
Interprocedural Control Flow Analysis of First-Order Programswith Tail Call Optimization�Saumya K. Debray and Todd A. ProebstingDepartment of Computer ScienceThe University of ArizonaTucson, AZ 85721, USA.Email: fdebray, toddg@cs.arizona.eduDecember 5, 1996AbstractThe analysis of control
owInvolves �guring out where returns will go.How this may be doneWith items LR-0 and -1Is what in this paper we show.1 IntroductionMost code optimizations depend on control
ow analysis, typically expressed in the form of a control
owgraph [1]. Traditional algorithms construct intraprocedural
ow graphs, which do not account for control
ow between procedures. Optimizations that depend on this limited information cannot consider the be-havior of other procedures. Interprocedural versions of these optimizations must capture the
ow of controlacross procedure boundaries. Determining interprocedural control
ow (for �rst-order programs) is relativelystraightforward in the absence of tail call optimization, since procedures return control to the point imme-diately after the call. Tail call optimization complicates the analysis because returns may transfer controlto a procedure other than the active procedure's caller.The problem can be illustrated by the following simple program that takes a list of values and prints, intheir original order, all the values that satisfy some property, e.g., exceed 100. To take advantage of tail-calloptimization, it uses an accumulator to collect these values as it traverses the input list. However, this causesthe order of the values in the accumulator to be reversed, so the accumulated list is reversed|again usingan accumulator|before it is returned.(1) main(L) = print extract(L, [])(2) extract(xs, acc) =(3) if xs = [] then reverse(acc, [])(4) else if hd(xs) > 100 then extract(tl(xs), cons(hd(xs),acc))(5) else extract(tl(xs), acc)(6) reverse(xs, acc) =(7) if xs = [] then acc(8) else reverse(tl(xs), cons(hd(xs),acc))�The work of S. Debray was supported in part by the National Science Foundation under grant number CCR-9502826. Thework of T. Proebsting was supported in part by NSF Grants CCR-9415932, CCR-9502397, ARPA Grant DABT63-95-C-0075,and IBM Corporation.

Suppose that, for code optimization purposes, we want to construct a
ow graph for this entire program.The return from the function reverse in line 7 corresponds to some basic block, and in order to constructthe
ow graph we need to determine the successors of this block. The call graph of the program indicatesthat reverse can be called either from extract, in line 3, or from reverse, in line 8. However, becauseof tail call optimization, it turns out that reverse does not return to either of these call sites. Instead, itreturns to a di�erent procedure entirely, namely, to the procedure main in line 1: the successor block to thereturn in line 7 is the basic block that calls print. Clearly, some nontrivial control
ow analysis is necessaryto determine this.Most of the work to date on control
ow analysis has focused on higher-order languages: Shivers [18, 19]and Jagannathan and Weeks [8] use abstract interpretation for this purpose, while Heintze [5] and Tangand Jouvelot [20, 21] use type-based analyses. These analyses are very general, but very complex. Manywidely used languages, such as Sisal and Prolog, are �rst-order languages. Furthermore, even for higher-orderlanguages, speci�c programs often use only �rst-order constructs, or can have most higher-order constructsremoved via transformations such as inlining and uncurrying [22]. As a pragmatic issue, therefore, we areinterested in \ordinary" �rst-order programs: our aim is to account for interprocedural control
ow in suchprograms in the presence of tail call optimization. To our knowledge, the only other work addressing this issueis that of Lindgren [10], who uses set-based analysis for control
ow analysis of Prolog. Unlike Lindgren'swork, our analyses can maintain context information (see Section 6).The main contribution of this paper is to show how control
ow analysis of �rst-order programs with tailcall optimization can be formulated in terms of simple and well-understood concepts from parsing theory. Inparticular, we show that context-insensitive, or zeroth-order, control
ow analysis corresponds to the notionof FOLLOW sets in context free grammars, while context-sensitive, or �rst-order, control
ow analysiscorresponds to the notion of LR(1) items. This is useful, because it allows the immediate application ofwell-understood technology without, for example, having to construct complex abstract domains. It is alsoesthetically pleasing, in that it provides an application of concepts such as FOLLOW sets and LR(1) items,which were originally developed purely in the context of parsing, to a very di�erent application.The remainder of the paper is organized as follows. Section 2 introduces de�nitions and notation. Section3 de�nes an abstract model for control
ow, and Section 4 shows how this model can be described usingcontext free grammars. Section 5 discusses control
ow analysis that maintain no context information, andSection 6 discusses how context information can be maintained to produce more precise analyses. Section7 illustrates these ideas with a nontrivial example. Section 8 discusses tradeo�s between e�ciency andprecision. Proofs of the theorems may be found in [4].2 De�nitions and NotationWe assume that a program consists of a set of procedure de�nitions, together with an entry point procedure.(It is straightforward to extend these ideas to accommodate multiple entry points.) Since we assume a�rst-order language, the intraprocedural control
ow can be modelled by a control
ow graph [1]. This is adirected graph where each node corresponds to a basic block, i.e., a (maximal) sequence of executable codethat has a single entry point and a single exit point, and where there is an edge from a node A to a node Bif and only if it is possible for execution to leave node A and immediately enter node B. If there is an edgefrom a node A to a node B, then A is said to be a predecessor of B and B is a successor of A. Because of thee�ects of tail call optimization, interprocedural control
ow information cannot be assumed to be available.Therefore, we assume that the input to our analysis consists of one control
ow graph for each procedurede�ned in the program.For simplicity of exposition, we assume that each
ow graph has a single entry node. Each
ow graphconsists of a set of vertices, which correspond to basic blocks, and a set of edges, which capture control
owbetween basic blocks. If a basic block contains a procedure call, the call is assumed to terminate the block;if a basic block B ends in a call to a procedure p, we say that B calls p.If the last action along an execution path in a procedure p is a call to some procedure q|i.e., if theonly action that would be performed on return from q would be to return to the caller of p|the call to qis termed a tail call. A tail call can be optimized: in particular, any environment allocated for the caller pcan be deallocated, and control transfer e�ected via a direct jump to the callee q; this is usually referred to2

as \tail call optimization," and is crucial for e�cient implementations of functional and logic languages. Ifa basic block B ends in a tail call, we say that it is a tail call block; if B ends in a procedure call that isnot a tail call, we say B is a call block. In the latter case, B must set a return address L before making thecall: L is said to be a return label. If a basic block B ends in a return from a procedure, it is said to be areturn block. As is standard in the program analysis literature, we assume that either branch of a conditionalcan be executed at runtime. The ideas described here are applicable to programs that do not satisfy thisassumption; in that case, the analysis results will be sound but possibly conservative.The set of basic blocks and labels appearing in a program P are denoted by BlocksP and LabelsPrespectively. The set of procedures de�ned in it is denoted by ProcsP . Finally, the Kleene closure of a setS, i.e., the set of all �nite sequences of elements of S, is written S�. The re
exive transitive closure of arelation R is written R?.3 Abstracting Control FlowBefore we can analyze the control
ow behavior of such programs, it is necessary to specify this behaviorcarefully. First, consider the actual runtime behavior of a program:{ Code not involving procedure calls or returns is executed as expected: each instruction in a basic blockis executed in turn, after which control moves to a successor block, and so on.{ Procedure calls are executed as follows.{ A non-tail call loads arguments into the appropriate locations, saves the return address (forsimplicity, we can assume that it is pushed on a control stack), and branches to the callee.{ A tail call loads arguments, reclaims any space allocated for the caller's environment, and transferscontrol to the callee.{ A procedure return simply pops the topmost return address from the control stack and transfers controlto this address.We can ignore any aspect of a program's runtime behavior that is not concerned directly with
ow of control.Conceptually, therefore, control moves from one basic block to another, pushing a return address on a stackwhen making a non-tail procedure call, and popping an address from it when returning from a procedure.This can be formalized using a very simple pushdown automaton: the automaton MP corresponding to aprogram P is called its control
ow automaton. Given a program P , the set of states Q of MP is given byQ = BlocksP [ProcsP ; its input alphabet is LabelsP ; the initial state of MP is p, where p is the entry pointof P ; and its stack alphabet � = LabelsP [BlocksP [f$g, where $ is a special bottom-of-stack marker thatis the initial stack symbol.The general idea is that the state of MP at any point corresponds to the basic block being executed byP , while the return labels on its stack correspond to the stack of procedure calls in P . The input string doesnot play a direct role in determining the behavior of MP , but it turns out to be technically very convenientto match up symbols read from the input with labels popped from the stack. The language accepted by MPis then the set of sequences of labels that control can jump to on procedure returns during an execution ofthe program P .Let the transitions of a pushdown automaton be denoted as follows [7]: if, from a con�guration where itis in state q and has w in its input and � on its stack, it can make a transition to state q0 with input stringw0 and with � on its stack, we write (q; w; �) ` (q0; w0; �). The stack contents � are written such that thetop of the stack is to the left: if � � a1 : : :an then a1 is assumed to be at the top of the stack. The movesof MP are de�ned as follows:1. If basic block B is a predecessor of basic block B0, and B does not make a call or tail call, then MPcan make an "-move from B to B0:(B;w; �) ` (B0; w; �) 3

2. If basic block B makes a call to procedure p with return label `, where the basic block with label ` isB0, then MP can push two symbols `B0 on its stack and make an "-move to state p:(B;w; �) ` (p; w; `B0�)3. If basic block B makes a tail call to procedure p, then MP can make an "-move to state p:(B;w; �) ` (p; w; �)4. If the entry node of the
ow graph of a procedure p is B, then MP can make an "-move from state pto state B:(p; w; �) ` (B;w; �)5. If B is a return block, then if ` appears on MP 's input and the label ` and block B0 appear on the topof its stack, then MP can read ` from the input, pop ` and B0 o� its stack, and go to state B0:(B; `w; `B0�) ` (B0; w; �)6. Finally,MP accepts by empty stack: for each state q, there is the move(q; "; $) ` (q; "; ").We refer to the label appearing on the top of MP 's stack as the current return label, since this is the labelof the program point to which control returns from a return block.4 Control Flow GrammarsGiven a set of control
ow graphs for the procedures in a program, we can construct a context free grammarthat describes its control
ow behavior. We call such a grammar a control
ow grammar.De�nition 4.1 A control
ow grammar for a program P is a context free grammar GP = (V; T; P; S)where the set of terminals T is the set LabelsP of return labels of P ; the set of variables V is given byV = BlocksP [ProcsP ; the start symbol of the grammar is the entry procedure p of the program; and theproductions of the grammar are given by the following:1. if B is a basic block that is a predecessor of a basic block B0, then there is a production B ! B0;2. if B is a call block with return label `, where the basic block labelled ` is B0, and the called procedureis p, there is a production B ! p ` B0;3. if B is a tail call block and the called procedure is p, then there is a production B ! p;4. if p is a procedure de�ned in P , and the control
ow graph of p has entry node B, then there is aproduction p! B.5. If B is a return block, then there is a production B ! ".Example 4.1 Consider the main/extract/reverse program from Section 1. A (partial)
ow graph forthis program is shown in Figure 1, with ordinary control transfers shown using solid lines and calls toprocedures using dashed lines. Because control transfers at procedure returns have not yet been determined,the predecessors of basic block B2 and the successors of block B9 are not yet known. The control
owgrammar for this program has as its terminals the set of labels fL2g, nonterminals fmain, extract, reverse,B1, . . . , B10g, and the following productions: 4

call reverse

reverse:

B1

call extract ret addr=L2

main:

B2

call print

L2:

extract:
B3

B4 B5

B6 B7

B8

B9 B10

call reversereturn

call extract call extract

Figure 1: A (Partial) Flow Graph for the main/extract/reverse Programmain ! B1 B5 ! B7B1 ! extract L2 B2 B6 ! extractB2 ! print B7 ! extractextract ! B3 reverse ! B8B3 ! B4 B8 ! B9B3 ! B5 B8 ! B10B4 ! reverse B9 ! "B5 ! B6 B10 ! reverseThe start symbol of the grammar is main 2The productions of the control
ow grammarGP closely resemble the moves of the control
ow automatonMP , and it comes as no surprise that they behave very similarly. Let)lm denote the leftmost derivationrelation in GP . The following theorem, whose proof closely resembles the standard proof of the equivalencebetween pushdown automata and context-free languages [7], expresses the intuition that the control
owgrammar of a program mirrors the behavior of its control
ow automaton:Theorem 4.1 Given a program P with entry point S, control
ow grammar GP and control
ow automatonMP , S)?lm xA� if and only if (S; xw; $) `? (A;w; �)where x;w 2 Labels�P and A 2 BlocksP [ProcsP .5 Zeroth-Order Control Flow AnalysisZeroth-order control
ow analysis, also referred to as 0-CFA, involves determining, for each procedure p in aprogram, the set of labels RetLbl(p) to which control can return after some call to p. Consider a call blockB in a program P . If B is not a tail-call block, it pushes its return address onto the top of the stack beforetransferring control to the called procedure. On the other hand, if B is a tail call block, it leaves the control5

stack untouched and transfers control directly to the callee. Eventually, when executing a return, controlbranches to the label appearing on the top of the stack. Thus, in either case, the set of labels to whicha procedure p can return is the set of current return labels when control enters p, in some con�gurationreachable from the initial con�guration of MP .RetLbl(p) = f` j (q0; w; $) `? (p; w0; `�)gIt is a direct consequence of Theorem 4.1 that this set is precisely the FOLLOW set of p in the control
owgrammar of the program (see [1] for the de�nition of FOLLOW sets):Theorem 5.1 For any procedure p in a program P , RetLbl(p) = FOLLOW(p).Proof Suppose the program P has entry point S. From the de�nition of RetLbl(p), ` 2 RetLbl(p) if andonly if there is a call block A that calls p, such that (S; xw; $) `? (A;w; �) ` (p; w; `B�). From Theorem 4.1,this is true if and only if S)? xA�) xp`B�, i.e., S)? xp`�0. But this is true if only if ` 2 FOLLOW(p).It follows that RetLbl(p) = FOLLOW(p). 2Example 5.1 FOLLOW sets for some of the variables in the grammar of Example 4.1 are:X FOLLOW(X)main $extract L2reverse L2Here, a `$' refers to the \external caller," e.g., the user. It is immediately apparent from this that controlreturns from reverse to the basic block in main that calls print. 2There is one remaining subtlety in constructing the interprocedural control
ow graph of a programonce the set of return labels for each function have been computed. If we consider the FOLLOW sets thegrammar of Example 4.1, we �nd that L2 occurs in FOLLOW(extract), and it is correct to infer from thisthat control is transferred to the basic block B2, labelled by L2, after completion of the call to extract.However, we cannot conclude that each block that has L2 in its FOLLOW set has the block B2 as a successor:while L2 occurs in the FOLLOW sets of B3, B4, B5, B6, B7, B8, B9 and B10, it is not di�cult to see thatonly B9|which actually contains a return instruction|should have B2 as a successor. The algorithm forconstructing the control
ow graph of a program, taking this into account, is given in Figure 2.5.1 Applications of 0-CFAAn example application of 0-CFA is interprocedural unboxing optimization in languages that are eitherdynamically typed, or that support polymorphic typing. In implementations of such languages, the compilercannot always predict the exact type of a variable at a program point, and as a result it becomes necessaryto ensure that values of di�erent types \look the same," which is achieved by \boxing." Unfortunately,manipulating boxed values is expensive.The issue of maintaining untagged values has received considerable attention in recent years in thecontext of strongly typed polymorphic languages [6, 11, 14]. Using explicit \representation types," thiswork relies on the type system to propagate data representation information through the program. Whiletheoretically elegant, the type system cannot be aware of low-level pragmatic concerns such as the costsof various representation conversion operations and the execution frequencies of di�erent code fragments.As a result, it is di�cult to guarantee that the \optimized" program is, in fact, more e�cient than theunoptimized version. Also, the idea does not extend readily to dynamically typed languages.Peterson [12] takes a procedure's control
ow graph, and determines the optimal placement of represen-tation conversion operations, based on basic block execution frequencies and conversion operation costs. Asgiven, this is an intraprocedural optimization. For many programs, unboxing across procedure calls yieldssigni�cant performance improvements. As an example, we tested a program that computes R 10 exdx usingtrapezoidal numerical integration with adaptive quadrature. For this program, intra-procedural unboxingoptimization yields a performance improvement of about 30.3% (with a tail call from a function to itself being6

Input: A program P .Output: The interprocedural 0-CFA control
ow graph for P .Method:1. Construct the control
ow grammar GP for P .2. Compute FOLLOW sets for the nonterminals of GP .3. Construct a partial control
ow graph for P , without accounting for control transfers due to pro-cedure returns. This is done by adding edges corresponding to intra-procedural control transfers,as in [1], together with an edge from each call block and tail-call block to the entry node of thecorresponding called function.4. For each ` 2 LabelsP and each nonterminal X of GP do:if ` 2 FOLLOW(X) and the basic block corresponding toX contains a return instructionthen add an edge from X to B`, where B` is the basic block labelled by `;Figure 2: An algorithm for constructing the interprocedural 0-CFA control
ow graph of a programrecognized and implemented as a loop). With inter-procedural unboxing, however, performance improves byabout 52.9%.1 To apply Peterson's algorithm interprocedurally, we need to construct the control
ow graphfor the entire program. The presence of tail call optimization makes computing the set of successors of areturn block di�cult with just the call graph of the program. Fortunately, 0-CFA provides precisely whatis needed to determine the successors of return blocks, and thereby to construct the control
ow graph fora program.Another application of 0-CFA is interprocedural basic block fusion. The basic idea of this optimizationis straightforward: if we have two basic blocks B0 and B1 where B0 is the only predecessor of B1 and B1is the only successor of B0, then they can be combined into a single basic block; in the interproceduralcase, the blocks being fused may belong to di�erent procedures. The bene�ts of this optimization include areduction in the number of jump instructions executed, with a concomitant decrease in pipeline \bubbles,"as well as potentially improved opportunities for better instruction scheduling in the enlarged basic blockresulting from the optimization. Our experience with �lter fusion [15] indicates that this optimization can beof fundamental importance for performance in applications involving automatically generated source code.Consider the main/extract/reverse program from Section 1. A partial
ow graph for this program isgiven in Figure 1. It is not di�cult to see that the 0-CFA algorithm of Figure 2 would determine that basicblock B2 is the only successor of block B9, and B9 is the only predecessor of B2, thereby allowing these twoblocks to be fused. Note that a naive analysis that handles tail calls as if they were calls that returned to anempty basic block immediately following the call site would infer that basic block B2 had three predecessors,blocks B4, B6 and B7, thereby preventing the application of the optimization in this case.6 First-Order Control Flow AnalysisWhile 0-CFA tells us the possible return addresses for each basic block and procedure, it leaves out allinformation about the \context" in which a call occurs (i.e., who called whom to get to this call site). Thismay render 0-CFA inadequate in some situations. Information about where control \came from" couldprovide more precise liveness or aliasing information at a particular program point, allowing a compiler togenerate better code.1We did not implement Peterson's algorithm, because the control
ow analysis described here had not been developed whenwe implemented the unboxing optimization. Instead, our compiler uses a heuristic that produces good, but not necessarilyoptimal, representation conversion placements. These performance improvements can therefore be seen as lower bounds onwhat can be attained using an optimal algorithm. 7

At any point during a program P 's execution, the return addresses on its control stack (which correspondto the contents of the stack in some execution of the control
ow automatonMP) give us a complete historyof the interprocedural control
ow behavior of the program upto that point. Since, the set of all possible(�nite) sequences of labels is in�nite, we seek �nitely computable approximations to this information. Anobvious possibility is to keep track of the top k labels on the stack of MP , for some �xed k � 0. 0-CFA,where we keep track of no context information at all, corresponds to choosing k = 0. A control
ow analysisthat keeps track of the top k return addresses on the stack ofMP is called a k-th.-order control
ow analysis,or k-CFA (this corresponds to the \call-strings approach" of Sharir and Pnueli [17]). In this section, wefocus our attention on �rst-order control
ow analysis, or 1-CFA.In the previous section, we showed that the FOLLOW sets of the control
ow grammar give 0-CFAinformation. How might we incorporate additional context information into such analyses? In parsingtheory, FOLLOW sets are used to construct SLR(1) parsers, which are based on LR(0) items. BecauseSLR(1) parsers do not maintainmuch context information, they are unable to handle many simple grammars.Introducing additional context information into the items using lookahead tokens �xes this problem: thisleads to the use of LR(1) items.This analogy carries over to control
ow analysis. LR(1) items for the control
ow grammarGP are closelyrelated to the information manipulated during 1-CFA. Basically, an LR(1) item [A! � � �; a] conveys theinformation that control can reach A with current return label a. In an item [A ! � � �; a] we will oftenfocus on the nonterminal A on the left hand side of the production and the lookahead token a, but not in thedetails of the structure of � � �: in such cases, to reduce visual clutter we will write the item as [A! � � � ; a].In the context of this discussion we are not concerned with whether or not the control
ow grammar GP isLR(1)-parsable.We know, from parsing theory, that given a control
ow grammar GP with variables V and terminals T ,there is a nondeterministic �nite automaton (NFA) (Q;�; �; q0; Q) that recognizes viable pre�xes of G [7].This NFA, which we will refer to as the viable pre�x NFA, is de�ned as follows: its set of states Q consistsof the set of LR(1) items for GP , together with a state q0 that is not an item; its alphabet � = V [T ; theinitial state is q0; every state is a �nal state; and the transition function � is de�ned as follows:(i) Given a program P with entry point p, �(q0; ") = f[S ! � p; $]g.(ii) �([A! � � B�; a]; ") = f[B ! �
; b] j B !
 is a production; b 2 FIRST(�a)g.(iii) �([A! � � B�; a]; B) = f[A! �B � �; a]g (B 6= ").An item I is said to be reachable if q0;? I, i.e., if there is a path from the the initial state q0 of the viablepre�x NFA to I. The following result makes explicit the correspondence between LR(1) items in GP andreturn addresses on top of the stack of MP :Theorem 6.1 Given a program with entry point p, (p; x; $) `? (A; y; a�) if and only if there is a reachableitem [A! � � � ; a].The set of current return labels, i.e., labels at the top of MP 's stack, when control enters a basic block orprocedure is now easy to determine:Corollary 6.2 Let A be any basic block or procedure in a program P . The set of current return labels whencontrol enters A is given by f` j there is a reachable LR(1) item [A! � � � ; `]g.An LR(1) item [A! � � � ; a] tells us about the return labels that can appear on top of the control stack,i.e., about addresses that control can go to. Fortunately, it turns out that we can use the reachability relation; in the viable pre�x NFA to trace the origins of a call. Consider a program P with a call block A thatcalls a procedure p: in the control
ow grammar GP , this corresponds to a productionA! p ` Cwhere ` is the return label and C is the block with label `. This production gives rise to LR(1) items of theform [A! � p ` C; b]. Let Bp be the entry node of the
ow graph for p, then GP contains the productionp! Bp, so in the viable pre�x NFA there is a "-transition from each of these items to the item [p! � Bp; `].Suppose the block Bp has successors C1; : : : ; Ck, then GP has productions Bp ! C1; � � �Bp ! Ck, andthe viable pre�x NFA will therefore have "-transitions from the item [p! � Bp; `] to each of the items8

[Bp ! � C1; `], . . . , [Bp ! � Ck; `]. Suppose one of these blocks, say Cj , makes a tail call to a procedureq, whose
ow graph has entry node Bq , then GP contains the productions Cj ! q and q ! Bq , and thisgives rise to "-transitions from [Bp ! � Cj; `] to [Cj ! � q; `] and thence to [q! � Bq ; `]. We can follow"-transitions in this way to trace a sequence of control transfers that does not involve any procedure returns.Conversely, we can follow "-transitions backwards from a call to work out where it could have come from.Intuitively, we want to be able to characterize a collection of successive basic blocks and procedurescontrol can go through|i.e., a sequence of states of the control
ow automaton|without any procedurereturns, except perhaps at the very end. Since the set of sequences of blocks is in�nite, we need a �niteapproximation: as before, one simple way to do this is to consider sets of blocks (there are only �nitelymany), together with the current return label when control reaches each block. These ideas can be mademore precise using the notion of a forward chain:De�nition 6.1 A forward chain in a program P is a set f(B0; `0) : : : ; (Bn; `n)g where each Bi is either aprocedure in P or a basic block in P , `i 2 LabelsP for 0 � i � n, and where for each i, 0 � i < n, the followinghold: (i) Bi is not a return block; and (ii) in the control
ow automaton MP , (Bi; x; `i�) ` (Bi+1; y; `i+1�)for some x; y; �; �.Reasoning as above, it is easy to show the following result:Theorem 6.3 f(B0; `0); : : : ; (Bn; `n)g is a forward chain in a program P if and only if there is a sequenceof "-transitions in the viable pre�x NFA for GP of the form[B0 ! � � B1�0; `0] ; [B1 ! � B2�1; `1]; � � �; [Bn�1 ! � Bn�n�1; `n�1]; [Bn ! � �n; `n]where `i+1 2 FIRST(�i`i), for some �0; : : : ; �n.Now consider the process of applying the subset construction to the viable pre�x NFA to construct anequivalent DFA. Each state of the DFA consists of a set of NFA states|that is, a set of LR(1) items|obtained by starting with a set of NFA states and then adding all the states reachable using only "-transitions.The DFA construction is useful because the set of NFA states comprising each state of the DFA correspondsto the largest set of NFA states reachable from some initial set using only "-transitions, i.e., to a set ofmaximal-length forward chains. In other words, if a forward chain occurs in a state of the ciable pre�x DFA,it is entirely contained in that state: it can can never spill over into another state, thereby simplifying thesearch for forward chains. This is expressed by the following result:Corollary 6.4 f(B0; `0); : : : ; (Bn; `n)g is a forward chain in a program if and only if there is astate in the viable pre�x DFA for GP containing items [B0 ! � � B1�0; `0], [B1 ! � B2�1; `1], � � �,[Bn�1 ! � Bn�n�1; `n�1], [Bn ! �n; `n] where `i+1 2 FIRST(�i`i), for some �0; : : : ; �n.Intuitively, control can \come from" a call A to a pointB if there is a forward chain fromA to B that containsno intervening calls|i.e., A is the most recent call preceding B. The following result is now immediate:Corollary 6.5 Let A be a call block or a tail call block in a program P , and B a basic block or a procedurein P . Then, control can come from A to B if and only if there is a state in the viable pre�x DFA of GPcontaining items [B0 ! � � B1�0; `0], [B1 ! � B2�1; `1], � � �, [Bn�1 ! � Bn�n�1; `n�1], [Bn ! �n; `n]where `i+1 2 FIRST(�i`i), for some �0; : : : ; �n, such that B0 � A, Bn � B, and Bi is not a call block ortail call block for 0 < i < n.We conjecture that the analogy between control
ow analysis and LR items continues to hold when morecontext information is maintained. In particular, we conjecture that just as �rst-order control
ow analysis(1-CFA) corresponds to LR(1) items, k-th.-order control
ow analysis (k-CFA) corresponds to LR(k) items.9

6.1 Applications of 1-CFAAn example application of 1-CFA is in context-sensitive interprocedural data
ow analysis. Much of therecent work on interprocedural data
ow analysis has focused on languages such as C and Fortran, whoseimplementations usually do not support tail call optimization. These analyses determine, for each call, thebehavior of the called procedure, then propagate this information to the program point to which that callreturns. For the languages considered, the determination of the return points for the calls is straightforward.Because the point to which a call returns is not obvious in the presence of tail call optimization, it is notobvious how to apply these analyses to systems with tail call optimization. While 0-CFA can be used todetermine the set of successors for each return block, this does not maintain enough context information todetermine where control came from. As a result, the analysis can infer spurious pointer aliases by propagatinginformation from one call site back to a di�erent call site. Using context-sensitive interprocedural analysesavoids this by maintaining information about where a call came from [2, 9, 23], which is precisely theinformation provided by 1-CFA.As a speci�c example of the utility of context-sensitive
ow information, our experiments with deadcode elimination based on interprocedural liveness analysis, in the context of the alto link-time optimizer[3] applied to a number of SPEC benchmarks, indicate that compared to the number of register loads andstores that can be deleted based on context-insensitive liveness information, an additional 5%{8% can bedeleted using context-sensitive liveness information.Whether or not a context-sensitive version of an interprocedural analysis is useful depends, to a great ex-tent, on the analysis and the application under consideration. Our experiments with interprocedural livenessanalysis indicate that there are situations when such analyses can lead to a noticeable improvement in thecode generated. On the other hand, in comparing context-sensitive and context-insensitive alias analyses dueto indirect memory references through pointers, Ruf observes [16] that \. . . the context-sensitive analysis doescompute more precise alias relationships at some program points. However, when we restrict our attentionto the locations accessed by or modi�ed by indirect memory references, no additional precision is measured."However, if a context-sensitive data
ow analysis is deemed necessary for a language implementation withtail call optimization, the control
ow analysis described here can be used to provide the necessary support.7 A Larger ExampleConsider the following program, adapted from Section 4.17 of [13], to determine whether a propositionalformula in conjunctive normal form is a tautology:fun taut(Conj(p,q)) = taut(p) andalso taut(q)| taut(p) = ([] <> int(pos(p), neg(p)));fun pos(Atom(a)) = [a]| pos(Neg(Atom(a))) = []| pos(Disj(p,q)) = app(pos(p), pos(q));fun neg(Atom(a)) = []| neg(Neg(Atom(a))) = [a]| neg(Disj(p,q)) = app(neg(p), neg(q));fun int([], ys) = []| int(x::xs, ys) = if mem(x, ys) then x :: int(xs, ys) else int(xs, ys);fun mem(x, []) = false| mem(x, y::ys) = (x=y) orelse mem(x, ys);fun app([], ys) = ys| app(x::xs, ys) = x::app(xs, ys);The partial
ow graph for this program is shown in Figure 3. To reduce clutter, we have not explicitlyshown control transfers due to procedure calls; moreover, to aid the reader in understanding the control
ow behavior of this program, each non-tail call is connected to the basic block corresponding to its returnaddress with a dashed arc. The control
ow grammar G = (V; T; P; S) for this program is given by thefollowing: V = ftaut, pos, neg, int, mem, app, B0, . . . , B33g; T = fL2, L4, L5, L6, L12, L13, L19, L20, L24,10

return

return

call taut call pos

return call neg

return

return call pos

call pos

return

return

ret addr=L20

call neg

call neg

pos: neg:taut:

call mem return call mem

mem:

return

B1

B0

B2

B3

B4

B5

B6

B7

B8 B9

B10 B11

B12

B13

B14

B15 B16

B17 B18

B19

B20

B21

B22 B23

return

B24

B25 B26

B27

B28

B29 B30

B31

B32 B33

L5:

L4:

L6:

L12:

L13:

L19:

L20:

L24:

L27:

ret addr=L1

ret addr=L24

ret addr=L27

L2:

app:

call app call app

call app

int:

call int

call int call int

ret addr=L5

ret addr=L4

ret addr=L6

ret addr=L12

ret addr=L13

ret addr=L19

Figure 3: A (Partial) Flow Graph for the Tautology Checker Program11

taut ! B0 B12 ! pos L13 B13 B16 ! B18B0 ! B1 B13 ! app B25 ! intB0 ! B3 neg ! B14 B26 ! int L27 B27B1 ! taut L2 B2 B14 ! B15 B27 ! "B2 ! " B14 ! B16 mem ! B28B3 ! pos, L4 B4 B15 ! " B28 ! B29B4 ! neg L5 B5 B16 ! B17 B28 ! B30B5 ! int L6 B6 B17 ! " B29 ! "B6 ! " B18 ! neg L19 B19 B30 ! mempos ! B7 B19 ! neg L20 B20 app ! B31B7 ! B8 B20 ! app B31 ! B32B7 ! B9 int ! B21 B31 ! B33B8 ! " B21 ! B22 B32 ! "B9 ! B10 B21 ! B23 B33 ! appendB9 ! B11 B22 ! " B23 ! mem L24 B24B10 ! " B24 ! B25 B24 ! B26B11 ! pos L12 B12Figure 4: Productions for the control
ow grammar of the program in Section 7L27g; S = taut; and the set of productions P as shown in Figure 4. The set of possible return addresses foreach function, as obtained using 0-CFA, is as follows:taut : L2, $pos : L4, L12, L13neg : L5, L19, L20int : L6, L27mem : L24app : L4, L12, L13, L5, L19, L20Due to space constraints, we do not reproduce all the sets of LR(1) items for this grammar. The di�erencebetween 0-CFA and 1-CFA can be illustrated by examining the behavior of the function app. On examiningthe viable pre�x DFA, we �nd four states that are relevant to this function. One of these states consists ofthe following two groups of LR(1) items:[B12! pos L13 � B13; L4] [B12! pos L13 � B13; L12][B13! � app; L4] [B13! � app; L12][app! � B31; L4] [app! � B31; L12][B31! � B32; L4] [B31! � B32; L12][B31! � B33; L4] [B31! � B33; L12][B32! � ; L4] [B32! � ; L12][B33! � app; L4] [B33! � app; L12]From the forward chains in the �rst group, we can determine that app can be called from basic block B13of the function pos, with return label L4 (note that this refers to a block that|because of the control
owe�ects of tail-call optimization|does not belong to the calling function), and this can then recursively callitself with the same return label. In this case, the return label indicates that the calling function pos wasitself called from taut. The second group of LR(1) items shows a similar call sequence to app from basicblock B13, except that in this case the calling function pos is being called recursively from basic block B11in the body of pos. The remaining three states relevant to the function app provide similar information: oneof these contains two groups of items, the �rst of which is identical to the �rst group above, and the secondof which is similar to the second group above except that it refers to a recursive call to pos from basic blockB12; the remaining two states provide similar information for calls to app from the function neg.12

8 Trading Precision for E�ciencyOne of the biggest advantages we see for a grammatical formulation of control
ow analysis is that grammarsand parsing have been studied extensively and are generally well understood. Because of this, a wide varietyof techniques and tools originally devised for syntax analysis are applicable to control
ow analysis.As an example of this, consider the fact that the e�ciency of compile time analyses can be improved byreducing the amount of information maintained and manipulated, i.e., by decreasing precision. In the caseof control
ow analysis, determining where control came from involves examining the states of the viablepre�x DFA of the control
ow grammar, constructed using LR(1) items. It is well-known that the numberof states in such a DFA can become very large, but that by judiciously merging certain states (those with acommon \kernel", see [1]) the number of states can be reduced considerably without signi�cantly sacri�cingthe information contained in the DFA. Parsers that are constructed in this way are known as LALR(1)parsers, which can be built e�ciently (without initially building the LR(1) DFA).It does not come as a surprise that the same idea can be applied to 1-CFA as well. The resulting analysisis more precise than 0-CFA and potentially somewhat less precise than 1-CFA: with tongue �rmly in cheek,we call such an analysis 12 -CFA. It is usually considerably more e�cient than 1-CFA. As an example, forthe tautology checker program of Section 7, the viable pre�x DFA constructed from LR(1) items contains97 states, while that constructed from LALR(1) items contains 55 states; if we consider the entire tautologychecker from [13], which works for arbitrary propositional formulae, the LR(1) viable pre�x DFA has 304states while the LALR(1) DFA has 112 states. If we focus on calls to the function app, as in Section 7, we�nd that with LALR(1) items it su�ces to examine a single state of the DFA, in contrast to four states forthe LR(1) case. Moreover, there is no loss of information regarding the calling contexts in this case.9 ConclusionsKnowledge of low-level control
ow is essential for many compiler optimizations. In systems with tail calloptimization, the determination of interprocedural control
ow is complicated by the fact that because oftail call optimization, control
ow at procedure returns is not readily evident from the call graph of theprogram. In this paper, we show how interprocedural control
ow analysis of �rst-order programs can becarried out using well-known concepts from parsing theory. In particular, we show that 0-CFA correspondsto the notion of FOLLOW sets in context free grammars, and 1-CFA corresponds to the analysis of LR(1)items. The control
ow information so obtained can be used to improve the precision of interproceduraldata
ow analyses as well as to extend certain low-level code optimizations across procedure boundaries.References[1] A. V. Aho, R. Sethi and J. D. Ullman, Compilers { Principles, Techniques and Tools, Addison-Wesley,1986.[2] J.-D. Choi, M. Burke, and P. Carini, \E�cient Flow-Sensitive Interprocedural Computation of Pointer-Induced Aliases and Side E�ects", Proc. 20th. ACM Symposium on Principles of Programming Lan-guages, Jan. 1993, pp. 232{245.[3] K. De Bosschere and S. K. Debray, \alto : A Link-Time Optimizer for the DEC Alpha", TechnicalReport 96-15, Dept. of Computer Science, The University of Arizona, Tucson, June 1996.[4] S. K. Debray and T. A Proebsting, \Interprocedural Control Flow Analysis of First-Order Programswith Tail Call Optimization", Technical Report 96-20, Dept. of Computer Science, The University ofArizona, Tucson, Dec. 1996.[5] N. Heintze, \Control Flow Analysis and Type Systems", Technical Report CMU-CS-94-227, School ofComputer Science, Carnegie Mellon University, Pittsburgh, PA, Dec. 1994.[6] F. Henglein and J. J�rgensen, \Formally Optimal Boxing", Proc. 21st. ACM Symp. on Principles ofProgramming Languages, Portland, OR, Jan. 1994, pp. 213{226.13

[7] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation,Addison Wesley, 1979.[8] S. Jagannathan and S. Weeks, \A Uni�ed Treatment of Flow Analysis in Higher-Order Languages",Proc. 22nd. ACM Symp. on Principles of Programming Languages, San Francisco, Jan. 1995, pp. 393{407.[9] W. Landi and B. G. Ryder, \A Safe Approximate Algorithm for Interprocedural Pointer Aliasing",Proc. ACM SIGPLAN '92 Conference on Programming Language Design and Implementation, June1992, pp. 235{248.[10] T. Lindgren, \Control Flow Analysis of Prolog", Proc. 1995 International Symposium on Logic Pro-gramming, Dec. 1995, pp. 432{446. MIT Press.[11] X. Leroy, \Unboxed objects and polymorphic typing", Proc. 19th. ACM Symp. on Principles of Pro-gramming Languages, Albuquerque, NM, Jan. 1992, pp. 177{188.[12] J. C. Peterson, \Untagged Data in Tagged Environments: Choosing OptimalRepresentations at CompileTime", Proc. Functional Programming Languages and Computer Architecture, London, Sept. 1989, pp.89{99.[13] L. C. Paulson, ML for the Working Programmer, Cambridge University Press, 1991.[14] S. Peyton Jones and J. Launchbury, \Unboxed values as �rst class citizens in a non-strict functionallanguage", Proc. Functional Programming Languages and Computer Architecture 1991, pp. 636{666.[15] T. A. Proebsting and S. A. Watterson, \Filter Fusion", Proc. 23rd. ACM Symposium on Principles ofProgramming Languages, Jan. 1996, pp. 119{129.[16] E. Ruf, \Context-Insensitive Alias Analysis Reconsidered", Proc. SIGPLAN '95 Conference on Pro-gramming Language Design and Implementation, June 1995, pp. 13{22.[17] M. Sharir and A. Pnueli, \Two Approaches to Interprocedural Data
ow Analysis", in Program FlowAnalysis: Theory and Applications, eds. S. S. Muchnick and N. D. Jones, Prentice-Hall, 1981, pp. 189{233.[18] O. Shivers, \Control Flow Analysis in Scheme", Proc. SIGPLAN '88 Conference on Programming Lan-guage Design and Implementation, June 1988, pp. 164{174.[19] O. Shivers, Control Flow Analysis of Higher-Order Languages, PhD. Dissertation, Carnegie MellonUniversity, May 1991. Also available as Technical Report CMU-CS-91-145, School of Computer Science,Carnegie Mellon University, Pittsburgh, PA, May 1991.[20] Y. Tang and P. Jouvelot, \Control-Flow E�ects for Escape Analysis", Proc. WSA 92, Bordeaux, France,1992.[21] Y. Tang and P. Jouvelot, \Separate Abstract Interpretation for Control Flow Analysis", Proc. TACS-94,1994.[22] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee, \TIL: A Type-Directed Op-timizing Compiler for ML", Proc. SIGPLAN '96 Conference on Programming Language Design andImplementation, June 1996, pp. 181{192.[23] R. P. Wilson and M. S. Lam, \E�cient Context-Sensitive Pointer Analysis for C Programs", Proc.SIGPLAN '95 Conference on Programming Language Design and Implementation, June 1995, pp. 1{12.14

