
Binary Rewriting of an Operating System Kernel ∗

Mohan Rajagopalan,‡ Somu Perianayagam, HaiFeng He, Gregory Andrews, Saumya Debray
Department of Computer Science

The University of Arizona
Tucson, AZ 85721, USA

Email: mohan.rajagopalan@intel.com; {somu, hehf, greg, debray}@cs.arizona.edu

1. Introduction

This paper deals with some of the issues that arise in the con-
text of binary rewriting and instrumentation of an operating
system kernel. OS kernels are very different from ordinary
application code in many ways, e.g., they contain a signi-
cant amount of hand-written assembly code. Binary rewrit-
ing is an attractive approach for processing OS kernel code
for several reasons, e.g., it provides a uniform way to handle
heterogeneity in code due to a combination of source code,
assembly code and legacy code such as in device drivers.
However, because of the many differences between ordinary
application code and OS kernel code, binary rewriting tech-
niques that work for application code do not always carry
over directly to kernel code. This paper describes some of
the issues that arise in this context, and the approaches we
have taken to address them. A key goal when developing
our system was to deal in a systematic manner with the var-
ious peculiarities seen in low-level systems code, and rea-
son about the safety and correctness of code transformations,
without requiring signicant deviations from the regular de-
velopmental path. For example, a precondition we assumed
was that no compiler or linker modications should be re-
quired to use it and the tool should be able to process kernel
binaries in the same way as it does ordinary applications.

We have implemented a prototype kernel binary rewriter
as an extension to the PLTO binary rewriting toolkit [14].
PLTO takes as input a relocatable binary that it manipulates
in various ways, e.g., to insert instrumentation code or to
apply various optimizing transformations using optional ex-
ecution proles for guidance. It then updates code addresses
as necessary, using relocation information to distinguish ad-
dresses from non-address values, and nally writes the re-
sulting program out as an executable. PLTO currently sup-
ports the collection of several different kinds of execution
proles: basic block counts, edge counts, value proles (es-
pecially important for resolving indirect function call tar-
gets), call-stack proles, as well as proles based on hard-
ware performance counters, e.g., CPU cycles and i-cache
misses. Our prototype has also been used to perform a num-
ber of program analyses and optimizations, including func-
tion inlining, guarded inlining (for indirect function calls—
the inlined code is guarded by a test of the call target), con-
stant propagation (for code specialization), dead and un-

∗ This work was supported in part by NSF Grants EIA-0080123, CCR-
0113633, and CNS-0410918.
‡ Current address: Programming Systems Lab, Intel Research Corp., Santa
Clara, CA 94054.

reachable code elimination (especially important for code
compaction), and prole-guided code layout. We have also
used our system to carry out specialization and compaction
of the Linux kernel. Some of this work is described in a com-
panion paper [11].

2. Technical Challenges

This section discusses some of the issues arising in binary
rewriting and instrumentation of OS kernels that are usually
not encountered for ordinary application programs. Where
appropriate, we quantify our observations using characteris-
tics of a minimally-congured Linux 2.4.31 kernel (no mod-
ule support; drivers for network, video, block devices, key-
board, and mouse; ext2 and ext3 lesystems; and TCP/IP
and UDP stack only), compiled on an Intel x86 platform us-
ing the gcc compiler version 3.3.3 at optimization level -O2.

2.1 Disassembly

The different characteristics of kernel and application bi-
naries means that a straightforward application of conven-
tional disassembly algorithms can fail to correctly disassem-
ble large parts of the kernel. A signicant problem during
disassembly is that of data embedded in the text section,
which can confuse the disassembly process. In the Linux
kernel, binary data is embedded in the instruction stream in
two distinct instances:

1. Data areas that are not part of instruction stream but are
located in the text section. For example, in Linux version
2.4, the page tables are placed in the text section. We
identify such data areas by their associated symbols. A
list of such symbols is provided as input to PLTO, which
then skips over the corresponding memory areas during
disassembly. There about 19 such symbols in the Linux
kernel.1

2. Data embedded in the instruction stream that are not part
of any instruction, but which may be used during exe-
cution. A typical example of this is the ud2 instruction
used in the kernel. The ud2 instruction, which species
an “undened instruction,” raises an invalid opcode ex-
ception and is used to raise a panic and halt the kernel in
case of a bug. Typically, the source code line number and

1 Here and elsewhere in the paper, we use the phrase “the Linux kernel” to
refer to the version of the Linux kernel mentioned above, congured and
compiled as described.

STATIC COUNTS DYNAMIC COUNTS (×106)
PROGRAM Instructions Indirect calls Icalls s/nInss Instructions Indirect calls Icalls d/nInsd

(nInss) (Icallss) (%) (nInsd) (Icallsd) (%)
SP

EC
in

t-2
00

0
bzip2 5,647 0 0.00 41707.62 0.00 0.00
crafty 42,287 0 0.00 34616.64 0.00 0.00
vpr 16,667 0 0.00 5581.47 0.00 0.00
gap 112,267 1296 1.15 7163.14 109.98 1.54
gcc 172,957 84 0.05 1071.28 0.13 0.01
gzip 6,448 1 0.02 33542.75 0.00 0.00
parser 21,881 0 0.00 9124.77 0.00 0.00
perlbmk 52,928 23 0.04 15479.29 387.67 2.50
twolf 44,581 0 0.00 10229.97 0.00 0.00
vortex 122,060 10 0.01 14993.09 0.03 0.00
Linux 349,762 1368 0.39 766.16 1.07 0.14

Figure 1. Indirect function call characteristics

a pointer to the le name are stored in the six bytes fol-
lowing each ud2 instruction. The ud2 handler prints out
this information before halting the kernel. Such usage is
very kernel-specic: the references to the data bytes fol-
lowing the ud2 instruction are not obvious in the code
containing the instruction, but instead occur (indirectly,
through the address from which the exception was raised)
in the ud2 exception handler. About 6% of the functions
in the Linux kernel contain these instructions. A straight-
forward disassembly of the kernel would very likely treat
the data bytes following the ud2 instructions as unreach-
able; however, eliminating them could potentially change
the behavior of the kernel.
A crude user-level analog of this is with jump tables em-
bedded in the text section in position-independent code.
A key difference between the two situations is that ref-
erences to such jump tables from within the code are
relatively direct and not very difcult to identify, while
references to the ud2 instructions are indirect and sig-
nicantly harder to identify without specic high-level
knowledge of how they are used.

Overall, we found about 21 Kbytes of data embedded within
the code stream in the code sections in the Linux kernel, out
of a total of 1.16 Mbytes, i.e., about 1.8%.

To address this problem, we use symbol table information
to guide the disassembly, which proceeds in three phases:
First, symbol information is used to identify well dened
code regions such as functions, which are disassembled us-
ing the standard recursive disassembly algorithm. The sec-
ond phase uses the symbol table to try and identify “stubs,”
which are code regions that do not appear to be conven-
tional functions. Typical examples of such code are hand-
written assembly routines, kernel entry point routines, in-
terrupt handlers, etc.2 The nal phase of disassembly uses
relocation information to discover regions of code that have
been missed by the previous steps. The basic idea is to ex-

2 In the Linux kernel, stubs appear as text section symbols of type NOTYPE.
However, not all NOTYPE symbols in the text section correspond to stubs:
there are a handful of such symbols that should not be disassembled as code,
because they point either to data or to special regions in the text section.
Since it is not possible to algorithmically identify such regions, we allow
the user to specify such embedded data symbols via a table that indicates the
name, location, and the size of the symbol. In our current implementation,
this table contains fewer than 20 entries and includes the special purpose
pages that are used to initialize the memory manager.

ploit relocation information that is available in the binary. In
this phase, all the relocation entries are checked to see if they
point to a disassemble-able region of code. This is done by
checking if the source address for the relocation, the address
that the relocation points to, is within the text section. If the
source address is within the text section then this is treated
as a potential jump target and becomes a target for recur-
sive disassembly. This step is effective in identifying almost
all the regions that were missed out in the earlier phases if
they were reachable only as targets of indirect control trans-
fers. Our results indicate that this algorithm is able to disas-
semble approximately 94% of the executable sections. The
remaining 6% includes data blocks (several 4K pages) and
padding NOP instructions, in addition to the executable code
that cannot currently be disassembled. Portions of the text
section that cannot be disassembled are treated as data and
as such, are reinserted into the kernel executable when it is
reassembled; however, any code pointers in such undisas-
sembled code/data are identied as such, and updated cor-
rectly, using the associated relocation information. For ex-
ample, jump tables in the code section are handled in this
way.

2.2 Control Flow Analysis

After disassembly, the resulting instruction sequence is or-
ganized into a inter-procedural control ow graph. Unfortu-
nately, control ow analysis of operating system kernels is
complicated by a number of factors, such as the presence
of hand-written assembly code and its interaction with in-
direct function calls; code layout to segregate infrequently
executed code in order to avoid cache pollution; and excep-
tion handling. This section discusses some of these issues.

2.2.1 Indirect Function Calls

Control ow analysis in operating system kernels is com-
plicated by the interaction of two separate problems. First,
there is a signicant amount of hand-written assembly code
in the kernel (Section 2.3 discusses some of the challenges
this causes, and the approach we take to handle them). Sec-
ond, operating system kernels often make extensive use of
indirect function calls in order to enhance maintainability
and extensibility. This is a problem because static analyses
are generally quite conservative in their treatment of indirect

static inline void __down_read(struct rw_semaphore *sem)
{

__asm__ __volatile__(
"# beginning down_read\n\t"

LOCK_PREFIX " incl (%%eax)\n\t" /* adds 0x00000001, returns the old value */
" js 2f\n\t" /* jump if we werenʼ’t granted the lock */
"1:\n\t"
LOCK_SECTION_START("") /*busy wait code placed in a separate subsection */
"2:\n\t"
" pushl %%ecx\n\t"
" pushl %%edx\n\t"
" call rwsem_down_read_failed\n\t"
" popl %%edx\n\t"
" popl %%ecx\n\t"
" jmp 1b\n"
LOCK_SECTION_END
"# ending down_read\n\t"
: "=m"(sem->count)
: "a"(sem), "m"(sem->count)
: "memory", "cc");

}

Figure 2. Example of a kernel function whose code is spread over multiple subsections

function calls.3 Each of these problems—hand-written as-
sembly and indirect function calls—is nontrivial in its own
right, and the situation is exacerbated further by the fact that
they interact: the hand-written assembly code in an operat-
ing system kernels may itself contain indirect function calls,
and identifying those targets requires pointer alias analysis
of the assembly code.

Figure 1 shows the static and dynamic indirect function
call characteristics of the SPECint-2000 benchmark suite
compared to that of the Linux kernel. 4 The static counts in-
dicate that, with the notable exception of the gap program,
most of the programs in the SPECint-2000 suite contain rel-
atively few indirect function calls (applications written in
an object-oriented style, in a language such as C++ or Java,
would likely have a higher number of indirect function calls;
however, given that operating system kernels are written
mostly in C and typically do not use object-orientation, this
is not particularly relevant). The dynamic instruction counts
indicate that the runtime behavior of the Linux kernel is
not dramatically different than the behavior of the SPECint-
2000 programs. Most of the programs in this particular set
of applications execute relatively few indirect function calls,
with gap and perlbmk being notable exceptions. The Linux
kernel executes a fairly large number of indirect calls, more
than most of the SPEC benchmarks considered but well be-
low gap and perlbmk and the number of function calls it
executes, relative to its total dynamic instruction count, lies
well within the range of values for the SPECint-2000 suite.
It is possible that this is because the indirect function call
behavior of the kernel is not substantially different from
that of other software; it is also possible that the particu-
lar set of benchmarks we used for proling the kernel (the
MiBench suite) simply did not exercize the kernel code very
much. Since we are interested primarily in static optimiza-
tion and transformation of the kernel, however, it is the static
3 In general, identifying the possible targets of indirect function calls is
equivalent to pointer alias analysis, which is a hard problem both theoreti-
cally and in practice.
4 The SPECint-2000 programs were compiled with gcc version 3.3.3 at
optimization level -O2; their dynamic instruction counts were obtained
using their proling inputs, while those for the Linux kernel were obtained
using the MiBench suite of applications [7].

counts that are most relevant for our purposes, and here it is
clear that the kernel code contains signicantly more indi-
rect function calls than most of the application programs we
examined.

2.2.2 Hand-written Assembly Code

As an indication of the extent and effects of hand-written as-
sembly code in the Linux kernel, we found that of the 5,133
functions in the kernel, 89 functions did not have the stan-
dard function prologue and 34 did not have the standard epi-
logue, suggesting that the code was not compiler-generated,
i.e., was hand-written assembler; by contrast, in the applica-
tion programs we examined, all functions had standard pro-
logues and epilogues. The reason this is signicant is that
the absence of standard prologues and/or epilogues can af-
fect the precision of analyses that examine the stack behavior
of functions.

2.2.3 Implicit Entry Points

An important problem in dealing with control ow in oper-
ating system kernels is that not all entry points into the ker-
nel, and control ow within the kernel, are explicit. There
are implicit entry points such as system calls and interrupt
handlers, as well as implicit control ow arising from inter-
rupts, that have to be taken into account in order to guarantee
soundness. Our implementation uses the system call table to
identify system call handlers and mark them as potential en-
try points into the kernel control ow graph (interrupt han-
dlers do not need to be treated specially, but are found in the
course of ordinary control ow reachability analysis).

2.2.4 Non-contiguous Code Layout of Functions

A kernel developer can exploit the use of hand-coded as-
sembly to lay out specic parts of the same kernel function
in different parts of memory, so as to seperate common exe-
cution paths from less frequently taken execution paths. The

1L :

2L :

1L 2L

4

2

3

5

1 .text

.fixup

exception handler

...memory reference

data reference
control transfer

find fixup addr
jmp fixup addr __ex_table

... fixup action ...
jmp

Key:
! A memory exception at L1 causes control to branch to the exception handler.
" Exception handling code.
Exception handler searches ex table with the address L1, where the exception occurred, to nd the associated
xup code address L2.

$ Control branches from the exception handler to the xup code.
% Control branches from the xup code to some appropriate code address.

Figure 3. Control ow during the handling of exceptions in the Linux kernel

infrequently executed path is placed in a seperate subsec-
tion within the text section. There is one subsection created
for all the functions belonging to the same module, and all
their infrequently executed code is placed in that subsection.
This is illustrated in Figure 2, where the code fragment be-
tween LOCK SECTION START and LOCK SECTION END
are placed in a different subsection within the text section.
This has the effect of realizing the “procedure splitting” opti-
mization described by Pettis and Hansen [12]. However, this
can lead to imprecision during control ow analysis: since
the different subsections have symbols associated with them,
a naive disassembler may infer that the code in these subsec-
tions belong to distinct functions. The resulting code appears
to have two distinct functions, with control jumping from the
middle of one into the middle of the other. This kind of in-
terprocedural control ow—which actually occurs in some
parts of the kernel code—is not easily handled in many of
our program analyses, and can lead to a loss in precision.
We address this problem by making a post-pass over the con-
trol ow graph to identify functions that have been split in
this manner, and merge the code from the two distinct func-
tions into a single function. We found 100 subsections in the
Linux kernel, with each subsection having, on average, code
for about 9 functions.

2.2.5 Control Flow Issues in Exception Handling

In order to identify all reachable code in the kernel, it is not
enough to consider ordinary control transfers, which are ex-
plicit in the code: we also have to take into account control
transfers that are implicit in the exception handling mecha-
nisms of the kernel. For this, we examine the exception table
in the kernel. Locations in the kernel where an exception
could be generated are known when the kernel is built. For
example, the kernel code that copies data to/from user space
is known as a potential source for a page fault exception.
The Linux kernel contains an exception table, ex table,
that species, for each such location, the code that is to be
executed after handling an exception. Additionally, a special

section, .fixup, contains snippets of code that carry out
the actual control transfer from the exception handlers to the
appropriate destination locations. The ow of control when
handling an exception is shown in Figure 3: after the excep-
tion handler deals with an exception from an address L1, it
searches ex table with L1 as the key, nds the associ-
ated address L2 of the corresponding xup code, and jumps
to L2. This then carries out some xup actions, e.g., setting
ags or error values, and eventually jumps to some appro-
priate location in the text area. For example, when a page
fault occurs, the reason could be either that the address be-
ing referenced lies in a page that is not in memory, or that it
is an illegal address. In the former case, the exception han-
dler loads the referenced page into memory and the xup
code branches back to the instruction that raised the excep-
tion, causing it to be re-executed. In the latter case, the xup
code branches to an error routine.

The key point to note here is that the control ow path
from L1 to L2 is not explicit in the code, but is implicit in
ex table. It is necessary to take such implicit execution

paths into account for code compaction to ensure that we
nd all reachable code. We do this by examining the excep-
tion table and adding pseudo-control-ow edges to indicate
such implicit control ow. For the example in Figure 3, we
would add such an edge from L1 to L2. One implication of
this is that any instruction that can raise an exception, i.e.,
which is referenced from the exception table, terminates a
basic block.

Of the 108,611 control ow edges in the whole-program
control ow graph of the Linux kernel, 698 edges were
pseudo-control-ow edges resulting from the exception-
handling mechanism described above.

2.3 Program Analysis

As mentioned above, operating system kernels contain a sig-
nicant amount of hand-written assembly code. Since our
goal is to apply optimizing transformations on the kernel

foo .cA

foo .cA

foo.s runtime behavior

(safe approximation)

A
information about

 !analysisA!analysis

approximate
decompilation
w.r.t. A

execution

Figure 4. Using approximate decompilation for program analysis

code, we have to ensure that our analyses take all possible
runtime behaviors of the code into account; in other words,
we cannot sacrice soundness. This makes program analy-
sis problematic. On the one hand, dealing with hand-written
assembly code in a source-level or intermediate-code-level
analysis is messy and awkward because of the need to inject
architecture-specic knowledge into the analysis—such as
aliasing between registers (e.g., in the Intel x86 architecture,
the register %al is an alias for the low byte of the register
%eax) and idiosyncrasies of various machine instructions.
On the other hand, if the analysis is implemented at the as-
sembly code or machine code level, much of the semantic
information present at the source level is lost—in particular,
information about types and pointer aliasing—resulting in
overly conservative analysis that loses a great deal of preci-
sion.

We deal with this problem using an approach we call
“approximate decompilation,” which maps hand-written as-
sembly code back to C source les for analysis purposes.
The idea, illustrated in Figure 4, is that given an assembly
le foo.s and a program analysis A, we create a source le
fooA.c that has the property that an A-analysis of fooA.c is
a safe approximation of the behavior of foo.s, even though
fooA.c is not semantically equivalent to foo.s. For example,
if A focuses on control ow analysis, then fooA.c may elide
those parts of foo.s that are irrelevant to control ow.

We have applied this approach to build a tool that auto-
matically carries out approximate decompilation of Intel x86
assembly code les for use with a source-level pointer alias
analysis technique called FA-analysis [9, 17, 18] to identify
the possible targets of indirect function calls. This proceeds
as follows.

2.3.1 Data

Global memory locations in the assembly code are mapped
to global variables of type int in the generated C code. Mem-
ory locations accessed through the stack pointer register
%esp are assumed to be on the stack. Variables at differ-
ent locations within a function’s stack frame are mapped to
different local variables within the corresponding function in
the generated C code. Since there is little type information
available at the assembly level, these are declared to be of
type int with 32-bit values. A memory object that spans a se-
quence of memory locations in the assembly code is mapped
to an array of int in the generated C code. Before we start the
actual pointer analysis, we scan the entire kernel source code
and match memory objects to functions so that the source-
level FA analysis can deal properly with function pointers in
the assembly code.

Registers in the assembly code are also mapped to global
variables of type int in the generated C code. For example,
the 32-bit register %eax is mapped to a variable eax. Since
we are only interested in capturing potential aliasing rela-
tionships between objects, and not necessarily the actual val-
ues computed, we map the 16-bit and 8-bit registers (which
are aliases of parts of the 32-bit registers) into the appropri-
ate 32-bit global. Thus, the 8-bit register %al and the 16-bit
register %ax, which refer to the low 8 bits and the low 16 bits
of the 32-bit register %eax respectively, are both mapped to
the variable eax denoting the 32-bit register %eax.

2.3.2 Code

Functions in the assembly code are identied from symbol
table information and mapped to functions in the generated
C code.

Arguments to a function are identied via references to
stack locations that are deeper in the stack than the func-
tion’s own stack frame. In this manner, by examining the
references to actual parameters in the body of a function, we
can determine the number of arguments it takes, and thereby
generate a function prototype in the C code.

The assembly instructions in the function body are pro-
cessed as follows. System instructions, which manipulate
only the hardware or data related to the hardware (examples
of such instructions are LIDT – Load interrupt descriptor ta-
ble, and INVLPG – Invalidate TLB entry), have no effect on
pointer aliasing in the kernel code. For pointer alias analy-
sis, therefore, we simply ignore these instructions. Since FA
analysis is ow-insensitive and context-insensitive, instruc-
tions whose only effect is on intra-procedural control ow,
such as conditional and unconditional branches, also have no
effect on the analysis. Inter-procedural control ow cannot
be ignored, however, since it induces aliasing between the
actual parameters at the call site and the formal parameters
at the callee. Our decompiler therefore ignores conditional
and unconditional control ow instructions whose targets are
within the same function, but translates inter-procedural con-
trol transfers.5 A control transfer to a symbol S is translated
as a function call if either the instruction is a call instruction,
or if the target S is a function. Finally, instructions that move
data and perform arithmetic and logic operations are trans-
lated to the corresponding operations in C. For example, a

5 Note that in principle, the decompiler could have translated control trans-
fer instructions into the appropriate control transfer statements in C, which
would be ignored by the FA analysis. While this would have had the ben-
et of allowing us to use the approximate decompiler with ow-sensitive
program analyses as well, we did not do this due to time constraints.

register load instruction, ‘mov $0, %eax,’ is translated to
an assignment ‘eax = 0’.

3. Code Transformations

Idiosyncrasies of the kernel also affect the way we apply
transformations to the code. There are two main consider-
ations here. The rst involves code that cannot be altered
or moved because its behavior is closely tied to interactions
with the underlying hardware, while the second involves in-
teractions with exception handling. These are illustrated here
with some examples.

The rst example is of boot up code where apparently
unnecessary instructions cannot be eliminated. In the code
snippet shown below, the rst number on each line is the
address of the instruction on that line:

<startup_32>
...
0xc0100036 mov %eax, %cr0
0xc0100039 jmp 0xc010003b
0xc010003b mov $0xc0100042, %eax
0xc0100040 jmp *%eax
0xc0100042 lss 0xc01001e5, %esp
...

This code snippet contains two jmp instructions, shown
in bold, each of which jumps to the following instruction:
the rst of these jumps to the next instruction, whose ad-
dress (0xc010003b) is specied as an absolute operand,
while the second loads the address of the instruction after
it (0xc0100042) into register %eax and then jumps indi-
rectly through this register. Each of these jmp instruction
therefore appears redundant. It turns out, however, that these
instructions check whether turning on paging in the hard-
ware worked, and cannot be optimized away. Furthermore,
the page tables are located immediately after the hardware
initialization. These tables need to be page-aligned, and any
transformation to the initial boot up code could potentially
violate this alignment requirement. Violations of such align-
ment requirements cause the kernel to hang during boot up
time.

The exception-handling mechanism discussed in Section
2.2.5 (see also Figure 3) also imposes implicit constraints on
code transformations. The most obvious of these is that any
transformation that involves code duplication—for example,
function inlining—must ensure that additional exception ta-
ble entries and xup code are added for each instruction in
the duplicated region that can give rise to an exception (to
get around this issue, our implementation currently carries
out inlining of functions only if the function being inlined
does not contain any instructions that can cause an excep-
tion, i.e., does not have any entries in the exception table
pointing into its body).

Exception-causing code can have other effects as well.
Consider the situation illustrated in Figure 5. The pop in-
struction in basic block B1 can raise a page-fault exception.
This causes control to branch to an exception handler which
which as discussed in Section 2.2.5, loads the referenced
page into memory and then jumps to a block of xup code;
in this case, the xup code then transfers control back to the
original instruction that raised the exception, and re-executes

1B :

B :2

EXCEPTION
EDGE

UNCONDITIONAL JMP
EDGE

FALL−THROUGH
EDGE

pop %ebx

. . .
.fixup

jmp B1

Figure 5. An example of analysis complications due to ex-
ception edges

it. The problem here is that when we consider the exit from
basic block B1, we cannot guarantee that the pop instruction
in that block has been executed. One possible solution would
be to propagate some of the instruction semantics to the con-
trol ow edges. For example, an stack analysis aimed at de-
termining the height of the stack at different program points
(this information is used to support a variety of other analy-
ses, such as constant propagation and stack location liveness)
would have to conclude that the pop instruction, which deal-
locates a word off the stack, has been executed if the fall-
through edge out of block B1 is taken, but is not executed
if the exception edge B1 → B2 is taken. While this would
give correct results, such an approach is a departure from the
standard treatment of control ow graphs, and has the ef-
fect of complicating the various dataow analyses used. Our
current implementation makes the simpler (but conservative)
assumption that in situations where a basic block has an out-
going EXCEPTION edge, we cannot guarantee whether or
not the last instruction in the block has been executed.

3.1 Instrumentation

Our system supports proling of the kernel based on both
software-managed counters (e.g., basic block and edge pro-
les) and hardware-managed counters (e.g., CPU cycles,
cache misses). In order to obtain execution proles, we need
to know where to begin proling as well as where to end
proling and write out the prole data. For ordinary applica-
tions, the well-dened entry and exit points serve as natural
points for starting and ending proling respectively. An OS
kernel, however, has multiple entry and exit points, making it
necessary to create a mechanism to begin and end proling.

Our system uses a special (new) system call for this.
One of its arguments determines whether it starts proling
or ends it and writes out the results. Another argument de-
termines what kind of proling is carried out (basic block
counts, edge counts, or hardware-counter proles). The code
to be proled is bracketed with calls to this system call (cur-
rently these calls are inserted manually, but in principle this
step is easily automated).

While this infrastructure has been used to instrument the
kernel to track different kinds of control and data ows, it
is unable to instrument the initialization code that sets up
interrupt and fault handlers at boot time. This is because
the proling data structures can not be accessed until page
tables have been initialized. However, in practice this region

of code is small and this does not lead to signicant loss of
information for later optimizations.

4. Discussion

While in the current implementation we have focused on
Linux kernel binaries, in theory, PLTO can be extended to
process binaries of other operating system kernels that are
based on ELF format such as *BSD, MacOS, and Solaris.
Inspection of the OpenBSD and FreeBSD kernel binaries
suggests that the changes required to process them would be
fairly straightforward. In general, the key challenge would
be adapting PLTO to handle peculiarities native to each ker-
nel. These peculiarities are most prominent when disassem-
bling the instruction stream and recreating the nal exe-
cutable. The PLTO infrastructure provides hooks that can be
used to inform it about layout requirements for code regions
as well as regions that require special handling, for exam-
ple, parts of the text sections that need to be treated as data.
While we have not yet observed any new unusual instruction
sequences such as the use of the ud2 instruction in Linux,
the same approach as before may be used handle them. An-
other minor modication that would be required would be
that of updating the system call and interrupt handler tables
depending on the underlying operating system. In general,
it appears that calling conventions and higher level structure
are almost the same and thus the higher level infrastructure,
such as the different optimizers, can be used without any al-
terations.

5. Related Work

We are not aware of a great deal of work on binary rewriting
and optimization/specialization of operating systems ker-
nels. Flower et al. describe the use of Spike, a binary op-
timizer for the Compaq Alpha, to optimize the Unix ker-
nel [6]. There are many high-level similarities between their
work and ours, e.g., with regard to optimizations such as un-
reachable code elimination and prole-guided code layout.
The differences between their system and ours are mainly at
the low level, arising out of the fact that theirs was carried out
on the Alpha architecture, which is a xed-instruction-size
RISC architecture while ours is on the Intel x86, a variable-
instruction-size CISC architecture. The main impact of this
difference is in the disassembly code. Chanet et al. describe a
system for code compaction of the Linux kernel to reduce its
memory footprint [3]. Unlike the work described here, their
system relies on a modied compiler tool chain and requires
special annotations (currently manually applied) to deal with
hand-coded assembly.

Many researchers have investigated issues related to the
instrumentation and proling of operating system kernels
[1, 10, 13, 15, 16]. To enhance exibility and usability, most
of this work has focused on dynamic instrumentation. How-
ever, implementing a dynamic instrumentation tool is a non-
trivial task (especially on architectures, such as the Intel x86,
that have variable-length instructions). Since our primary
objective was to investigate prole-driven code transforma-
tions, we opted to avoid the complications associated with
dynamic instrumentation, and chose instead to implement a
simple static instrumentation tool.

There have been a number of successful efforts at build-
ing program analysers for bug detection that sacrice sound-
ness for pragmatic reasons [2, 4, 5]. Such analyses do not
suit our needs because our goals are different and require
that the analyses be sound.

There has been a great deal of research on code special-
ization (Jones et al. give a comprehensive discussion and
bibliography [8]). Almost all of this work is in the context
of application programs in high-level languages, and does
not consider the issues that arise when dealing with an OS
kernel.

References

[1] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Hen-
zinger, S.-T. Leung, R. Sites, M. Vandervoorde,
C. Waldspurger, and W. Weihl. Continuous proling:
Where have all the cycles gone? ACM Transactions on
Computer Systems, 15(4), November 1997.

[2] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static
analyzer for nding dynamic programming errors.
Software—Practice and Experience, 30(7):775–802,
2000.

[3] D. Chanet, B. De Sutter, B. De Bus, L. Van Put, and
K. De Bosschere. System-wide compaction and spe-
cialization of the Linux kernel. In Proc. 2005 ACM
SIGPLAN/SIGBED Conference on Languages, Com-
pilers, and Tools for Embedded Systems (LCTES’05),
pages 95–104, June 2005.

[4] D. Engler and K. Ashcraft. RacerX: effective, static
detection of race conditions and deadlocks. In
Proc. 19th. ACM Symposium on Operating Systems
Principles, pages 237–252, October 19–22 2003.

[5] D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Check-
ing system rules using system-specic, programmer-
written compiler extensions. In Proc. 4th ACM Sympo-
sium on Operating System Design and Implementation
(OSDI 2000), pages 1–16, 2000.

[6] R. Flower, C.-K. Luk, R. Muth, H. Patil, J. Shakshober,
R. Cohn, and P. G. Lowney. Kernel optimizations and
prefetch with the Spike executable optimizer. In Proc.
4th Workshop on Feedback-Directed and Dynamic
Optimization (FDDO-4), December 2001.

[7] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin,
T. Mudge, and T. Brown. MiBench: A free, com-
mercially representative embedded benchmark suite.
pages 3–14, December 2001.

[8] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Eval-
uation and Automatic Program Generation. Prentice
Hall, 1993.

[9] A. Milanova, A. Rountev, and B. G. Ryder. Precise
call graphs for C programs with function pointers.
Automated Software Engineering, 11(1):7–26, 2004.

[10] D. J. Pearce, P. H. J. Kelly, T. Field, and U. Harder.
GILK: A dynamic instrumentation tool for the linux
kernel. In Proc. 12th International Conference
on Computer Performance Evaluation, Modelling
Techniques and Tools (TOOLS), volume 2324 of
Lecture Notes in Computer Science, pages 220–226.
Springer, April 2002.

[11] S. Perinayagam, H. He, M. Rajagopalan, G. Andrews,
and S. Debray. Prole-guided specialization of an
operating system kernel. In Proc. Workshop on Binary
Instrumentation and Applications, October 2006.

[12] K. Pettis and R. C. Hansen. Prole-guided code
positioning. In Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 16–27, June 1990.

[13] V. Prasad, F. Ch. Eigler, J. Keniston, W. Cohen,
M. Hunt, and B. Chen. Locating system problems
using dynamic instrumentation. In Proc. 2005 Linux
Symposium, July 2005.

[14] B. Schwarz, S. K. Debray, and G. R. Andrews. Plto:
A link-time optimizer for the Intel IA-32 architecture.
In Proc. 2001 Workshop on Binary Translation (WBT-
2001), 2001.

[15] A. Tamches and B. P. Miller. Fine-grained dynamic in-
strumentation of commodity operating system kernels.
In Proc. 3rd Symposium on Operating Systans De-
sign and Implementation (OSDI-99), pages 117–130,
February 22–25 1999.

[16] A. Tamches and B. P. Miller. Using dynamic kernel
instrumentation for kernel and application tuning. The
International Journal of High Performance Computing
Applications, 13(3):263–276, Fall 1999.

[17] S. Zhang. Practical Pointer Aliasing Analyses for C.
PhD thesis, 1998.

[18] S. Zhang, B. G. Ryder, and W. Landi. Program decom-
position for pointer aliasing: A step toward practical
analyses. In Proc. Fourth ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages
81–92, October 1996.

