(X, X).choose_truth_val(X, Y).This simulates the two truth values that any variable in ' and  may take on.(2) P' contains the clauses de�ning the predicates and/6 and or/6 given earlier.(3) P' contains a clause for a predicate p/4 de�ned as follows:p(X'L;X'R;X L;X R) :�choose tval(X1L;X1R); : : :, choose tval(XnL;XnR); G', G .where F(') = hG'; X'L; X'Ri, F( ) = hG ; X L; X Ri, X'L and X'R are notin vars(G ) [ fX1L; X1R; : : : ; XnL; XnRg, and where X L and X R are not invars(G') [ fX1L; X1R; : : : ; XnL; XnRg.(4) The only exported predicate in P' is p/4.Example 5.2.1. Let ' = x ^ (y _ z) and  = (x ^ y) _ (y ^ z) _ x; then theprogram P' contains, apart from the de�nitions of the predicates and/6, or/6,and choose tval/2, the following predicate:p(A_l, A_r, B_l, B_r) :-choose_truth_val(X_l, X_r),choose_truth_val(Y_l, Y_r),choose_truth_val(Z_l, Z_r),or(Y_l, Y_r, Z_l, Z_r, U_l, U_r), /* begin Formula 1 */and(X_l, X_r, U_l, U_r, A_l, A_r), /* end Formula 1 */and(X_l, X_r, Y_l, Y_r, V_l, V_r), /* begin Formula 2 */and(Y_l, Y_r, Z_l, Z_r, W_l, W_r),or(V_l, V_r, W_l, W_r, T_l, T_r),or(T_l, T_r, X_l, X_r, B_l, B_r). /* end Formula 2 */Lemma 5.2.2. Let ' and  be any pair of monotone Boolean formulae; then 'and  are equivalent if and only if, given the program P' and the query?- p(XL; XR;YL;YR)the analysis infers that XL and XR are aliased at the point immediately after thequery if and only if YL and YR are aliased.Proof. The proof proceeds via a straightforward structural induction to showthat given a monotone Boolean formula ' and a truth assignment for its variables(in the form of certain pairs of variables being aliased or not) the evaluation ofthe goal G, where F(') = hG;XL; XRi, results in XL and XR becoming aliasedtogether if and only if ' evaluates to true for that truth assignment. It followsimmediately that given two monotone Boolean formulae ' and  these formulaeare equivalent if and only if for every possible choice of truth assignments to thevariables occurring in these formulae the evaluation of the goal `G'; G ', where



Complexity of Data
ow Analysis of Logic Programs � 29F(') = hG'; XL; XRi and F( ) = hG ; YL; YRi, results in XL and XR becomingaliased together when and only when YL and YR become aliased. Suppose the setof variables occurring in ' and  is fU1; : : : ; Ung; then this is equivalent to sayingthat for every branch in the SLD-tree for the goalchoose tval(U1L; U1R); : : : ;choose tval(UnL; UnR);G'; G XL and XR are aliases if and only if YL and YR are aliases. Given the de�nition ofthe predicate p/4 in the program P', the lemma follows readily from this. 2We are now in a position to prove the following result:Theorem 5.2.3. Exact alias analysis for recursion-free, function-free, failure-free, bounded-arity programs is co-NP-complete. It remains co-NP-complete even ifno predicate has arity exceeding 6.Proof. The proof is by reduction from the Equivalence problem for monotoneBoolean formulae, which, from Theorem 2.5.4, is co-NP-complete. Given any twomonotone Boolean formulae' and  , it follows from Lemma 5.1.2 that the programP' can be constructed in time polynomial in the size of ' and  . It follows, fromLemma 5.2.2, that exact alias analysis for recursion-free, function-free, failure-free,bounded arity programs is co-NP-hard.To show that the problem is in co-NP, we show that the complement of theproblem is in NP. To this end, consider any recursion-free, function-free, failure-free, bounded arity program: we wish to show that if there is some execution branchof the program which aliases together two variables XL and XR but which leavestwo other variables YL and YR unaliased (intuitively, such an execution branchcorresponds to a \witness" that two formulae are not equivalent), then this canbe found in polynomial time by a nondeterministic Turing machine. It is possibleto \guess" nondeterministically an execution path that aliases XL and XR butnot YL and YR by guessing, for each literal in the program, which clause of thecorresponding predicate to choose, and then verify that this execution path does,in fact, cause the appropriate aliasing behavior. Since there is no recursion, thetotal length of such an execution path is linear in the size of the program. Sincethe programs under consideration have bounded arity, the total number of variablesthat may involved is also linear in the size of the program. Thus, the veri�cationstep can be carried out in time polynomial in the size of the program. The theoremfollows. 25.3 Groundness AnalysisGroundness analyses seek to determine which variables are guaranteed to be boundto ground terms at various program points. In general, this requires reasoning aboutthe groundness of arguments to predicates, and about sharing and aliasing betweenthese arguments, at the time of a call and when that call returns. It turns outthat even if all we have is an analysis that only gives information about groundnessof di�erent argument positions at entry and exit from a predicate (i.e., does notprovide any sharing or aliasing information), it is possible to extract enough aliasinginformation to obtain the following results:



30 � S. K. DebrayTheorem 5.3.1. Exact groundness analysis for function-free, failure-free Hornprograms is EXPTIME-complete.Proof. The proof is by reduction from RMBF, and is essentially similar tothat of Theorem 5.1.5. Given an instance ' of RMBF, a function-free program P'whose execution mimics the evaluation of ' can be generated in polynomial time,as described earlier. Now consider a query ?- p(U, V), where U and V are distinctvariables. Any groundness analysis that gives exact results for function-free, failure-free Horn programs will infer that the groundness of U and V are equivalent afterthe evaluation of this query|i.e., U is ground if and only if V is ground|if andonly if ' is true. It follows, from Theorem 2.5.6, that precise groundness analysisof function-free, failure-free programs is EXPTIME-hard. The argument that theproblem is in EXPTIME is similar to that in the proof of Theorem 5.1.5. 2Similarly, proceeding as in Theorem 5.2.3, it is not di�cult to show the following:Theorem 5.3.2. Exact groundness analysis for recursion-free, function-free,failure-free, bounded-arity programs is co-NP-complete.While most groundness and alias analyses proposed in the logic programming lit-erature are not precise enough to include the class of recursion-free, function-free,failure-free, bounded-arity programs in their exactness sets, we know of at least oneanalysis algorithm, proposed by Marriott et al. [1994], that appears to be preciseenough to give exact results for this class of programs. This analysis requires thesolution of a co-NP-hard problem at each iteration to determine whether a �xpointhas been attained (the analysis manipulates propositional formulae containing theconnectives ^, _, and,, and checking to see whether a �xpoint has been attainedinvolves deciding the equivalence of two such formulae: this is a proper general-ization of the equivalence problem for monotone Boolean formulae, and therefore,from Theorem 2.5.4, is co-NP-hard). However, this source of complexity is absentin recursion-free programs, and one may reasonably inquire after the worst-casecomplexity of this analysis in this case. Thus, Theorem 5.3.2 illustrates that thereare at least two independent sources of complexity in this algorithm, a fact thatis by no means obvious from the description of the algorithm. This demonstrateshow our techniques can be used to separate out di�erent sources of complexity inan analysis algorithm.6. BOUNDING THE NUMBER OF CALLING AND SUCCESS PATTERNSOne possible reason an analysis may be imprecise is that, for e�ciency reasons, itmay not keep track of all the di�erent calling and/or success patterns it encoun-ters for a predicate|it may instead compute a single worst-case summary for eachpredicate to obtain a conservative approximation to these sets. Such a strategy isused in a number of analyses, for example, Chang et al. [1985], Debray and Warren[1988], and Mellish [1985]: it does not appear too unreasonable if we believe thatfor most programs encountered in practice, predicates have speci�c argument posi-tions used consistently with the same mode, type, etc. (see, for example, Drabent[1987]). In this section, we examine whether such a strategy can lead to fundamen-tal improvements in the worst-case behavior of analysis algorithms.



Complexity of Data
ow Analysis of Logic Programs � 31If an analysis approximates a set of calling and/or success patterns by their leastupper bound in the abstract domain, there will be a loss in precision in general.However, if every predicate in the program under consideration has at most onecalling pattern and one success pattern, then there is no loss of precision due tothis approximation. To examine complexity issues for analyses that compute worst-case approximations in this way, we focus on programs where each predicate hasa bounded number of calling and success patterns. Of course, whether or not thisis true for a given program depends partly on the program, and partly on theabstract domain under consideration, since a single calling pattern for one abstractdomain may correspond to a number of di�erent calling patterns for a di�erentabstract domain that is larger and has �ner granularity. However, when we referto an analysis algorithm we assume implicitly that the algorithm is de�ned withrespect to some speci�c abstract domain, so it makes sense to talk about the classof programs that, for a given analysis, have a bounded number of calling and/orsuccess patterns.The �rst such restriction we consider is described by Codish et al. [1990], whodescribe a bottom-up analysis that maintains at most one success pattern per pro-gram clause (since the analysis is a bottom-up one, there is no notion of callingpatterns). The worst-case complexity of the resulting analysis is O(2n), where n isthe size of the program [Codish et al. 1990]. We show that unless P = NP , it maynot be possible to do better than this:Theorem 6.1. Exact groundness and alias analyses of recursion-free, function-free, failure-free programs, where the number of distinct calling and success patternsfor any predicate is O(1), is co-NP-complete.Proof. Identical to that of Theorem 5.2.3. We observe that in the programP' constructed there, each predicate has arity at most 6, and so for an abstractdomain of �xed size k can have at most O(k6) = O(1) calling and success patterns.The result follows. 2If, however, variable dependency information is used in a fairly limited way, it ispossible to obtain analysis algorithms with polynomial-time worst-case complexity.One of the properties that complicates the handling of sharing among variablesis that sharing is not transitive in general: the fact that a program variable Xmay share variables with a program variable Y at runtime, and that Y may sharevariables with a program variable Z, does not imply that X shares with Z. Therepresentation and processing of sharing and dependency information can be sim-pli�ed considerably, at the cost of some precision, by assuming that sharing istransitive. De�ne the class of transitive-sharing programs to be those programswhere all sharing among variables is transitive. Then, the results of Debray [1989]imply the following:Theorem 6.2. There exist polynomial-time data
ow analysis algorithms whoseexactness sets are contained in the class of function-free, failure-free, bounded-arity,transitive-sharing programs where each predicate has at most one calling and onesuccess pattern.If aliasing can be disregarded entirely, analyses can be carried out quite e�ciently:it is shown, in Debray [1992], that abstract domains that allow aliasing to be ignored



32 � S. K. Debray tt tt tt ttt
��������� PPPPPPPaaaaaa!!!����@@@@@@

all undecidablenegationfn. symbolsalias freerecursion free NEXPTIME-hardfn. symbolsalias freerecursion freebounded arity PSPACE-hardonly constantsalias freerecursion freebounded arity NP-completeonly constantsalias free EXPTIME-completeonly constantsalias freerecursion free PSPACE-hardonly variablesfailure free EXPTIME-completeonly variablesfailure freerecursion freebounded arity coNP-completealias freefailure freebounded arityvariable-free callsbounded calling/success patternslinear timeFig. 1. The correlation between precision and complexity in data
ow analysis of logic programs.admit sound 
ow analysis algorithms whose worst-case complexity, assuming O(1)calling and success patterns per predicate, is linear in program size. De�ne aprogram to satisfy the variable-free calls property if none of the calls arising duringthe execution of that program contain variables. We have the following result[Debray 1992]:Theorem 6.3. There exist linear-time data
ow analysis algorithms whose exact-ness sets are contained in the class of alias-free, failure-free, bounded-arity programsthat satisfy the variable-free calls property and where each predicate has at most onecalling and one success pattern.Analyses satisfying these requirements include the rigid type analysis of Janssens[1990], and Sato and Tamaki's depth-abstraction analysis [Sato and Tamaki 1984].7. CONCLUSIONSWhile it is generally believed that there is a correlation between complexity andprecision of 
ow analysis algorithms, in the sense that \su�ciently precise" analysesmust also be correspondingly expensive, little work appears to have been done onquantifying this correlation. This article takes a step toward formally addressingthis issue in the context of logic programming. We o�er a formal characterizationof the \precision" of data
ow analyses. We consider the implications, with regardto the precision/complexity tradeo�, of some of the di�erent ways in which variousanalysis algorithms may sacri�ce precision. Our results, which are summarized
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ow Analysis of Logic Programs � 33in Figure 1, indicate, somewhat surprisingly, that even for classes of programswhose syntactic structure is extremely simple, the worst-case complexity of precisedata
ow analysis can be exponential in the program size for a wide variety ofdata
ow analyses. The implication is that the complexity cannot be any betterwhen considering the entire Prolog language, even for relatively modest data
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