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Abstract

General-purpose operating systems such as Linux are in-
creasingly replacing custom embedded counterparts on a
wide variety of devices. Despite their convenience and flex-
ibility, however, such operating systems may be overly gen-
eral and thus incur unnecessary performance overheads in
these contexts. This paper describes a new approach to miti-
gating these overheads by automatically specializing the OS
kernel for particular execution environments. We use value
profiling to identify targets for specialization such as fre-
quent system call parameters. A novel profiling technique is
used to identify frequently invoked procedure call sequences
within the kernel. This information is used to sidestep the
problems arising from indirect function calls when carrying
out interprocedural compiler optimization. It drives a variety
of compiler optimizations such as function inlining and code
specialization that reduce the execution overheads along fre-
quent paths. A prototype implementation that uses the PLTO
binary rewriting system to specialize the Linux kernel is de-
scribed. While overall performance data are mixed, the im-
provements we see argue for the potential of this approach.

1. Introduction

An operating system (OS) provides an interface between ap-
plication programs on the one hand and a set of hardware
resources on the other. As such, it has two complementary
roles: to provide services (system calls) that aid the develop-
ment and execution of application programs, and to manage
the resources efficiently. Several research groups have pro-
posed ways to customize OS services to optimize those that
are heavily used—i.e., to make the common case fast [10].
One approach is to employ a micro-kernel and to allow ap-
plications to select the services that they require; examples
are Mach [17], the exokernel [4], SPIN [1], and Flux [5].
Another approach is to provide support for specialized im-
plementations of frequently used system calls; the seminal
work here was dynamic specialization in the Synthesis ker-
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nel [15] and follow-on work on Synthetix [14] and an OS
specialization toolkit [11].

This paper presents new, profile-guided techniques for
specializing an existing operating system kernel to a given
set of applications. These are implemented using the PLTO
binary rewriting system [19]. The advantages of using binary
rewriting are that we (1) do not require having access to
kernel source code, (2) can deal with hand-written assembly
code that is common within kernels, and (3) can process
a kernel after it has been configured for a specific set of
hardware resources.

Our focus at present is embedded systems, which have
a fixed set of applications and execute on hardware plat-
forms that often have severe resource constraints, such as
limited memory and power. Because of these constraints,
such systems often employ special-purpose operating sys-
tems or stripped-down versions of general-purpose systems.
Our goal is to enable embedded system developers to employ
a full-feature OS such as Linux for system development, and
then automatically to specialize the operating system kernel
to optimize the services that are frequently used.1

The specific contributions of the work described in this
paper are the following:

• The approach is essentially automatic, requiring only a
representative set of applications.

• It works on a general purpose OS (Linux) and should, in
theory, be applicable to any OS.

• It employs a novel profiling technique to identify fre-
quently invoked procedure call traces (paths) within the
kernel.

The remainder of the paper is organized as follows. Section
2 gives an overview of the entire process, from profiling ap-
plications through rewriting the kernel. Section 3 describes
how we identify frequent call paths within an OS kernel—
including those containing indirect calls. Section 4 describes
how we use the call traces to specialize the kernel. Section 5
gives experimental results. Finally, we discuss related work
in Section 6 and give concluding remarks in Section 7.

1 We have also developed techniques to compact the kernel to exclude
services that are not used, thus making the kernel both smaller and faster.



2. Overview

Our method for specializing a kernel to a given set of ap-
plications involves a series of steps to examine the applica-
tions and then to specialize the kernel. First, we execute each
application using representative input and gather a trace of
all system calls, including their arguments. This set of ap-
plications together with their input constitutes the training
set used to generate profiles as described below. We post-
process this trace to determine the most frequent system calls
and the distribution of values of the arguments of those calls.

Second, we use PLTO to add instrumentation code to the
kernel in order to generate basic block profiles. Input to
PLTO is a relocatable binary program, in this case the Linux
kernel.2 PLTO first disassembles the kernel to produce an in-
terprocedural control flow graph. PLTO then inserts instru-
mentation code to generate basic block and edge profiles and
assembles a new kernel binary. We then execute the training
set of applications to get basic block and edge profiles of
kernel activity resulting from the applications.

Third, we use PLTO once again to instrument the (orig-
inal) kernel so that it constructs call trace profiles for the
frequently executed functions in the kernel. A call trace at a
point p in the kernel is a sequence of call sites for the func-
tions that are active when control reaches p. We use the ba-
sic block profiles generated in the second step to determine
which functions to trace. We execute the training set of ap-
plications on the resulting instrumented kernel, in this case
to produce call trace profiles. From these we can determine
the most frequently executed function call paths in the ker-
nel. Our profiling technique is able to handle indirect as well
as direct function calls, and it considers paths that contain
one or more common intermediate functions. Section 3 de-
scribes the details.

The most important kernel-processing step is to special-
ize the kernel based on the information gathered from sys-
tem call traces (step 1), basic block profiles (step 2) and call
trace profiles (step 3). There are three main components of
this specialization: (1) create a new system call for each fre-
quently invoked system call that has one or more constant ar-
guments; (2) aggressively inline functions into this new sys-
tem call based on the hot paths from this function into deeper
levels of the kernel; (3) propagate constant arguments from
the new system call into the inlined functions to specialize
and streamline the code. We then employ additional code op-
timizations to further optimize the code: load/store forward-
ing to eliminate redundant memory accesses, peephole op-
timizations to combine adjacent instructions, and code lay-
out to improve instruction cache usage and branch behavior.
Section 4 gives details on how we use the call traces to im-
plement function inlining and how we specialize to constant
arguments.

The last step is to modify the application binaries to use
the new system calls that were created during the optimiza-
tion step. Each new system call is assigned a previously un-
used index in the Linux system call table. Hence, implement-
ing this step merely requires changing the system call num-
bers at those places in the application binaries where an opti-

2 We require a relocatable binary in order to have information about entry
points and relocatable addresses. A companion paper to this one [16] de-
scribes how we rewrite and instrument the kernel binary.
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Figure 1. An example call trace in the Linux kernel

mized call can be employed.3 The arguments themselves are
left on the stack as usual.

3. Profiling Call Trace Distributions
Operating system kernels often contain indirect function
calls for reasons of maintainability and extensibility, and
this poses a substantial challenge for specialization. Typ-
ically, execution environment information that can be ex-
ploited for specialization purposes is known at the “top” of
the kernel—i.e., in the routines that are close to the appli-
cation code—while the bulk of the kernel’s execution time
is spent in routines that are “deep” within the kernel. In
order for specialization to be effective, it is necessary to
communicate information to the deeper-level routines. How-
ever, the top-level routines are generally separated from the
deeper-level code by several levels of function calls, many
of which are indirect calls. The situation is illustrated by
Figure 1, which shows a particular frequently executed se-
quence of function calls within the Linux kernel correspond-
ing to the write() system call: it can be seen that there
are three indirect calls on the call path leading from the top-
level routine system call() to the deeper-level routine
do get write access().

Long call chains and indirect calls make it difficult to
apply standard code specialization transformations to ker-
nel code. For example, compilers often limit the scope of
their optimizations to individual functions and do not prop-

3 If the application binaries use a system call that can be optimized for
some cases but not all—e.g., because most calls have the same arguments,
but not all of them do—then the kernel will have both the optimized and
unoptimized versions.
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Figure 2. An example program and call trace

agate dataflow information across function boundaries. Fur-
thermore, static analysis and optimization tools are usually
very conservative in their treatment of indirect function calls:
To overcome these problems, we use profiling techniques to
identify common call paths, and then transform the code in
such a way as to remove direct and indirect function calls for
such paths and thereby allow optimizations to be carried out.
There are two components to such profiling: identifying call
paths, and then obtaining a profile estimating their distribu-
tion. The remainder of this section addresses each of these
in turn.

3.1 Call Traces: Basic Ideas
Conceptually, a call trace at a point p in a program is a se-
quence of call sites for the function invocations that are ac-
tive when control reaches p, starting with the function con-
taining p and ending with the entry function(s) for the pro-
gram. From an implementation perspective, a call trace can
be viewed as simply the sequence of return addresses ap-
pearing on the call stack when control reaches p. Figure 2
illustrates this. Figure 2(a) shows a source code fragment
containing a number of function calls. Now consider the pro-
gram point labeled ‘/*p*/’ in the function h(); suppose
that control reached this point via the sequence of function
calls

f → g2 → g3 → h

Figure 2(b) shows relevant portions of the assembly/machine
code corresponding to the source code of Figure 2(a). The
labels L1, . . . , L5 shown here are not actually present in the
code, but have been added to highlight the return address
associated with each call instruction. It can be seen from
this that the return address associated with a function invo-
cation uniquely identifies the call site, i.e., the location of the
invocation. Figure 2(c) shows the runtime stack when con-
trol reaches the point ‘/*p*/’ via the call sequence men-
tioned above. By traversing the runtime stack and extracting
the return address from each frame, we can reconstruct the
sequence of calls that are currently active at that point. A

call traces is the sequence of return addresses 〈L5, L4, L2〉
so obtained, preceded by a word indicating the length of the
sequence (in this case 3); this is shown in Figure 2(d).

To construct a call trace, we traverse the stack looking for
code addresses. Each time an address pointing to a code re-
gion is found, it is copied into a buffer. The resulting array
of addresses is close to a call stack trace, but it may contain
“noise” in the form of code addresses that are not return ad-
dresses. This happens, for example, when a function pointer
is pushed on the stack. The set of call instructions—and thus
the set of return addresses that can appear on the stack—are
statically known assuming the kernel does not dynamically
generate code containing function calls. We use this infor-
mation to remove entries that are not valid return addresses.

Note that our call traces reflect only the runtime behavior
of the program. For example, the program shown in Figure
2(a) contains another call path from f to the point p, namely,
f → g3 → h. However, since this path is not the one that
is currently active, it is not reflected in the call trace. Fur-
thermore, while this example considers only direct function
calls, the process works exactly the same way for indirect
calls.

3.2 Choosing Call Trace Profiling Points
We collect call traces at entry to each function that is consid-
ered to be “hot” with respect to some user-specifiable thresh-
old θ ∈ (0, 1]. The set of hot functions is determined using
basic block profiles, as follows. Suppose that a basic block
B containing m instructions is executed n times on some in-
puts, then let weight of B is defined as weight(B) = mn.
The weight of a function f is the sum of the weights of its
basic blocks, i.e., it gives the total number of instructions re-
sulting from its execution. We first process the kernel using
our binary rewriting tool to add instrumentation code that
counts of the number of times each basic block in the pro-
gram is executed. The instrumented kernel is then run on
representative “training” inputs. The kernel is then processed
once again by our binary rewriting tool, this time with the ba-
sic block profiles obtained from the training inputs. We then



consider the functions in descending order of weight, and
the set of functions whose total weight comprises at least a
fraction θ of the total number of instructions executed by the
kernel on the training input are labelled as “hot.” For exam-
ple, θ = 0.9 means that the hot functions account for at least
90% of the instructions executed at runtime.

3.3 Collecting Call Trace Profiles
Our call trace profiling technique is inspired by the value
profiling work of Calder et al. [2]. For each hot function f
we maintain a table Tf containing N pairs (calltrace , count).
Each time execution enters a hot function f , we construct the
call trace S at that point and check to see whether S appears
in Tf : If S is in Tf , we increment the corresponding count.
If S is not already in Tf , we attempt to insert it. If there is
no room in Tf for a new entry, we simply discard S.4

It may happen that the most frequently occurring value
overall is not one of the first N distinct values. We pro-
vide a mechanism for allowing later values to enter the ta-
ble by periodically “cleaning” the lower half of the table.
This means that the values are sorted based on their counts,
and the N /2 least frequently occurring values are evicted.
Our experiments indicate that, except for very small values
of the cleaning interval, the actual cleaning frequency does
not significantly affect either the speed or quality of profil-
ing. Thus, we chose the same cleaning interval as Calder et
al. [2], namely, 1000. In other words, for each hot function
f , the table Tf is cleaned after the execution enters f 1000
times. After a table has been cleaned once, we must make
sure that a new value can enter the steady part of the table
before we clean again. We set the new value of the cleaning
interval to 1000 plus the count of the last entry in the steady
part. This means that if a new value occurs almost exclu-
sively between cleanings, its count should be higher than the
last entry in the steady part of the table. It will then be moved
into the steady part, evicting the least frequently encountered
value.

The value N governs the number of entries in the profil-
ing tables, so it affects both the accuracy and running time of
the call trace profiler. Profiling tables must be large enough
that the most frequent entries will be in the table, but the
larger the value of N the greater the number of entries the
profiler has to look at each time it reaches a profiling point.
We have found that a table size of N = 12 works well in
practice.

4. Specialization

4.1 Function Inlining on Hot Call Paths
Once we have call traces for hot functions, we carry out
function inlining along frequently taken traces. The idea is
to bring frequently executed code from different functions
along the call path into the body of the same function. This
has three benefits: (1) it eliminates the procedure linkage
overhead by getting rid of the function call/return instruc-
tions as well as other instructions in the calling and return se-
quences; (2) it increases locality by bringing frequently exe-
cuted code closer together, with potentially beneficial effects
4 The total number of discarded values gives an indication of the impreci-
sion of the profile. This can be computed at the end of execution by sub-
tracting the total counts for the entries in the table from the the number of
times f was called, which is available from f ’s basic block profile.
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Figure 3. Guarded inlining of indirect function calls

on instruction cache utilization; and (3) it exposes opportu-
nities for code specialization, as described in the following
section.5

Inlining a direct call is conceptually straightforward:
given a call instruction I to a function f , let the next in-
struction be J . To inline this call, we create a clone of f , say
f ′, then replace the call instruction I by an unconditional
branch to the entry point of f ′, and each return instruc-
tion in f ′ with an unconditional branch to J . Subsequent
profile-guided code layout [13] may optimize away some of
these unconditional branches. When carrying out inlining at
the binary level, there are some subtleties that have to be ad-
dressed, e.g., jump tables have to be cloned and their targets
updated so as to point into the cloned code.

Inlining an indirect call is somewhat more complex, be-
cause an indirect call may have many possible targets. We
currently inline at most one indirect call target. In order to
ensure that the resulting code is semantically equivalent to
the original code, we use “guarded inlining.” Suppose we
have an indirect call instruction ‘call *r’ that branches to
the address contained in a register r. Suppose that we de-
cide to inline one of the targets of this call, a function f at
memory location loc. As shown in Figure 3, guarded inlin-
ing creates a clone f ′ of f , and transforms the call site so
that control branches to f ′ only if, at runtime, the target is
found to be f .

Carrying out inlining within the kernel requires care,
since we have to ensure that exceptions that are raised from
the inlined code are handled correctly. For example, func-
tions that copy data between user and kernel space first check
whether the page to be copied is valid, and raise a page fault
if it is not. Our current implementation conservatively does
not inline any function that has a pointer into it from the
exception handler table.

4.2 Code Specialization
Once inlining has been carried out, specialization involves
propagating information about the actual arguments at the
call site into the inlined cloned body and thereby generat-
ing code specialized to that call site. When the arguments
are provably known constant values, the optimization boils
down to the classical compiler optimization of constant

5 A potential problem with aggressive inlining is that it can cause code
bloat that adversely affects the program’s instruction cache utilization and
results in a loss of performance, but this problem can be assuaged by careful
attention to memory footprints during the inlining process.



propagation. It turns out that specialization can be carried
out even when the argument whose value we are specializ-
ing for is not provably constant. In the latter case, we add
runtime tests to the code to guard the specialized code and
ensure that it is entered only for the appropriate values of
the arguments. Thus, consider a function that has an argu-
ment x and body C, and suppose that x takes on a value v
on most—but not all—of the invocations of f . Then we can
transform the body of f to
if (x == v) then C[x=v] else C

where C[x=v] represents the residual code of C after it has
been specialized to the value x = v.6

Carrying out code specialization at the binary level,
where some of the code consists of hand-written assem-
bly that need not adhere to standard compiler conventions,
presents some challenges. In particular, since function argu-
ments are passed on the stack in the x86 architecture, this
requires the ability to reason about the caller’s stack frame
and its relationship to the callee’s stack frame. The issues
can be illustrated by the following source code fragment
from the Linux kernel:

sys read(unsigned int fd, char *buf, size t count )
{

...
file = fget(fd);
if (file) {
if (file->f mode & FMODE READ) {

ret = rw verify area(READ, file,
&file->f pos, count );

if (!ret) {
...
ret = read(file,buf, count ,&file->f pos);

...
}

Suppose that the argument count, shown highlighted
in the code above, almost always takes on the same value.
We can use this knowledge to carry out guarded special-
ization of the called routines rw verify area() and
read() (whose bodies have presumably been inlined into
sys read() based on hot call traces). To do this, however,
we have to overcome two major hurdles:
1. The caller and callee code do not refer to the actual pa-

rameters in the same way, making it nontrivial to identify
correspondences between them.

2. The code we wish to specialize may be preceded by other
computations which potentially could alter the value we
use to specialize upon.

We address these problems via stack analyses that infer the
size of each function’s stack frames (to relate stack accesses
in one function to those in other functions) and the possible
effects of memory load and store operations on the stack.

To determine the size of a function’s stack frame, we
track operations that update the stack and frame pointers and
use this to infer, for each basic block of a function, the net

6 Notice that in this case, the unoptimized code on the else-branch actually
suffers a performance degradation because of the test that has been intro-
duced. For the specialization to be profitable, it then becomes necessary to
carry out a profile-based cost-benefit analysis. The details of such analyses
are beyond the scope of this paper, but we have discussed them elsewhere
[12].

change in the size of the stack frame due to the execution of
the function. This information is then propagated across the
control flow graph of the function to compute the maximum
size of its stack frame.

Once we have determined stack frame sizes, we use use
depth and kill depth analyses to estimate the effect of func-
tion calls on the runtime stack. The use depth is an inte-
ger (or ∞) that represents an upper bound on the depth in
the stack—relative to the top of stack when the function is
called—from which the function, or any function(s) it calls,
may read a value. Similarly, the kill depth represents an up-
per bound on the stack depth to which a function, or any
functions it calls, may write a value. In the code fragment
for the function sys read() shown above, the idea would
be to show that the kill depth of the function fget() is
small enough that the stack location containing the parame-
ter count can be guaranteed to not be overwritten. Use and
kill depths are computed in two phases. First, a local analy-
sis of each function computes the effects of the instructions
of that function itself. This information is then propagated
iteratively along the call graph of the program from callee to
caller. The details of these analyses are discussed in [19].

5. Status and Experimental Results
We have implemented our ideas within the PLTO binary
rewriting system. At present, we have implemented all of
the instrumentation and profiling phases (basic block profil-
ing, value profiling, call stack trace profiling), analyses, and
optimizations described in the paper. This section presents
initial results that show the effect that they have upon per-
formance. However, the work is in its early stages, and we
have not yet had time to tune our implementation carefully.
For example, some of our analyses are currently quite con-
servative in their handling of indirect memory accesses, and
this hampers the optimizations. We are currently working on
extending these analyses to remove these sources of impre-
cision, as discussed at the end of this section.

We ran experiments on 3.2GHz Pentium 4 machines with
1GB RAM running the Linux 2.4.31 kernel. The kernel was
configured minimally as it would be for an embedded sys-
tem, e.g., there is only a single driver for each hardware
device. This kernel contains 5133 functions, 81263 basic
blocks, and over 349K instructions. We used PLTO to gen-
erate both specialized and instrumented kernels based on a
statically linked relocatable image of the kernel binary. PLTO
takes about two minutes to process and generate a new ker-
nel.

Generating a relocatable kernel binary required changing
only a single line of the original Linux Makefile. The new
executable generated by PLTO was converted into a bootable
image format by using a script that replicated the original
build procedure.

In order to measure performance attributes of the kernel,
we created a new system call:

int kprofile(command, type);

The first argument specifies the action to be performed;
possible actions include starting measurements, writing out
the data, and stopping measurements. The second parameter
specifies the type of measurement to take. In the current
implementation, the options include basic block profiling,
edge profiling, call stack profiling, cycle counts, and various
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Figure 4. Frequent call sequences for read system call

cache usage counts. To measure cycle counts, we use the
Pentium RDTSC instruction to read the hardware time stamp
counter on every entry to and exit from the kernel. Each
value is saved when we are doing timing measurements; they
are written out by the appropriate call of kprofile and are
post-processed to calculate the total time spent in the kernel
for each system call.

In order to analyze the effects of our optimizations, we
constructed what we call micro-benchmarks for selected
system calls. In particular, we ran the applications in the
MiBench benchmark suite for embedded systems [7], de-
termined the most frequently used system calls, and then
constructed small test programs to measure the impact
of optimizing those calls. Below we describe the experi-
ments for two of the popular system calls: sys read and
sys lseek.

Our micro-benchmark program for read and seek is as
follows:

while (i < repetitions) {
i++;
while(1) {
if ((n = read(fd, buf, 4096)) <= 0)

break;
}
lseek(fd, 0, SEEK_SET);

}

The body of the outer loop reads a file, then seeks back to
the start of the file. Each read fetches a 4K block, which is
the size of a page in Linux. We repeat the file read and seek
several times in order to get a fairly accurate measure of the
time spent in the kernel processing reads and seeks.

The benchmark program was processed as described in
Section 2. In order to collect basic block profiles, we ran
the micro-benchmark program using input file of sizes of
4k, 8k, 32k, 64k, 256k, 512k, 1M, 2M, and 4M. We then
combined the individual basic block profiles to get a single
composite profile. Basic block profiling identified 66 func-
tions as being hot; almost all of these are along the call paths
from sys read and sys lseek. The call path traces re-
vealed four different hot call paths for sys read, as il-
lustrated in Figure 4. There was a single hot call path in
sys lseek of length three. All these hot functions were in-
lined into sys read and sys lseek and then specialized
as described in Section 3. Finally, we used edge profiles of
the kernel—which were computed at the same time as basic
block profiles—to generate a good code layout [13].

Original Specialized Change (%)
Functions 5133 5139 0.1
Basic blocks 81263 81498 0.2
Instructions 349768 351020 0.35
Text size (bytes) 1,133,150 1,121,664 -1.0

Figure 5. Static effects of kernel specialization

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

8M4M2M1M512k256k128k64k32k16k8k4k2k1k0k

Cl
oc

k 
cy

cle
s 

pe
r r

ea
d 

ca
ll

File size in bytes

Non-optimized 4k read
Specialized 4k read

Figure 6. Performance of read pre and post specialization

Figure 5 summarizes how our transformations affect the
size of the kernel. The one additional function in the spe-
cialized kernel corresponds to the code for the kprofile sys-
tem call. The static number of basic blocks and instruc-
tions increase only slightly because we inlined only the hot
functions. Because PLTO automatically removes unreach-
able code when it constructs the control flow graph of the
kernel, the text size of the specialized kernel is actually
smaller than that of the original kernel.

In order to measure the effect of specialization, we ran
the micro-benchmark program with 25 repetitions of the
outer loop, and we used files of varying size from 1KB to
4MB—the same sizes for which we had done basic block
profiling. For each file size, we ran the micro-benchmark
five times for both the original and specialized kernels. Each
experiment was carried out by rebooting the kernel on a
machine that was isolated from the network and had no
other users or executing applications. In each experiment,
we used kprofile to calculate the number of cycles used
by read and lseek during each of the 25 repetitions of
the outer loop. We dropped the highest and lowest of the 25
values, then averaged the remaining 23 values to obtain the
timing data for a single experiment. We ran five experiments
for each file size, then averaged the results to obtain timing
results for each file size.

Timing results for sys read are shown in Figure 6;
those for lseek are shown in Figure 7. The plotted values
are the average—computed as described above—for a single
system call for each file size. Even though code specializa-
tion removed about 4% of the dynamic instructions from the
sys read call, there is no noticeable decrease in execution
time. This is because reading a file requires copying data



 300

 400

 500

 600

 700

 800

 900

 1000

 1100

4M2M1M512k256k128k64k32k16k8k4k2k1k0k

Cl
oc

k 
cy

cle
s 

pe
r l

se
ek

 c
al

l

File size in bytes

Non-optimized lseek
Optimized lseek

Figure 7. Performance of lseek pre and post specialization

from kernel space to user space—which is implemented by
a single “block move” instruction—and this single instruc-
tion dominates execution time. On the other hand, we see an
improvement of 6 to 8% for the sys lseek call. This call
does not involve any data transfer between kernel space and
user space, so the 5% reduction in the dynamic instruction
count translates into visible performance improvement.

We are encouraged by the speed improvements we see for
the lseek call. We have verified, by turning off specializa-
tion so that profile-guided code layout is the only optimiza-
tion, that these performance improvements are due mainly
to code specialization. We have identified other system calls,
such as mmap and munmap, that can potentially yield simi-
lar performance improvements. By performing manual opti-
mizations on just a single parameter to these system calls, we
have been able to get 4-5% gain in performance. By (hand)
optimizing on 5 out of the 6 parameters for the mmap call,
we are able to get about 20% improvement.

We are currently exploring several ways to improve per-
formance results and increase specialization opportunities.
First, many system calls, including sys read, have data
transfers between user space and kernel space, and as noted
above, this is a time-consuming operation. However, on
many embedded systems both application and kernel code
reside in a single address space. We are currently explor-
ing ways to merge user space and kernel space into a single
address space automatically. This would greatly reduce the
cost of data transfers and could potentially provide more op-
portunities for specialization. Obviously, merging of address
spaces will have to be done with care so as not to expose
vulnerabilities that are prevented by having separate address
spaces.

Second, binary specialization of the Linux kernel is hand-
icapped by a lack of semantic knowledge at the binary level
and by the use of hand-coded assembly. For example, in or-
der to propagate constants through the stack, we have to be
able to compute use-depths and kill-depths for each func-
tion as described in Section 4.2. However, the scheduler is
reachable from the mmap call. Because the scheduler ma-
nipulates the stack pointer in nonstandard ways, our stack
analysis has to bail out and assume that nothing can be deter-
mined about the stack. This fact ripples up to the mmap call

and precludes us from doing constant propagation along the
hot path in mmap, even though the stack does in fact have the
same contents whether or not the scheduler is called. If we
had higher-level semantic knowledge of the scheduler, we
could determine that it is not reassigning the stack pointer in
ways that preclude constant propagation. We have been able
to make productive use of semantic knowledge available at
source code level in our compaction work. We are currently
looking at how to use source-level semantic knowledge to
aid in specialization.

Finally, we currently profile system call arguments one at
a time and specialize on at most one argument. This could
be changed to profile a group of system call arguments. This
collective profile could then be used to specialize system
calls more aggressively. Initial results are promising.

6. Related Work
There has been a lot of work on binary rewriting over the last
decade, e.g., [3, 20, 18, 21]. Most of this work has dealt with
translating binaries from one machine language to another,
or with optimizing application programs. The only other
projects we are aware of that have used binary rewriting to
manipulate operating system kernels are Diablo [3] at Ghent
University in Belgium and Vulcan [21] in Microsoft. The
focus of Diablo has been reducing the size of the kernel in
an embedded systems, not improving performance.

The work most closely related to ours is that on operat-
ing system specialization. The Synthesis kernel [15] intro-
duced the idea of dynamically generating specialized code
for system calls within a customized kernel. A follow on
project, Synthetix [14], extends the ideas in Synthesis with
incremental and optimistic specialization. Incremental spe-
cialization allows specialized code modules to be generated
as information becomes available. Optimistic specialization
allows specialized modules to depend on system states that
are likely to occur but not certain. Our use of “guarded inlin-
ing” is an instance of optimistic specialization in the sense
that we generate specialized code in expectation of improved
performance for the common case, and guard execution of
that code to ensure that we have the common case. However,
we implement specialization automatically whereas it has to
be done by hand with Synthetix. Moreover, we do not “plug”
and “unplug” specialized code dynamically.

The latest follow-on to Synthesis and Synthetix is a col-
lection of specialization tools and techniques described in
[11]. These tools support static, dynamic, and optimistic spe-
cialization of system code. We only do static specialization,
but we support optimistic, value-based specialization. The
tools in [11] require significant manual intervention as well
as code rewriting, whereas ours are automatic. We also use
profile information to guide optimization.

Our notion of call trace profiling in some ways resembles
the idea of call path profiling [6, 8, 9]. Call path profiling
aims to measure the time spent along different calling con-
texts, with the aim of providing feedback to programmers for
performance tuning purposes. By contrast, we estimate the
frequency distribution of call traces, with the goal of guiding
an automated optimization tool. Call path profiles would not
be suitable for our needs because time spent on an optimiza-
tion path is not necessarily a good predictor of optimization
opportunities. The implementation techniques used for call
path profiling are also very different from ours. Early ap-



proaches to call path profiling iteratively explored call paths
using timer macros to estimate their cost [8]; more recent
implementations have used interrupt-based sampling [6, 9].
By contrast, our implementation—in particular, the way the
profiling tables are managed—is based on ideas from value
profiling [2, 12].

7. Conclusions
Recent years have seen an increasing trend towards the de-
ployment of general-purpose operating systems, such as
Linux, on embedded processors. Because of the generality
of such operating systems, they may incur unnecessary per-
formance overheads. This paper describes a new approach
to reducing some of these overheads via the use of binary
rewriting to instrument the OS kernel, collect execution pro-
files, and use these profiles to carry out code specialization
along frequently executed paths. A major contribution of
this work is a novel profiling technique that can be used
to identify frequently executed function call paths, thereby
sidestepping the problems arising from indirect function
calls when carrying out interprocedural compiler optimiza-
tion. Among the advantages of our approach are that (i) we
do not need access to source code and are able to handle
hand-written assembly code; and (ii) our transformations
are automated and do not need manual intervention. Our
ideas have been implemented using the PLTO binary rewrit-
ing system and evaluated on the Linux 2.4.31 kernel binary.
The performance results are currently mixed, with some
inputs showing significant performance improvements and
others showing slowdowns. We are currently in the process
of tuning our implementation and investigating additional
ways to specialized the code.
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