Incremental Forwarding Table Aggregation

Yaoqing Liu Xin Zhao Kyuhan Nam Lan Wang Beichuan Zhang
yliue@memphis.edu {zhaox,airkh@email.arizona.edu lanwang@memphis.edu bzhang@arizona.edu

Abstract— The global routing table size has been increasing
rapidly, outpacing the upgrade cycle of router hardware. Reently

aggregating the Forwarding Information Base (FIB) emergesas

a promising solution since it reduces FIB size significantlyn the \Rw""g“""’fff Routing Table | oo "
short term and it is compatible with any long-term architectural Datatraffc, _ _ RIB - — — — | Data vac
solutions. Because FIB entries change dynamically with raing l 1 i !
updates, an important component of any FIB aggregation schrae * ki X

is to handle routing updates efficiently while shrinking FIB size as | FiB | \ FiB ‘ | FIB |

much as possible. In this paper, we first propose two incremeal
FIB aggregation algorithms based on the ORTC scheme. We then
quantify the tradeoffs of the proposed algorithms, which wil help
operators choose the algorithms best suited for their netwis.

Line card Line card Line card

Data Traffic Hiteieaitic Data traffic

|. INTRODUCTION
Fig. 1. RIB and FIB

The global Internet routing table has been growing at an

alarming rate [8], which appears to outpace the increase inSeveraI FIB aggregation algorithms have been proposed,

memory size, especially for the special type of memory usﬁ?cluding Optimal Routing Table Constructor (ORTC) [5],
in router line cards for fast lookup. Moreover, it forces 88 g 1i et al.’s scheme [9], and our own Level-1 to Level-4

upgrade router hardware at a faster pace, which notonl}esaugggregation [11]. However, incremental FIB aggregatios ha
higher operational cost to the ISPs, but also makes isswés SHot been studied in depth in the previous work.

as power consumption and lookup speed more prominent. , yhis paper, we add update handling capability to ORTC [5]
A promising solution to the routing table size problem is FI§, make it an incremental FIB aggregation scheme. More
aggregation, which combines multiple entries in the fodig gpecifically, we propose two update handling algorithms for
table (FIB) without changing the next hops for data forwagdi ORTC, one optimizing the FIB size and the other with a short
This approach is particularly appealing because it can e dg,ompytation time. We then quantify the pros and cons of the
by a software upgrade at a router and its impactis limitetiiwit proposed update handling algorithms, which will help ofsa
the router. It does not require changes to routing protooDls ;hgose the right algorithms best suited for their networks.
router hardware, nor does it affect multi-homing, traffigen \we organize the paper as follows. Section Il defines some
neering, or other network-wide operations. FIB aggregeB® pasic terminology and Section Il discusses related work. W
local solution that can be quickly implemented and deplaged yescribe the original ORTC algorithm in Section IV and our
the short-term. In the long run, it can co-exist and complme,oposed incremental FIB aggregation algorithms in Sedtio
architectural solutions. We present our evaluation methodology and results in Sec-

The feasibility of FIB aggregation depends on the solutioghn \/| — VIII. Section IX concludes the paper.
to one critical issue -how to designincremental FIB ag-

gregation schemeo efficiently handle routing changeshile Il. BACKGROUND

reducing FIB size and maintaining correct forwarding bétiav ~ An IP address prefixsummarizes all the IP addresses that
In fact, several router vendors have raised their concern &hare some common bits at the beginning. We use the notation
the overhead of handle routing updates when we discussed to represent those addresses whose firfsits are equal

FIB aggregation with them. In the simplest approach, one cama. For example,141/8 represents all the addresses from
re-aggregate the FIB from scratch after each routing update1.0.0.0 to 141.255.255.255. In particular,0/0 represents all
However, routing updates may arrive rapidly under certal® addresses. Given two prefixps= a/l andp’ = o' /U, if
conditions. If every update triggers a full aggregatiore tha’ = a{0,1}* andl’ > [, we refer top’ as a more specific or
computation overhead would be extremely high and the rodtmger prefix ofp.

processor may not be able to process all the routing updates iA Routing Information Base (RIB)is the repository in
time. Therefore, any practical FIB aggregation scheme mushich all IP routing information is stored (Figure 1). Forcha

be able to perform‘incremental update handling” More address prefix, there may be multiple available routes ard on
specifically, an ideal algorithm should limit its computatito or several best routes. Routes may be added or deleted in
only those FIB entries impacted by each routing update, thresponse to routing updates and the best route(s) will be re-
shortening the route processing time and FIB update time. calculated.

A Forwarding Information Base (FIB) is derived from a Previous FIB aggregation algorithms, with the exception
RIB but stored in line cards for fast lookup (Figure 1). Linef ours, do not handle dynamic routing updates efficiently.
cards usually uses memory with high access speed, whichAlthough we did introduce an incremental update algorithm
more expensive than normal memory. A FIB)(is comprised in [11], we did not do a thorough investigation. In this paper
of a set of forwarding entries,e., F = {(p,h)}, whereh is a we study different approaches to converting a static FIB ag-
set of nexthop addresses for forwarding packets to any asldrgregation scheme to an incremental one. To this end, we use
in prefix p. We further definerexthop(F, p) to be the nexthops ORTC as an example, since it clearly illustrates the traddeof
for prefix p according toF'.

Given an IP addresé and a FIBF, an address prefix = IV. FIB AGGREGATION USINGORTC

a/l € Fis the Longest Prefix Match (LPM)for d, i.ep = poyting tables are usually stored in a tree-like data sirect
LPM(F, d):k if and onIy/ if th? f/oIIowm_g cond|}|ons EOld: (1) such as a Patricia Trie [1] or an M-trie [4], with tiig0 prefix
d/: a{0,1}", and (2)vp' = o'/l € F, if d = a'{0,1}", then o4 e 1ot and the most specific prefixes at the leaf level.
I" < 1. We definencxthop(F, d) = nexthop(F, LPM(F,d)). By augmenting the tree nodes with a few additional fields, a
Itis possible thatl does not have any match in the FIB, whictkg agqreqgation algorithm can traverse the tree to prodoee t
meansLPM (F,d) = () and packets ta will be dropped. aggregated FIB.

The most important requirement for FIB aggregation is Draves et al.proposed the Optimal Routing Table Con-

to ensure *forwarding correctnessi.e, an aggregated FIB structor (ORTC) algorithm [5], which minimizes FIB size
should not change the paths that packets take to reach tI(}Wile achieving strong forwarding correctness. Their iowdd)
destinations. We formally define this requirement below.

Gi FIBF her FIBF” satisfiesS E di algorithm was based on a Binary Tree data structure. We
c ven a Fib h’ another .?aus(;e tlron_? f?rwfar” Ing implemented it using a Patricia Trie, which is more memory
) O”eCt”??SW't respect toF if and only if the fo OW" " efficient and more commonly used for storing routing tables.
ing conditions hold: (1) any non-routable addressFinwill

remain non-routable inf”, i.e., if LPM(F,d) = 0, then A Original ORTC Algorithm

LPM(F',d) = (; (2) the nexthop of any routable address .) i
in £ will remain the same in¥”, i.e, if LPM(F,d) # 0, The original ORTC algorithm assumes that the routing table

neathop(F',d) = nexthop(F,d). If we require only the 'S stored in a binary tree. It traverses the tree three tiroes t

second condition to holdE” is said to satisfyVeak Forwarding Preduce the optimal FIB (Figure 2). The first two tree passes
Correctnesswith respect toF. Note that, in this case, a non-May be .comblned Into orje step in an implementation.

routable address i could become routable i’ resulting ~ 1he first tree pass (Figure 2(b)) expands the tree so that
in extra routable space every node has zero or two children. Each expanded leaf node

has the same next hop as that of its nearest ancestor (the
Ill. RELATED WORK ancestor has to be a real prefix in the routing table). This
Several long-term routing scalability solutions have beexpansion “de-aggregates” the routing table — the routidgt
proposed in the IRTF Routing Research Group. For exampig,now composed of only the most specific prefixes.,(leaf
LISP[6], APT[7], and Ivip[10] use Map-and-Encap to separatnodes) and their nexthop information, which is an important
edge prefixes from the Internet core. However, implementipgeparation for the next two passes.
these proposals requires changing the routing architeetnd The second pass (Figure 2(c)) is a bottom-up process that
modifying protocols. In contrast, FIB aggregation is a loc&alculates the most prevalent next hops at every level of the
solution. It can be implemented via software upgrade amduting table. If two children share one or more common next
deployed by individual ISPs and routers. It also complemerttops, their common nexthops will be stored at the parent node
the long-term solutions. as the parent’s candidate nexthop set. Otherwise, the wfion
In [5], Draveset al.designed an algorithm that aggregatethe children’s nexthops will be stored at the parent node as
a FIB to the furthest extent without introducing extra rduléa the parent's candidate nexthop set. In other words, suppose
space,i.e, ORTC is the optimal algorithm under the strong and r are two children of the parent, thenp's candidate
forwarding correctness requirement. Seti al.extended the nexthop setis computed by either UNION(|, r) if it is not empt
ORTC work by considering each routing table entry as a 8 INTERSECTION(I, r) operations otherwise. This process
tuple (src, dest, action) [9]. They used dynamic prograngnon repeats up to the root of the tree.
optimize the routing table size. Herrin [2] suggested yeither The third pass (Figure 2(d)) is a top-down process in which
aggregation algorithm which may introduce extra routabkach node selects one nexthop from the candidate nexthop set
space. Extra routable space is the address space that iscootputed by the second pass. An important rule for this step
routable in the original FIB but routable in the aggregatgl F is that, whenever its parent's nexthop appears in its caelid
In [11], we designed four levels of FIB aggregation, eaclelevnexthop set, a node will choose its parent’s nexthop as its ow
with higher aggregation ratio but also higher algorithmiere nexthop so that its information does not have to be installed
plexity. By exploiting the tradeoff between extra routabace in the FIB. However, if the parent’s nexthop is not a member
and aggregation ratio, our Level-4A algorithm can compres$the node’s candidate nexthop set, a nexthop will be sedect
FIBs more than ORTC does. randomly from the candidate nexthop set and the node will be

(a) Initial Tree (b) Pass 1 (c) Pass 2 (d) Pass 3 (e) Prefixes in FIB

Fig. 2. ORTC Algorithm (The initial routing table has 4 prefix with their nexthop addresses shown in each node. Thegadgd FIB has 3 prefixes.)

tagged ad N_F'IB. After this step, all the nodes with the tag « updateAffectedAncestors(@tarting from the parent of

IN_FIB will be placed into the FIB. prefix p, update all ancestor prefixes’ candidate nexthop
set as done in the second pass of ORTC until reaching an
B. Patricia Trie Implementation ancestor prefix whose candidate nexthop set is the same

as before. The last ancestor updated will be returned from

gated and MRTD), we used Patricia Trie [1] to implement our this function, we use” A to refer to the returned ancestor
algorithms. A Patricia Trie is a binary tree, but it does not Node. _ _ _
require children’s prefixes to be longer than their parehgs’ * UPdatePrefix(mupdate prefixp's candidate nexthops as
exactly one. As such, it can reduce memory consumption by done in the second pass of ORTC. _
eliminating internal nodes whenever possible. For exapiple ¢ UPdateDescendantsSelected(sfarting from prefixp,
order to store the prefixes 0/0 and 001/3, a regular binagy tre COMpute selected nexthop for each prefix in the sub-trie,
needs four nodes including two internal nodes 0/1 and 00/2, &S done in the third pass of ORTC.
while a Patricia Trie does not require the two internal nodes With the above basic operations, we first describe the update
For each tree node, we store itsiginal nexthop node type procedure for an unaggregated FIB and then describe the two
candidate nexthop seselected nexthoms well as fields used update handling algorithms for an FIB aggregated using QRTC
in tree traversal. A
In a binary-tree implementation, the tree is first expanded
and then the children’s nexthops are merged to calculaie the Unaggregated FIB update scheme runs the normal update
parents’ candidate nexthop set. This is much more chatigngPpPerations, e.g. add, update and withdraw, on the origitial F
to implement correctly in a Patricia Trie, as we need to avof@ble without any aggregation for each coming update messag
creating internal nodes to the extent possible (otherwtiseYPon receiving an announcementjafthe router will look up
becomes a binary tree). We have found ways to merge ndxe FIB table to check ip exists in the FIB. If so, then update
thops correctly without creating internal nodes, whendziih’s the next hop according to the announcement; Otherwise, add a
prefixes are longer than their parent's by more than one. WW prefix with the corresponding next hop into the FIB table.
also postpone expanding the tree until the third pass, so th40n receiving a withdrawal of, the router will look up the

we only create those leaf nodes that will be in the FIB. Fé&orresponding prefix from its FIB table, then remove thidigre
brevity, we do not present the details in this paper. with its next hop. This scheme is used in current routers, and

can always guarantee the forwarding correctness.

Following other open source router implementatioagy(

Unaggregated FIB update Scheme

V. ORTC-BASED INCREMENTAL FIB AGGREGATION B. Minimal Time Scheme

The incremental update handling capability is missing from This scheme essentially reruns the ORTC algorithm on
the o_r|g|nal ORTC_Z work but important t_o router operations ifhe subtree rooted at the prefix being updated, even though
practice. We designed two such algorithms for ORTC. Botjere may be more aggregation opportunities above the prefix
of our update handling algorithms ensure strong forwardingherefore, this scheme will not optimize the FIB size, btiea

correctness. The first one aims to reduce th(_e amount of tiR&ims to achieve a good balance between processing time and
for the route processor to process the routing message @if sjze.

update the FIB at each line card. We call it the “Minimal Time” Upon receiving an announcement of prefix if p does
ss:heme.. The second one mgintain.s the optimal aggregated R} exist, thenp is inserted into the RIB, otherwisg’s
size, which we call the “Optimal Size” scheme. information is updated if necessary. This is followed bylingl
There are several ccommon operations u_sed by these yateDescendantsCandidate(p), updatePrefixgod updat-
schemes. Below we first define these operations, and then gpgscendantsSelected(p) re-aggregate the subtree rooted at
them to describe the algorithm for each scheme. p (see an example in Figure 3).
« updateDescendantsCandidate(@prting from the bottom Upon receiving a withdrawal of prefip, the prefix is
of the sub-trie rooted at, update all descendant prefixestemoved from FIB if it isIN_FIB. Note that we do not
candidate nexthop sets. This is the same as the second pas®ve the prefix from the RIB, but instead label it a8 AK F
of ORTC, except that it stops at the prefix node, since it may be re-announced later. Then its original

Fig. 3. Minimal Time Scheme Example. The number in each sjisathe
nexthop for that address prefix. First, a new prefix with thetnep 3 is inserted
into the routing table, so there are a total of 4 prefixes inttee. Then, we
expand the subtree rooted at the new prefix and re-calcufeecandidate
nexthop sets for each node on the subtree. This is followeskelsction of the
nexthop. The final result is that the same four prefixes rermaithe tree even
though two of them are aggregatable.

Fig. 4. Optimal Size Scheme Example. First, a new prefix with nexthop
3 is inserted into the routing table, so there are a total of foefixes in the
tree. Then, we expand the subtree rooted at the new prefixeacalgulate the
candidate nexthop sets from the leaf nodes under the newx pogfards the
root (tree expansion is done when necessary). This is felioly selection
of the nexthop from the highest level node whose candidat¢hop set has
changed. The final result is that only three prefixes remaithertree.

0.6 T T T T T T

05 |

2 XKy Hoe XXy
& o4 N xx,e‘xx-x)?‘“x*x* ¢
= eV
S Iad
ag 0.3 x,x" 4
(9]
3 02 [-
X
<
01 Level-2 —+—
ORTC ---x---
O 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Router ID

Fig. 5. Aggregation Ratio (ORTC vs. Level-2)

Figure 4). This ensures that we update those ancestogs of
whose optimal nexthops (for the purpose of aggregation) are
affected by this routing update. All the other operatiores the
same as those in the Minimal Time Scheme.

VI. PERFORMANCEMETRICS

We use the following metrics to compare different algorithm
(in the following definitions /' and F” are the original FIB and
aggregated FIB respectively):

a) Aggregation Ratior(): the ratio between the aggre-
gated FIB size and the original FIB sizeg., r = |F'|/|F|. A
smaller aggregation ratio means more reduction in FIB size.

b) Computation Timedj: the time cost for aggregating
the initial FIB (c;) and that for updating the aggregated FIB
(c2). One may think that a route processor will inevitably
be slowed down by the computation associated with FIB
aggregation, but a good news is that an aggregated FIB may
require less time to update than an unaggregated FIB [11].

VIL.
Today a typical BGP routing table has hundreds of thousands

E VALUATION OF ORIGINAL ORTC ALGORITHM

nexthop is updated to be the same as its nearest ances®@rgntries. Some routers in large ISPs even have more than one
original nexthop. We then usgpdateDescendantsCandidate(p)yillion entries including both BGP and IGP routes. The DFZ
updatePrefix(p), updateDescendantsSelecteti{pipdate the routing tables have grown by several orders of magnitudeesin

subtree rooted a.

C. Optimal Size Scheme

ORTC was originally proposed in 1999. Therefore, we first
need to evaluate the feasibility of the basic ORTC algorithm
We obtained BGP routing tables from 36 peers at the route-

This scheme needs to produce exactly the same result as miews.oregon-ix.net collector of the RouteViews proje8i. [

ning the ORTC full aggregation algorithm. However, in ortter We then extracted the prefixes and their nexthop ASs from
reduce computation time, it must restrict the tree tradsrga the routing tables. Note that we cannot directly obtain the
only those nodes whose state will likely change (otherwis#} nexthop address from the BGP routing tables. However,
this is notincrementalupdate handling). More specifically,we have used private data containing both routing tables and
starting from the prefix being modified, we recalculate thrwarding tables from a Tier-1 ISP to verify this methodpjo
candidate nexthop set of its ancestors until reaching a naaed found that the results do not differ much when we use the
whose candidate nexthop set does not change. We thennexthop AS in place of the IP nexthop. More justification of
aggregate the subtree rooted at this node. The detailedtalgo our methodology can be found in our earlier paper [11].
is similar to the previous one, so we only highlight their Our evaluation has been done on a Linux machine with an
differences below. Intel Core 2 Quad 2.83GHz CPU. One router vendor told us
For either an announcement or withdrawal mf instead that their routers’ CPU processing power is similar to thiat o
of calling updateDescendantsSelected(pe use updateAf- high-end laptops. Therefore, our computation time resanés
fectedAncestors(@nd updateDescendantsSelected(R#here reasonable indicators of how long it will take the routers to
PA is returned by the previous operation (see an exampleperform the aggregation.

250 T T T T T T 140000 T T T T T

e e At g P e 2 i et
120000 |- ppums# """ R
3 200 wWWWM
£
= 100000 [g
£
= 150 b
= @ 80000 [g
- Level-2 —+— 5 Optimal Size
2 ORTC —— o Minimal Time =======
© 100 | o [60000 1
5
(=N
g [N R 40000 | i
O 50 B
20000 |- g
0 L L o o L
0 5 10 15 20 25 30 35 0 1e+0B 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06
Router ID Number of Updates
Fig. 6. Computation Time (ORTC vs. Level-2) Fig. 8. FIB Size under Incremental FIB Aggregation Schenwes ®ne Month
for Router 4.68.1.166
120
0.6 T T T T T T ‘ Optirﬁal Size |
Minimal Time =======
2 05 ——_\’\/\‘___’_ 100 | Unaggregated FIB -
& %
é 04 E 80
: -
e 03} B S 60
3 g
3]
< H
g 0.2 1 E 40
% o
s E
= 0 Level-2 —+— 20
ORTC —%—
0 1 1 1 1 1 1 0
2001 2002 2003 2004 2005 2006 2007 2008 0 e+06 4e+06 5e+06 6e+06 7e+06
Year Number of Updates

Fig. 7. Median Aggregation Ratio over Time (ORTC vs. Levgl-2 Fig. 9. Cumulative Computation Time of Incremental FIB Aggation
Schemes over One Month for Router 4.68.1.166

Figure 5 shows the aggregation ratio of ORTC when it isVIIl. EVALUATION OF ORTC-BASED INCREMENTAL FIB
applied to the routing tables collected on Dec. 31, 2008. One AGGREGATION

can observe that the aggregation ratio varies ffoh to 0.42, :
. . W luated the t d update handl h
with a median 0f0.39. In other words, the aggregated FIB e evalare © WO proposed Uupaats handiing schemes

. - ; -using BGP tables and updates collected by RouteViews in
siz€ can .be 15% to 42% of the original FIB siz€. The Spec'fﬁecember 2008. The number of BGP updates from a router
aggregation ratio depends on how many different nextho

o Pashges from a few million to tens of millions in this month. We
that a router has and how the nexthops are distributed am Asent the results for the router 4.68.1.166. which istemta
the prefixes. In_ gene_ral, routers with fewer nexthops har?the Tier-1 ISP Level-3 Communications. The other routers
better aggregation ratios. For reference, we also inclhee

i o of Level-2 alaorithm 111 which ave similar results.
aggregation rato ot our Lever-= aigorithm [11], which eresi Figure 8 shows how the FIB size changes over the one-month
strong forwarding correctness as ORTC does. The Level%riod for the peer 4.68.1.166. The unaaareaated FIB size wa
aggregation ratio ranges from23 to 0.50 with a median of P P e ; 99reg

0.48. As expected, ORTC has better aggregation ratios th%Grg’ 108 on Dec. 1, .2008 and70,927 on Dec. 3;’.2.008' Thg
. . f TC full aggregation algorithm reduces the initial FIBesiz
Level-2, since the former optimizes the FIB size.

to 114,733, representing an aggregation ratio @ft3. After
On the other hand, Figure 6 shows that the Level-2 alggrocessingr, 254,478 BGP updates, the Optimal Size scheme
rithm’s computation time is betweems and 76ms with @ achieves a FIB size df16, 041 (the bottom curve), maintaining
median of71ms, while ORTC required96ms to 211ms With the aggregation ratio of.43. In contrast, with the Minimal
a median oR02ms to finish a full aggregation process. In otherrime scheme, the FIB size increased3a, 210 (the top curve),
words, the Level-2 algorithm is two times faster than ORTGe_ 13% larger than that of the Optimal Size scheme.
This is mainly because the former traverses the routingetabl |f the FIB size increases continuously under the Minimal
only once, while the latter requires at least two passes. Time scheme, it may exceed the memory size on a line card.
Finally, as shown in Figure 7, the median aggregation rat@dne solution is to perform a full aggregation whenever the
of ORTC has decreased from 0.5 in 2001 to below 0.4 in 2068B size reaches a certain threshold. For example, if wehset t
and the Level-2 algorithm exhibits a similar trend, sugigest threshold to 130,000, then this particular router’s FIBdseto
that the forwarding tables have become more amenable b® re-aggregated in 20 to 30 days. The threshold value depend
aggregation over time. This may be due to the increasingby peon the actual memory size on the line cards.
ular practices of traffic engineering and multi-homing, efhi As shown in Figure 9, the computation time of the Optimal
typically introduce more covered prefixes. Size scheme i403s for processing the’.25 million updates

1200

to slow down packet forwarding. ORTC is a FIB aggregation
algorithm that gives the minimum table size possible under
strong forwarding correctness, but it takes aboutr28@0 run,
which is way too long for real operation, especially wherr¢he
are many routing changes. In this paper, we have designed two
algorithms that can incrementally update the aggregat&d FI
table upon a routing change. These algorithms takes 1ar
1.8us per update, dramatically reducing the processing time
bttt i i g and making FIB aggregation practical for real operation.
cos By r We also compare ORTC's performance with a simple ag-
gregation algorithm (Level-2), and quantify performande d
Fig. 10. Computation Time of Incremental FIB Aggregatiorh&ues for Al ference between the two ORTC update handling algorithms.
Routers The results illustrate that FIB aggregation is a typicadléaif
between memory requirement and processing cycles. ORTC
(the top curve), which meanstus per update. It is orders of achieves the minimum table size possible under strong fokwa
magnitude faster than rerunning the full aggregation s¥hg correctness. Compared with the simple Level-2 algorjth
which would take200ms per update. On the other hand, th&ORTC compresses the table about 10% more, but takes al-
Minimal Time scheme takes only3s to process all the updatesmost 3 times longer. Between the two ORTC update handling
(the middle curve),.e, 1.8us per updatelt is seven times gjgorithms, one maintains minimum table size all the time,
faster than the Optimal Size schenMoreover, this scheme another trades about 13% table size for a speedup of 7 times.
only takes5s more than the Unaggregated FIB scheme (thgetwork operators will be the one to decide which tradeoff
bottom curve), which is the normal update scheme for Fi§ make depending on their router configurations and network

without any aggregation applied, for the total5 million requirement, and our results provide quantitative infdfometo
updates. Namely, the Minimal Time scheme with aggregati¢i|p the decision making.
only takes abou6.7us longer than current update mechanism
without aggregation per update. ACKNOWLEDGMENTS

As for the computational complexity and memory usage in This work was supported by NSF Grants 0721645 and
the worst case, we need to consider how many nodes e8@a21863. We thank Richard Draves for sharing his ORTC code,
scheme would traverse. In the Minimal Time scheme, if thes well as the anonymous reviewers for their feedback.
routing update is for a prefix located at the root node, we need
to update all the tree nodes beneath the root node, whicleis th
entire tree. This incurs the same overhead as the origin@COR [1% 'C\l)et-szgriﬁfjmp% l:)/llgd?ggi :ttpr:gszfil;hi-rc]riﬁg-%r%ld;?;ziﬁg%ioar/{? o
(two tree passes). However, this worst case only happens Wh@ //\E/&/w.ops.ietf.0rgllis?s/rrglzggwghreads.htmI#OID88 - tp:
the updated prefix is located at the root. In the Optimal Sizg] Advanced Network Technology Center and University oe@on. The
scheme, the worst case may happen even when the prefix in goxtﬁr\nﬁ;\:\g;ggi%T-Mh;thpéﬂw-r&uzﬁ\éi.egﬁ-g;f?éiem Aooromon.chi
question is not at the root — we need to update its ancest Io.gic minimization.. In Prgc. IIIEEE/AC.M Internationarl)pconferencepon
until reaching one that is not affected by the change and computer-aided desigr2004.
this process may ultimately reach the root node in the worg$gél R.Draves, C.King, S. Venkatachary, and B. D. Zill. Censting Optimal
case. In practice, the actual computation time and memory; I'; Ff:c;lrjitr']r;%;ati}.eslgu'ﬁzﬁ?cb_'E,\';:IeEy'e':Fgr%ogl182\?\,}3_ Locat/ Sep-
usage depend on the specific routing updates and the FIB. For aration Protocol (LISP). Work in Progress, http://to@t.brg/html/
reference, Figure 10 shows the processing time of all the 36 draft-farinacci-lisp-12, Mar. 2009. .
routers’ updates in Dec. 2008. Minimal Time scheme typicall 1 5 3, . Vs . Mascer L warg, & Znang, and L e
takes about tens of seconds, while Optimal Size scheme takes Report 080004, UCLA, 2008.
hundreds of seconds in general. [8] D. Meyer, L. Zhang, and K. Fall. Report from the IAB Worlcgh on

) .] Routing and AddressingRFC 4984 2007.
Because FIB updates require real-time processing so th@} S. Suri, T. Sandholm, and P. Warkhede. Compressing TwoebDsional

traffic can be forwarded to the correct nexthop, these r®sult © Routing Tables Algorithmica 35:287-300, 2003.

suggest that the Minimal Time scheme may be more preferal’:ﬂ@i RHWIhittIe. Iviph(lnternet Vastly Improved Plumbing)réhitecture. draft-
. whittle-ivip-arch-02, August 2008.
in a real network setting, although it requires a slightlig& ;1) x Zhao, v. Liu, L. Wang, and B. Zhang. On the Aggregaliabiof

FIB memory. Router Forwarding Tables. IRroc. IEEE INFOCOM 2010.

" Optimal Size -
Minimal Time =---s----

1000 -

800 -

600 -

Time (s)

400

200

REFERENCES

IX. CONCLUSIONS

As the Internet keeps growing rapidly, routers are facing a
tough task: forwarding huge amount of traffic at line rate and
still operates within their memory limit. FIB aggregatios i
a promising solution to the problem of increasing table ,size
but any FIB aggregation scheme must run fast enough not

