J. LOGIC PROGRAMMING 1995:25:191-247 1

GENERALIZED SEMANTICS AND
ABSTRACT INTERPRETATION FOR
CONSTRAINT LOGIC PROGRAMS *

ROBERTO GIACOBAZZI, SAUMYA K. DEBRAY, AND
GIORGIO LEVI

> We present a simple and powerful generalized algebraic semantics for con-
straint logic programs that is parameterized with respect to the underlying
constraint system. The idea is to abstract away from standard semantic ob-
jects by focusing on the general properties of any—possibly non-standard—
semantic definition. In constraint logic programming, this corresponds to
a suitable definition of the constraint system supporting the semantic def-
inition. An algebraic structure is introduced to formalize the notion of a
constraint system, thus making classical mathematical results applicable.
Both top-down and bottom-up semantics are considered. Non-standard se-
mantics for constraint logic programs can then be formally specified using
the same techniques used to define standard semantics. Different non-
standard semantics for constraint logic languages can be specified in this
framework. In particular abstract interpretation of constraint logic pro-
grams can be viewed as an instance of the constraint logic programming
framework itself. <

*The work of R. Giacobazzi has been partly supported by the EEC Human Capital and Mobility
individual grant: “Semantic Definitions, Abstract Interpretation and Constraint Reasoning”, N.
ERB4001GT930817 and by the Esprit Basic Research Action 3012 - Compulog I. The work of G.
Levi has been partly supported by “Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo”
of C.N.R. under grants no. 9100880.PF69. The work of S. Debray was supported in part by the
National Science Foundation under grants CCR-8901283 and CCR-9123520.

Address correspondence to Roberto Giacobazzi, Dipartimento di Informatica, Universita di
Pisa, Corso Italia 40, 56125 Pisa, E-mail: giaco@di.unipi.it

THE JOURNAL OF LOGIC PROGRAMMING

©Elsevier Science Publishing Co., Inc., 1995
655 Avenue of the Americas, New York, NY 10010 0743-1066/93/$3.50

1. INTRODUCTION

Constraint logic programming is a generalization of the pure logic programming
paradigm, having similar model-theoretic, declarative and operational semantics
[45]. Since the fundamental linguistic aspects of constraint logic programming can
be separated from the details specific to particular constraint systems, it seems nat-
ural to parameterize the semantics of constraint logic programming languages with
respect to the underlying constraint systems. We refer to such a semantics as a
generalized semantics. Such generalized semantics provide a powerful tool for deal-
ing with a variety of applications relating to the semantics of C'L P programs. For
example, by considering a domain of “abstract constraints” instead of the “concrete
constraints” that are actually manipulated during program execution, we obtain for
free a formal treatment of abstract interpretation. In this paper we focus on alge-
braic properties that characterize (possibly non-standard) semantic constructions
in constraint logic programming. In particular we will focus on computed answer
constraint semantics and abstraction. OQur framework is therefore suitable to ana-
lyze successful computations and call patterns (the latter case can be obtained with
a magic-like transformation as in [15]) of constraint logic programs. The algebraic
approach we take to constraint interpretation makes it easy to identify a suitable
set of operators that can be instantiated in different ways to obtain both standard
and non-standard interpretations, relying on some simple axioms to ensure that
desirable semantic properties are satisfied.

This work has two main technical contributions. The first is the definition of a
structure for constraint interpretation that is weak enough to have general applica-
bility, thus dealing with a variety of non-standard interpretations, and at the same
time strong enough to ensure that relevant properties of the standard semantic
construction, such as the existence of the fixed-point semantics and the equivalence
between the top-down and the bottom-up semantics, still hold. The second is to
show how a wide class of analysis techniques developed for pure and constraint-
based logic programs can themselves be viewed as instances of the constraint logic
programming paradigm. Indeed, the approximation of the meaning of programs by
means of relations among the variables involved in the computation is a well known
technique for specifying a space of approximate assertions for program analysis.
We argue that the ability of the constraint logic programming paradigm to handle
relations on a variety of semantic domains (e.g., real arithmetics, boolean algebras,
ete.) allows this paradigm to be used for program analysis, both as a tool for the
formal specification of abstract domains, and for the rapid prototyping of static
analysis systems. Of course, in order that abstract domains and operators form
constraint systems, we require additional (and orthogonal) conditions than simple
correctness for semantic operators. Correctness is obviously necessary to get sound
approximations in abstract interpretation (most frameworks for static analysis of
logic programs require only correctness [5, 11, 15]), so apparently our approach
may result a simple restriction of the standard abstract interpretation theory (at
the current “state of the art”, some analyses like freeness are not directly definable
as constraint systems). However, lot of interesting semantic properties of analysis
(e.g. the equivalence between forward and backward evaluations) are orthogonal
to soundness. We prove that all the (abstract) domains and operators that satisfy
the constraint system conditions, provide (abstract) interpretations that satisfy the
standard results of constraint logic programming semantics as proposed by Jaffar

and Lassez [45]. This approach has some interesting practical applications, such
as the ability to compile the dataflow analysis directly to an abstract machine for
constraint logic programs—a logical extension of the “abstract compilation” scheme
discussed by Hermenegildo et al. [42]. This removes the overhead of program inter-
pretation incurred by keeping separate abstract and concrete interpretations, and
can lead to significant improvements in the speed of analysis (e.g., see [17, 42, 68]).
Our approach also makes i1t possible to close the gap that often exists between
the formalization of dataflow analyses in terms of abstract interpretation and the
realization of efficient implementations by means of appropriate data-structures
and efficient algorithms. Applications of our framework to systematically derive
efficient algorithms for dataflow analysis (e.g., by means of constraint propaga-
tion techniques for constraint solving) have been recently studied in [4]. Moreover,
while non-standard semantics such as those considered in various dataflow analyses,
are typically more abstract than the standard semantics, it is also possible, in our
framework, to define non-standard semantics that are much more concrete than the
standard semantics, 1.e., take into account details of a particular implementation.
Such semantics, illustrated in Section 4.3, can be used, for example, for reasoning
about the correctness of compilers, debuggers, and other low-level tools for program
manipulation.

The paper is structured as follows: in Section 2 we introduce the basic mathe-
matical notations used throughout the paper. Section 3 introduces an incremental
step-by-step algebraic specification for constraint systems. Section 4 provides both
a top-down and a bottom-up semantics for constraint logic programs, parameter-
ized with respect to the constraint system. In Section 5 we consider generalized
semantics for constraint logic programs as a framework for semantics-based analyses
for constraint logic programs. An example, namely rigidity analysis, 1s considered
associating Boolean constraints with standard equations on terms. Some results
on approximating constraints by means of upper closure operators on constraint
systems are also given. This approach points out how some well-known program
analysis techniques can be obtained by evaluating an abstract program into a vari-
ation of some existing C'L P systems, such as C'LP(Bool) for rigidity analysis; and,
as shown in Section 6, CLP(R), where a weaker notion of “constraint system” for
program analysis purposes is introduced by illustrating how a compile-time analy-
sis problem, linear relationships analysis, can be formulated in terms of constraint
logic programming over an appropriate constraint system. Section 7 contains a
survey of the most important related works, and a discussion on limitations of our
approach. Section 8 concludes. For continuity and ease of readability, the proofs
of most of the results, together with auxiliary lemmata, have been moved to the
appendix. This paper is an extended version of [36] and [37].

2. PRELIMINARIES

Throughout the paper we will assume familiarity with the basic notions of lattice
theory (Birkhoff’s text [8] provides the necessary background) and abstract inter-
pretation (see [22, 24]). In the following we summarize some of the mathematical
notation used in the paper.

The set of natural numbers and reals are denoted by A" and R respectively. The
cardinality of a set A is denoted |A|. Given sets A and B, A\ B denotes the set A

where the elements in B have been removed. The powerset of a set S is denoted
by ¢(S). The class of finite (possibly empty) subsets of a set .S is denoted p/ (S).
Let ¥ be a possibly infinite set of symbols. Sequences are typically denoted by
(a1, ..., an) or simply ai, ..., ayn, where a; € ¥ and n > 0. The empty sequence is
denoted by e. The set (family) of objects a; indexed on a set of symbols ¥ is denoted
{a; }iex. The set of n-tuples of symbols in X is denoted X”. When the length of
sequences is fixed, sequences and tuples will be often considered equivalent notions.
We occasionally abuse notation and treat sequences as sets. The transitive closure
of a binary relation R is denoted by R*. Syntactic identity is denoted =.

A partial ordering 1s a binary relation that is reflexive, transitive and antisym-
metric. A set P equipped with a partial order < is said to be partially ordered, and
sometimes written (P, <). Let (P, <) be a partially ordered set (poset), S C P is
conver iff for each ¢,¢” € S, ¢’ € P such that ¢ < ¢ <¢” then ¢/ € S. A chainis a
(possibly empty) subset X of a partially ordered set P such that for all », 2’ € X:
z < ' or ' < x. Given a partially ordered set (P,<) and X C P, y € P is an
upper bound for X iff x < y for each * € X. An upper bound y for X is the least
upper bound i for every upper bound v': y < y'; lower bounds and greatest lower
bounds are defined dually. A complete lattice is a partially ordered set L such that
every subset of L has a least upper bound and a greatest lower bound. A com-
plete lattice L with partial ordering <, least upper bound V, greatest lower bound
A, least element L = V@ = AL, and greatest element T = A = VL, is denoted
(L,<, L, T,V,A). In the following we will often abuse notation by denoting lattices
with their poset notation. We write f : A — B to mean that f is a total function
of A into B. Function composition is denoted o . Let f: A — B be a mapping,
for each €' C A we denote by f(C') the image of C' by f: {f(#) | # € C'}. Functions
from a set to the same set are usually called operators. The identity operator Az.x
is often denoted id. Given partially ordered sets (A, <,) and (B, <p), a function
f A — Bis monotonic if for all z,2" € A: » <4 &' implies f(z) <p f(«'). If A
and B are complete lattices, f is continuous iff for each non-empty chain X C A:
F(VaX) =Vpf(X). A function f is additive iff the previous condition is satisfied
for each non-empty set X C A (f is also called complete join-morphism). An upper
closure operator on a partially ordered set (A, <) is a function p : A — A that is
idempotent, i.e., p(p(c)) = p(c); extensive, i.e., ¢ < p(e); and monotonic (more on
closure operators can be found in [23]).

Let (L,<, 1, T,V,A) be a non-empty complete lattice. Let f : L — L be a
function. The ordinal powers of f are defined as follows for x € L:

f10(z) ==
fra(x)=f(ft(aL1)(z)) for every successor ordinal o; and
fra(x) =V f1o(x) for every limit ordinal a.

The first limit ordinal equipotent with the set of natural numbers is denoted by w.
The Knaster-Tarski fixed-point theorem states that the set of fixed-points fp(f) of
a monotonic function f over a complete lattice is itself a complete lattice [69]; in
particular, this implies that a monotonic function f over a complete lattice has a
least fixed-point Ifp(f). Moreover, if f is continuous then Ifp(f) = fTw(L).

An algebraic structure [41] is a pair (C, @) where C is a non-empty set, called
the universe of the structure and @ is a function ranging over an index set Z such
that for each ¢ € Z, Q; are finitary operations on and to elements of C. Algebraic

structures are also denoted as (C, @;);ez. In addition to the operations Q;, some
special symbols (e.g., ®, @, 0,...) will be used to denote algebraic operations,
including constants. With an abuse of notation, we will often denote distinguished
elements of C as constant operations Q; on C. A structure is (Q;) a-complete for
some ¢ € 7 and an infinite cardinal number «, if Q;(X) is defined for every set
X C C such that |X| < a. Tt is complete if it is a-complete for any a. Given
algebraic structures (A, Q4) and (B, Qp) with universes A and B and provided
with a common set of basic operators @, (we denote Q4 and Qp the operators in
Q defined on A and B respectively) a (homo)morphism o from (A, Q4) to (B, Qp),
denoted by o : (4, Q4) 125 (B, Qp) is a function ¢ : A — B such that: o(fa) = [z
for each constant symbol in @ and o(fa(a1,...,an)) = fe(o(a1),...,0(a,)) for each
n-ary operation f in @ and a;...a, € A. Let (A4, Q4) and (B, Op) as above. Given
partially ordered sets (A, <a) and (B, <p), a semimorphismis a functiono : A — B
such that o(fa) <p fBp, for each constant symbol f in @, and o(fa(a1,...,as)) <p
fe(o(a),...,o(an)), for each n-ary operation symbol f in Q.

3. CONSTRAINT ALGEBRAS

As defined by Jaffar and Lassez [45], and Jaffar and Maher [46], the semantics of
constraints are given in terms of an algebraic structure that interprets constraint
formulae, while the semantics of a constraint logic program is given in terms of
fixed-point, model-theoretic and operational characterizations. In this section we
introduce an incremental algebraic specification for constraint systems: our interest
is in the algebraic properties on which the semantic constructions are based. Con-
straints are then viewed as elements of an algebraic structure, providing a uniform
treatment of semantic domains (collections of constraints) and domain-dependent
operators. For this purpose we adapt a widely known algebraic definition of first
order logic, namely, cylindric algebras [41].

We start from a general notion of term system that provides an algebraic treat-
ment for the data objects of a program. Constraint systems are then defined as
algebraic structures whose universe represents constraints and whose operations
include term substitution, constraint composition and projection. The use of such
structures in the definition of operational and fixpoint semantics for constraint
logic programs is discussed in Section 4. Such a construction has several advan-
tages. First, it provides a uniform algebraic treatment of data objects and domain
dependent operators. This is particularly helpful in dataflow analysis by abstract
interpretation, as it allows the derivation of the standard properties of (possibly
abstract) semantics from few simple axioms (see Section 5). Second, it treats terms
explicitly in the algebraic treatment of constraints. This provides a treatment of
notions such as term substitution, which play a fundamental role in logic program-
ming, that is general enough to be applicable to abstract data descriptions as well
as concrete ones. This includes a formal treatment of variable renaming on abstract
data objects, something that is glossed over in much of the literature on abstract
interpretation of logic languages. Moreover, this corresponds precisely to the alge-
braic generalization of the original C'LP framework of Jaffar and Lassez [45], where
equality is applied on arbitrary terms to provide (for instance) parameter passing in
procedure calls. Finally, it distinguishes between two typical processes in semantic

abstraction: term abstraction and constraint abstraction. The first provides stan-
dard data-abstraction (e.g., type information, groundness etc.) while the second is
actually oriented to interpret relations between abstract data objects as (abstract)
constraints.

It is worth noting that cylindric algebras, as formulated by Henkin, Monk and
Tarski [41], are actually oriented towards languages without function symbols, thus
ignoring all terms but variables. There is a great deal of literature devoted to
extending cylindric algebras to deal with terms (see [13] for some references). The
idea is that the algebraic definition of a system deals not only with its formulae (the
elements of the underlying structure) but also with terms. To motivate this choice,
we follow Cirulis [13] and see what arises in logic. Given a first order language
with equality (note that equality is always assumed in any constraint system [45]),
denote by F' and 7T the sets, respectively, of formulae and terms in the language and
by V' C T the set of variables. Let furthermore © be a theory in the language, i.e.,
a set of sentences closed with respect to logical consequence. A Boolean algebra
can be obtained by considering F/ =g, which can be extended by defining a unary
operator 3, : F/ =l F/ = for @ € V, specifying existential quantification
as in [41]. To obtain a cylindric algebra, we have to specify diagonal elements,
1.e., equations of the form x# = y for arbitrary variables and y. If we consider a
more extensive set of possible equations including terms, such as s =¢ for s,t € T,
then it is easy to see that the structure (F/ =o,3s, (s = t))eev,ster does not
reflect the information © contains about equality of terms. In fact © gives rise
also to an equivalence on T, denoted with abuse of notation =g. Hence a more
adequate structure is: (I/ =, 3¢, (s = 1))rev,s,1e7/=o- Therefore, to axiomatically
characterize this extension, we have to take into account the structure of T/ =¢
in the whole construction of the algebra. Cirulis solves this problem by specifying
T/ =e as a term system and by making cylindric algebras parametric on it [13].
We follow this construction in our definition of constraint systems.

3.1. Term Systems

In the following we introduce the notion of term system as an algebra of terms
provided with a binary operator which realizes substitutions ([13]). We are inter-
ested in term systems where each term depends only on a finite number of variables
(also called finitary term systems). They represent the first basic definition in the
semantics construction.

Definition 3.1. [term systems [13]]
A term system of dimension « is an algebraic structure (7, S, V) (later abbrevi-
ated by 7) where 7 is a set of objects called r-terms (terms for short); V is a
countable set of T-variables (variables, for short) in 7; |V| = «; S is a countable
set of binary operations on 7, indexed by V; and the following conditions are
satisfied, for all z,y € V and ¢,/ ¢ € 7

Ty. sp(t,z) =t, identity
Ta. sp(t,y) =y, where z £y, annthilation

T5. sp(t,sp(y,t')) = sz(y,t') where z # y, renaming

Ty sp(t,sy(t", 1)) = sy(s:(t', 1), 5. (t', 1)) where 2 # y and y ind t/

independent composition

where a 7-term t is independent on the r-variable z, denoted by “x ind t”, if
sp(',t) =t forany t/ € 7. If X C V then X ind ¢ iff « ind ¢t for all # € X.
We say that a variable v occurs in a term ¢ if =(x ind t). We denote the set of
variables occurring in a term ¢ as var(t). If 7 = V| the term system is said to
be trwial.

Observe that all trivial term systems with same dimension are isomorphic [13]. In
the following we will often omit the specification of the dimension in term systems,
when this 1s obvious from the context.

Intuitively, s, (¢,1') denotes the operation “substitute ¢ for every occurrence of
the variable x in t/”. It is easy to see that axioms 7}-T}4 are indeed satisfied by
the standard notion of substitutions as finite mappings from variables to terms
(e.g., [2]). In particular: renaming (T5) specifies that renaming a variable # in
a term ' with y (# # y) makes the resulting term invariant under further sub-
stitutions on x; while independent composition (T,) specifies the independency on
the order of substitution composition. Notice that in general, the substitution op-
erators do not perform idempotent substitutions. For notational convenience, we
often denote s, (#,t’) as [t/x]t’. This notation can be extended to substitutions on
multiple (but finitely many) variables, by writing sz, (t1, s, (t2, -+ 8z, (¢,) -+ +))
as [t1/z1 ... ti/axx]t, where ¢ # j implies #; # ;. Notice that, from Ty, if also
z ind t"” then [¢'/x][t"/y]t = [t"/y][t'/«]t. Moreover, by Ta, for each z,y € V:
z ind y iff # # y. The condition that terms depend on a finite number of variables
can be formalized by requiring that the set {# € V | [t/z]t’ # t' for some t € T}
is finite for every ¢’ € 7. Our interest in finitary term systems is not related only
to their common use in logic programming. Finitary term systems in fact can be
induced (built) from any free algebra 7 with generators V. This is important in the
context of this work, where we need a generalized notion of terms. Define a term
system (7, 8z, V)gzev to be algebraic if there exists a relatively free algebra 7 with
generators V (i.e., where each element of 7 is generated by a finite subset of V' and
any mapping f : V 1— 7 can be extended to an endomorphism of) such that
sy (t,t") = sLt’ where st is the endomorphism of 7 that takes x into ¢ and agrees
with the identity everywhere else. Then, a crucial result on term systems states
that a term system is algebraic iff it is finitary [13]. Standard properties of term
systems and substitutions, such as the properties of composition, can be found in

13).

Ezample 3.1. Let ¥ be a finite collection of function symbols. T'(X, V) denotes
the family of first-order terms defined on X and V. The standard term system
mzvy = (T(X,V),Sub, V) is a term system provided that substitutions in Sub
perform standard substitutions.

Atoms are constructed in the standard way on an arbitrary term system, as
specified by the following

Definition 3.2.
Let IT be a finite collection of predicate symbols and 7 be a term system. A (r,II)-
atom has the form p(t1,...,t,) where p€ Il and ¢; € 7, foreach i = 1,...,n. If ¢;
are distinct variables, we say that the atom is flat.

When clear from the context, we sometimes denote by o both a tuple and a set
of syntactic objects o (terms, atoms, etc.). In particular we denote by Z a tuple
(set) of distinct variables.

The following example shows a non-standard instance of the term system alge-
braic structure. It provides an adequate term system for the ground dependency
analysis discussed in Section 5.1.

Erample 3.2. Let ¥ be a finite set of symbols. Let 7¢ = (p/(X), S,), where S is
the family of basic operators s,, for # € ¥, such that for each X1, X5 € p/ (%):

X5 otherwise

sx(Xl,Xz):{

In this case, for each = € ¥ and finite set X C X: z ind X iff # ¢ X. Then, 75
i1s a term system. It is straightforward to show that 75 satisfies the axioms of
identity (71), annihilation (7%), and renaming (73). To show that it satisfies the
axiom of independent composition (T4), assume that X, X', X/ C ¥ are finite
sets, 2,y € X, ¢ Zyand y € X’'. If any of X, X’ and X" is empty, the proof
is trivial. If y € X or & € X U X", the proof is straightforward. Assume y € X
and r € X U X":

50 (X7, 5, (X", X))

(X \{gh v X"\ {zhu X!

definition]

(X\{zh) UX)\ {y}) U (X" \{z}) UX)
distributing {¢} U X’ and ¢ g X]

= sy(se (X XY), 50 (X7, X))

[definition]

(
[
=
[

3.2. An Algebraic Framework for Constraint Systems

We give now a formal algebraic specification for the language of constraints on a
given term system. The process of building constraints in any fixed-point evaluation
of a given C'L P program is mainly based on set union and conjunction. We want to
give an algebraic characterization of this process in order to provide a framework
for generalized interpretations of constraint logic programs.

Definition 3.3. [closed semirings [1, 30]]
A closed semiring is an algebraic structure (C,®,, 1, 0) satisfying the follow-
ing:

I They are known as (join) complete semirings in the literature (e.g., see [30]). Note that, with
respect to [30], in our construction we assume @ be idempotent on infinite applications of @. We
will use the slightly naive name of closed semirings adopted from [1] to distinguish them from the
more general complete case.

Ry. (C,®,1) and (C,®, 0) are monoids.
Rs. & is commutative and idempotent.
Rs. 0is an annthilator for @ | i.e., forevery c€C, c®0=0®¢c = 0.

R4. for any possibly infinite family {a; };cr of elements in C: the sum a; ® ay @
-+« denoted > a; exists and is unique, i.e., it is a well defined element in
i€l
C. Moreover associativity, commutativity and idempotence of & apply to
infinite as well as to finite applications of @.

Rs. ® is left- and right-distributive over finite and infinite applications of @, i.e.,
if C' = {a;}icr is a possibly infinite family of elements in C and ¢ € C, then
e C)=>{e®a; |ielt)and D . C)@c=> ({a;®c|i € I}), where
ZC IZ a;.

i€l

Closed semirings provide an algebraic characterization of multiplicity in au-
tomata [30]. This phenomenon is evident when multiple paths (or computations)
are possible for a given automata. loannides and Wong have also shown that the
class of relational operators form a closed semiring [43], thus providing a formaliza-
tion of recursion in the database context. In logic programming, closed semirings
summarize, in an algebraic framework, all aspects of dealing with composition of
terms, such as unification and set union. The idea is that of finding the (possibly
infinite) set of all paths in the semantic construction. From a semantic viewpoint,
each path is a sequence of constraints between vertices in the call graph associated
with the program. Each successful path constitutes a computation, and will be
a sequence (conjunction) of constraints. The multiplicity of paths corresponds to
multiple solutions for a query. Idempotence, associativity and commutativity are
necessary to allow the operator @ (join) to model, in a general way, the “merging”
together of information via set union. The operator @ (meet) corresponds to con-
Junction of constraints and plays the important role of collecting information during
computation. Distributivity allows the representation of constraints as possibly in-
finite joins of finite meets (also called simple constraints). Distributivity plays a
fundamental role in the equivalence between the bottom-up and the top-down se-
mantics constructions. Closure on infinite sequences of elements in C is necessary
to admit constraints that are infinite joins of constraints (this is important in the
semantic development given in Section 4). Closed semirings are thus an appro-
priate algebraic generalization to model constraint construction as an observable
property. Indeed, the asymmetry between joins (disjunctions) and meets (conjunc-
tions) corresponds precisely to the traditional interpretation of observables: infinite
disjunctions of observable properties are still observables—to see that '\/I a; holds

2

of a process we only need to observe that any one of the a; holds—while infinite
conjunctions clearly cannot be observed on the basis of a finite amount of informa-
tion (e.g., see [66]). A topology for closed (complete) semirings has been recently
studied in [51].

Semirings can be naturally ordered by defining a binary relation < such that for
any a,b € C: a < biff a®c = b for some ¢ € C ([30]). In our case, since & is
idempotent, there exists a unique natural order for a semiring:

10

Definition 3.4.
Given a closed semiring (C,®,®,1,0), the relation I C C x C is defined as
follows: for any cy,¢c2 € C, ¢1 < eq iff ¢ B 3 = co.

Proposition 3.1. Closed semirings are continuous, namely for any infinite family
{a; }iez of elements in C and ¢ € C:

if . a; dc forall F € pf(T) then Y a; de.
ieF i€z

Karner gives a general treatment of continuous complete semirings [50]. Conti-
nuity here corresponds to requiring that > {a; | ¢ € I'} is the least upper bound
of all Y {a; | i € F} for any finite subset F' of I, and is essential for proving the
following proposition.

Proposition 3.2.
C s partially ordered by <, and forms a complete lattice.

A semantic definition necessarily implies some notion of “observable behavior”:
programs that have the same semantics must not be observationally different. Mod-
elling the semantics of constraint logic programs in terms of answer constraints cor-
responds to considering answer constraints as the appropriate observable property
(this approach to semantics has been considered in [33]), and requires the ability
to restrict an answer constraint to the variables appearing in the query. Closed
semirings are too weak to capture this restriction operation. We follow Saraswat
et al. [64] in handling this using a family of “hiding” operators. Cylindric al-
gebras, formed by enhancing Boolean algebras with a family of unary operations
called cylindrifications, provide a suitable framework for this [41]. The intuition
here is that given a constraint ¢, the cylindrification operation Jg(¢) yields the
constraint obtained by “projecting out” from ¢ all information about the variables
in 5. Technically, cylindric algebras allow us to make projections on finite sets of
variables. However, since our semantic formulation is in terms of infinite unfolding,
as discussed later in the paper, it may also be necessary to allow projections on
infinite sets. To this end, we allow possibly countably many cylindrifications. Di-
agonal elements [41], which represent equations on elements of the underlying term
system, are considered as a way to provide parameter passing. However, cylindric
algebras, which are oriented towards first-order languages without function sym-
bols, are not adequate as an algebraic semantic framework for general constraint
logic programs where parameter passing between procedures is defined by syntactic
equality on terms (as in [45]). Therefore, we extend diagonal elements to deal with
generic terms, following the approach of Cirulis [13]. This provides an algebraic
generalization for syntactic equality on terms as parameter passing applied in [45].

Definition 3.5. [constraint systems]
Given a term system 7 of dimension « with variables V', a 7-based constraint sys-
tem A of dimension « is an algebraic structure (C,®,®,1,0,3x,d; /) xcvi,iver
where C is a set of A-constraints generated by a given set of atomic constraints
over terms from 7, and is called the universe of A; 0,1, d; ;+ are distinct (atomic)
elements of C, for each ¢,¢ € 7; {Ix } xcv is a family of unary operations on C;

11

®, @ are binary operations on C; such that the following postulates are satisfied
for any ¢,/ € C; {2}, X, Y CV and ¢, ;1" € 7

R . the structure (C,®,®,1,0) is a closed semiring;

C;. 3x0=0

Cy. c¢c®dxe=3xc;

Cs. Ax(c®3Ixd) = Ix(Axc®) =Ixc®@ Ix;

Cy. IxTye=Fxuy)o

C5. dx distributes over finite and infinite joins;

Dy, diy =1,

Do, diyr = dy g

Ds. oy (det @ dyrgn) = diyjaqer [1)21em Tor @ ind t;

Dy 3oy (deye @ (¢ @ ¢)) = o} (dot @ €) © ey (doe ©).

Where the underlying term system 7 for a 7-based constraint system is unim-
portant or 1s obvious from the context, we will omit reference to it.

The meaning of cylindrification is given by the axioms from 7 to Cy, while
diagonal elements are specified by the axioms from D; to D4. Notice that Axioms
D3 and Dy relate the notion of substitution in the term system 7 with diagonal
elements of C (which intuitively correspond to the notion of equality constraints) in
the expected way. We follow Henkin, Monk and Tarski [41] in considering a family
of (derived) operations %, defined on C for z € V and ¢ € 7 such that z ind t:

3;6 = H{x} (dx,t ® C).

We call these operations substitutions, since intuitively they extend the notion of
substitution from the underlying term system to the universe of constraints. With
an abuse of notation, we denote 9% (c) as [t/z] ¢ when the meaning is clear from the
context.

In the following we distinguish between constraints and simple constraints. A
constraint is any object in the universe of a constraint system, while a simple
constraint is an atomic constraint, or the cylindrification of a simple constraint, or
a finite conjunction (i.e., meet) of simple constraints. Therefore, simple constraints
do not contain joins. The compact constraints of a constraint system A are the
compact elements in C, namely the finite joins of simple constraints. As we will
see later in the semantic construction, an answer of a query to a program will be
a compact constraint, corresponding to a single finite computation for the query.
The join operator is applied to model the non-deterministic clause choice in logic
programs, which may provide possibly multiple answers for a query.

The function var and the notions of “independence” and “occurrence” of vari-
ables extend in the obvious way from terms in 7 to constraints in C. Let ¢ € C and
v €V: zind ciff OLc = cfor any ¢ € 7 such that ind t. A variable z is bound in
c iff it is existentially quantified in ¢; # is free in ¢ iff € var(e) and z is not bound

12

in ¢. The set of free variables in a constraint ¢ is denoted by FV(¢). A renaming
of ¢ with respect to x is a constraint 0Yc¢ such that =z # y and y ind c.

Let 7 be a term system with variables V' and (C, ®, ®, 1, 0) be a closed semiring.
(C,®,®,1,0) can be extended to a constraint system by letting d; ,» = 1 for each
t,t’ € 7 and Ixc = c for each ¢ € C and X C V (here d%c = ¢ for each z € V and
t € 7). Following Henkin et al. [41], we refer to these as discrete constraint systems.
Let X CV, in the following we will denote 3,4(c)\x ¢, 1.e., hiding all the variables
in ¢ except X, as 3(c)x. We will often omit parentheses in cylindrifications on sets
of variables. We also denote by d(tl,...,tn),(t’l,...,t;) the element dtl,t’l @ .. @de, g
where &1, ..., 1,1, ... 1), € T.

In the following we use A to denote an arbitrary constraint system.

Theorem 3.1 (elementary properties of constraint systems).
Let A be an arbitrary constraint system. For any c,d € C, zx €V, X CV and
t,t',t" € 7 such that x ind t, the following properties hold:

EIXEIXc = ElXc;
P2 ¢cdcd = 3FxedIxd;
P3: Ye,d €C: ¢ <3xe & Ixcd A3Ixe?
Pl: Ve, eC: e A d <ddxe = Txe=3x;
P5: Jpye=c off ¢ = ¢ for some ¢ € C;
P6: Jqpye=cifx ind ¢ (in particular jpydy o0 = dyr o when xz ind t,1");
P7: dipr = 31 (dy e @ dp) where x ind ¢, 1,
P8 e = Ole<ddle;
P9: 3;3“}6 = dc;
P10: 9t ¢ =c iff dL.c = ¢ for some ¢ € C;
Pl1: 3x1=1,dAxc=0 iff c =0,
P12: El{x}dx,t =1
P13: (dt,t’ ® dtlytll) D dt,t” = dt,t” (tmnszthty)

In particular, from properties P1, P2, and axioms Cy and (5, x is an additive
upper closure operator on C for each X C V. Moreover, by properties P8 P10, and
from the distributivity of 3 and ® over @, the substitution operator on constraints
defines an additive retraction on C, where a retraction on a partially ordered set
A is an idempotent and monotonic mapping over A. Notice that substitution is
not, in general, extensive. Other elementary properties of constraint systems can
be derived from similar properties of cylindric algebras in [41]. Notice that (by P9)
dte < dzyc and if z is bound in ¢ then x ind c. Therefore, if ¢ is a renaming apart
of ¢’ with respect to z, then z ind c.

The following lemma describes the interaction of variable projection with (hid-
den) variables in constraints, thus extending the elementary property P6 to con-
junctions of constraints.

Lemma 3.1 (independence).
For any constraint system A, if ¢ and ¢’ are A-constraints and X is a set of
variables such that x ind ¢ for every x € X, then Ix (e ®) = c @ Ix ().

2This property corresponds to Morgado’s characterization of closure operators by means of a
single axiom [61].

13

The following lemma shows an important relation between cylindrification (hid-
ing variables) and renaming apart of constraints with “fresh” variables.

Lemma 3.2.
For any constraints ¢ and ¢’ in a constraint system A, ¢ @ Jq,1¢' = gy (c@ &),
where y ind ¢, ¢'; y # ¢ and & = dYc .

The following examples show some standard constraint systems.

Ezample 3.3. [CLP(H)]
Let X be a finite collection of function symbols. Atomic constraints are equa-
tions on the term system 7(x v) (see Example 1). Let &4 be the set of possibly
existentially quantified finite conjunctions of equations over (s v, and let Zy
represent the Herbrand interpretation structure, interpreting diagonal elements
as syntactic equality [45]. In this case, a solution 8 for a possibly quantified finite

conjunction (set) of equations IxF = Ix{s1 = t1,...,8, = tn} is a grounding
substitution for the free variables in E such that there exists a grounding sub-
stitution o for the bound variables X, and sj00 = t100 ,..., s,00 = t,00.

Ty |E Ef denotes that @ is a solution for E. We extend this definition to deal
with possibly infinite joins: # is a solution for 'UI E; iff there exists ¢ € I such
i€

that 6 is a solution for E;. 3 is existential quantification, which is assumed to

be distributive (as well as conjunction) over arbitrary joins: if X C V, f is a

solution for EIX('UI E;) iff 8 is a solution for Ix F; for some i € I; true denotes
i€

any constraint having every grounding substitution as a solution while false

denotes any constraint having an empty set of solutions. Note that 9%, for « not

occurring in ¢, performs idempotent substitutions on constraints, by extending in

the obvious way the term substitution notion to constraints. Moreover, for each

el :'EL} E; and ¢y = eUI E! denoting possibly infinite joins of (finite) quantified
2

i€l 1

sets of atomic constraints (equations) F; and E!:
ci~pger it U V| IuEEY }=u {0 Iy EED }.
i€l i€l
Then, the Herbrand constraint system H is the quotient algebra

(50(8’7"[)’ AU, true,false, ElXa {t = t/})XgV;t,tIET(E)V)/NEQ,

Example 3.4. [CLP(LR,)]
This example describes the case of CLP(R) [45] on linear constraints, where the
number of variables 1s restricted a priori to some fixed value n, as an instance of
our framework (the case with n = w is of little interest in our construction since
constraint logic programs can define only finitary predicates). This constraint
system will be used for static analysis of CLP(H) programs in Section 6.1. In
the following # = (#1,...,%,) is a point in %" and x; is its i-th element. A
hyperplane (atomic constraint) is the set of points ¥ € R" satisfying an equation
of the form aj21 + - -+ anx, = b, and defines two halfspaces in the obvious
way. A conver polyhedron is the (possibly unbounded) set of points constituting
the intersection of a finite number of halfspaces. For any finite n, the constraint

14

system of n-dimension linear constraints (the non-linear case is a straightforward
extension), denoted by LR, is: (P,N,U, R0, 3Ix, [t = 12]) X CVoits ta€rmep s
where V,, = {&1,...,2,} is a set of n variables, g,y is a term system of linear
expressions on V, (an example of definition for 7g,p is in Section 6.1) and P is
the set of all space regions in " defined as possibly infinite unions of convex
polyhedra. Each constraint ¢ € P can be represented as a possibly infinite set
of finite conjunctions of linear equations and disequations on V,,. The variable
restriction operation Jis performed by cylindrification parallel to an axis [41]: if
¢ is a constraint in R™ and ¢ < n, we define:

élxlc:{g'E%” yi=xz; for ¥ €cand j#1 }

élxlc is the cylinder generated by moving the point set ¢ parallel to the z; axis.
For any two linear expressions t,t' € Tgyp and R € {=,>, <, >, <} we denote
by [t R t'] the corresponding space. It is not difficult to show that the resulting
structure is a constraint system (see [34]).

4. GENERALIZED SEMANTICS

Constraint logic programming was defined by Jaffar and Lassez to specify relations
on a constraint language by means of constraint-based Horn clauses. We follow this
approach by defining Horn-like clauses on constraint systems. Constraint logic pro-
grams are defined in the usual way: let 4 be a constraint system on a term system
7 and IT be a finite set of predicate symbols. An A-goal is a formula ‘c | By, ..., By,
with n > 0, where ¢ is a compact A-constraint and By, ..., B, is a sequence of
(r,II)-atoms. An A-clause is a formula of the form ‘H : L ¢ | By,..., By’ where H
(the head) is a (r,IT)-atom and ‘c | By, ..., By’ (the body) is an A-goal. If the body
is empty, the clause is a unit clause. Given a set of clauses S| we use preds(S) to
denote the set of predicate symbols in the heads of clauses in S. A (generalized)
constraint logic program, also called A-program, is a finite set of clauses. If the
constraint system under consideration is obvious from the context, we will some-
times not indicate it explicitly in the various semantic functions. The family of
A-programs is denoted by C'LP(A). Finally, the notion of renamings of variables
in constraints and terms, as well as the function var and the notion of indepen-
dence, extend their meaning in the obvious way to syntactic objects such as atoms,
goals, clauses, and programs.

4.1. Top-Down Operational Semantics

Let A be a constraint system and P € C'LP(A). Define ~p (an A-derivation step)
to be the least relation on A-goals such that G ~p G’ iff the following hold:

(Z) G = co |] Pl({l), ~~~,pn(fn);

(#%) there is a renamed version of a clause in P: p; (#") :L e1 | By, such that
var(G) Nwar(B; Ut)) = 0;

(i1) G'=eco@dp, 7 @ 3(e1)var(Byum) | Biypa(ta), oo palln).

15

An A-derivation from an .4-goal (G is a finite or infinite sequence of A-goals such
that every goal is obtained from the previous one by means of a single A-derivation
step. A successful derivation is a finite sequence whose last element has an empty
body. The constraint obtained from a successful derivation is the answer con-
straint. Notice that, since projection of the local variables is performed after the
whole computation, an accurate definition of the operational semantics requires a
denumerable set of variables on which to perform renamings (a different solution
can be obtained by extending the scope of cylindrification to clause bodies).

The goal-dependent success set semantics of a program P is defined in terms
of a function Jp that yields the set of computed answer constraints for any A-
goal, such that Jp(G) = {3(c)var(a) | G ~p ¢ €}. Since the operator ® in a
constraint system may not be commutative, the independence of the selection rule
does not hold in general in these semantic characterizations, and for simplicity we
have assumed a left-to-right selection rule. If ® is commutative it is straightforward
to prove the independence on the selection rule for the success set [54].

The following lemma specifies an important equivalence between syntactically
different goals. This result will be useful later in proving the equivalence between
top-down and bottom-up semantics. Here, a variable is said to be “used” in a
derivation if it occurs in some goal in that derivation.

Lemma 4.1.
1] pt)~pcleiffds;| p2) ~p ¢ [€ and Iz’ = ¢, where no variable in

z is used in the derivation 1 | p(t) ~p ¢ || €.

It is worth noting that a similar argument can be applied to prove that if P is a
program and P’ is obtained from P by transforming each clause C = ‘p(t) : L ¢ | B’
€ Ptoplx) : L dyrc] B’ for z ind C, then for any goal G it is the case that
Jp(G) = Jp/(G). Both this observation and Lemma 4.1 are consequences of the
constraint system structure, extending diagonal elements (i.e., parameter passing)
to terms. Because of this observation, in the following we will always write program
clauses with flat heads.

Observation 4.1. The explicit treatment of terms in constraint systems also provides
a characterization for a number of expected equivalences among syntactically
different programs. All of these are consequences of the axioms and therefore
are satisfied in any constraint system. For example, it is easy to prove from the
artoms that the following two programs have the same goal dependent success set
semantics for any goal.

{ p() L q(x) { p(t'/x]t) - L1
o) L1) gy L1)
This is a typical consequence of the equivalence induced by the constraint system

structure on formulae including terms, like those obtained from term substitution
and parameter passing.

4.2. Success-Set and Bottom-up Fized-point Semantics

In this section we define a bottom-up fixed-point semantics that is proved to be
equivalent to the operational semantics of successful computations for any con-
straint system. We also study a condensing operator which will be useful in abstract

16

interpretation of C'LP programs by abstraction of constraints. The approach we
take follows that of Falaschi et al. [31] and Gabbrielli and Levi [33], and derives
a bottom-up fixed-point based semantics from the operational notion of computed
answer constraint for atomic goal.

Definition 4.1.
Let A be a constraint system. A constrained atom has the form ‘A : 1 ¢” where
Ais an (1,II)-atom, ¢ is an A-constraint, and F'V(c) C var(A). We denote B4
the set of constrained atoms on a constraint system A.

The (operational) computed answer constraint semantics is defined in terms of
the the set of successful computations specified by the transitive closure of the
derivation relation ~» on atomic A-goals:

OP)={p@) :L 3c)z| 1] p)~pecle }.

This generalizes the computed answer constraint semantics of Gabbrielli and Levi
[33] to arbitrary constraint systems. Intuitively, a constrained atom ‘p(z) : L ¢
in O(P) represents the set of instances p(6(Z)), where f is a solution to the an-
swer constraint ¢. The following lemma proves the AND-compositionality for the
operational semantics of constraint logic programs, providing a characterization
of answer constraints for conjunctive goals in terms of the computed answer con-
straint semantics (an equivalent lemma is proved in [33] for the classical constraint
structure of Jaffar and Lassez [45]).

Lemma 4.2.
Let G = ¢ [p1(t1), ..., pn(tn) be an A-goal and P € CLP(A). Jp(G) = ¢
iff there exist pi(z;) :L ¢; € O(P), such that z; ind G and z; Nz; = O for
1<i,5<n,1 7& J;and ¢ = El(CO @ dfl,fl ®c1... & dfn,fn & Cn)var(G)~

It can be shown that the unfolding of a clause (goal) with constrained atoms is
independent from the variable names used in constrained atoms (see Lemma A.1 in
Appendix). This can be expressed in the semantics by a relation ~ that captures
the notion of equivalence upto renaming on constrained atoms. Define the binary
relation ~ on B4 as follows: given A; = ‘p(F1) L e1’ and Ay = ‘p(&2) 1L ¢2’in
BA, A; ~ A, if and only if there exist “renaming apart” variables #’ such that #’,
z1, and Ty are mutually disjoint; &’ ind c1, co; and 32161 = 32; co. It is easy to show
that ~ 1s an equivalence relation.

Definition 4.2.
The A-base of interpretations is B /~.

In the remainder of the paper we will be concerned primarily with the quotient
structure B4 /~, and for notational simplicity, denote this by B*. Given a syn-
tactic object o, we denote by ‘p(Z) : L ¢ <, I’ a variant of a constrained atom
‘p(%) :L ¢ in I that has been renamed apart from o, i.e., such that [p(Z) : L ¢]. €
I and z ind 0. We extend this to specify tuples of syntactic objects that have been
renamed apart, so that (Ay,..., Ay) <, I represents a tuple (A}, ..., Al) where
each of the A} is a variant of an element A; in I that has been renamed apart from
o, and where ¢ # j implies A; and A; are variable-disjoint.

17

The fixed-point semantics 1s defined in terms of an immediate consequence op-
erator on the complete lattice (p(B4), C), in the style of van Emden and Kowalski
[71].

Definition 4.3.
Let A be a constraint system and P € CLP(A). The mapping Tp : p(B*) —
p(B4), is defined as follows

C=p(t) L elp(fr).....palin)
n> 0,z tnd C and for each i = 1..n:
Tp() = < Ip(@ L (@)~ pilE) Lo e mi 1
ceP l‘iﬂl‘zw,(ﬁ;:df“fl(@cia
t=dz@c@cl®---@c),

Interestingly, it turns out that the fixed-point semantics of a program can always
be computed into a finite dimension constraint system. This follows from the prop-
erties of cylindrification with respect to substitution (see Theorem 3.1). Intuitively,
the hiding operator allows the definition of “local environments” that cannot be
influenced by substitution, and allows hidden variables to be “recycled” outside the
scope of the hiding operator, making it possible to get by with only a finite set
of variables that are recycled over and over. This is useful for program analysis
purposes, since it simplifies the construction of Noetherian abstract domains (e.g.,
see the affine relation analysis in Section 6.1).

By analogy with the operator @, which expresses the notion of “merging to-
gether” the information present in two constraints, we define a condensing operator
> p(BA) 1= p(B#4) such that for any I € B4:

P ={lp(e) +L {05 | p(p) L ¢ <o D | p € preds(D) |

The operator " captures the notion of merging together the information present in
a set of constrained atoms. The result of condensing is an interpretation containing
at most one constrained atom for each predicate symbol p in the program. Such
constrained atoms have the form ‘p(z) : L)" ¢;” and represent the join (intuitively
corresponding to disjunction) of all the answer constraints ¢; for the goal p(Z). Since
the number of such answer constraints can be infinite, infinite joins of constraints
are allowed in constrained atoms. This is modeled by having the universe C of a
constraint system be closed under infinite joins. Note that this closure property
cannot be specified by any finitary first-order formula.

To specify the relation between interpretations and condensed interpretations,
we consider a lower powerdomain preorder C. Let a < I denote a variant of an
object a € I that has been renamed apart from all elements of I. The preorder C is
defined as follows: I E I’ iff for each p(#) : L ¢ < I there exists p(z) : L ¢ < I
such that ¢ < ¢’. Let = denote the induced equivalence relation: Iy ~ I iff I} C I,
and I; C I;. In the discussion that follows, we will be concerned primarily with
the partial order over p(B4)/ ~ induced by C. For simplicity of exposition, we
abuse notation and use C to denote this partial order and 50([)’“4) to denote the
set p(BA)/ ~. Tt is easy to prove that (p(B4),C) is a complete lattice, with join
operator U defined as TUT' = (TUT').

18

Proposition 4.1.
> is an upper closure operator on (p(B*),C).

We denote by ¢’ (B4) the set of condensed interpretations (p(B4))". Tt is easy
to prove that for any I, I’ € @' (BA): TC I' iff (1UI')’ = I', and that (p"(B*),C)
is a complete lattice.

An analogous operator Tp : ¢’ (B4) 1= ¢’ (B4) on condensed interpretations
can be defined as T}(I) = (Tp(I))*. The existence and uniqueness of the least
fixpoints of these operators is, in both cases, a consequence of continuity of Tp and
T}:

Lemma 4.3.
Let A be a constraint system and P € CLP(A). Forany I € p(BA): (Tp(I'))’ =
(Tp(1))'

Proposition 4.2.
Let A be a constraint system and P € CLP(A). Tp is a continuous function
on the complete lattice (p(B4), C) and Tfp is continuous on the complete lattice

(¢ (B4),0).

Definition 4.4. [fixed-point semantics]
The fized-point semantics of a program P over a constraint system A is given by

F(P) = Ufp(Tp) and F*(P) = Ufp(T}) .

The following result states the equivalence between the operational and the (pos-
sibly condensed) fixed-point semantics, for any constraint system .A.

Theorem 4.1.
Let A be a constraint system with dimension w, and P € CLP(A), then F(P) =
O(P)/~ and F*(P) = (O(P)/~)".

It is worth noting that the condensing operator ° is actually an abstract inter-

pretation. Indeed, with any condensed interpretation I”, there are many (possibly)
different interpretations J such that J* = I*. While the non-condensed semantics
assoclates with each predicate the collection of all possible constraints that one
may obtain for it, the condensed one associates a single constraint with each pred-
icate defined in the program. The latter case is particularly useful for specifying
termination conditions in terms of ascending chains, ordered by entailment (<), of
constraints (see Section 5).

Observation 4.2. Note that from Theorem 4.1, the semantics F(P) corresponds
precisely to the s-semantics, which is well known to be fully abstract with re-
spect to computed answer substitutions in (pure) logic programming ([10, 31]).
This because O characterizes precisely the set of computed answer constraints
for arbitrary atomic goals. In this case, when an atomic goal p(x) has the two
answer constraints * = a and true in the Herbrand constraint system, we ob-
tain the denotation {[p(x) :L = = a]l~,[p(x) : L true].}. A similar approach
to characterize computed answer constraints in constraint logic programming is

19

also considered in [33]. The condensed semantics instead, corresponds to the so
called Clark’s semantics [14] (c-semantics in [31]), which characterizes correct
answer substitutions in logic programming. In this case, for the atomic goal p(x)
above, we obtain the denotation {[p(x) : L true].}. This semantics is proved to
be optimal for ground dependency and covering analysis in [35]. The relation
between collecting semantics for logic programs and abstract interpretation has
been recently studied in [35] for a number of different observable properties.

The semantics given thus far in this section generalize the corresponding results
for traditional logic programs to arbitrary constraint systems. We conclude this
section with an example that shows that they can be used for other, very different,
purposes as well.

4.3. Machine-level Traces

This example illustrates a non-standard semantics for constraint logic programs,
that of machine-level traces, as an instance of the framework of this paper (Stoy
discusses similar non-standard semantics in a denotational context [67]). Such a
semantics is essential, for example, if we wish to reason formally about the correct-
ness of a compiler (e.g., see [39]), low-level compiler optimizations, or about the
behavior of debuggers or profilers. Instead of constrained atoms where each atom
1s associated with a constraint, this semantics will associate with each atom a set
of instruction sequences that may be generated on an execution of that atom.

Suppose we are given some low-level WAM-like abstract machine for the execu-
tion of CLP programs. Let Instr denote the (possibly infinite) set of all possible
machine instructions (by “instruction” we mean an instruction name—the opcode—
together with the values of the operands). A computation is defined by a sequence
of states obtained as instructions are executed. If each instruction is a function over
states, and we assume that all programs start execution in some given (fixed) initial
state, then the results of a computation can be specified simply by the sequence
of instructions executed. We refer to such a sequence as a trace. The set of all
traces 1s denoted by Trace = Instr*. The meaning of a program is given by the set
of all of its possible executions, i.e., by a set of traces. In the case of a low-level
trace semantics for constraint logic programs, therefore, the universe i1s given by
C = p(Trace).

In general, certain minimal capabilities are necessary in any low-level instruction
set in order to execute a constraint logic program. To this end, we assume the
following:

1. Corresponding to each primitive constraint ¢ of the language there is a se-
quence of machine instructions impl(c) that realizes ¢ at the machine level.

2. There is an instruction hide(z) with the following behavior: for any variable
z, hide(x) removes any constraint on the variable # in the data structures
representing the computed constraint at that point.

The basic operations on sets of traces are defined as follows: given S,57, .55 € C:

1. S1d S =5,U8S,.

2. ® is pointwise concatenation: let ‘::” denote the concatenation operation on
sequences, then S; @ Se = {s1 :: 52| 51 € 51,82 € S2}.

20

3. 0=0.
4. 1= {e}.

5. Let X = {x1,...,2,}, then I3xS = {s :: (hide(x1), hide(xs), -, hide(x,)) |
se St

6. dt,t’ = zmpl(t = t/)

In a low level machine, the constraints manipulated and accumulated during the
execution of a program are necessarily represented in terms of machine-level en-
tities, e.g., by means of data structures constructed in memory. It follows that
references to constraints ¢ in the derivation relation ~»p or the immediate con-
sequence operator Tp will, in the low-level semantics, be replaced by references
to impl(c). The corresponding high-level constraints can be reconstructed where
necessary, e.g., for displaying a computed answer constraint to the user, or for de-
bugging purposes. Given our assumption that there is a single initial state that
every program begins execution in, given a trace s it is possible to reconstruct the
constraint obtained in the state resulting from the execution of s: this is denoted by
constraint(s). This extends in the obvious way to sets of traces: given any S € C,
constraint(S) = {constraint(s) | s € S}. Define the relation ~ C € x C as follows:
for any S1,S52 € C: Sp ~ Sy if and only if constraint(S1) = constraint(Ss). ~ is an
equivalence relation.

It is easy to see that the structure (C,®,®, 1, 0) satisfies the axioms of a closed
semiring, so Axiom R in the definition of constraint systems is satisfied. The
remaining axioms, namely C7 LC5 and Dy L Dy, are satisfied modulo the equivalence
relation ~. Thus, the machine level semantics presented forms a constraint system
modulo ~.

As a simple example of an application of such a semantics, consider the following
program over the Herbrand constraint domain:

p(X) :- X = a, q(2).
q(Y) (= Y = a.
q(Y) :- Y = b.
The only primitive constraint over this domain is ‘="/2: suppose that the low-

level instruction set under consideration contains an instruction unify such that
impl(ty = t3) = unify({y,¢2). In addition, assume the instructions call, return,
and fail for managing procedure calls. The (operational) semantics of the proce-
dure q is then given by

q(¥;) : L {(unify(Y;,a), return), (unify(Y,;,b), return)} |i > 0}.

Here, the subscripts on the variables denote alphabetic variants of the program
clauses that may be used at runtime: the idea is that there 1s a trace describing the
execution of every possible variant of the clause appearing in the source program.
Thus, the meaning of a predicate is an infinite set of traces representing instruction
sequences that may be obtained at runtime, rather than finite sets of instruction
sequences that may be generated by a compiler. The semantics for the procedure
p can similarly be obtained as:

21

p(X;) : L {(unify(X;,a),unify(Z;,¥;), call g/1,unify(¥;,a), return,
hide(Z;), return),
(unify(X;,a),unify(Z;, Y;), call q/1,unify(¥;,b), fail, fail) | i > 0}

We have deliberately kept the instruction set under consideration here small, in
order to simplify the presentation. It is not difficult to see how such an instruction
set could be embellished to be more realistic. For example, argument passing
through a fixed set of registers, as in the WAM can be modelled by requiring that
the arguments in the head of each clause of an n-ary predicate be distinct variables
Ay, ... A,;if a is a constant and a variable x occurs for the first time in a trace for
a procedure in an instruction ‘unify(z,a)’, we could replace this instruction by a
more specialized one of the form ‘get_constant(x,a)’ (and similarly for function
symbols of nonzero arity); and so on.

5. ABSTRACT CONSTRAINT SYSTEMS

The definition of an abstract constraint system, which specifies a non-standard
semantics for a constraint programming language, is performed in two steps: term
abstraction and constraint abstraction. In the first step new syntactic objects are
introduced to represent concrete terms. In the second one, constraints on the
abstracted term system are defined.

In general, a constraint system is an interpretation (in a closed semiring) for con-
straint formulae. To relate constraint systems, we follow the approach to “static
semantic correctness” in [7]. Correctness of non-standard semantic specifications
can be handled in an algebraic way through the notion of morphism (see [70]). The
algebraic notion of morphism can be made less restrictive by assuming that the car-
riers of the algebras involved are partially ordered sets. We use this weaker notion
of morphism between algebraic structures, capturing the approximation possibly
induced by abstract interpretations or by any approximate semantics defined in the
framework. This provides, at the same time, a characterization for domain correct-
ness conditions (traditionally specified by Galois connections) and the correctness
of abstract operations.

Definition 5.1. [morphism, semimorphism]
Let 7 and 7" be term systems over sets of variables V and V', and with substi-
tution operators s and s’ respectively. A morphism & : 7 /= 7/, is a function
mapping terms of 7 to terms of 7/ such that for any ¢1,t5 € 7 and =z € V:
K(sy(t1,t2)) = Sg(x)(lf(tl), k(t2)). Consider constraint systems A and A’, where

A= (Ca ®, D, 1a Oa ElXa dt1,t2)XgV;t1,t2ET

and
[T Ay Ry e N T, /
A = (C , &', B a]- aO 3 Xadtl,tg)XgV';tlthT"

A mapping a, : A 1% A’ is a semimorphism iff there is a morphism of term
systems % : 7 I 7/ such that for each ¢,¢1,¢0 € C,C CC, X C V and t1,t5 € T,
the following hold:

1. a,(0) =0/

22

2. ax(l) <’ 1

3. an(X0) < 3 ax(C);

4. ay(3xce) EI;(X)a,Q(c);

5. ag(er ®ca) € ag(e1) @ ag(ca);

6. an(dtl,t2) Sl/ di@(tl)y“(h).

The intuition behind this definition may be understood as follows. Recall that
the natural order </ over ('’ is defined as * <’ y iff x &' y = y, where &' in-
tuitively denotes some kind of “merge” operation. For the purposes of abstract
interpretation, the objects that are merged in this manner represent possible pro-
gram behaviors, and the smaller the set of behaviors denoted by an object the more
information it conveys. Thus, z <’ y denotes that x provides more information than
Yy, 1.e., 18 a more precise description of program behavior. The requirements for a
semimorphism given above, therefore, state simply that for each of the operations
in the (concrete) constraint system .4, operating on objects in C and then applying
the semimorphism (i.e., abstracting) is no worse than applying the semimorphism
first and then applying the corresponding operation in the (abstract) constraint
system A’. The following proposition states that semimorphisms correctly abstract
the (derived) notion of substitution into constraints:

Proposition 5.1 (substitution correctness).
Let A and A" be constraint systems as above. Let alsoc € C, x € V andt € T such

that x ind t. If oy : A 125 A’ is a semimorphism then a(0%e) < 3;’2(;))@,@(6).

For notational simplicity in the discussion that follows, we will sometimes omit
the subscript from a semimorphism when the morphism « on the underlying term
system need not be considered explicitly.

We are now able to provide a notion of correctness for constraint systems. It
corresponds precisely to the Galois insertion-based notion of domain and operator
correctness belonging to the classical framework of abstract interpretation [22], as
specified by Proposition 5.3 below. Here, the unifying framework of constraint
systems provides a uniform treatment for domain and operator correctness, both
specified by the simple notion of semimorphism.

Definition 5.2.
Let A and A’ be constraint systems as above. A’ is correct with respect to A iff
there exists a semimorphism a, (i.e., x : 7 I 7/ and a : A 1% A') that is a
surjective and additive mapping of (C, <) into (C’, <').

The following proposition provides the basis for designing abstract constraint
systems by consecutive approximations.

Proposition 5.2.
For any constraint system A, A" and A”: if A” is correct with respect to A’ and
A’ is correct with respect to A, then A” is correct with respect to A.

23

Additivity and surjectivity allow the semimorphism to associate the “best” ap-
proximating constraint in .4’ with any concrete constraint in .4. This is captured by
the notion of Galois insertion, where a pair of functions («, y)—denoting abstrac-
tion and concretization respectively—is a Galois insertion of (C', <) into (C, <) iff
« and 4 are monotonic, a(y(¢’)) = ¢ and ¢ < y(a(c)) for each ¢ € C and ¢/ € '
([22, 24, 60]). The following proposition relates the notion of semimorphism with
the notion of Galois insertion:

Proposition 5.3.
Let A and A" be constraint systems with universes C and C' respectively. If A’ is
correct with respect to A by means of a semimorphism «, there exists a mapping
v : C" 1= C such that (a,7) is a Galois insertion of (C', <) into (C,).

Notice that, as observed in [24], by additivity and surjectivity, Y {e | a(c) <’ ¢/} =
el ale) = ')

In the framework of abstract interpretation, correctness of fixed-point approx-
imations requires some additional conditions on correctness of the non-standard
(abstract) semantic operators [22]. With the assumption of additivity, semimor-
phisms are adequate for specifying both Galois insertions, as seen in Proposition
5.3, and operator-correctness. Let A’ be a constraint system that is correct with
respect to A, by means of a semimorphism «. Let P = {C}, ..., C;,} be a program
in CLP(A). The corresponding program on A’ denoted T, (P) is a set of clauses

{C1,...,C!.} such that for each i = 1,....mif C; = ‘p(t) : L c | pi(t1),...,pn(tn)
then C! = ‘p(k(¥)) : L a(e) [pr(k(t1)), ..., pn(k(tn))” where r extends element-
wise on tuples of terms. Therefore, if P specifies a set of relations on A, then
T, (P) specifies a corresponding set of relations on A’. Correctness of A’ with
respect to A provides the correctness of the relations defined in 74, (P) (the se-
mantics of 7, (P)) with respect to those defined in P (the semantics of P). The
following theorem relates the semantics of a program with that of a corresponding

one defined on a correct constraint system.

Theorem 5.1.
Let P € CLP(A) and P' € CLP(A") be the corresponding program on A'. If
A’ is correct with respect to A, there exists 3 : p(B4) — 50([)’“4’) such that
AF(P) T F(P') and B(F* (P)) T F'(P').

It is worth noting that the relation between the semantics of a program and that
of the corresponding one on a correct constraint system corresponds precisely to the
correctness condition in abstract interpretation. Therefore, dataflow analysis for a
program can be obtained by transforming it (by 75) into a corresponding program
defined on an abstract (approximated) constraint system (see later Section 5.2
for a formal treatment of constraint approximation). The key point here is that
both the concrete program P and the corresponding abstract one 7, (P) are CLP
programs (i.e, 7q, is a program transformation), and the corresponding semantic
interpretations are instances, over two different constraint systems, of the same
generalized semantics for CLP, as shown in Figure 1 (see [42] for a discussion of
implemented systems that use this transformational approach for the analysis of
Prolog programs).

Given a (fixed-point) concrete semantics, dataflow analysis usually requires com-
puting the limit of Kleene chains. Convergence to the least fixed-point in finitely

24

)
P - 70 (P)
To B
! 11
Ta(P) - FO(Ta(P))
)

Figure 1. Abstract interpretation by program transformation.

many steps can be obtained either by requiring the abstract domain to satisfy the
ascending chain condition, or by using widening operators to force convergence [22].
In the following we consider the conditions on the constraint system that ensure that
the resulting abstract domain satisfies the ascending chain condition. We will focus
primarily on abstract interpretation by condensing interpretations. This is because
condensing provides a description of the multiplicity of answer constraints in terms
of (possibly infinite) joins in the constraint system. This is essential in abstract
interpretation by program transformation, where the termination of the analysis
has to follow from the structure of the constraint system (this condition is satisfied
by several well known constraint systems useful for analysis, e.g., see Section 6.1
below). We introduce the ascending chain condition on constraint systems and we
show how this condition ensures finiteness in fixed-point computations. This ap-
proach is more closely related to the constraint system structure than the widening
one, which is in turn more related with the (semantic) fixed-point computation.

A set of constraints {cy, ..., ¢p, ..} is said to be free-variable bounded if there is a
finite set of variables V' such that F'V(¢;) € V for each ¢ > 1. The following
definition is important for abstract interpretation purposes:

Definition 5.3.
A constraint system A is Noetherian iff its universe C does not contain any
infinite ascending chain of free-variable bounded constraints.

The free-variable-boundedness condition here is important, for otherwise any
constraint system with a denumerable set of variables 1s not Noetherian. To see
this, consider the constraints ¢; = Xy V- --V X;: the set of constraints {¢; | ¢ > 1},
ordered by entailment, forms an infinite ascending chain even on a two-valued
boolean interpretation. However, it is easy to see that this set is not free-variable-

bounded.

25

Given a Noetherian constraint system A4, it is easy to prove that the set of
A-interpretations (BA) is Noetherian. An abstract constraint system is then a
Noetherian constraint system. Let A be a constraint system, then a correct abstract
interpretation for constraints in A is a tuple (A, oy, .A%) where A% is an abstract
constraint system and «a, is a semimorphism which specifies the correctness of the
abstraction process.

Different semantic characterizations lead to different abstract evaluation strate-
gies. Top-down abstract interpretation corresponds to the abstraction of the stan-
dard operational semantics discussed in Section 4.1. Our approach to top-down
abstract interpretation encompasses various abstract interpretation frameworks de-
fined in the literature. For example, Bruynooghe’s top-down abstract interpretation
scheme for positive logic programs [11], based on an AND/OR-tree construction,
encodes our interpretation structure in a corresponding tree-structure where AND-
nodes interpret the ® operator and OR-nodes implement the @ operation on con-
straints. As usual, abstract unification is encoded by appropriately defining the
® operator. The search strategy is the same as the one given in [11]. Bottom-up
abstract interpretation, on the other hand, allows the computation of finite ap-
proximations to the fixed-point semantics associated with a given constraint logic
program (this approach has been applied to static analysis of pure logic programs
in [5]). Given an abstract constraint system, the corresponding abstract transfor-
mation map 1s defined as in the concrete case, by considering the corresponding
abstract operators instead of the concrete ones. As in the pure logic programming
case, the correctness of a suitable set of operators implies the correctness of the
entire framework (both top-down and bottom-up). In the constraint logic pro-
gramming case, the correctness of the analysis corresponds then to the correctness
of the constraint system, as shown in Theorem 5.1. In the following we will con-
centrate on bottom-up (fixed-point-based) abstract interpretations only. For any
Noetherian lattice g’ (B4), we have:

Proposition 5.4.
Let A be an abstract constraint system. If P € CLP(A), there is a finite k > 0
such that F*(P) = Th 1 k().

Proposition 5.4 does not hold in general for non-condensed interpretations, unless
the constraint system is finite.

Observation 5.1. It 1s worth noting that our constraint system construction imposes
some restrictions on the traditional lattice-based theory of abstract interpretation
[24]. However, most of these restrictions come from the standard interpretation
of the fundamental (domain-dependent) operators involved in logic programming.
Indeed, from the domain viewpoint, the basic restriction is only the distributivity
law of closed semirings. The impact of this law in the semantics of CLP pro-
grams and the application of a weaker structure in dataflow analysis is discussed
later in Section 6. The remaining laws are associated with domain-dependent
operators and formalize their expected behaviour. These operators are quite com-
mon in most of the frameworks for abstract interpretation of logic programs (e.g.,
see [5, 11]). Our approach has the advantage of ariomatically unifying all these
operators into a single general structure: the constraint system. The definition
of a common structure underlying the construction of abstract domains and op-
erators has many important benefits, in particular: (1) it summarizes the general

26

properties of domain dependent operators, which should be invariant with respect
to abstraction, in order to preserve the standard properties of the semantics; and
(2) it provides an immediate correspondence between well known structures of
constraints and the intended dataflow analysis (e.g., see the constraint system of
propositional formulae in the next section or the system of linear equalities in
Section 6.1). Of course, abstract domains which are not complete lattices, and
operators that do not satisfy the axioms, cannot be modeled as constraint systems
wn our framework. The rigid structure of constraint systems can be weakened to
wnclude more analyses, as discussed in Section 6.

5.1. An Frample: Rigidity Analysis

A number of researchers have considered abstract interpretation techniques for
the analysis of ground dependences for pure logic programs (see, for examples,
[5, 21, 40, 58, 59]); this notion can be generalized to that of rigidity with respect
to size measures, or “norms”, for terms. Intuitively, a norm is a function from the
set of terms to the set of natural numbers such that the norm of a term depends
only on the its principal functor and (some of) its subterms. In the following we
consider the length and size norms on the Herbrand term system:

[tliengtr = 0 if t is a variable or ¢t =[],
|t|length =14+ |tail|length ift = [h|tail],

[t|size = 1 if ¢ is a variable or a constant,
|t|size =14 |t1|sizea ceey |tn|size ift = f(tla atn)

Given a norm | - |, a variable # is said to be relevant to a term t with respect to
| - | if there is some term ¢’ such that | ¢ | # | sz (¢, %) |.

Definition 5.4. [rigidity [9]]
Given a term system 7 = (7, Sub,V), a term ¢t € 7 is rigid with respect to a
norm | - |g on 7 iff |o(t)|s = |t|s for every substitution o € Sub.

Consider the term system 7(x y) being defined over a finite set of variables V.
Let us consider the term system 7s as defined in Example 2, where ¥ = V' terms
are finite sets of (relevant) variables with respect to a given norm. Rigid terms are
denoted by the empty set of variables. Given a norm | - |g, consider the mapping
Vrels : 7 — 1yt

Viels(t) = { veV | v is relevant to t with respect to |- [s }.

It is easy to see that the traditional notion of groundness is a special case of rigidity
under the selection of the norm size, since Vrely,.(t) = § iff ¢ is ground.

Proposition 5.5.
Vrels 1s a morphism of term systems.

Marriott and Sgndergaard have proposed an elegant domain, named Prop, to
represent ground dependences among arguments in atoms ([21, 56, 58, 59]). This

27

domain can be expressed as an instance of our framework using the algebra of propo-
sitional formulae with disjunction. Let Prop = (Propy, A, V, true, false, 3x, A(t) &
At")) xcvit,erervue} be the algebra of possibly existentially quantified disjunctions
of formulae, defined on the term system 7y, by the connectives A and <; where,
for each finite set of variables {1, ...,2m} € 7v: A({z1, ..., ®m}) = 21 A oA 2y,
and A(@) = érue. Intuitively, the formula & A y A z <+ w A v represents an equa-
tion ¢t = t’ where Vrelg(t) = {=,y,2} and Vrels(t') = {w,v}; ¥ A y represents a
term whose rigidity depends upon variables # and y; while z V y represents a set of
terms whose rigidity depends upon variables « or y. Local variables are hidden by
existential quantification, projecting away non-global variables in the computation.
Since x < true 1s equivalent to x, a variable x that is guaranteed to be bound to a
ground term is denoted z (i.e., the expression « denotes that » is rigid). Tt is easy
to prove that, because of the finiteness of V', Prop/ < is a finite constraint system.

In this section we outline the proof of correctness for the constraint system
Prop/ + with respect to . Recall that an equation set is in solved form if it has
the form {v; = ty,...,v, = {,} where the v;’s are distinct variables that do not
occur in the right hand side of any equation [53]. Any simple equational constraint
can be transformed into an equivalent constraint of the form Jxc¢ where ¢ is in
solved form. In particular we say that a quantified set of equations is in solved

form if it has the form Ix{vy = t1,...,v, = {,} where {vy =11,...,v, = 1, } isin
solved form and X C U{var(t;) | 1 < ¢ < n}. Given a norm | - |g, each set of
equational constraints ¢ = {@1 = {1, ..., 2, =, } in H is associated with a boolean

expression specifying rigidity relationships among (relevant) variables by means of
a mapping «g that 1s defined as follows:

as(c) :/:\1 (2 & A(Viels(t))).

Let E, E' be two equivalent (finite) sets of equations and let sol(F) and sol(E’)
denote the corresponding (quantifier-free) sets of equations in solved form. In this
case, correctness follows from the observation that any two sets of equations in
solved form are equivalent iff they are isomorphic, where a solved form equation set
E is isomorphic to E’ iff there is a subset {x1 = y1,...,2x = yr } of E where y;’s are
distinct variables such that E' = E [y1 /@1, ..., yu/ %k, 21/ Y1, ..., 21/ Y] (see Theorem
3.13, page 81 in [53]). Tt is straightforward to prove that if £ and E’ are equivalent
sets of equations then ag(sol(E)) < ag(sol(E')). Since Propy is finite, we can
extend ag to be an additive semimorphism from the constraint system H to Prop:
if e = U{3x,¢; | ¢ € IT}is an arbitrary H-constraint (where ¢; are simple constraints),
for a possibly infinite set of indices T, we define a(c) = V{Ix,a5(s0l(c;)) | i € I},

Theorem 5.2.
a 1s an additive semimorphism from the constraint system H to Prop.

Ezrample 5.1. Notice that, because of the use of solved form equation sets, «a
behaves as a semimorphism. Consider the equation e = {[z|y] = [z|[w]|h]]} with
the norm “length” (I). While a(e) = ay({z = z,y = [w|h]}) = {x & z,y & h},
the diagonal element is { Vrel;([z|y]) <> Vreli([z|[w|k]])} = {y <> h}. Tt is easy to
see that the diagonal element is weaker than the abstraction of the corresponding
concrete constraint.

28

Ezrample 5.2. Consider the norm “length” and the following constraint logic pro-
gram on the Herbrand constraint system P specifying the append procedure:

append([], L, L).
append([H|Y], X2, [H|Z]) : Lappend(Y, X2, Z).

The abstract semantics for length-rigidity analysis is

TL10(0) = 0
T}Tl(@) = append(x1,22,23) 1L 21 A(z2 & 23)
T}T?(@) = append(x1,xa,23) 1L (21 Axa & x3)V
El{x’l,x;,xg} (1‘1 L l‘/l N xo & l‘/z L l‘é L l‘3)
= append(x1,22,23) 1L 21 A(z2 & 23) (fixed-point)

The abstract semantics obtained above generalizes the standard ground behavior
to length-rigidity behavior: “the second argument list-length can change iff the
third argument does”. In ground dependence analysis Viels;..(t) = var(t) and
the abstract meaning of append is described by the relation

append(x1, xa,3) 1L w3 & (1 A x2).

This result can be obtained by size-rigidity analysis. It is worth noting that all
the standard semantic properties are still valid in Prop, since Prop is a constraint
system. Therefore, given the abstract goal G = append({H, X}, {Y},{H,7})
(which abstracts append([H|X],Y,[H|Z])), by Lemma 4.2 and Theorem 4.1 we
obtain from the size-rigidity analysis: V7 (p)(G) = {(X AY) < Z}.

5.2. The Approzximation Operator on Constraint Systems

A space of approximate constraints can be specified using upper closure operators
on a domain of constraints [24]. This is justified by observing that (by extensiv-
ity) they map any constraint into a weaker one. In this section we discuss basic
properties of upper closure operators on constraint systems such that the image
of a constraint system under such an operator is also a constraint system. This
provides a systematic way to construct the abstract operators of an abstract con-
straint system, given any such closure operator on the universe of the concrete
constraint system. This class of closure operators includes those associated with
any abstraction « that behaves as a morphism of constraint systems. As shown
later in this section, this way of defining abstract constraint systems is applicable
to many, but not all, abstractions. This limitation drives our interest in weaker
constraint structures, discussed in Section 6.

We first observe that any upper closure approximation of a constraint system
defines a partition of the universe of constraints into convex sets; i.e., if p 1s an upper
closure on the universe of constraints C, the set {¢/ € C | p(¢) = p(¢)} is convex. As
a consequence, the image of a universe of constraints C under a given upper closure
operator p is a set of “abstract” constraints each representing a convex space of
“concrete” solutions. However, in general, the abstract constraints so obtained

29

may not satisfy the axioms for constraint systems: additional conditions have to
be applied to ensure that they still provide a constraint system structure.

Definition 5.5.
Let A be a constraint system with universe C, term system 7 and set of variables
V. An upper closure operator p on (C,<) is J-consistent if for each ¢ € C
and X CV: p(Ixe) = Ixp(Ixc). An upper closure operator p on (C, <) is J-
consistent if for each ¢ € C, x € V and t € 7 such that = ind t: p(die) = 9% p(dLe).

F-consistency for a closure operator ensures that the approximation of a con-
straint where the variables in X are hidden, have the same set X hidden.From
this condition we prove that p satisfies the similar condition of J-consistency, the
3-quasi-morphism condition (see Lemma 5.2) and that p o Ix is an upper closure
operator.

Lemma 5.1.
p o dx is an upper closure operator.

Notice that Jx o p is not idempotent, unless Ix and p commute. This is in ac-
cordance with a classical result of the theory of closure operators saying that any
composition of two upper closure operators is an upper closure operator iff they
commute [62].

Lemma 5.2 (0-consistency, 3-quasi-morphism).
Let p be an 3-consistent upper closure operator on the constraint system A with
universe C, term system 7 and set of variables V. Then:

for eachc € C, x € V and t € 7 such that x ind t: p(d.c) = Op(dic); and
2. foreachceC, X CV: p(Ixc) = p(Ixple)).

In the remainder of this section we discuss some conditions to systematically
specify abstract constraint systems. This characterizes the class of abstract con-
straint systems (analyses) which can be systematically obtained as images of closure
operators. As we will see, this program is not applicable to a number of abstract
interpretations. This problem is addressed in Section 6.

Definition 5.6.
Let A be a constraint system with universe C. A 3/®-consistent upper closure
operator (consistent for short) p on A is an 3-consistent upper closure operator
on (€, <) that is a ®-quasi morphism, namely for each ¢,¢’ € C: p(e ® ¢) =
plp(c) @ p(c').

In addition to F-consistency, ®-quasi morphism relates meets of abstract con-
straints with meets of concrete constraints (recall that an upper closure operator is
also a quasi-complete join-morphism, namely for each C' C C, p(>~ C) = p(>_ p(C))
[74]).

Lemma 5.3.
Let p be a consistent upper closure operator on the constraint system A, with

30

universe C, term system T and set of variables V. Then for each c € C, x € V
and t € 7 such that x ind t: p(dLe) = p(dLp(c)).

As observed in [24], any Galois insertion (v, y) defines an upper closure operator
p = 7 o« on the corresponding (concrete) complete lattice. The following propo-
sitions provide some sufficient conditions for consistency of upper closures induced
by a Galois insertion.

Proposition 5.6.
Let A and A" be constraint systems with universes C and C' respectively, such
that A is correct with respect to A by means of a surjective and additive semi-
morphism a. Let v : C* 1— C be defined as v(c*) = Y {c | a(c) <" ¢t} and
p=~oa. Then:
p(C) is isomorphic to C*;

2. if a(Ixe) = E'EQ(X)Q(HX{Z) for every X CV and ¢ € C, then v o« is 3-
consistent.

For example note that condition (2) is satisfied by the additive semimorphism
associated with the abstract constraint system Prop.

The consistency of 4 o a can be proved when « is actually a morphism of con-
straint systems.

Proposition 5.7.
Let A and A' be constraint systems with universes C and C! respectively, such
that A is correct with respect to A by means of a surjective and additive semi-
morphism a. Let v : C* 1— C be defined as v(c*) = Y {c | a(c) <" ¢t} and
p=7voa. Let X CV and ¢c,c1,¢0 € C. If ay ts a morphism on constraint
systems then:

Axp(e) = p(3xc); and
2. p(p(er) @ ple2)) = pler @ ca).

This result gives also a sufficient condition on A" such that the composition of
J and p is a closure, i.e., that 3 and p commute.

Let A= (C,®,®,1,0,3x,d¢, t,)XCVity,t,e- be a constraint system and p be an
upper closure operator on A. We define:

p(-A) = (p(C), ®a é, 1ap(0)ap o ElXap(dtlyh))XgV;h,tzET

where p(C) = {¢ € C | ¢ = p(e)}; c1@ea = p(e1 ® ea) for eNaCh 1,2 € p(C); and
and @ is defined, for possibly infinite families C' C C, as: Y C = p(> C). In the
following we denote by J the induced substitution operator in p(A).

Observation 5.2. It is worth noting that p(A) corresponds (i.e., is isomorphic) to
any structure of abstract constraints such that (o,v) is a Galois insertion be-
tween the concrete and the abstract universe of constraints, p = ~voa and
where the abstract operators of meet, join and cylindrification are defined as the
corresponding best correct approximations with respect to o and vy (see [24]),
namely: Aey,ca.a(y(e1) @ y(ez2)), Acr, ca.a(y(er) ® y(c2)) and for any X C V

31

Ac.a(Ixy(c)), respectively. However, d may not correspond to the best approz-
imation for substitution (i.e., p o) unless p is consistent (see Lemma 5.4 be-
low) or satisfies other properties (see Secion 6). However, for any closure p,
c €p(C), ® €V and t € T such that x ind t, it is easy to prove by extensivity
that p(dhc) < dle.

Lemma 5.4. Let p be a consistent upper closure operator on the constraint system
A, with universe C, term system T and set of variables V. Then for each ¢ € p(C),
v €V and t € T such that x ind t: OLe = p(dlc).

Theorem 5.3.
If p is a consistent upper closure operator on A, then p(A) is a constraint system.

By ®/®-quasi-morphism and Lemmata5.2, 5.3 and 5.4: p(.A) is correct with respect
to A by means of the morphism p;4.

Ezrample 5.3. Cylindrifications are monotonic operators, while idempotence and
extensivity are specified by axioms C4y and C5 respectively. Moreover, cylin-
drifications commute, so if X and Y are sets of variables and ¢ is a constraint:
dx3dydxe = Ax Ty ec. However, for each set of variables X: Jx 1s not a consistent
upper closure operator on the constraint system because it does not satisfy the
®-quasi morphism condition (see Axiom Cf).

Ezrample 5.4. Another example of non-consistent closure is given by the well
known interval approximation. Consider the concrete constraint system LR,
in Example 4. An extensive operator on LR, can be obtained by approximating
any convex polyhedron with a hypercube, which 1s a polyhedron whose facets are
parallel to the axes (similar techniques have been used for static array bound
checking by interval approximation in [22]). For any set of polyhedra ¢ € P,
define boz(c) as the least hypercube containing ¢. boz is clearly an upper closure
operator on the domain of convex polyhedras ordered by set inclusion. It is worth
noting that boz (@) = # and for each X C Vj;: bom(élxc) =3y box(c), but box is
not a ®-quasi morphism. A similar behaviour is shared by the conver hull oper-
ator in [27] combining convex polyhedra for linear restraint analysis. Both the
interval and the convex polyhedron abstractions can be used to statically detect
future redundant constraints in C LP(R) computations (this problem has been
studied in the context of compiler optimization in [48]). Intuitively, a constraint
¢ in a clause is future redundant if, once ¢ has been tested for satisfiability, it does
not matter whether ¢ is added to the constraint store, because the computation
will inevitably add constraints stronger than ¢ to the store. Here we sketch a for-
malization of this analysis as a non-standard C'L P computation using a slightly
different notion of redundancy. Consider the constraint system LR, of Example
4. Let P € CLP(LR,) and p be any extensive operator on LR,. Assume p
be a predicate symbol defined in P and let C' = ‘p({) : L enc’ | B' € P be a
clause defining p. Let P’ = (P\ {C}) U{p(t) :L ¢ [B}. If p(z) :L ¢, is in
F'(P'), ie., ¢p is the answer constraint for p in the modified program, ¢, N¢ #
(i.e., ¢p A€ is solvable) and for each convex polyhedron ¢ € ¢,: p(e) C € (le., €is

32

weaker than p(c)), then ¢ is future redundant in C'. To prove this claim we just
note that by p-extensivity, for each constraint ¢: ¢ C p(e).

It i1s worth noting that the hypothesis that « is a morphism of constraint systems
in Proposition 5.7, is often too strong for reasonable analyses (e.g., it is easy to
see that the abstraction in Prop is not a morphism). More generally, when the
concrete semantics is defined on constraint systems where ® is idempotent and 1
is the annihilator for @, any consistent abstraction becomes a ®-morphism. For
this family of constraint systems, any meet of closed constraints is still closed: i.e.,
plc1) @ p(ea) = p(p(c1) @ p(ez)). Therefore @ is equivalent to @ in p(.A).

Theorem 5.4.
Let p be a consistent upper closure operator for a constraint system A with uni-
verse of constraints C and let ¢1,¢o € C. Suppose that p(c1)@p(cz) < p(cr®ca). If
A is @-idempotent and 1 is the annihilator for &, then p(c1 ®ca2) = ple1) @ p(ea).

The behavior of consistent closures is too restrictive for most of the abstract in-
terpretations, where the intended meet approrimation does not support the ®-quasi
morphism condition. However weakening consistency may result in a structure of
constraints p(.A) that is not, in general, a constraint system. Therefore, more gen-
eral abstractions require a weaker notion of constraint system. In the following
section we consider ®-idempotent constraint systems where 1 is annihilator for
@, as these conditions are satisfied in most “concrete” constraint systems, e.g.,
CLP(H). These structures turn out to be distributive lattices [38].3

6. NON-DISTRIBUTIVE CONSTRAINT SYSTEMS

In this section we discuss the impact of different closure operators (abstractions) on
the general properties of constraint systems. Let A be a constraint system. By a
quick inspection of Theorem 5.3 we can observe that, for any upper closure operator
p, axioms Ry, Ro, R4 of Definition 3 and C'y, D1 and D5 of Definition 5 are satisfied
in p(A). Therefore, we identify the remaining axioms: Rg, Rs (of Definition 3),
Cy, Cs, Cy, Cs, D3 and Dy (of Definition 5) as those possibly affected by a generic
abstraction (later we abuse terminology by referring to these as the distributivity
laws). A non-distributive constraint system with universe C, term system 7 and
set of variables V' 1s then a structure similar to a constraint system, as defined
in Definition 5, except that the distributivity laws are replaced by the following
respectively, where ¢,¢/ € C, C' C C, t,¢',1" € 7 and {2}, X C V such that z ind {:

3Commutativity of @ is not needed to show that (€,4,0,1,8,®) is a lattice, this being a
consequence of Ry, Ro, R3, Rs, ®-idempotence and annihilation for 1. In particular it is possible
to prove from these hypotheses that ¢ ® b and b ® a are both the greatest lower bounds of ¢ and
b, whence, by uniqueness, ® is commutative [52]. This extends the result in [38] which requires
commutativity of ®.

Rs.
Rs.
Ch.
Cs.

33

04d0®c Cy. Ixuyeddxdye

o (TO)ITeod |0} o S{Exe | €0) 23x(T0)
0<3x0 Ds. diejayerejarer 2 O (depn);
Ix(c®@3Ixc) <Axe® Ix Dy dt(e@d) Qe dic.

In the following we identify a set of reasonable restrictions for a generic upper

closure operator p on a constraint system A. They provide a characterization for
the analyses that can be captured in some non-distributive constraint system. We
list them below, each one provided with the set of non-distributive laws satisfied
in p(A). In the following, ¢t,#' € 7, x € V and z ind t. The proofs of the following
claims can be easily derived by inspection of the proof of Theorem 6.1 below.

P

Ps.

Ps.

p(0) = 0. The abstraction of inconsistent constraints is still inconsistent.
This extends the consistency check from concrete to abstract computations.
It is applied in common analysis such as: Prop, linear equalities (see Section
6.1 and [49]), inequalities (see [27]), F-approximation and interval approxi-
mations in Example 4, etc. The constraint system p(A) is Rs, C4, C5, D3
and D4 non-distributive, but C's does not hold.

p(de) = diyr. Diagonal elements are invariant under abstraction. This
is a typical assumption in static analysis by approximating numerical rela-
tions between variables of a program, such as: interval approximation, linear
equalities and inequalities. The constraint system p(A) is Rs, Rs, C1, Cl,
Cs and D4 non-distributive, but C'3 does not hold.

p is additive. The universe of abstract constraints is isomorphic to a sub-
lattice of the concrete one. An additive closure can be obtained by lifting
the abstraction on the powerset (see [26]). This provides a more precise in-
terpretation for digjunction. The F-approximation in Example 4 is additive.
The constraint system p(A) is Rz, C1, C4, D3 and Dy non-distributive, but
('3 does not hold.

Axiom C'5 can be satisfied, in its distributive or non-distributive form, provided
that one of the following existential conditions is verified:

.

By

Es.

pod=Topod. This s the F-consistency condition in Definition 5. The
constraint system p(A) is Rz, Rs, Cs, D3 and D, non-distributive.

Jop=podop. dpreserves the closure, i.e., existentially quantified closed
constraints are still closed. In particular, 3o p is a closure operator. This
condition is satisfied in numerical abstract domains of constraints such as
linear equalities and interval analysis. The constraint system p(A) is Ra,
Rs, Cy, Cs, D3 and D4 non-distributive.

Jo p=pod. This condition is true iff both F; and E5 are true. In this
case, both p o 3 and 3 o p are closure operators [62]. This property is shared
by most of the well known abstractions such as: Prop, linear equalities and
inequalities, 3 and interval abstractions, etc. The constraint system p(A) is
R3, Rs, D3 and D4 non-distributive.

34

Properties P—Ps can be combined with the existential conditions £1—F35 in order to
satisfy more distributivity laws. For example, we notice that for any upper closure
operator p satisfying P» and Fy, p(A) is only Rs, Rs and C3 non-distributive, while
if it satisfies P» and Fs then it is only Rs and Rs non-distributive. The following
section shows an application of such closure operators to dataflow analysis of CLP
programs.

Theorem 6.1.
Let A be a constraint system with universe C, variables V and term system . If
p 1s an upper closure operator satisfying any of the existential conditions E1-FE3
and a (possibly empty) combination of properties P1—Ps, then p(A) is a non-
distributive constraint system.

It is worth noting that, under the hypothesis of the previous theorem, p(A) is
always distributive in (4. The following example shows that we can prove the Dj
distributivity, by combining P; and FEs with a particular definition for diagonal
elements (namely the best corresponding approximation).

Ezrample 6.1. In this example we sketch the systematic derivation of abstract con-
straint systems from a given data-abstraction. This corresponds to generate the
best approximating operator (see [24]) for each basic operator in the constraint
system, including diagonal elements. As we will see, this abstraction reduces
the loss of distributivity in the abstract constraint system. In the following we
assume that A is a @ idempotent (distributive) constraint system on the term
system 7 with dimension a: A= (C,®,®,1,0,3x,ds, 1,) xCvity,te- Where 1 is
an annihilator for &.

Term systems:
let 7@ be a set of objects including a set V such that |V| = |V| = «. Let k : 7 L— ¢
be a surjective function such that, by defining § : 7 L— p(r) as d(a) = {t €
T | k(t) = a} for a € 7%, then: kod(a) = a and {t} C 6§ o ({t}) for ¢ € 7 and
t € 7. Assume also that k satisfies the following conditions on the structure of the
constraint system 7: (V) =V (therefore V' and V are isomorphic by &), and for
each 11,10, 83 € 7, 2,y € V: k(sz(t,t1)) = k(sy(f2,t3)) when w(z) = x(y), &(t) =
k(t2) and &(t1) = &(t3), namely substitution is compatible with the equivalence
relation induced by k.

For any y € V, a,b € 7%, define sj(a,b) = k(s;(t,21)) where r(z) = y, t € d(a)
and t; € §(b). From the previous hypothesis it is easy to see that s is well defined
on 7%, and

Proposition 6.1.
(1%,5%V) is a term system of dimension o, and & is a morphism from T into

Te,

Constraint systems:

let (¥,<,T,L V,A) be a complete lattice containing a set of objects d,p for
a,b € 7% Assume («,7) be a Galois insertion of (X, <) into (C,<) such that
y(L) = 0. We also assume that: a(d;/) = de) ey and y(dap) = ©{de,er | £(t) =
a and %(t') = b}. This corresponds to require that («,7) is also a Galois insertion

35

between the corresponding sublattices generated by the diagonal elements. Finally,
we assume F3 as existential condition for v o a.

It is straightforward, from the previous hypothesis, that v o « is an upper closure
on C satisfying condition P;. However, the abstract constraint system p(.A) is only
Rs and D4 non-distributive, namely we can prove Ds distributivity, which cannot
be derived from P; and F3 only.

Proposition 6.2.
p(A) is a correct Rs and Dy non-distributive constraint system.

We conclude, from the previous proposition, that the behaviour of abstract di-
agonal elements with respect to substitution is preserved when they are derived
systematically from the abstract term system. Here, the construction of abstract
diagonal elements helps in proving an important distributive property.

6.1. Non-distributive Analysis: Linear Relationships

This section considers a quite common form of non-distributivity for constraint
systems and applies it to the problem of inferring linear size relationships between
the arguments of procedures. We consider a constraint system .4 with universe C,
where only axiom Rs of Definition 3 is replaced by the weaker relation: ¢@ (> C) <
SHew e | ¢ € C} for ¢ € C and C C C. We abuse terminology by referring to
these systems as non-distributive. Axiom Rs is needed to prove the continuity of
T}, with the eventual objective of showing the equivalence of the fixed-point and
operational semantics. However the weaker property of monotonicity can be proved
for any non-distributive constraint system. The following proposition follows from
the monotonicity of 3 and ®.

Proposition 6.3.
Tfp s monotonic in any non-distributive constraint system A.

It follows that for Noetherian non-distributive constraint systems, T} is also con-
tinuous. Moreover, as far as equivalence of semantics is concerned, the operational
semantics is, in some sense, an “all solutions” semantics where the join is taken at
the end of all the possible computations; in the fixed-point case, by contrast, the
join operator is applied at each partial computation step (an equivalent operational
semantics can be easily defined: this would correspond to the bottom-up execution
strategy of deductive databases rather than the standard operational interpretation
of logic programs [54]). In this case, as the constraint system is not distributive
any more, we can only have a further approximation level by applying bottom-up
instead of top-down, i.e., (O(P))" C F"(P). This behavior was already observed
by Jacobs and Langen [44] in the analysis of pure logic programs with condensing.
In the following we study this class of constraint systems by means of an example:
the linear relationship analysis.

The linear relationship analysis 1s useful for a variety of applications such as
compile-time overflow detection, integer subrange checking, array bound checking,
termination analysis, efc., has been considered by a number of researchers (e.g.,
[27, 49, 72, 73]). The approach of Verschaetse and De Schreye [73] for automatic

36

inference of linear size relations among variables in logic programs can be specified
as a constraint computation in our framework.

Let 7(sv) be defined as in Example 1, over a finite set of variables V. Let
| - |s be a norm on the term system T(s,v). We define a term system 7g.p of linear
expressions where terms are first order terms in the language {+,0,1,V} (i.e., terms
in 74 0,1},v)). Since we are interested only in relations having finite arity, we can
always represent any answer constraint as a constraint on the finite dimensional
space of its free variables. Moreover, the use of a bottom-up semantics construction
does not require any infinite set of variables for renamings. Therefore, the set of

variables V' can be assumed to be a finite set V,, = {1, ..., 2,}. Substitutions are
performed as standard substitutions. In the following, if f(t1,...,%,) is a term, then
t1,...,t, are its 1-subterms.

Proposition 6.4.
TEep 15 a term system.

The mapping Fxps : 7(s,v) — TEzp associates a linear expression with each term
in 7z vy, as follows: let ¢ be a term and S; be the set of selectors for the “relevant”
subterms of ¢, i.e., s € S; iff s(¢) is a 1-subterm of ¢ and s(¢) is not rigid.

¢ if ¢ 1s a variable

Exps(t) = co+ > Ezps(s(t)) otherwise
SES

It is straightforward to prove that Faps is a morphism.

Ezample 6.2. With length and size norms we have: Ezprengen([X[a|Z]]) = 1+
1+ Z and Eapsi..([X[a|Z]]) = 1+ X + 1+ Z respectively.

Karr [49] shows that size relations among variables in a program can be ob-
tained by manipulating affine relationships i.e., linear equalities of the form ¢y =
c1X1 4+ ... + ¢, X,,. In our framework, this corresponds to a constraint system as
follows: let £ be the set of affine subspaces corresponding to linear equalities on a
fixed n-dimensional space (e.g., R"); the universe of constraints is p(L£); the meet
operation ® 1s simply intersection of affine subspaces; the join operation is set
union; cylindrification, which corresponds to the variable restriction of Verschaetse
and De Schreye, corresponds to “projection” parallel to an axis, which maps a set
of affine subspaces into a set of affine subspaces; let S be a set of affine subspaces
and x € V', t € Tggp, then the substitution of x with ¢ in S is the affine subspace
él{x}([a: =1] N S). The elements 0 and 1 are defined as §§ and the entire space &"
respectively. Diagonal elements are (single) equations on the term system 7gy,. As
usual, for each equation {1 = i3, we denote by [t; = 2] € R" the corresponding
affine subspace.

Proposition 6.5.
Rel = (p(£),N,U,R",0,3x, [t =t'])xCv.it,t'erpe, 15 @ constraint system.

Given a norm S, the abstraction function ags can be defined by extending Fzpg,
similarly to that of Section 5.1, therefore Rel is correct with respect to H. Note

37

however that Rel is not Noetherian, therefore it is not directly applicable for static
analysis of CLP(H) programs.

The approximation introduced in Karr [49] corresponds precisely to the abstrac-
tion of Rel given by an upper closure operator p.g, mapping any set of points
into the smallest affine subspace containing them. It is immediate to observe that:
pagg (0) =0, 30 pagg = pap o 3 (in particular: cylindrification maps affine subspaces
into affine subspaces) and p.g({c}) = ¢ for ¢ € £ (i.e., diagonal elements are not
affected by abstraction). Therefore, p,g satisfies P, Py and Es3, and p.g(Rel) is a
Rs non-distributive constraint system, which is correct with respect to H. The join
of two affine subspaces A; and As, given by pag(A1UAs), is here the smallest affine
subspace containing A; and Az (since the union of two affine subspaces is not, in
general, an affine subspace). To prove that p.g(Rel) is a non-distributive closed
semiring we observe that (z1 = 0.5, 23 = 054 22) N pag (21 = 0,22 = 23) U (21 =
1,23 =14+ x2)) = (x1 = 0.5, 23 = 0.5+ x2) while (1 = 0.5, 23 =05+ x2) N (z1 =
0,22 = x3) = B and (z1 = 0.5,23 = 0.5+ 22) N (w1 = L,os = 1+ 22) = 0. As
pointed out in [49], there are no infinitely ascending chains of free-variable bounded
constraints in pag (Rel) (i.e., bounded dimension affine spaces), otherwise in any
properly ascending chain of subspaces U; < Uy < ..., the subspaces U; must have
a dimension of at least one greater than U;_1. p.g (Rel) is therefore Noetherian.

Ezample 6.3. Consider the logic program defining the predicate append in Exam-
ple 2, together with the norm length. The corresponding abstract program and
semantics are:

append(xy, xa,23) L #1 = 0,29 = 23.
append(x1,x2,23) L 21 =14y, 23 =142 [append(y, x2, 2).

Tpto() = 0
T}Tl(@) = {append(xy,x2,73) 1L 21 = 0,29 = x3}
T}T?(@) = {append(z1,22,23) 1L pap((21 =0,22 = 23)U

(xl = 1,l‘3 = 1—|— l‘z))}
= {append(xy,20,23) 1L #1422 = 23}

The affine subspace 1 4+ 2 = x3 specifies the relationship among the lengths of
the arguments of the predicate append in the expected way. For example, a so-
lution for the length of the tail X in the goal append([H|X], [d|e|f], [a]b|c|d]e|f])
can be found by solving the corresponding abstract goal append(1 + X 3,6),
resulting in X = 2. A possible implementation can be obtained by slightly
modifying the C'LP(R) interpreter in [47] to cope with affine relations. This
corresponds to implement (at the meta level) the join operator for affine sub-
spaces so as to combine the computed answer constraints generated by the inter-
preter. Thus, abstract interpretation for linear size relationships can be joined
to a concrete interpretation on C'LP(R) of a modified program.

7. DISCUSSION AND RELATED WORKS

Our definition of constraint systems was motivated by earlier work of Debray and
Ramakrishnan [29], which gives an algebraic formulation for standard and non-

38

standard semantics of logic programs, but over a very different algebraic struc-
ture. In particular, we modify closed semirings (already used in [29]) to cope with
constraint-like objects including cylindrification of constraints, and diagonal ele-
ments as atomic constraints. This provides a direct definition, at the constraint
system level, for standard semantic notions like variable projection and unification.

Our definition of constraint logic programs is close to the original one of Jaffar
and Lassez [45]. We generalize the notion of constraint system so as to apply it
to possibly non-standard (e.g. abstract) interpretations. We follow [45] by defin-
ing parameter passing as generic term equations, and we generalize this notion to
any possibly non-standard term system. This corresponds precisely to generalize
C'LP including non-standard objects (trace sequences, abstract constraints etc.) as
constraints. With respect to [45], we also give an algebraic presentation for con-
straint systems, involving variable projection. This approach is more suitable to
reason about abstract interpretation, in particular when studying closure operators
on constraint systems (e.g. see Section 5.2 and Section 6).

Saraswat et al. define the semantics of concurrent constraint languages in terms
of cylindric algebras [64], specifying constraint systems in the style of Scott’s infor-
mation systems [65] via a set of “primitive” constraints C and an entailment relation
F C p(C) x €. Composition of constraints is defined in terms of set union, hiding
in terms of cylindrification, and parameter passing using diagonal elements. There
is a fundamental difference between our work and that of Saraswat et al. in the
underlying algebraic structure. Information systems are general structures where
the primary role of entailment provides a very convenient mechanism for modelling
blocking-ask synchronization in concurrent constraint programming languages [64].
By contrast, we are interested less with entailment as a primitive notion, than with
identifying algebraic structures that make it easier to generalize the standard se-
mantic results for constraint logic programming. In our case, the constraint system
is based on closed semirings and is parametric with respect to a given term system
(it is easy to associate an information system with a closed semiring” (C, ®,®,1,0)
if ® is commutative and idempotent, but of course this may not hold in general).
This makes it possible to define non-standard constraint systems, e.g., for abstract
interpretation, in a simpler and more structured way. In our opinion, 1t is easier to
specify standard logical and arithmetic operators as an instance of a closed semir-
ing than as an instance of an information system, making closed semirings a more
natural basis for generalizing constraint systems to deal with standard and non-
standard semantics. This is because the lattice-structure of usual abstract domains
provides a suitable abstract interpretation for ®, @, etc. (see Prop or the affine
relationship analysis). Moreover, the join operator can often be interpreted as a
widening of constraints, and this can be easily characterized in a closed semiring
structure. More recently, the framework of concurrent constraint programming has
been extended to cope with function symbols (terms). Technically this is handled
by a hyperdoctrinal account of existential and diagonal notions in [63]. However,
the use of hyperdoctrines in the context of the present work does not add signifi-
cant results, if compared with the classic, and somehow more standard, treatment
of cylindric algebras by Cirulis [13].

The idea of generalized semantics has been recently applied to the family of cc

4An interesting work on the relation between the Scott’s topology and a topology for closed
semirings is in [51].

39

languages by Zaffanella et al. in [75]. The extension of our framework to cc is not
straightforward, as we cannot (in general) provide a correct approximation of pro-
gram’s behaviour by abstractly evaluating abstract versions of cc programs. This
1s a consequence of synchronization based on blocking ask. Intuitively a correct
approximation of the program meaning generates weaker answers for any possible
program behaviour. Therefore, in order to correctly characterize answers associ-
ated with suspended computations, we must guarantee that whenever a concrete
computation suspends the corresponding abstract computation suspends too. This
can only be obtained by replacing ask constraints with stronger constraints, which
is usually not the case in abstract interpretation. Some solutions to this problem
are addressed in [75].

Abstract interpretation of (sequential) constraint logic programs was considered
firstly by Marriott and Sendergaard [57]. Their treatment is based on abstracting a
denotational semantics for constraint logic programs. A meta-language based on the
typed A-calculus 1s used to specify the semantics of logic languages in a denotational
style, and both the standard and non-standard semantics are viewed as instances
of the meta-language specification. In our case, instead of defining a meta-language
for dataflow analysis, we consider the constraint specification on which the C'LP
paradigm is defined. Non-standard semantics for a given constraint-based program
can thus be obtained simply by appropriately modifying the underlying constraint
system. This gives a formal account for abstract compilation, which i1s a quite
standard technique in dataflow analysis implementation [68], as constraint-based
computation.

A related approach is also considered by Codognet and File, who firstly give
an algebraic definition of constraint systems and consider abstract interpretation
of constraint logic programs as constraint abstraction [19]. However, the algebraic
structure considered by these authors is very different: only ®-composition is con-
sidered, and while a notion of “computation system” is introduced, the underlying
structure is not provided with a join operator. Because of this construction, mainly
based on a generalization of the top-down SLD semantics, they cannot character-
ize, at the constraint level, the “condensing” of multiple solutions, which is very
useful in abstract interpretation (e.g., see Prop and the linear relationships anal-
ysis). Thus, by applying a loop-checker consisting in a “tabled” interpreter, only
finite abstract domains can be handled. In our framework, by contrast, extraneous
devices such as loop checking and tabulation are not considered. Instead, finiteness
is treated simply as a property of the constraint system, expressed in terms of <-
chains. This allows non-standard computations to be specified as standard C'LP
computations over an appropriate (possibly Noetherian) constraint system (e.g.,
affine subspaces represent a suitable abstraction for linear relationships, providing
an approximation that is inherently Noetherian but is not finite). Moreover, both
the traditional top-down and bottom-up semantics can be specified in the standard
way thus providing goal-independent static analysis of C'LP programs.

Recently, constraint programming techniques have been applied to the abstract
interpretation of Prolog programs. In [20] a new language: Toupie is introduced to
compile the abstract semantics of Prolog into a constraint based language, where
constraints over finite domains are implemented as decision diagrams. In [17],
an efficient implementation of ground dependency analysis is obtained by imple-
menting the constraint solver for propositional formulae as a Datalog program, as
suggested earlier by Dart [28]. While the approach does not encode disjunction of

40

propositional formulae, it provides a simple and powerful tool for static analysis of
groundness in Prolog. Magic-like transformations are applied to get call patterns.

It should be noted here that while the framework described can describe a wide
variety of program analyses, there are some kinds of analyses that it cannot express.
Specifically, it cannot capture analyses where the join operator ¢ 1s not commuta-
tive, since this would violate the axioms of closed semirings. Non-commutative join
operators may be found in analyses that model the depth-first execution strategy
of Prolog (e.g. see [6]). Tt is also interesting to observe that & idempotence is in
contrast with the typical multiplicity of solutions for a Prolog-like system. Weaker
structures can be studied for these cases.

At the constraint system level, we abstract a system of constraints which actu-
ally contains the standard (logical) interpretation of constraints: i.e., constraints
as lower-closed sets of formulae, and where the approximation order is the same
as entailment. This is of course a restriction, and weaker constraint systems and
abstractions can be studied. In particular, by dropping axiom (%, we can ob-
tain a weaker structure which can be instantiated with (possibly non lower-closed)
powerset constructions. This may be useful to associate (at the constraint system
level) the set of possible computed answer constraints with each predicate®. In this
case, it 1s easy to see that the computed answer constraint semantics and and the
condensed one coincide. However, we believe that axiom C's is essential for a “log-
ical” interpretation of constraints and hiding. This is a key-point in our approach
to abstract interpretation of constraint logic programs, where data-flow analysis is
computed in a C'L P-like way. This task is obtained by requiring that both concrete
and abstract constraints share a similar “logical” interpretation. This restriction
allows us to join some abstract domain with suitable constraint systems. As shown
in Section 4, more concrete observable behaviours (e.g., the set of computed answer
constraints) can be obtained at the semantic level, by applying different semantic
constructions (e.g., see the semantics in Section 4 modeling sets of computed answer
constraints, without condensing). However, notice that some observable properties
which are different from success patterns, such as: failure, call patterns and par-
tial answers cannot be modeled by applying directly the semantic construction in
Section 4. As for call patterns, both the magic-like transformation in [15] and the
semantic-based approximation in [32] can be easily extended to C'LP languages in
view of the present paper. The machinery of partial answers instead may require
an additional layer of abstraction, like the one applied in [16] for the compositional
analysis of modular logic programs. We believe that our constraint system no-
tion and abstraction can be easily applied to semantic constructions characterizing
different observable behaviours, like those described in [10].

8. CONCLUSIONS

We have defined an algebraic framework for a generalized semantics for constraint
logic programs. Such an approach to program semantics allows a formal treatment
for correctness conditions in any non-standard interpretation, e.g., for abstract
interpretation, or reasoning about compiler correctness, and provides a basis for
the study of the general algebraic properties of the semantics construction. The

5We thank an anonymous referee for this comment.

41

ability to represent the condensing process as an operator in the constraint sys-
tem simplifies the abstract semantic construction, and provides a formal axiomatic
treatment of abstraction. Moreover, the use of variable hiding operators (such as
cylindrifications) in the Tp definition allows the use of finite dimension constraint
systems and provides a formal treatment of renaming in abstract interpretation.
Finite dimension constraint systems are particularly useful to provide finite upper
approximations to the semantics, such as in the case of linear relationships analysis,
where the finiteness is strongly related with the (finite) dimension of the space of
solutions.

Further generalizations are possible in view of abstract interpretation. Weaker
constraint systems can be considered, where for example distributivity does not
hold. The distributivity restriction is not applicable to a wide class of static anal-
ysis problems including linear relationships, as shown in Section 6.1, and range
variable analysis, based on an abstract lattice of intervals specifying the range of
program variables [3]. Non-distributive constraint systems can be studied as a
more general framework for constraint-based program analysis. A classification of
the different constraint systems which are useful in dataflow analysis can be based
on the set of properties they hold. A comparison with our framework can be helpful
to systematically derive those properties of the semantics construction that may be
affected by a different constraint system definition. Moreover, the notion of ab-
straction can be refined even more by considering semimorphisms of term systems,
where terms are ordered by instantiation. This can be suitable to characterize term
abstraction in abstract interpretation.

ACKNOWLEDGMENTS

The stimulating discussions with Roberto Bagnara, Roberto Barbuti, Veroniek Du-
mortier, Maurizio Gabbrielli, Georg Karner, Michael Maher, Nino Salibra, and Gert
Smolka are gratefully acknowledged. We thank the anonymous referees for many
helpful comments.

REFERENCES

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Addison Wesley Publishing Company, 1974.

2. K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B: Formal Models and Semantics,
pages 495-574. Elsevier, Amsterdam and The MIT Press, Cambridge, 1990.

3. R. Bagnara, R. Giacobazzi, and G. Levi. Static Analysis of CLLP Programs over
Numeric Domains. In Actes Workshop on Static Analysis, WSA’92, number 81-82
in Bigre, pages 43-50, 1992.

4. R.Bagnara, R. Giacobazzi, and G. Levi. An Application of Constraint Propagation
to Data-flow Analysis. In Proc of Ninth IEEE Conference on Al Applications, pages
270-276. IEEE Computer Society Press, 1993.

5. R. Barbuti, R. Giacobazzi, and G. Levi. A General Framework for Semantics-
based Bottom-up Abstract Interpretation of Logic Programs. ACM Transactions
on Programming Languages and Systems, 15(1):133-181, 1993.

42

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

R. Barbuti, M. Codish, R. Giacobazzi, and G. Levi. Modeling Prolog Control. Proc.
Nineteenth ACM Symposium on Principles of Programming Languages, Jan. 1992,
pages 95-104. ACM Press.

R. Barbuti and A. Martelli. A Structured Approach to Semantics Correctness.
Science of Computer Programming, 3:279-311, 1983.

G. Birkhoff. Lattice Theory. In AMS Colloquium Publication, third ed., 1967.

A. Bossi, N. Cocco, and M. Fabris. Proving Termination of Logic Programs by
Exploiting Term Properties. In S. Abramsky and T.S.E. Maibaum, editors, Proc.
TAPSOFT 91, volume 494 of Lecture Notes in Computer Science, pages 153-180.
Springer-Verlag, Berlin, 1991.

A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics approach:
theory and applications. Journal of Logic Programming, 19 & 20:149-197, 1994.

M. Bruynooghe. A Practical Framework for the Abstract Interpretations of Logic
Programs. Journal of Logic Programming, 10:91-124, 1991.

M. Bruynooghe, G. Janssens, B. Demoen, and A. Callebaut. Abstract Interpre-
tation: Towards the Global Optimization of Prolog Programs. In Proc. Fourth
IEFE International Symp. on Logic Programming, pages 192-204. IEEE Comp.
Soc. Press, 1987.

J. Cirulis. An Algebraization of First Order Logic with Terms. Colloquia Mathe-
matica Societatis Janos Bolyai, 54:125-146, 1991.

K. L. Clark. Predicate logic as a computational formalism. Technical Report Dept.
of Computing, Imperial College, 1979.

M. Codish, D. Dams, and E. Yardeni. Bottom-up Abstract Interpretation of Logic
Programs. Theoretical Computer Science, 124(1):93-126, 1994.

M. Codish, S. K. Debray, and R. Giacobazzi. Compositional Analysis of Mod-
ular Logic Programs. In Proc. Twentieth Annual ACM Symp. on Principles of
Programming Languages, pages 451-464. ACM Press, 1993.

M. Codish and B. Demoen. Analysing logic programs using “prop”-ositional logic
programs and a magic wand. In D. Miller editor, Proc. of the 1993 International
Logic Programming Symposium, pages 114-129, MIT Press 1993.

M. Codish, M. Falaschi, and K. Marriott. Suspension Analyses for Concurrent
Logic Programs. Technical Report TR 12/92, Dipartimento di Informatica, Uni-
versita di Pisa, 1992. To appear in ACM Transactions on Programming Languages
and Systems.

P. Codognet and G. File. Computations, Abstractions and Constraints. In Proc.
IFEFE International Conference on Computer Languages, ICCL’92, IEEE Press,
1992.

M.-M. Corsini, K. Musumbu, A. Rauzy, and B. Le Charlier. Efficient bottom-
up abstract interpretation of Prolog by means of constraint solving over symbolic
finite domains. In M. Bruynooghe and J. Penjam, editors, Programming Language
Implementation and Logic Programming - Proceedings PLILP’93, volume 714 of
Lecture Notes in Computer Science, pages 75-91. Springer-Verlag, Berlin, 1991.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

43

A. Cortesi, G. File, and W. Winsborough. Prop revisited: Propositional Formula
as Abstract Domain for Groundness Analysis. In Proc. Sizth IEEE Symp. on Logic
In Computer Science, pages 322-327. I[EEE Computer Society Press, 1991.

P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. Fourth ACM Symp. Principles of Programming Languages, pages 238-252,
1977.

P. Cousot and R. Cousot. A constructive characterization of the lattices of all
retracts, pre-closure, quasi-closure and closure operators on a complete lattice.
Portugalie Mathematica, 38(2):185-198, 1979.

P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.
In Proc. Sizth ACM Symp. Principles of Programming Languages, pages 269-282,
1979.

P. Cousot and R. Cousot. Comparing the Galois Connection and Widen-
ing/Narrowing Approaches to Abstract Interpretation. In M. Bruynooghe and
M. Wirsing, editors, Proc. of PLILP’92, volume 631 of Lecture Notes in Com-
puter Science, pages 269-295. Springer-Verlag, Berlin, 1992 (To appear in Acta
Informatica).

P. Cousot and R. Cousot. Abstract Interpretation and Applications to Logic Pro-
grams. Journal of Logic Programming, 13(2 & 3):103-179, 1992.

P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints Among
Variables of a Program. In Proc. Fifth ACM Symp. Principles of Programming
Languages, pages 84-96, 1978.

P. Dart. On Derived Dependencies and Connected Databases. Journal of Logic
Programming, 11(2):163-188, 1991.

S. K. Debray and R. Ramakrishnan. Generalized Horn Clause Programs. Technical
report, Dept. of Computer Science, The University of Arizona, 1991.

S. Eilenberg. Automata, Languages, and Machines. Academic Press, volume A,
1974.

M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Modeling
of the Operational Behavior of Logic Languages. Theoretical Computer Science,
69(3):289-318, 1989.

M. Gabbrielli and R. Giacobazzi. Goal Independency and Call Patterns in the
Analysis of Logic Programs. In E. Deaton, D. Oppenheim, J. Urban and H. Berghel
editors, Proc. of the Ninth ACM Symposium on Applied Computing, pages 394-399,
ACM Press, Phoenix AZ 1994.

M. Gabbrielli and G. Levi. Modeling Answer Constraints in Constraint Logic
Programs. In K. Furukawa, editor, Proc. Fighth International Conference on Logic
Programming, pages 238— 252. The MIT Press, Cambridge, Mass., 1991.

R. Giacobazzi. Semantic Aspects of Logic Program Analysits. Ph.D. Dissertation,
Universitd di Pisa, March 1993. Also available as Technical Report TD-18/93, Dip.
di Informatica, Universita di Pisa, Pisa, Italy.

R. Giacobazzi. “Optimal” collecting semantics for analysis in a hierarchy of logic
program semantics. Technical Report LIX, Ecole Polytechnique, LIX/RR /94, 1994.

44

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

R. Giacobazzi, S. K. Debray, and G. Levi. A Generalized Semantics for Con-
straint Logic Programs. In Proceedings of the International Conference on Fifth
Generation Computer Systems 1992, pages 581-591, 1992.

R. Giacobazzi, S. Debray, and G. Levi. Joining Abstract and Concrete Computa-
tions in Constraint Logic Programmimg. In M. Nivat, C. Rattray, T. Rus and G.
Scollo, editors, Proc. Third International Conference on Algebraic Methodology and
Software Technology, AMAST’93, Workshops in Computing Series, pages 109-126.
Springer-Verlag, London 1993.

J.S. Golan. The theory of semirings with applications in mathematics and theo-
retical computer science. Longman, Harlow, 1992.

M. Hanus. Formal Specification of a Prolog Compiler. In P. Deransart, B. Lorho,
and J. Maluszynski, editors, Proc. International Workshop on Programming Lan-
guages Implementation and Logic Programming, volume 348 of Lecture Notes in
Computer Science, pages 273-282. Springer-Verlag, Berlin, 1988.

M. Hanus. Analysis of Nonlinear Constraints in CLP(R). In Proc. Tenth Interna-
tional Conference on Logic Programming, pages 83-99. MIT Press.

L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras. Part I and II. North-
Holland, Amsterdam, 1971.

M. Hermenegildo, R. Warren, and S.K. Debray. Global flow analysis as a practical
compilation tool. Journal of Logic Programming, 13(4):349-366, 1992.

Y.E. loannidis and E. Wong. An Algebraic Approach to Recursive Inference. In
L. Kerschberg, editor, Proc. First International Conference on Fzpert Database
Systems - Charleston SC, pages 295-309, 1987.

D. Jacobs and A. Langen. Static Analysis of Logic Programs for Independent AND
Parallelism. Journal of Logic Programming, 13(2 & 3):291-314, 1992.

J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proc. Fourteenth An-
nual ACM Symp. on Principles of Programming Languages, pages 111-119. ACM,
1987.

J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. Journal of
Logic Programming, 19 & 20:503-581, 1994.

J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) Language and
System. ACM Transactions on Programming Languages and Systems, 14(3):339—
395, 1992.

N. Jgrgensen, K. Marriot, and S. Michaylov. Some Global Compile-Time Optimiza-
tions for CLP(R). In Proc. 1991 International Symposium on Logic Programming,
pages 420-434, 1991.

M. Karr. Affine Relationships Among Variables of a Program. Acta Informatica,
6:133-151, 1976.

G. Karner. On limits in complete semirings. Semigroup Forum 45:148-165, 1992.

G. Karner. A topology for complete semirings. In P. Enjalbert, E.W. Mayr and
K.W. Wagner, editors, 11th Annual Symposium on Theoretical Aspects of Com-
puter Science - Proceedings STACS’94, Lecture Notes in Computer Science, pages
389-400. Springer-Verlag, Berlin, 1994.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

45

G. Karner. Personal communication. 1994.

J.-L. Lassez, M. J. Maher, and K. Marriott. Unification Revisited. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 587—
625. Morgan Kaufmann, Los Altos, Ca., 1988.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.
Second edition.

K. Marriott and H. Sgndergaard. Notes for a tutorial on Abstract Interpretation
of Logic Programs. Informal Proc. of the North American Conference on Logic
Programming’89, 1989.

K. Marriott and H. Sgndergaard. Abstract Interpretation of Logic Programs: the
Denotational Approach. In A. Bossi, editor, Proc. Fifth Italian Conference on
Logic Programming, pages 399—-425, 1990.

K. Marriott and H. Sgndergaard. Analysis of Constraint Logic Programs. In S. K.
Debray and M. Hermenegildo, editors, Proc. North American Conference on Logic
Programming’90, pages 531-547. The MIT Press, Cambridge, Mass., 1990.

K. Marriott and H. Sgndergaard. Precise and Efficient Groundness Analysis for
Logic Programs. ACM Letters on Programming Languages and Systems 2(1-
4):18171967 1993.

K. Marriott, H. Sgndergaard, and N. D. Jones. Denotational Abstract Interpreta-
tion of Logic Programs. ACM Transactions on Programming Languages and Sys-
tems 16(3):607-648.

A. Melton, D.A. Schmidt, and G.E. Strecker. Galois Connections and Computer
Science Applications. In D. Pitt et al., editor, Category Theory and Computer
Programming, volume 240 of Lecture Notes in Computer Science, pages 299-312.
Springer-Verlag, Berlin, 1986.

J. Morgado. A Characterization of the Closure Operators by means of one Axiom.
Portugalie Mathematica, 21(3):155-156, 1962.

Oystein Ore. Combinations of Closure Relations. Annals of Mathematics,
44(3):514-533, 1943.

P. Panangaden, V. A. Saraswat, P. Scott, and R. Seely. A Hyperdoctrinal view
of Concurrent Constraint Programming. In J. deBakker and G. Roszenberg and
W. deRoever eds. Proc. of the REX Workshop, volume 666 of Lecture Notes in
Computer Science, pages 457-476. Springer-Verlag, Berlin, 1992.

V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic Foundation of Con-
current Constraint Programming. In Proc. Eighteenth Annual ACM Symp. on
Principles of Programming Languages, pages 333-353. ACM, 1991.

D. Scott. Domains for Denotational Semantics. In M. Nielsen and E. M. Schmidt,
editors, Proc. Ninth International Colloguium on Automata, Languages and Pro-
gramming, volume 140 of Lecture Notes in Computer Science, pages 577-613.
Springer-Verlag, Berlin, 1982.

M.B. Smyth. Topology. In S. Abramsky, Dov M. Gabbay and T.S.E. Maibaum, edi-
tors, Handbook of Logic in Computer Science, volume 1, Background Mathematical
Structures, pages 641-761. Oxford Science Publications, 1992.

46

67.

68.

69.

70.

71.

72.

73.

74.

75.

J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory, MIT Press, 1977.

Jichang Tan and I-Peng Lin. Compiling Dataflow Analysis of Logic Programs. In
ACM Programming Language Design and Implementation, volume 27 of SIGPLAN
Notices, pages 106-115. ACM Press, 1992.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J.
Math., 5:285-309, 1955.

J. W. Thatcher, E. G. Wagner, and J. B. Wright. More on advice on structuring
compilers and proving them correct. Theoretical Computer Science, 15:223-249,
1981.

M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a
programming language. Journal of the ACM, 23(4):733-742, 1976.

A. van Gelder. Deriving Constraints Among Argument Sizes in Logic Programs.
In Proc. of the eleventh ACM Conference on Principles of Database Systems, pages
47-60. ACM, 1990.

K. Verschaetse and D. De Schreye. Derivation of Linear Size Relations by abstract
interpretation. In M. Bruynooghe and M. Wirsing, editors, Fourth International
Symposium on Programming Language Implementation and Logic Programming,
Proc. of PLILP’92, volume 631 of Lecture Notes in Computer Science, pages 296—
310. Springer-Verlag, Berlin, 1992.

M. Ward. The Closure Operators of a Lattice. Annals of Mathematics, 43(2):191-
196, 1942.

E. Zaffanella, R. Giacobazzi, and G. Levi. Abstracting Synchronization in Concur-
rent Constraint Programming. In M. Hermenegildo and J. Penjam, editors, Proc.
Stath Int’l Symp. on Programming Language Implementation and Logic Program-
ming, PLILP’94, volume 844 of Lecture Notes in Computer Science, pages 57-72.
Springer-Verlag, Berlin, 1994.

47

A. APPENDIX: PROOFS OF SELECTED RESULTS

Proposition 3.1.

Closed semirings are continuous.

Proovr. [sketch] Tt is easy to prove, from Ra, that if {a;};cr is a possibly infinite
family of objects in C, and a € C then, if a®a; = a foralli € I, then a® (D ;c; a;i) =
a. Therefore, by idempotence, a closed semiring is always continuous or finitary
(this claim has been recently proved in [51], Proposition 13).

Proposition 3.2.
C s partially ordered by <, and forms a complete lattice.

ProOOF. [sketch] Since (C, ®,®,1,0) is a closed semiring, & is associative, commu-
tative and idempotent, whence it is easy to show that C is partially ordered by
4. Forevery c € C, cB0 =0&8c =¢,50 0 < ¢, 1.e., 01s the least element of
the partially ordered set (C, <1). Consider any family X = {c¢;};ez € C. By Defi-
nition 3, C is closed under finite and infinite applications of @, whence >~ X € C.
From associativity, commutativity, and idempotence of @ we have, for any 7 € Z,
GO0 . X)=co®.. . Pei®Be;d...=). X, whence ¢; 4 (3_X) forall ¢; € X, ie.,
>~ X is an upper bound of X. From continuity, > X is also the least upper bound
of X. Tt follows that C is a @-semilattice with a minimal element 0. Thus (C, <) is
a complete lattice.

Theorem 3.1.

Let A be an arbitrary constraint system. For any c,d € C, zx €V, X CV and
t,t',t" € 7 such that x ind t, the following properties hold:

Pi: EIXEIXc = ElXc;
P2: ¢dd = 3FxedIxd;
P3: Ve, eC: ¢ <3dxe & Ixcd d3xce;
Pl: Ve, eC: e A d <ddxe = Txe=3x;
P5: Jpye=c off ¢ = ¢ for some ¢ € C;
P6: Jppye=cif xind c;
P7: dipr = 31 (dy e @ dp) where x ind ¢, 1,
P8 e = Ole<ddle;
P9: 3;3“}6 = dc;

P10: 8% e =c iff 8¢ = ¢ for some ¢ € C;

Pl1: 3x1=1,dAxc=0 iff c =0,

P12: El{x}dx,t =1

P13: (dt,t’ ® dtlytll) D dt,t” = dt,t” (tmnszthty)

ProoF. Let ¢,/ € C, z € V, X CV and ¢,t',t" € 7. It is straightforward to
prove the componentwise monotonicity of ® by the axioms.

P1, P2: Straightforward by definition.

P3: By distributivity of 3 on @ and idempotence: ¢’ ® dxec = Axec = Axc' &
dx ¢ = dxc. The other implication follows by Cs.

P4: By monotonicity of 3 and from the previous property we obtain: dxc¢ < Ixc¢’
and dx ¢’ < Jxc respectively.

48

P5: By idempotence if x is bound in ¢ then d;,3¢ = c¢. Notice that the set of
fixed-points of Ix is the range of Ix itself. The converse is straightforward.

P6: Assume x ind ¢ for some ¢ € 7. This implies ;3¢ = El{x}ﬁic. From the
definition of 9%, and Axiom Cy, this is equal to 3y} (de : @c), which is nothing
but dLc. Since x ind t, we have &%c = ¢, which proves the result.

P7: Assumet,t’ € 7 and x ind ¢,t'. By Axiom D3: 311 (ds e @de) = djyjale,e =
di .

P8: From the monotonicity of 3 and ®.

P9: Assume z ind t, then by definition 9, 31,y¢ = 34} (de: @T(py¢). From Axiom
Cs this is equal to j,1dy ¢ @ Iz ¢. From Property P12 (proved below), this
in turn is equal to Jy.ye.

P10: By P9, 9! dlc = 3;(3{x}(dx7t @c)) =y (des @) = de.
P11: Both follow from Axioms Cy and Ch.

P12: By Axiom Dy, for any t' € 70 Jypydes = oy (deye @ deror) = diyjoqer [1)2) =
1.

bl

P13: Assume z ind t,¢,1".

dign = El{lx}(dt,x @ dy g1r) [P7]
= 9L 3oy (di e @ dyyrr) [@ ¢ FV(3gey(die ®dy yi)) and PO]
> 85(6@71; ® dx,t”) = dt,t’ ® dt’,t” [&-monotonicity (P8) and Axiom D4]

Lemma 3.1.

For any constraint system A, if ¢ and ¢’ are A-constraints and X is a set of
variables such that X ind ¢, then Ix (e ® ¢') = ¢ ® Ix ().

ProoF. By Theorem 3.1, 3xc¢ = ¢, whence Ix(c ® ¢/) = Ix(Ixec @). From
Axiom Cj, this is equal to Ixc® Ix ¢/, which is equal to ¢ ® Ix ¢’ since Ixec = ¢ by
Theorem 3.1.

Lemma 3.2.

For any constraints ¢ and ¢’ in a constraint system A, ¢ @ Jq,1¢' = gy (c@ &),
where y ind ¢, ¢'; y # ¢ and & = dYc .

PROOF. Suppose that y ind ¢, y ind ¢/, y # x, and & = JYc¢’. Since y ind ¢,
we have 1 (c @ &) = ¢ ® 3y, 0%¢’. Since y # x, Axiom Cy implies 37,1 0Y¢" =
312134y (de y@¢’). Since y ind ¢/, this is equal to 3,y (3gy)de y @¢). From Property
P12, this in turn is equal to dyzp¢’. It follows that ¢ ® Jjp1¢’ = ¢ ® I 0%¢ =
H{y} (C 03¢ 5/).

Lemma 4.1.

1] pt)~pcleiffdeg] p(2) ~p ¢ [€ and s ¢’ = ¢; for & not used in the
derivation for c.

49

PrROOF. 1 | p(f) ~% c | ¢if and only if for some clause C' = p(to) : L co | B, ..., B
n P,

p(f) ~p df,fu X cg I] B, ..., B, ’\»}F_-, c I] g.
This is true if and only if z ind C and

1] p({) ~p 3{5}(df@ ® dfyfu) ®eo | By, ..y Bn ’\»} el e,
i.e., 1f and only if z ind C and
p(t) ~p 51 (dr; @ ds gy, @ o) | Bi,..., Ba~pc | e

Since z is not used in the derivation of ¢: z ind ¢, this is true if and only if
di 3 | p(x) ~p ¢ | € and J(;3¢" = ¢. The result follows.

Lemma 4.2.
Let G = ¢o | p1(t1), .-, pulln) be an A-goal and P € CLP(A). Jp(G) = ¢
iff there exist pi(z;) :L ¢; € O(P), such that z; ind G and z; Nz; = O for
1<ij<m,i#j and c=3(co@ds, 7, @c1... @ dy, 7, @ Cp)var(a)-

ProoOF.

Let P € CLP(A). Let G be a goal. We prove that:

{ El(c)var(G) | G~pele } =

G=co[pi(t), ...,pm(tm)
3(0) Vi=1l.m: 1] pi(&%)~pecle
Cvar(@) | 7, ind G and z; Nz; =0 for j=1.ni#j
c=coQdp, 7, ®3C1)e,- D dp 7, @Iem)e,,
(C) The proof is by induction on the length n of the derivation. In the base case,
assume G =1 | p(t) and G ~p ¢ | ¢. By definition, this holds iff p(z) : L ¢/ € P

and ¢ = dy ; @ ¢/. By Lemma 3.1 and because z U var(c¢’) ind t we have

I de,e @ varry = Hdie @ (¢)z)vare)- Let V= var(d o ® ¢'), then

Axiom C4]

]
FV(dy, ® 3(c)e) =var(t)Ue]

[
[Lemma 3.1
[
[2 CV\var(t)]

(
(dr © 3()x)
dy,

In the inductive case, let G = ¢g | pi(t1), ..., Pm(tm) such that G ~% ¢ [. Con-
sider a clause py(z1) : L ¢y | b1(r1), ..., bg(ry) in P and assume:

G~peg® dtl,l‘l ® El(cl)l/c I] bl(rl)a "'abk(rk)aPQ(tz)’ ,pm(tm) ’\’)T]g’_l ¢ I] €

where ve = U var(r;). By the inductive hypothesis, for ¢,{ = 1..k and j,w =

2..m, we can deﬁne bi(y;) L ¢} and pj(xj) :L ¢; such that z;,y; ind G; y; # x5

forlil J#wy # oy oand oy #F wuy 1] bi(yi) ~% & [e, 1] pila;) ~% &5 [e,
c; = 3(&)y,, ¢; = 3(&)e, (e, FV(c;) Cy and FV(C])Cl‘]) and, by Lemma 3.1:

El(c)var(G’) = 60®dt1,x1 ®3(Cl)vc®3 (

dh,yl ® Cll .0 drkyyk ® C;c®
dtQ,xQ ®e1® ... dtm,xm & Cm var(G')

50

where G/ = ¢g@ds, o, @3(e1)ve [b1(r1), ..., bu(rk), p2(t2), ..., Pm(tm). By definition:
1] pi(r1) ~pc1t @dp, y, @ @ .. @dyy y, @6 | €.
Let ' =¢1 @dy, y, @E @ ... @ dyy yp @ &,. Consider now the constraint:
co @ ds, v, @3H)e, @ diye, @1 @ .. @ diyy 2 @ Cm)var(a)

Because for j = 2.m: FV(c;) C x;; x5 ind t;; @1 ind t; and FV(I(")e,) C 21,
the constraint above is equivalent to

co ® El{xlmxm}(dthm ® El(cll)xl ® dtz,xz X1 ®..0 dtm,xm ® Cm)~ (*)
Let V = var(c). Since V \ var(G) = (V \ var(G')) U ve where, with an abuse of

notation, we denote by var(G') the set of variables veUvar(cy)Uvar(ty) @2 var(t;),
i

and for i, = 1.k and j,w = 2.m: FV(c}) C y; and FV(c¢;) C x;; xj,_yi ind G,
yi £ ay; fori#1, j #w: yi #y and z; # ¢ From Lemma 3.1 we have:

El(c)var(G) = Elvc(zl(c)var(G’))
/ PR /
= Elvc (CO ® dtl,xl ® H(Cl)vc ® Elyl...yk,xQ...xm (drl,yl © ‘1 © © drk,yk © r))

dtQ,xQ K- dtm,xm & Cm,

A(e1)ve ® d @ ¢
d x J vels ve 71,41 1
t1,1 ® Yy1...Yk,ve\ey (... ® drk,yk ® C;@
®dt2,x2 Re1 .8 dtm,xm X em

=c® Elxl...xm(dtl,xl & El(cll)xl ® dtQ,xQ QK1 - dtm,xm ® Cm)

=c® Elxl..xm

which is equivalent to (x).

(D) The proof follows by observing that, because of Lemma 3.2, we can always
replace hidden variables with fresh variables in arbitrary, but finite, conjunctions
of (complete) constraints (such as those computed for each atomic goal 1 | p;(%;)).
Assume G = co | p1(t1), ..., Pm(tm) and for each i = 1, ... ;m: 1] pi(z;) ~% ¢ | €,
where z; ind G; 2; Nz; =@ for j =1,...,nsuch that 7 # j. Let

c=co@dp, 7, ®3c1)z,.. Odp 7, @I em)z,, -

Notice that the computed answer constraints ¢; for ¢ = 1, ..., m are finite constraints.
Moreover, since we assume V' to be infinite, for each ¢ = 1,...,m, there are (fresh)
variables nv; C V such that nv; Nvar(G) = 0, nv; ind cq, ..., ¢y, and nv; N nv; =)

for j =1,...,m. Thus, by Lemma 3.2 if v; = var(c;) \ #; and & = 9" c;:
c = Elnvl..nvm(CO & dfl,fl & 61 & dfm,fm & 6m)

It is straightforward to associate a successful derivation for G with renaming vari-
ables nvy, ..., nvy, such that 3(c)yar(@) = Iz, .20 Invy. v, C-

Lemma A.1. Let A be a constraint system, C' = p(z) :L ¢ || p1(t1), ..., pn(tn) be
an A-clause and I be an A-interpretation. For i = 1,...,n let p;(z}) : L ¢
and p;(2]") 1 L ¢ be variants of constrained atoms in I that have been renamed

apart from C' and from each other. Then: El(c®dgljzl R ® ... @ di, 2 @ch)s =

He@dy, g0 @ @ ... @ dp, 7 @ cp)z.

51

PrROOF. Assume, for ¢ = 1,...,n: p;(%;) : L ¢} and p; () : L ¢} be renamings

of some p;(#;) : L ¢;, such that &, 2/, and Z/ do not share any variables with
each other or with C'. By definition, for i = 1,...,n: ¢/ = 3z,(ds 7, ® ¢;) and
o = Elfl(dffl/@ ®¢). Let & = 3(e® di, 1 @ AR ® di, 71 © g and V =
var(c @ di, z1 @ ¢} @ @dg, z @cp,). By applying Theorem 3.1 we can hide
variables ..z}, in &, namely:
dr, z @ 3z, (dz z

¢ =\ (a50,) 0o, (¢® dr, .z, @ 3r, (day 5, @ 1)@)

[Axiom C4 and definition]

3 C®E|f’1,fl(dflj’l @ dg! 7, ® €1)®
A CEA R 3

[independence]
= W \qeer.a3 (€03 (diy 5, @ 1) © .. @ 3z, (di, 2, © n))
[Theorem 3.1]
= H(V\{f,f’l..f’n})u{fl.jn}(C ®diy 7, ®1® .0 df, 5, ®cn)

[independence]

Since Z)..2;, are independent for (¢ @ df, 5, ® 1 ® ... ® df ® ¢), we have

d=F(e@di s ®1 Q... Qdi, 5, @ cn)z.

The same argument can be applied to prove that ¢/ = I(c @ df, 5, ® 1 @ ... ®
dfn,fn ® Cn)f~

Lemma 4.3.

Let A be a constraint system and P € CLP(A). Forany I € p(BA): (Tp(I'))’ =

(Tp(1))'
ProoF. The lemma follows by 3/meet-distributivity. Because P is a finite set,
it is equivalent to prove that for any C' € P: (T{C}(Ib))b = (T{C}(I))b. Let C =
p(t) L ¢] pi(t1),....,pn(tn) and I be an interpretation. Assume p(z) : L 3(¢)5 €
(T{C}(Ib))b. By definition, p; (%;) L ¢ ¢z, . 7, I': ¢ = dz F@c@ci@---®ch,
where ¢} = dz, 5, @ ¢;; and & ind C, ¢y, ..., ¢,. By definition, for each i = 1,...,n
there exists a set of indices W; such that p;(yx) : L éx <, I for any k € W, and

= Oyick. Therefore, for each i =1,...,n we can choose k; € W; such that
EEW,

pi(Ur,) L ér, L2,80,C\Frq sk, _4 I
Thus, by Tp definition, for each k1 € W1, ..., k, € W,:
p(@) L Ids;@c@ @ @)z € Ty (1),

where ¢ = dy, 7 @ ¢, fori=1,... n.
The thesis follows by 3 and @ distributivity: 3(¢)z is equal to

El(df,f® c® Z (dm,ﬂ @ El{ykl}(dgklyfl @ Ckl)) ®--Q
k1€Wy

Y. (ds, r, ©3g,, (dg,, 2, @)z
k€W,

52

=3der@c® 3, (dg, 5, @) @@ > (dg, r ©C,))s
kieWy kneW,

=Y o T (e @ (g,) O © (dyy, 1, O)
kieW, kn€W, T

Proposition 4.2.

Let A be a constraint system and P € CLP(A). Tp is a continuous function
on the complete lattice (p(B4), C) and Tfp is continuous on the complete lattice

(¢ (B4),0).

ProOF. The proof of continuity of Tp follows the standard lines (e.g. see [2]).
The continuity of Tfp is then a straightforward consequence of the continuity of Tp
and Lemma 4.3.

Theorem 4.1.

Let A be a constraint system with dimension w, and P € CLP(A), then F(P) =
O(P)/~ and F*(P) = (O(P)/~)".

ProOOF. We consider the condensed case only, the other case 1s similar. The proof
is by induction: for each n € N, we show that if p(z) : L ¢ is any element of T} T
n(0) then ¢ = > {3(')z | 1 [p(¥) ~p ¢ [€}. The base case is straightforward
by the definition of ~». For the inductive case, consider a predicate p in P defined
by clauses C1,...,Ck, with Cj = ‘p(t;) : L co; | pr;(t1,), o Pm;(tm;), 1 < < k.

k
Let p(z) : L ¢ € Th 4 n(f), then by definition: ¢ =5 3(¢;)z where z ind C; for
j=1
each j=1,... k:

¢j =dai; ©co; dgy g, @01, @ Qdy,, 7, O Cm,

xmv

and where p; (Z;;) L ¢, € Tfp t(n L 1)) (FV (e,) C &y;); #;, ind Cy; &, &y,
andZz;, are mutually variable-disjoint for each 7,1 = 1 ,m, j,h=1,.. k such that

i £l and j # h.
By the inductive hypothesis: for each i = 1,..,mand j =1, .., k:

ci; = A3z, 1] pi(#:,) ~p ¢ | e}

Thus, by distributivity of © over &: ¢; = > D; where

DjI{Cj

Let Gj = dz 7, @ co; [p1;(t1;), - ,pmj(m,;). Because for j,h=1,.. ki,l=1,..,m
r ind C;j and x;; # x;, for each i # [and J # h; we have

C]_dxt ®CO ®d171 tl ®E|(Cl)1‘1 @ .. ®dxm Lom j®3(émj)fmj }
1|]p1()MPcl I]Ea"' 1|]pm](xm])’\ﬁpcmj|]5 ’

Z A2 Dj)e = Z Q3G var@p)e | G ~p ¢j [€}) [by Temma 4.2]
= 2{3() [1] p(&) ~p el [#Cvar(G))]

It is sufficient now to prove that 1] p(Z) ~% ¢ | € implies that there exists é €
C and p(%) :L 3(¢)z € F*(P) such that EI()5 = J(c)z @ é&. We prove this by

53

induction: the base case 1s straightforward by the definition of T}. For the inductive
case, assume that if 1 || p(Z) ~% ¢ || € then there exists ¢ € C and p(z) : L 3(¢é)z €
}"b(P) such that 3(¢)z = 3(c)z @ é. Consider:

1]p() ~pd | pri(t1),...,pmltm) ~p cle

where p(t) : L co | p1(t1), ..., pm(tm) is some renamed apart clause in P and ¢’ =
1®dy7® co=dz 7@ co. Consider the atomic goals: 1 [ps(#;) fori =1,...,m. By
Lemma 4.2:
L) pi(E:) ~péi [e
where k <nand c =dz s @ co @ dz, 7, ® I(é1)z, ® ... @ dz,, 7, @ I(ém)e,,. By the
inductive hypothesis, for each i = 1,...,m there exists p;(%;) : L 3(¢:i)z, € F'(P)
and ¢; € C such that 3(¢;)z, = 3(é)s, D &.
The definition of T} implies that

p(x) 1L Ide 7@ co@dg, 7, @c1)z, @ ... Qdy, 7, @ Iém)z,)e
Is in }"b(P). Therefore

p(x) L Ide ;@ co@dy, 7, @ (Ié1)e, ® 1)@ ... Q0 ds, 7, @ (Iém)e, D 1))

Tomstm

s 1n }"b(P). The theorem is proved because ® is associative, distributes on @, and
@ 1s associative and commutative.

Proposition 5.1.

Let A and A’ be constraint systems as specified above. Let alsoc € C, x € V and

t € 7 such that x ind t. If o, : A 1255 A’ then a(he) < 3:;%)@(6).

Proor. Assume the hypothesis.
a(Gpe) = a(Fe(drr @c))
< Elfc(x)oz(dxyt ® ¢)
L Ty (alde) @ ale))
/ /
< Eln(x)(d

3\
2
5
&
=
2
=
&
®
X
Q
=
5
>
=
Il
D
=
=
&
Q
=
5
S

Proposition 5.3.

Let A and A" be constraint systems with universes C and C' respectively. If A’ is
correct with respect to A by means of a semimorphism «, there exists a mapping
v : C" = C such that (a,7) is a Galois insertion of (C', <) into (C,).

ProoF. Assume the hypothesis. Define y(¢') = > {c | a(c) < ¢'}. Let ¢f < .
Then, from the definition of v and the monotonicity of a, > {c | a(c) < ¢} }d> {c |
alc) < ch} = v(cy), ie., v is monotonic. Let ¢/ € C" and ¢ € C. From the definition
of v, we have a(y(¢')) = a(d {c | a(e) < ¢'}). From the additivity of « this is
equal to > {a(e) | a(c) €' ¢'}, and this in turn is equal to ¢’ from the surjectivity
of a. Thus, a(y(¢')) =¢.

From the monotonicity of o we have ¢ <5 {¢ | a(¢) <’ a(c)}. Tt follows, from the
definition of v, that ¢ < y(a(c)).

Theorem 5.1.

54

Let P € CLP(A) and P' € CLP(A") be the corresponding program on A'. If
A is correct with respect to A, there exists § : ¢ (BA) — ¢ (B4) such that
BF(P) T F(P') and B(F* (P)) T F'(P').

ProoF. As before we prove the condensed case as the other is similar. Let A’
be a correct constraint system with respect to A, and «, be the corresponding
semimorphism. Let a < [denote a variant of an object a € I that has been
renamed apart from all elements of I. The mapping 0 : p’ (B4) — ¢’ (BAI) defined

as
B = { Ip(k(@) L a()]~| p() L e< T }
is continuous by definition. As observed in [5], by 8 continuity, the proof can

be reduced to show that B(Th(I)) T Th(B(I)) for all I € p'(BA). TLet I €
@’ (B4), and {CT ..., CE} be the set of clauses in P defining p, where C’f =

‘Pt;) L ocj [q1,(B,), . oan,(En,), 1 < j < m. Let {CV',...,CP!} be the corre-
sponding set of clauses on A’ in the program P’, and

<Q1j(j1j) L 61ja~"aQﬂj(£nj) L 6”J> <<Cf I

and ¢;; =dg, 7, ®¢&,;,1<i<n. Then, [p(r(x)) : L c]. € ﬁ(T}(I)) where

c=a Zﬂ(dfyfj®Cj®c1j®~'®cnj)f
j=1

From the definition of semimorphism, we have

Let {q1,(r(21,)) 1L &, o an,(6(E0;)) L €,.) <ew B(I), and for 1 < i < n
d =alds, 5) 6§j. It follows that

e D F(aldy,) @ aley) @ e, @ @) uie)
J=1

By the definition of a semimorphism, for any two terms t1,t2: a(ds, +,) < d;(tl) w(t2)"
Then, by definition, (T (1)) T’ Th(B(I)).

55

Proposition 5.5.

Vrels 1s a morphism of term systems.

Proor. Rigid terms are mapped to . Denote by s’ the substitution operation
on 1yv. Let t1,to € 7 and # € V. If # is not a relevant variable in ¢, then
Vrels (sy(t1,t2)) = Vrelg(t2) and s, (Vrelg(t1), Vrelg(ta)) = Vrels(t2) because z ¢
Vrels(t2). Assume x to be a relevant variable in t5. By definition Vrelg (s, (t1,12)) =
Vrels (t1) U (Vielg(t2) \ {«}). The thesis follows from the definition of s’, namely:
st (Vrelg(ty), Vrels(ta)) = (Vrelg(t2) \ {x}) U Vrelg(t1).

Theorem 5.2.

a 1s an additive semimorphism from the constraint system H to Prop.

PROOF. (outline)

We prove that « is well defined for the simpler case of the “size” norm (for more
details see [34]; a similar condition is also proved in [18]). Let ¢ = U{¢; | ¢ € T}
and ¢/ = U{c} | i € I'} be equivalent satisfiable constraints. Suppose that ié/j a(e)

is not equivalent to \/I a(c}). Then there must be a truth assignment » for which
sel’

there exists ¢ € [such that for each j € I': a(c;)(r) = true but a(c})(r) = false.
Now a(c;) and a(c}) are both conjunctions of formulae of the form X « YV for
X, Y C V, since the existentially quantified variables can be eliminated by replacing
the constraint with the disjunction of all the constraints obtained by replacing the
variables with the combinations of all the possible values true and false [21, 55].
Let X,,Y; be a partition of V' such that »(X,) = true and r(Y;) = false (obviously,
r cannot bind all the variables to true—otherwise both the constraints should be
true). Foreach j € I', each of the conjunctive subformula of a(¢/) contains X; < Y;
for some X; and Y; such that X; C X, and Y; NY, # (). This is a contradiction
because there exists j* € I’ such that if fx, is a (grounding) solution for ¢/, on the
variables X;: y € Y; is ground in (c},)HXj iff y is ground in (¢;)0x;. The properties
of semimorphism are straightforward by the definition.

Lemma 5.2.

Let p be an 3-consistent upper closure operator on the constraint system A with
universe C, term system 7 and set of variables V. Then:

1. foreachc € C, x €V and t € T such that x ind t: p(dic) = 0%Lp(dLc);
2. foreachce C, X CV: p(Ixc) = p(Ixple)).

ProoF. For (1), we have from the definition of 9. and the 3-consistency of p that
dtp(dec) = i1 (deyt @ 42y p(34ay (doye @ ¢))). From Axiom Cz and Property P12,
this is equal to Iy,)p(I1a) (der @ €)) = Fo1p(d%e). Since p is F-consistent, this is
equal to p(dic). The result follows.

The proof of (2) proceeds as follows: Let ¢ € C and X € V. From the mono-
tonicity of p and 3, we have: p(Ixc) 4 p(Ixp(c)). By F-consistency: Ixp(c) <
dxp(Ixc) = p(3xc). The result then follows from the idempotence and monotonic-
ity of p.

Lemma 5.3.

Let p be a consistent upper closure operator on the constraint system A, with
universe C, term system T and set of variables V. Then for each c € C, x € V
and t € 7 such that x ind t: p(dLe) = p(dLp(c)).

56

ProoF. Letcel,z €V andt e

p(@;p(c)) = definition]
p(Axc) = p(xr(c))]

by idempotence and ®-quasi morphism]

by ®-quasi morphism]
p(Ixec) = p(Ix p(e)) and definition]

(l
T T DT D
AN

LLi
-
8

&
©
=
Lo
U
8

o

N
&
©
=
ay
=
=

dyc)-

Proposition 5.6.

Let A and A' be constraint systems with universes C and C! respectively, such
that A is correct with respect to A by means of a surjective and additive semi-
morphism a. Let v = Aet. > {e | a(c) < ¢t} and p = v o a. Then:

1. p(C) is isomorphic to C*;
2. if a(Ixe) = E'EQ(X)Q(HX{Z) for every X CV and ¢ € C, then v o« is 3-
consistent.

PrOOF. Assume the hypothesis. Let 1 : p(C) — C* such that Ve € C : #(p(c)) =
a(p(c)). By the hypothesis of Galois insertion: a(p(c)) = afc). wsurjectivity
is straightforward by a-surjectivity. injectivity follows because «a(c) = a(c) =
p(c) = p(c’). This establishes that p(C) is isomorphic to CF.

For the second part, let ¢ € C and X be a set of variables. We prove that
Ixp(3xc) = p(Ixe). By F-distributivity: Ixp(Ixe) = > {3xc € C | ald) <t
a(Fxe)} and p(3xe) = Y {c' € C | a(c') <* a(Ixc)}. We show that a(Ixc’) <
a(Txc) for each constraint ¢/ such that a(c’) <' a(Ixc), ie., if ¢ € p(Ixe) then
dx¢’ € p(Ixc). By the hypothesis we have:

a(@xc) < EIEQ(X)a(c)
< EI?@(X)O‘(HXC)
= «a(Ixc)

Thus, by J-extensivity (i.e., ¢ < Ix ¢ for each constraint ¢ and set of variables X)
we have:

p(3xc) = Z{ Ixc | af ﬁoz(EIXC) }: dxp(3xe).

Proposition 5.7.

Let A and A' be constraint systems with universes C and C! respectively, such
that A is correct with respect to A by means of a surjective and additive semi-
morphism a. Let v : C* 1— C be defined as v(c*) = Y {c | a(c) <" ¢t} and
p=7voa. Let X CV and ¢c,c1,¢0 € C. If ay ts a morphism on constraint
systems then:

1. 3xp(e) = p(Ixc)
2. plp(er) @ ple2)) = pler @ ca).

ProoF. (1) Let ¢ € C and X be a set of variables. By J-extensivity: p(Ixe) <
Ix p(c). By Proposition 5.6 and by the hypothesis, p(Ixc) = > {Ixc’ | Iux)a(c’) =

57

Jexya(e)}. However, Ixp(c) = > {Ixc’ | a(c’) = a(c)} < p(Ixc), which proves
the thesis.

(2) From the monotonicity of p and ®, we have p(c; ® ¢2) < p(p(e1) @ ple2)).
The converse is satisfied by definition:

pler @ es) = Y{e | ale) & afer @ e))
plpler) @ plea)) = e L ale) 2 a(e' @ o), a(¢) 2 aler), ale”) 2 afes)}.

By hypothesis, « is a morphism. Thus, by transitivity, and ®! monotonicity if
¢ € p(ple1) ® p(cz)) then ¢ € { c| afe) < afe; @ co) }

Lemma 5.4.

Let p be a consistent upper closure operator on the constraint system A, with
universe C, term system 7 and set of variables V. Then for each c € p(C), x € V
and t € 7 such that x ind t: dtc = p(dic).

ProoF. By Lemma 5.2, p(d.¢) = p(Ioyp(deys @ ¢)). From ®@-quasi morphism,
this is equal to gl{x}(p(p(dxyt) ® p(c))), where by definition 3x = p o Ix. Since
¢ € p(C) and p is a closure operator and therefore idempotent, this is equal to

gl{x}(p(dxyt)(}éc). The lemma follows.
Theorem 5.3.

Let p be a consistent upper closure operator on the constraint system A. p(A) is
a constraint system.

PrOOF. Let c,c1,c2 € p(C), C Cp(C), X, Y CV, 2z €V tt1,ts €1 and x ind .
In the following we denote 3x = p o Ix and d%e = p(Ioy (p(p(de,) @ €))).

Ry: We prove that (p(C),®,®,1, p(0)) is a closed semiring. By p idempotence
and @/&-quasi morphism: p(0)BHe = p(p(0) & c) = p(0 B ¢) = ¢; Loe =
p(L@c) =¢; p(0)e = p(p(0) @ c) = p(0 @ c) = p(0). Distributivity follows
by ®-quasi morphism:

c@(3C) = pleep(iC0)

p(p(c) @ p(3-C))

PO {plc@d) | €C})
YArcad) | e}
YAcod | e C}

Cis By Lemma 5.2 p(3x (6(0)) = p(3x(0)) = p(0);
Cy: edIxe=ple® p(Axc)) = ple ® Ixc) = Ixp(e) = Ixe;

C3: By definition, §|X(61®§|Xcz) = p(Ix plc1 ®p(Ixea))). Since p is a consistent
upper closure operator, it is a ®-quasi morphism, and further, ¢; = p(c;)
since ¢; € p(C); thus, ~p(_cl ® p(Ixe2)) = plpler) ® p(Axea)) = pler @ Ixea).
Thus, we have Ix(c1®3Ixc2) = p(Ixp(er ® Ixca)). From Lemma 5.2, this
is equal to p(Ixc1 ® Axes) = Ixc1@IAxes.

C4: By Lemma 5.2: Ix3Iyec= p(Axp(Fye)) = p(Axuye) = Ixuy e

58

C5: By definition, glx(i:C’) = p(3xp(>_C)). From Lemma 5.2 and Axiom Cj
this is equal to p(>_({3xc | ¢ € C})). Since p is an upper closure operator it
is also a quasi-complete join-morphism, whence this is equal to p(3_ (p({Ix ¢ |

ceCN)) = p(X{p(3xe) | ¢ € C}). This is nothing but Y {Ixe | c € C}.
Dy: is straightforward.
Dy is straightforward.
Ds: By Lemmata 5.3 and 5.4:

Op(deyen) = p(Op(dey i) = p(Ohdiyey) = p(diesales fe/eles)-

D4 By Lemmata 5.3 and 5.4, and by ®-quasi morphism:

p(9; (p(e1 @ e2)))
p(0; (1 @ c2))
p(0hc1 © Oen)
p(p(05c1) @ p(95c2))
= 3;61(@3;62.

O (c1@e2)

Theorem 5.4.

Let p be a consistent upper closure operator for a constraint system A with uni-
verse of constraints C and let ¢1,ca € C. p(c1) @ pea) < pler @ ¢ca). If A is
®-idempotent and 1 is the annihilator for &, then p(e1 ® ¢2) = p(e1) @ plea).

PROOF. Let ¢1,¢2 €C. pler) ® p(ea) < pler @ eq) follows by p-extensivity.
Assume the hypothesis on .A. We prove that: p(e1) @ p(ea) = p(er ® ¢2). By
the hypothesis, for each constraint ¢,¢’: ¢® (e ®¢) = e@ (1 @) = ¢ (ie.,
c®c <e). Let ¢ 4 p(e; ® ez). By monotonicity: ¢ < p(eq) and ¢ < p(ez). Thus:
c®cdp(e1) ® plea). The thesis follows by @-idempotence.

Theorem 6.1.

Let A be a constraint system with universe C, variables V and term system t.
If p is an upper closure operator satisfying any existential property and a (pos-
stbly empty) combination of properties Py —Ps, then p(A) is a non-distributive
constraint system.

PrOOF. We prove the non-distributive laws for a generic upper closure operator
p satisfying either By or Es. The other claims for any combination of properties
P1—P5 can be easily derived from them. Let ¢, ¢’ € p(C), C' C p(C), X, Y{z} CV
and t,t1,t3 € 7 such that x ind t:

Rz: p(0) @ c > p(0@c) = p(0).
R5Z

I
]
®
=
]
8

c®(220)

v
=
=
®

® M

Il
07
—_—
—

]

]

o
—
]

"
M

Q

—

011

031

041

051

D31
D4Z

59

The case where p satisfies F; i1s proved in Theorem 5.3. Otherwise, it is
straightforward to prove the non-distributive version of Cy by extensivity
for any closure operator.

Assume p satisfies Fq:

p(Ax(c®p(@xc))) = pEx(c®Ixp(Exc)))
= p(Exc®3Ixp(Ixd))
< p(3xc) @ p(Ixp(Ixc’))
= p(Exc)©@p(Exc).

The case where p satisfies E5 is straightforward.

The case where p satisfies Fy is proved in Theorem 5.3. Assume p satisfies
Ez:
p(3x (p(Fvc))) = p(Fxuy (p(c))) = p(3xuy c)

therefore 'y 1s always distributive.

For a generic upper closure operator p:

p(Ax (P2 C))) P 3xc| e)
P> p(Axd)| CeC }).

The case where p satisfies 1 is proved in Theorem 5.3.

v

Straightforward by p extensivity.

It follows by ® idempotence and commutativity:

p(T1ey (p(de i) @ p(e))) © p(gny (

pde
P(Fay (pldoy) @ p ())®3{x}(pgill
®

iviv

P30y (pld) @ ple) @
p(a{x} (p(dx,t)

Tt

ple

Proposition 6.1.

(

T¢,.5% V) is a term system of dimension «, and k is a morphism from T into

Te.

ProoF. We simplify the notation by assuming w.l.o.g. that V = V. Let ¢,t' € 7,
a,b € 7@ such that k() = @ and £(¢') = b, then we have:

Tli
Tzi
T3Z

T4Z

st(a,) = k(sp(t,2)) = k(1) = a.
Sg(aa y) = H(Sx(ta y)) =Y

s%(a, st(y, b)) = k(sy(t,t2)) where k(t2) = &(sz(y,t')).
Then s (s%4(y, b)) = k(s5(t, se(y, 1)) = k(s (y, t)).

The proof 1s analogous to that for 75.

60

Proposition 6.2.
p(A) is a correct Rs and Dy non-distributive constraint system.
ProoF. From Theorem 6.1, it 1s enough to prove the Ds distributivity. Let

p=voa,tty,ls €7 and & € V. The proof follows by 3/« additivity and from
the basic properties of &:

Py (pdie) © plde, 1)) =

P(ey BAde, @ diyey | K(1) = (1), K(l1) = K(t2), K(l2) = K(t)}) =
YOGy e, @ diyes) [K1) = w(11), w(t1) = w(t2), K(l2) = K(ta)}) =
Y@Ll falpa frafalea) | £() = £(01), K1) = w(L2), &(t2) = K(ta)}) =

Vet /oltr) mlt/eltz)) =
pUdpe ol [6/0)e2)

Correctness is straightforward since p is an upper closure operator.
Proposition 6.5.
Rel = (p(£),N,U,R",0,3x, [t =t'])xCv.it,t'erpe, 15 @ constraint system.

ProoF. [sketch] Most of this proof follows from the fact that the structure LR,
discussed in Example 4 is a constraint system (see [34] for details) and from an
equivalent result in [41]. Tt is also straightforward to prove that (p(£), N, U, ®", #)
satisfies the axioms of closed semiring.

