
Identifying BGP Routing Table Transfers ∗

Beichuan Zhang †

bzhang@cs.arizona.edu
Vamsi Kambhampati ‡

vamsi@cs.colostate.edu
Mohit Lad §

mohit@cs.ucla.edu

Daniel Massey ‡

massey@cs.colostate.edu
Lixia Zhang §

lixia@cs.ucla.edu

ABSTRACT
BGP routing updates collected by monitoring projects such
as RouteViews and RIPE have been a vital source to our
understanding of the global routing system. The updates
logged by these monitoring projects are generated either by
individual route changes, or are part of BGP table transfer.
In particular, a session reset between a monitoring station
and its BGP peers can result in the peer sending its entire
BGP routing table to the monitoring station. In this paper,
we present a Minimum Collection Time (MCT) algorithm
that accurately identify the start and duration of routing
table transfers. Using three months of data from 14 different
peers, MCT can identify routing table transfers triggered by
BGP session resets with 100% accuracy, and can pinpoint
the exact starting time of table transfers in 90% of the cases.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Routing
Protocols

General Terms
Measurement, Experimentation, Algorithms

Keywords
BGP, Session Reset, Routing Table Transfer, Collection Time

∗This work is partially supported by the Defense Ad-
vanced Research Projects Agency (DARPA) under Contract
No. N66001-04-1-8926 and by National Science Foundation
(NSF) under Contract No. ANI-0221453. Any opinions,
conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views
of the DARPA or NSF.
†Computer Science Department, University of Arizona.
‡Computer Science Department, Colorado State University.
§Computer Science Department, University of California,
Los Angeles.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05 Workshops, August 22–26, 2005, Philadelphia, PA, USA.
Copyright 2005 ACM 1-59593-026-4/05/0008 ...$5.00.

1. INTRODUCTION
The Border Gateway Protocol (BGP) is the de facto inter-

domain routing protocol on the Internet. Numerous projects
use BGP update data to analyze Internet routing, diagnose
routing problems, and evaluate improvements to BGP. Ore-
gon RouteViews [7] and RIPE RIS [6], the two best known
BGP monitoring projects, maintain several monitors that
establish BGP peering sessions with routers in many op-
erational networks. These monitors receive and log BGP
routing updates from their peers. These BGP update logs,
along with data from individual ISPs own collection, are
indispensable to researchers and network operators in ana-
lyzing global routing dynamics.

BGP updates in the monitor logs can be divided into two
general categories, table transfer updates and incremental
updates. When a BGP peering session is established, a
router advertises to the new peer all the routes that are
currently in its routing table and match its export policy.
We call these updates table transfer updates. After the ini-
tial table transfer, the router sends out incremental route
changes only1. We call these updates incremental updates.

It is often important to distinguish between these two
types of updates. For example, suppose on a typical day
a BGP monitor records a few tens of thousands of BGP
updates and on the following day it logs well over a few
hundreds of thousands of BGP updates. The implications
of such a 10-fold increase in daily update counts heavily de-
pends on whether the updates are due to table transfers or
incremental changes. A typical BGP routing table contains
over 120,000 routes, thus a single BGP session reset between
the monitor and its peer can result in over 120,000 updates.
If table transfers are a problem, changes to increase the sta-
bility of peering session with the monitors are needed or the
update logs need to identify the table transfer updates. On
the other hand, if the update jump is the result of a large
spike of incremental updates, techniques for improved con-
vergence, route damping, and so forth may be warranted.
In general, distinguishing between table transfers and incre-
mental updates can have important implications for a vari-
ety of BGP analysis. Unfortunately, some BGP monitors do
not log when a session resets. Even if the start of a session
reset is logged, it does not indicate how long a table transfer
lasts and whether an update is part of a table transfer or an
incremental change.

1In practice, some BGP routers send duplicate updates that
simply re-announce the same route.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1e+06 2e+06

N
um

be
r

of
 P

re
fix

es

30-second bins

Figure 1: Number of pre-
fixes in every 30 seconds

Figure 2: Update Stream and Collec-
tion Time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 375000 380000

co
lle

ct
io

n
tim

e
s(

t)
 (

se
co

nd
)

time t (second)

Figure 3: Sample s(t) ∼ t

In this paper, we present a Minimum Collection Time
(MCT) algorithm that accurately detects the start and dura-
tion of table transfers from a stream of BGP updates. MCT
does not rely on any explicit indication of the occurrence of
BGP session resets. Because BGP monitors log all routing
updates, those table transfer updates caused by BGP ses-
sion resets between monitors and their peers are monitoring
artifacts rather than real routing dynamics in operational
networks, thus it is important to identify and filter them
out. Using three months of data from 14 different peers,
MCT can identify full routing table transfers triggered by
BGP session resets with 100% accuracy, and can pinpoint
the exact start of table transfers in 90% of the cases. The
MCT algorithm works with common BGP log formats such
as those used at RouteViews and RIPE and is available at
http://netsec.cs.colostate.edu/.

2. THE BASIC APPROACH
Given a stream of BGP updates, our objective is to detect

the existence of all table transfers that may have occurred
in the update stream. If a transfer does occur, we want to
identify its starting time (i.e., timestamp of the first update
of the table transfer) and its duration (i.e., how long it takes
to finish the transfer). This section presents the intuition
and basic Minimum Collection Time algorithm. The next
section addresses a few practical issues in processing real
BGP data.

The main characteristic of a table transfer is that, in the
update stream, all the prefixes in the routing table appear
within a short period of time. A simple way to identify
table transfers would be to visually look for spikes in the
number of prefixes for which updates are generated over
time. For instance, Figure 1 shows the number of prefixes
contained in update messages in 30-second bins based on
one-months update from a router. Although we can visually
identify some spikes, it is difficult to pin down their exact
starting and ending times. Besides, it is not clear which
peaks correspond to table transfers, and over which time
interval (i.e., bin width) the number of prefixes should be
counted. In order to automatically and accurately identify
table transfers, we developed the following approach.

Assume a BGP session was established and a stream of
updates is received as shown in Figure 2, and also assume
that the entire routing table consists of routes to five prefixes
only, p1, p2, p3, p4, and p5. The updates at time 10, 14,
and 17 are incremental updates announcing a change in the
route to prefix p3, p1, and p2, respectively. A table trans-
fer happens at time 21 and ends at time 25, during which
the routes to all five prefixes are announced. The resulting

updates are table transfer updates and this table transfer
lasts 25 − 21 = 4 seconds. The update at time 30 is an
incremental update.

For an update received at time t, we define its collec-
tion time, s(t), as the time it takes for all prefixes to be
announced. For example, consider the update that arrives
for p3 at time 10. Starting at time 10, it takes until time
25 for all five (unique) prefixes to be announced, and thus
s(10) = 25 − 10 = 15. Similarly, s(14) = 25 − 14 = 11,
s(17) = 8, and s(21) = 4. For updates arriving later than
time 21, there is no time for which all five prefixes have ap-
peared in updates, i.e., s(t) = ∞. As updates occur closer to
the beginning of the table transfer, s(t) decreases steadily
until reaching a minimum value at s(21) = 4. Note that
the table transfer begins at time t = 21 and lasts exactly
s(21) = 4 seconds. After this minimum value, s(t) steadily
increases.

In general, we expect a trend of decreasing s(t) as the
update under consideration approaches the start of a table
transfer and increasing s(t) as we move past the start of a ta-
ble transfer. Calculated from real data, Figure 3 illustrates
the trend of s(t) versus t 2. Based on this observation, we
devise the following basic algorithm to detect table transfers
given a stream of updates:

1. For each update, calculate its collection time, s(t).

2. Find all local minima of s(t).

3. Each local minimum is considered as a table transfer.
Its time t is the starting time of the transfer, and its
collection time s(t) is the duration of the transfer.

If s(t) monotonically decreases prior to the beginning of a
table transfer and then monotonically increases after passing
the beginning of a table transfer as shown in Figure 3, then
the basic algorithm works perfectly. In BGP data that we
have processed, most of the time this is the case. However,
sometimes the monotonicity does not hold due to certain
patterns of update timing and ordering, or incomplete table
transfers. In next section, we introduce some simple tune-
ups to adapt our basic algorithm to the vagaries of real BGP
data.

3. PRACTICAL TUNE-UPS
The basic Minimum Collection Time approach needs to

be adjusted to address a few issues that arise in real BGP
data, which is the focus of this section.

2The upper limit of 7200 seconds on s(t) is explained in the
next section.

3.1 Reducing Computation Load
Incremental updates that are not part of any table trans-

fer can have very long collection times (e.g., on the order of
many hours or days). Recall that we are looking for mini-
mum s(t) values and these minimum values correspond to
table transfer durations. Computing very large s(t) values
requires certain computational cycles but serves very little
purpose if we are certain that these values cannot be a min-
imum.

To reduce computation load, we put an upper bound U
on the maximum s(t) value. Once s(t) reaches this upper
bound, we are certain the update under consideration can-
not be part of a table transfer and we set its s(t) to U . In
our implementation, we set U = 7200 seconds (i.e., 2 hours).
That is, for any s(t) > 7200 seconds, we set it to 7200 sec-
onds. Since we are looking for the minimum of s(t), the
value of U does not affect the result, as long as it is larger
than any whole table transfer duration. It is very unlikely
that any table transfer will last up to 2 hours. The use of U
is simply a computational convenience. If no safe maximum
estimate for a table transfer duration can be inferred, we
can simply set U to infinity.

3.2 Expected Table Size
In calculating collection times, the basic approach as-

sumes that the set of prefixes to be announced in the ta-
ble transfer is known in advance. We can collect this set of
prefixes by observing updates sent by the router. A typical
router from RIPE or RouteViews announces routes to over
120,000 prefixes. However this is not a static set. For exam-
ple, suppose the BGP session between the router R1 and R2
goes down. During the session downtime, R2’s route to pre-
fix p is withdrawn by one of its other neighbors. When the
session between R1 and R2 is re-established, R2 will send
its current routing table to R1, but prefix p will not be part
of this transfer. Thus, the table transferred after the session
re-establishment may not have exactly the same size as the
one before the session breakdown. Therefore we should not
count all the prefixes observed so far when calculating the
collection time.

However, we expect that most of the prefixes will still be
present in the table transfer. The number of unique pre-
fixes needed to constitute a full table is a parameter in our
method, and we denote it as N . If N is too high, we may
miss some table transfers; if N is too low, we may falsely
classify a surge of incremental updates as a table transfer.
Based on our experience with real data, setting N to 99% of
the last known table size seems a good engineering choice.

Ideally, we should maintain a routing table while process-
ing the updates, so that we know the table size at any time,
and set 99% of it to be the expected table size. As a quick
proof of evidence, our current implementation measures the
routing table size at the beginning of a month, and uses 99%
of this value as the expected table size for the entire month.
Although such a quick and dirty implementation seems of-
fering good results as presented in section 4, we are currently
developing a simple adaptive algorithm for the routing table
size estimation.

3.3 Dealing with Trend Noise
The basic MCT approach assumes that the collection time

s(t) decreases monotonically prior to the beginning of a table
transfer. The collection time then increases monotonically

after passing the beginning of a table transfer. However,
sometimes this monotonicity can be violated. For example,
suppose the update stream in Figure 2 is modified slightly
as shown in Figure 4. We again assume the full routing table
consists of prefixes p1, p2, p3, p4 and p5. The resulting s(t)
values are now s(10) = 14, s(14) = 10, s(15) = 12, s(21) =
6, s(22) = ∞. In this case, s(t) still follows a decreasing
trend as we approach the table transfer at time 21, but there
is a slight increase between the updates at time 14 and 15.
Thus the basic MCT approach will find two local minima,
one at time 14, and one at time 21, although only the latter
corresponds to a real table transfer.

However one may notice that the falsely perceived table
transfer at time 14 and the actual table transfer at time
21 have an interesting relation. The falsely perceived table
transfer starts at time 14 and ends at time 14 + s(14) =
14 + 10 = 24 (see Figure 4). This conflicts with the second
local minimum, which says a table transfer starts at time
21. In other words, a table transfer is starting at the same
time when another table transfer is still in progress. Given
two local minima s(t1) and s(t2) of the collection times, we
say they are conflicting if t1 + s(t1) > t2. In the event of
an overlap, the shorter transfer time is taken to be the real
table transfer. In our example, there is a conflict between
s(14) and s(21). Since s(21) < s(14), we discard s(14) and
keep s(21) as the real table transfer.

More formally, assume we have computed s(t) for all up-
dates and have found all local minima in the resulting s(t)
values. We then check for and resolve conflicts as follows.

1. Set tm to the first local minimum.

2. Check all other local minima. If there is any conflict-
ing local minimum t | s(t) < s(tm), discard this local
minimum tm.

3. Otherwise, report that a table transfer starts at tm

and lasts s(tm) seconds.

4. Set tm to the next local minimum, repeat step 2, until
all local minima have been either reported as table
transfers or discarded.

3.4 Multiple Table Transfers
In the event that multiple table transfers occur close to

each other in time, as long as one table transfer completes
before the second one starts, MCT can still correctly identify
each of them. Figure 5 shows an example from real BGP
data where four table transfers happened within 35 minutes,
and they were identified by four local minima in s(t)

However, a table transfer might not necessarily complete
before another one starts. For example, suppose the BGP
session goes down before an on-going table transfer is com-
pleted. When the session is up again, a new table transfer
will start. In this case, we may see two local minima in the
collection time, s(t1) for the partial transfer and s(t2) for
the complete transfer. However, these two will conflict with
each other, t1 +s(t1) > t2, since the partial transfer’s collec-
tion time must extend into the complete transfer in order to
include all prefixes. This is the same characteristic of trend
noise, and we handle it with the same technique of choosing
the one with shorter collection time as a true table transfer.
Thus, MCT can correctly identify complete table transfers
even in the presence of multiple partial table transfers close
in time.

Figure 4: Trend Noise and Con-
flicting Transfers

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 25000 30000 35000

co
lle

ct
io

n
tim

e
s(

t)
 (

se
co

nd
)

time t (second)

Figure 5: Multiple Table
Transfers

Figure 6: Bottom Searching

3.5 Bottom Searching
MCT assumes that a local minimum s(tm) (after removing

trend noises and partial transfers) corresponds to the start
of a full table transfer. As a result of imprecise estimate of
expected table size, tm may not be the exact starting time,
and the true starting time could be earlier than tm. As
illustrated in Figure 6, the table transfer starts at tS and
ends at tE. But s(tS) ends earlier at t2, because we have
already seen 99% of the table. A similar early end occurs
for s(t0) and s(t1). These collection times, s(tS), s(t0), and
s(t1), will have similar values, and all appear at the bottom
of the valley in s(t) ∼ t plot. Depending on the timing of
updates, any one of the three can have the minimum value,
but only s(tS) is the true start of the table transfer.

To accommodate this situation, we apply a bottom search-
ing threshold , B. After finding the minimum collection
time s(tm), we look back B seconds in updates starting at
tm and pick the earliest update between tm − B and tm.
From our experience of real data, we observed that tS is
usually only a few seconds before tm when tS itself is not
the detected local minimum. When tS is the actual detected
local minimum, our bottom searching would not find a false
start, since right before the table transfer there must be a
relatively large time gap with no update in it (i.e., session
downtime plus session re-establishment time). From our ex-
periments, we found that setting B = 10 seconds is effective
in locating the true start of a table transfer.

3.6 Summary of the Algorithm
After applying the tune-ups mentioned above, the final

MCT algorithm can be summarized as follows.

1. Calculate collection time s(t) for all updates. Use U =
7200 seconds as the upper limit of s(t), and use N =
99% of the last known table size as the expected table
size.

2. Find all local minima of s(t).

3. Resolve conflicts, which can be caused by trend noises
or incomplete table transfers.

4. For each local minimum, search for the true start of the
table transfer using bottom searching threshold B =
10 seconds.

4. EVALUATION
We now evaluate the MCT algorithm using BGP log data.

We verify the detection accuracy with BGP session state
messages in RIPE data and apply MCT to RouteViews data.

4.1 Verification with Session State Messages
The RIPE RRC00 monitor (located at Amsterdam) logs

BGP session state messages along with regular BGP up-
dates. From session state messages, we can infer BGP ses-
sion breakdown and re-establishment. Since a session reset
is supposed to trigger a table transfer, we can use MCT to
identify table transfers, and verify the results with session
establishment messages. Our validation uses three months
of RIPE RRC00 data, from January 2002 to March 2002,
which includes update streams from 14 different peers. This
date range was chosen because RIPE disabled its monitor’s
BGP KeepAlive timer on October 17, 2002. Prior to Octo-
ber 2002, the HoldTime was set to 60 seconds and we believe
this contributed to BGP session resets from time to time,
which is better suited for our verification purpose.

During the three months, we detected 495 cases that had
a full table transfer and had a corresponding session estab-
lishment message indicating a reset. There were 29 cases
that had a session establishment message but no table trans-
fer was detected, and 15 cases where MCT detected a table
transfer but found no session establishment message. Figure
7 shows the counts over different peers. Overall most ses-
sion resets (94%) cause full table transfers, and most table
transfers (97%) are triggered by session resets.

The 29 resets with no detected table transfers are due
to the fact that, not all session resets lead to complete ta-
ble transfers. Figure 8 shows one such example from real
BGP data. Four consecutive session resets were followed by
33681, 65, 148, and 107133 announced prefixes. In the first
three cases, the table transfer could not complete since the
session went down again. Only the last one completed a
table transfer, which is correctly identified by our method.

The 15 table transfers without corresponding session es-
tablishment messages could be due to missing session state
messages or “soft reset”. Though session state messages are
generated locally by the monitor, its logging may not be
precise due to the presence of a software bug [3]. In our
data, we found evidence of missing session state messages.
For example, one session went through two consecutive ses-
sion establishment processes without a session breakdown
message in between. “Soft reset” [1] can be used by router
operators to signal changes after router reconfiguration. Af-
ter a change such as a change in routing policy, the router
may reannounce the entire table without resetting the BGP
session. Finally, it is possible that the BGP peer may suffer
from connection stability issues with all its upstream peers
and, after some unfortunate failures, the router may lose
and then re-learn (and hence re-announce) almost all of its
routing table.

 0

 20

 40

 60

 80

 100

 120

 140

1413121110987654321

C
ou

nt

Peer ID

Session Resets
Resets with Table Transfers

Transfers w/o Resets

Figure 7: Session Resets and Ta-
ble Transfers

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 924000 927000 930000

co
lle

ct
io

n
tim

e
s(

t)
 (

se
co

nd
)

time t (second)

session reset
collection time

Figure 8: Multiple Incomplete
Table Transfers

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50

O
ffs

et
 in

 s
ec

on
ds

ID (sorted by time offset)

Figure 9: Non-zero Time Offset

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50

O
ffs

et
 in

 n
um

be
r

of
 u

pd
at

e

ID (sorted by update offset)

Figure 10: Non-zero update off-
set

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70 80 90

P
ee

r
ID

Time (day)

Table Transfer

Figure 11: Table Transfers in
RouteViews Data

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 100 1000 10000

P
ee

r
ID

Collection Time (second), log scale

Collection Time

Figure 12: Collection Times in
RouteViews Data

We quantify the detection accuracy for the 495 cases that
have both resets recorded and table transfer detected. We
take the first routing update message after session establish-
ment as the real start of a table transfer, as opposed to the
the session establishment message itself. We then compare
this real start with the one our method finds. The differ-
ence between these two is called “offset,” and is measured
in terms of number of seconds and number of updates. Out
of the 495 cases, 445 (90%) cases have offsets of zero second,
i.e., our method finds the exact starting point of the table
transfer with no error.

For the 50 cases with non-zero offset, Figure 9 shows
their time offset and Figure 10 shows the number of updates
within this time offset. (Note that the same ID in the two
figures does not correspond to the same case.) For most of
the cases the offset is small. For example, in 24 cases, MCT
misses the real start by less than 30 seconds, and in 27 cases
we miss the real start by only one update. We found a few
cases to have large offsets. The largest time offset is 1328
seconds but it has only 1 update within this period, which
means there is a large gap between the first update and the
second update of the table transfer, and our method only
misses a single update. There are two extreme cases with
very large number of updates, 55k and 15k, respectively (not
plotted in Figure 10 to make it easier to read). After care-
ful inspection we found evidence of imprecise session state
logs and we suspect that there were in fact two quick session
resets and a missing state message for the second reset.

Overall, MCT detected 100% full routing table transfers
triggered by session resets, and in 90% of the cases it pin-
pointed the exact starting time of table transfers with no
error.

4.2 Application to RouteViews Data
The RouteViews project has collected valuable BGP data

for a number of years, however the routing updates do not
contain session state messages. MCT provides the first prac-
tical way to accurately identify table transfers in Route-
Views’ data. We applied MCT on three recent months of
data starting January 2005 to March 2005 collected from the
Oregon collector of RouteViews. Figure 11 shows when ta-
ble transfers are detected for each RouteViews peer. There
are totally 362 table transfers in these three months for 37
peers. It is interesting to notice that on days 24 and 26
almost all peers have table transfers, suggesting that Route-
Views monitor may have experienced problems at that time.
Figure 12 shows the collection times of every table transfer
for each peer. Most of the collection times fall in either 20
to 70 seconds, or 200 to 500 seconds, with a few greater
than 1000 seconds. Thus most table transfers finish within
10 minutes. For each individual peer, Figure 13 shows the
number of table transfers, and Figure 14 shows the percent-
age of table transfer updates in the total number of updates.

5. RELATED WORK
Prior work that used BGP updates has highlighted the

need to clean the BGP data to differentiate table transfers
from incremental updates. [8] uses session state messages in
BGP logs to identify the start of a session re-establishment
and thus the beginning of a table transfer. However, Route-
Views logs, which have many years of valuable data, don’t
contain such state messages.

The method employed in [5] does not explicitly identify
table transfers, but instead removes all duplicate announce-
ments from the update stream. A reset of BGP session trig-

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

N
um

be
r

of
 T

ab
le

 T
ra

ns
fe

rs

peer ID

Number of Transfers

Figure 13: Number of Table
Transfers

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35

R
at

io
 o

f T
ab

le
 T

ra
ns

fe
r

U
pd

at
es

peer ID

Ratio of Updates

Figure 14: Ratio of Table Trans-
fer Updates

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

1413121110987654321

D
up

lic
at

e
U

pd
at

es

Peer ID

Total duplicates
Table transfer duplicates

Figure 15: Removing Duplicate
Updates

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

1413121110987654321

N
um

be
r

of
 U

pd
at

es

Peer ID

Valid updates discarded
Invalid updates considered

Figure 16: Bin-based Discard

gers a complete table transfer and since the session down-
time is usually short compared with routing changes, BGP
updates sent after session re-establishment should consist
primarily of duplicate announcements. However, with our
three-month RIPE data set, Figure 15 shows that duplicate
announcements are not produced only by table transfers.
Eliminating all duplicate announcements removes both ta-
ble transfer updates and updates due to other factors, which
could be useful in studying routing dynamics. Although this
shortcoming does not affect the result in [5], it limits the ap-
plicability of this method as a general approach to deal with
table transfers in BGP logs.

The method in [2] makes use of a general observation that
updates due to table transfers occur in bursts. This method
splits the update stream into 30-second bins and discards
any bin that contains more than 1000 prefixes, regarding
them as part of table transfers. In Figure 16, we plot the
number of valid updates that this method discards, and ta-
ble transfer updates this method misses using the three-
month RIPE data set. It is clear that this method doesn’t
miss many table transfer updates, but it falsely discards a
large number of legitimate updates.

[4] presents a bin-based heuristic to detect session resets in
the Internet, not limited to BGP sessions between the mon-
itor and its peers. [9] presents a heuristic to detect session
resets between a network’s border routers and their external
peers. Their scheme takes into account a majority of routes
shifting from one neighbor to another, in a small interval of
time as an indication of session reset or restoration. Both
these approaches present heuristics for inferring session re-
sets, but do not directly address all the issues arising with
session resets between monitoring points and its direct peers.

6. CONCLUSION
We have developed a Minimum Collection Time (MCT)

algorithm that accurately identify the start and duration
of BGP routing table transfers triggered by peering session
resets from a stream of routing updates. Using three months
of BGP data from 14 different peers, MCT can identify 100%
of full routing table transfers triggered by session resets, and
in 90% of the cases we were able to pinpoint the exact start
without any error. MCT is particularly useful in processing
RouteViews BGP update logs which do not contain session
state messages.

Built on the success in detecting session resets with direct
peers, we are extending the basic idea to detect partial table
transfers from update streams. A partial table transfer can
be the result of a full table transfer triggered by BGP session
resets that are one or more hops away from the monitor. Be-
ing able to inferring remote session resets is interesting since
it will help us better understand BGP routing dynamics in
the operational Internet.

7. REFERENCES
[1] Cisco documentation: Configuring BGP, 2003.
[2] D. Andersen, N. Feamster, S. Bauer, and H. Balakrishnan.

Topology inference from bgp routing dynamics. In ACM
SIGCOMM Internet Measurement Workshop (IMW), 2002.

[3] H. Kong. The consistency verification of Zebra BGP data
collection. Technical report, Agilent Labs, China, 2003.

[4] O. Maennel and A. Feldmann. Realistic BGP traffic for test
labs. In Proc. of ACM SIGCOMM, 2002.

[5] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang. BGP routing
stability of popular destinations. In ACM SIGCOMM
Internet Measurement Workshop (IMW), 2002.

[6] RIPE Routing Information Service.
http://www.ripe.net/projects/ris/.

[7] The RouteViews project. http://www.routeviews.org/.
[8] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin,

S. F. Wu, and L. Zhang. Observation and analysis of BGP
behavior under stress. In ACM SIGCOMM Internet
Measurement Workshop (IMW), 2002.

[9] J. Wu, Z. M. Mao, J. Rexford, and J. Wang. Finding a
needle in a haystack: Pinpointing significant BGP routing
changes in an IP network. In Symposium on Networked
System Design and Implementation (NSDI), May 2005.

