Unspeculatiori

Noah Snavely

Saumya Debray

Gregory Andrews

Department of Computer Science
The University of Arizona
Tucson, AZ 85721, USA

Email: {snavel y, debray,

Abstract

Modern architectures, such as the Intel Itanium, support
speculation, a hardware mechanism that allows the early
execution of expensive operations—possibly even before it
is known whether the results of the operation are needed.
While such speculative execution can improve execution
performance considerably, it requires a significant amount
of complex support code to deal with and recover from
speculation failures. This greatly complicates the tagks o
understanding and re-engineering speculative code. This
paper describes a technique for removing speculative in-
structions from optimized binary programs in a way that is
guaranteed to preserve program semantics, thereby makin
the resulting “unspeculated” programs easier to undedstan
and more amenable to re-engineering using traditional re-
verse engineering techniques.

1

It is well known that processor speeds are growing faster

Introduction

than memory speeds, which means that the performance

gap between the processors and memory is also growing
steadily. One effect of this is that high-performance psace

sors may be hamstrung because the memory system canno

deliver data as fast as the CPU would like. To alleviate
this problem beyond what is possible using conventional
instruction scheduling techniques, advanced architestur
such as the Intel IA-64 (Itanium) have offered an innova-
tive architectural feature callespeculation The idea is

to allow (long-latency) instructions to be executed much
earlier than would be possible in traditional architecture
possibly before it is even known whether the results of the
computation will be used—in the hopes that initiating such
expensive computations early will result in their results b
ing available if and when they are needed. Judicious use
of speculation can lead to significant improvements in per-
formance [6]. However, speculation alters the structure of
generated code in ways that do not reflect any logic in the
original source, and it can significantly change the place-
ment of instructions relative to unoptimized code. As a
result, speculation tends to make low-level code obscure

*This work was supported by the National Science Foundatiateu
grants CCR-0073394, EIA-0080123, and CCR-0113633.

gregl@s. ari zona. edu

and difficult to understand, analyze, and reverse engineer.
This can complicate the task of maintaining or understand-
ing software for which the original source code is unavail-
able, e.g., pre-compiled libraries or applications distred

as executables.

The contribution of this paper is to present a technique
for undoing low-level optimizations based on speculation
in order to expose the original structure of speculative pro
grams and thereby to render them more amenable to the
application of higher-level reverse engineering tools. We
explain speculation in some detail, discuss how speculated
code can be more difficult to understand than normal code,
and describe a method for undoing optimizations based on

gspeculation. The model for speculation we use follows that

of the Intel Itanium, but the techniques we present are gen-
eral enough to be applied to any architecture that supports
similar speculative operations.

2 Background: Speculation

In order to generate efficient code, optimizing compilers
attempt to hide the latencies of expensive operations by
scheduling them as far apart as is necessary. However,
instruction scheduling is constrained by dependencies be-
een instructions. In particular, an instructibrthat is
control dependern a conditional branch—i.e., J deter-
mines whethel is executed—cannot, in general, be sched-
uled earlier than the branch instructidnThis is illustrated
in Figure 1(a). Basic block B0 tests whether registeron-
tains a non-NULL value, and the load instruction in block
B1 is control dependent on the branch in BO. Moving the
load above the branch in this case would be incorrect: the
resulting code would generate an errorifhas a NULL
value. Such control dependencies limit our ability to hide
the latencies of expensive operations such as loads from
memory.

To address this problem, next-generation architectures,
notably the Intel Itanium, have introduced an architedtura
feature calleccontrol speculationwhose essential feature
is the speculative load instruction, denoted by the opcode
‘| oad. s.” The behavior of a speculative load is similar to
that of a normal load, but with one important difference: If
the instruction generates an exception, such as a segmenta-
tion or page fault, the exception is not handled immediately

BO

p:=cmp.eq r2, #0
rl:=load.s [r2]

BO if p goto B2

p :=cmp.eq r2, #0
if p goto B2 B1

\ r3:=addrl, r3

B1 chk.s r3, B3

rl :=load [r2]

r3:=addrl, r3 Bg\krecovery cod
rl :=load [r2]

B2 / r3:=addrl, 13

‘ r4 = add r3, r5 ‘

B2

r4 ;= add r3, r5 ‘

(a) Original unspeculated code (b) Code with speculation

Figure 1: An example of control speculation

instead, a special bit associated with the destinatiostegi above—and where the recovery code may, for example, it-
of the load, called &aT (“Not a Thing”) bit, is turned on. self contain other speculative or check instructions ehgr
Later when the program reaches a point where the result of resulting in significantly more convoluted control flow. The
the load is needed, a special speculation check instruction next section describes a method of unspeculating code that
(with the opcodechk. s’) isissued on the destinationreg- essentially reverses the process of speculation, and hence
ister of the load. If the register has iaT bit set, then makes the code easier to understand.

execution branches to recovery code provided by the com-

piler; otherwise, execution continues as normal. Nagd
bits can propagate from one register to another. That is, i
a source register of an instruction hasNIaT bit set, then
theNaT bit of its destination register will become set. This
means that a string of dependent instructions can follow a
speculative load, and in general these instructions wiill al

¢ 3 Unspeculation

Unspeculation refers to the process of transforming a pro-
gram containing speculative loads to a semantically equiv-
alent program where some or all of the speculative in-
; _ structions have been replaced by “ordinary” load opera-
have o be reissued in recovery code. tions. Our approach to unspeculation consists of two dis-
Using control speculan_on n th_e example shown aboye, tinct phases. First, we move each speculative load to one or
we can move the load instruction above the preceding n,q e hoints in the code stream where it can potentially be
branch, n the process turning it into a ?Pecu'ﬁ“"e load. replaced by an unspeculative load operation. We call this
The resulting codé,shown in F'gl.”_e 1(b)'. is considerably load sinking Second, we verify that the check and corre-
harder to understand than the original. First, there ar@mor ¢, jing recovery code can safely be eliminated and hence
instructions, more execution paths, and more convoluted y, 5+ the gpeculative load can be replaced by an unspecula-
program structure to consider in the speculated code. S€C-tive load. Each of these steps must, of course, be semantics-
ond, the speculative load has moved farther from its use, preserving. ' '
with intervening recovery code whose behavior has to be As an example, starting with the speculative code in Fig-
taken into account, thereby obscuring the original program ure 1(b), load sinl,<ing involves moving the speculative load

l()r%'c;a;zewﬁr;zlei?e '2 z)::itlzgtrigﬁtiesd n?g?: af\u rt?eesrs'iceliger to the start of block B1. Recovery code verification involves
prog P 99 'g"checking that the results of executing blocks B1 and B3 are

\t/ivohr?a:} lr?r asan?‘lCeuSI?:g;/ﬁe:’?[ﬁgnlihglgi\tfl e?e?ocrgjn?h ?rf\t/:éaelx(;%'dl'éidentical, and hence that the code in Figure 1(b) can be sim-
9 P plified to that in Figure 1(a). Both steps are in general much

IFor simplicity, we depart from the syntax of Itanium assemibk more complicated than illustrated by this example, because
structions (which tend to be quite different from those ofrentamiliar there is not necessarily a one-to-one correspondence be-
architectures) and write our instructions as follows: tween speculative loads and checks, because recovery code

dst: =opsrg src ... does not necessarily contain the same instructions as regu-
Hereop denotes the operatiodstis the destination, anstcy, src;, ... are lar code, and because exceptions are handled differemtly fo
the source operands. A memory load instruction is expreasedsimple speculative and unspeculative loads
indirect access through a register, with any necessaryeasidromputa- . . .) .
tions, displacements, etc., being carried out explicitly: Below we describe in qeta” hQW we move SpeCU|at“_/e
dst: = load[r]. loads to be near check instructions, and how we verify

whether recovery code and check instructions can be elim-

12 = add #8. 14 12 := sub #8, 15 ‘ r2 ;= add #8, r4 ‘ r2 :=sub #8, r5 ‘

rl :=load.s [r2] rl:=load.s [r2]

r2 := add #4, r2 r2 := add #4, r2

r3:=add #1, r1 r3:=add #1, r1
rl :=load.s [r2]
r2 ;= add #4, r2

r3:=add #1, r1
chk.s r3, Recover chk.s r3, Recover

(a) Before load sinking (b) After load sinking

Figure 2: An example of load sinking

inated. Both analyses require examing possible instmctio checked by several different check instructions, and alchec
dependencies, which in turn requires determining whether instruction may check several different speculative loads
memory addresses in registers might possibly overlap. Sec-Moreover, in the latter case, the speculative loads may have
tion 3.3 describes this memory-disambiguation problem. different sets of dependent instructions. The various com-
o binations of speculative loads and checks are illustrated i
3.1 Load Sinking Figure 3. The remainder of this section addresses how to

The main difference between “ordinary” and speculative deal with these issues. The problem of memory disam-
load operations is that exceptions raised by the latter are biguation for identifying dependencies between memory
deferred via th\aT bits. It follows that the appearance of ~reads and writes is discussed in Section 3.3.

a speculative load in a program indicates that it cannot be

guaranteed to execute without any exceptions. In general, 'tloads 2 load.s I3 load.s 4 10ad s
therefore, we cannot simply replace a speculative load by an ﬂ

unspeculative one and expect to preserve program seman- \
tics. Instead, the speculative load must be moved to some 3 S

\

appropriate later point in the code stream. 1 \\ \ \
The check instruction(s) associated with a speculative $
load indicates where a legal result for that load is expected Johks 2chks Jschks 4 chks % chk.s

and hence suggests a natural placement for the load: imme-
diately before the check instruction(s). In effect, thisipes

the speculative load down into the basic block containing
the corresponding check instruction, past any intervening
conditional branches.

We refer to this process of moving speculative loads o))))
“down” towards their check instructions &sd sinking It 3.1.1 Finding relationships between instructions
is illustrated in Figure 2. Note that when a speculative load
| is sunk, other instructions that depend anust be sunk as
well. To make this notion of “dependence” precise, define

two instructionsl andJ to bedirectly dependenfwritten computation can propagaMaT bits from one register to

| = J)if another. For this reason, a speculation check associated
1. | may write to any register or memory location that Wwith a speculative load into a registemay not check the
may be read by; or registerr itself, but possibly some other registérwhose
)) value has been computed from thatrof This occurs in
2. | may read from any register or memory location that Figure 1(b), where the speculation check (in basic block
may be written to byl; or B1) checks register; even though the speculative load (in
block B0) loads into registan.

In general, to determine whether a given check is as-
sociated with a given speculative load, we need to know
Let =* denote the reflexive transitive closure of there- whether or not the check’s source register may bia@ as
lation. We say that andJ aredependenif | =* J. a result of the failure of that load. To this end, given an in-

Load sinking is complicated by the fact that there may structionl =‘r : = | oad. s ...’ thatdefines aregister
not be a one-to-one correspondence between speculativer and a check instructioh= ‘chk. s r/, ...’, we say that
load and check instructions: a speculative load may be J checks if either of the following hold:

Figure 3: General structure of speculative computations

Our first goal is to identify, for a given speculative load,
the set of check instructions that test whether that load suc
ceeded or failed. As mentioned in Section 2, however, a

3. | andJ may write to the same register or memory lo-
cation.

1. r' =r, and the definition of r reaches);? or To make these ideas precise, we define a speculative re-

. .) gion as follows:
2. thereis an instructior that uses and that propagates

NaT bits from its source operands to its destination, Definition 3.1 Thespeculative regionf a speculative load
such that(i) the definitionl of r reaches’, and(ii) J I is a pair(L,C) whereL is a set of speculative loads and
checkd’. C is a set of speculation checks, such thaand C are

. . . the smallest sets satisfyingi) | € L; (ii) if xe L and
The set of speculation check3hk(l) associated with a . T
speculative load can then be defined as y € Chk(x) theny € C; and (i) if x € C andy € Ld(x)

theny e L.]
Chk(l) 2 {J| Jis a speculation check addcheckd }. A speculative region is unspeculated as a single unit.
_) _) This means that for each such region, either load sinking
In Figure 1(b), for example, sinadd instructions propa- sycceeds and all speculative code in the region is moved at
gateNaT bits, the chain of reaching definitions along the once, or it fails and no instructions are moved. To make this
execution path notion precise, consider an execution paftom a specula-
r1:=load.s [r2] # Block BO tive loadL to a checlC € Chk(L). LetDep () denote the
r3 :=add r1, r3 # Block B1 set of instructions anngtha’F are dependen'; an We can
chk.s r3, B3 # Block B1 now make precise the conditions under which load sinking

can be carried out for a speculative region:
allows us to infer that the check instruction in block B1 is

associated with the speculative load in block BO. Definition 3.2 A speculative regioriL,C) of a speculative
Given a speculative load the setChk(l) can be deter- load is said to b@ath-independent, for any pair of spec-
mined via a depth-first traversal of the control flow graph Ulative loadds, I € L and checkl < C, and any two paths
starting at . At each point, we keep track of the setspec- ~ Tu betweenl; andJ andp betweenl; andJ, it is the case
ulative registersat that point, i.e., the registers whasaT thatDep,, (Tu) = Dep,, (T). n

bits may be set. Initially, this contains only the destioati
register of the speculative load. It is updated during the
traversal using information about instructions that propa
gateNaT bits. The traversal stops whenever the speculative
register set becomes empty. The®bk(l) then consists of
the speculation checks that can be reached in this traversal
Analogous to the seEhk(l) for a speculative loatl, we
can consider the sétd(J) of speculative loads associated 1. Letmtbe an arbitrary path from some loadlirio some
with a check instructiod: check inC andS= Dep () the instructions om de-
pendent or..

As an example, in Figure 3, path independence requires that
the instructions dependent on the speculative lgadong
the path(lz...Js) be the same as the set of instructions de-
pendent on the speculative logdalong the pathy ... Js.

If a speculative regioriL,C) is path-independent, load
sinking becomes straightforward:

Ld(J) 2 {l'| I'is a speculative load antle Chk(l)}.
2. For each speculative lodd: L delete the instructions
This set can be derived from tizhk sets computed for the Sbetweerl and any check ic.
speculative loads in the program.
3. Foreach checke C, copy the instructionSto the top

3.1.2 Speculative regions of J's basic block. Additionally, if there are any non-
speculative instructionS' in S that compute a value

Intuitively, in order to carry out load sinking to a specu- that is live along a path that leaves the region without

lation ChECkJ, the set of instructions sunk tb must be going through a Specu|ation Check, Cogyonto this

well defined, i.e., must be the same for all speculative loads path.

| € Ld(J). To see the reason for this, consider the specula-

tive loadsl3 andl4, and the speculation chedk, in Figure The code structure resulting from load sinking is illustcat

3. LetS; be the set of instructions dependent on the specu- in Figure 4.

lative loadl3, andS, the set dependent dp When sinking . .

Iz we want to move all the instructions B down to the 3.2 Recovery Code Verification

check instruction; when sinking, similarly, we want to |n Figure 4 there are two possible outcomes for the specula-
move all ofSy. If S3# & itis not clear what instructions tion check in blockBenk. If the speculative load completes
ought to be moved down to the check; if this happens, load successfully without setting arfyaT bits, then execution

sinking is said to fail. takes thepass pathipass = Behk — Braiithru — Bmerge |f
> — , o the speculative load may fail and 9¢&T bits, then exe-
A definition | of a variable or registex is said toreacha program . ;

point p if there exists an execution path framo p along whichx is not cution goes through the recovery code alongfiiepath

redefined, i.e., along which the value assignex by | may survive [1]. Thail = Bchk — Brec — Bmerge

Behk By

‘ r:=load.s addr) @ "; = |0::§4[r2%
/| .. speculative instructions...| | () rz:=a o f
pass path h chk.s r, Brgg \ fail path (3) r3:=add#1,rl

Thass s N Tiail (4) chk.sr3, Brec

" Braitnu m N

/ \ Brec
| recovery code \ -
i ...fall-through code... + | (5) r2:=sub#4,r2

\ ..fall-through code... | (6) rl:=load [r2]

\ / (7) r2:=add#4,r2
N 7 (8) r3:=add#1,rl
T - Bmerge P
N #
By

Figure 4: Code structure after load sinking
Figure 5: An Example of Recovery Code Verification

The effect of unspeculation is twofold. First, the spec-
ulation check instruction and the fail patl; are elimi-
nated. Second, the speculative instructiorBscare con- The simplest case of path equivalence is when the recov-
verted to unspeculative ones, which means that exceptionsery code is identical to the speculated code, except for the
deferred by the speculative code are no longer deferred af- speculative load that is replaced with an unspeculative: loa
ter unspeculation. In order for this to be correct, the code This occurs, for example, in the code in Figure 1(b). In gen-
must satisfy two conditions: eral, however, the contents of registers may change between
a speculative load through a registesind a check on that
load, as illustrated in basic block B3 in Figure 2(b). To re-
cover if the load fails, the correct address has to reconapute
before reissuing the load, and so the recovery code needs
extra instructions to fix the program state appropriately.

The general case is illustrated in Figure 5. Instructions 1-
4 are from the longest block in Figure 2(b) after load sink-
ing. Instructions 5-8 are the corresponding recovery hlock

3.2.1 \Verifying Path Equivalence

1. [Path EquivalencgThe execution pathBassandTeai
must be equivalent, in the sense that for every register
and memory locatiow, the value ofx at the entry to
Bmerge Must be the same when execution goes along
Thass@S When it goes along,; .

2. [Load Equivalencg. For every memory locatiory The first instruction in the recovery code (instruction 5) un
from which there is a speculative load B, there does the changes to registerafter the speculative load,
must be an unspeculative load frgrn Brec. restoring its value to that at the speculative load. Aftés th

the load is reissued, this time unspeculatively. The remain

. o)] der of the recovery code recomputes values that were com-
The need for the first criterion is obvious:TifassandTai puted using the result of the speculative load. As this exam-
can produce different values for some register or memory pie jllustrates, both the speculative code and the recovery
location, then eliminatingi,; in the course of unspecula- code may contain address and register computations, which

tion can potentially change the behavior of the program. haye to be taken into account when reasoning about path
The second criterion is motivated by the need to ensure that gquijvalence.

same as that of the original code before unspeculation. contents of registers and memory locations along the pass
The remainder of this section discusses how we verify and fail paths. In doing this, our current implementation is
these criteria. Our current implementation is able to rea- conservative in its treatment of memory: if either the pass
son about path equivalence only when each of the pass pathpath or the fail path contains any stores to memory among
Thassand the fail patig,; is a single straight-line path with the instructions that are dependent on a speculative load, w
no branches. It can sometimes happen that the pass and/oconservatively assume that path equivalence does not hold,
fail path may contain other speculation checks that intro- and abandon the unspeculation effort for that speculative r
duce branching structure into the code, but this gets elimi- gion. This is not a significant problem in practice, as shown
nated during the course of unspeculation. To catch such sit- by our experimental results (see Section 4).
uations, we iterate the unspeculation process until no more Given this treatment of memory stores, proving path
speculative code can be eliminated. As the experimental equivalence boils down to reasoning about the contents of
results reported in Section 4 indicate, this suffices fortmos registers along the pass and fail paths. To do this, we spec-
instances of speculation encountered in practice. ify a logical formula® asserting that there exist program

states for which path equivalence does not hold—i.e., for rd = rif.

some register, the value ofr along the pass path differs

from its value along the fail path. We then use constraint As mentioned above, the constructioriéf, corresponding
solving techniques to try and show thatis unsatisfiable. to the fail path, is exactly analogous.

If we are able to do so, we conclude that there are no pro- The formulaA expresses that some register has a final
gram states that can cause path equivalence to be violatedyalue that is different along the pass and fail paths:

and hence that path equivalence holds.

Given a logical formula, let (3)A denote the “existen- A = \/ rb# rl.
tial closure” ofA, i.e., the formula where all free variables r a register
in A are existentially quantified. Using this notation, we can
write the formula® as: In the actual implementation, we refine this process to re-
O =3[WpAWiAA] duce the size of constraints and the cost of checking satisfia

bility of constraints. First, it suffices to restrict ourexition

whereW, andW¥; are formulae expressing the values of lo- to the (usually small) set of registers that are actually mod
cations at the end of the pass path and the fail path respec-fied along at least one of the pass and fail paths. Second,
tively, in terms of their initial values; and is a formula we reduce the number of instructions that we have to con-
stating that there is some location whose value at the endsider by walking backwards on each path from the merge
of the pass path is different from that at the end of the fail point, marking instructions that are identical on both path
path, i.e., path equivalence does not hold. until we reach two non-identical instructions or the top of

Assume that each instruction in the program has a unique the check block. If we happen to hit the top of the check
namelx. We describe the construction of the formtig, block, then the relation becomes vacuously empty, so there
corresponding to the pass path, as a conjunction of the is nothing to check. Our implementation uses the Omega
constraints specified below; the constructiorttf, corre- calculator [11] to determine the satisfiability of the foriau
sponding to the fail path, is exactly analogous. The value of &,
aregister at the beginning and the end of the pass path are The algorithm can be illustrated using the recovery code

denoted byr(’)3 andrd respectively. At intermediate points shown in Figure 5. We have = (3)[Wp A W AA], where:
along the pass path, the value of registenmediately after

instructionly is denoted byf. For each instructioly along Wp= 1) =menir2o)
the pass pathy, contains a conjundZy that captures the A rZ% =r2y+4
effect ofly. These are defined as follows: A r:~’>fj = rlg +1
1. lk="'r:=1 oad [g]. In this caseCyx = r|} = men{s{) ﬁ:;‘ﬁzgk
wherel; is the most recent instruction that defines reg- A rsg) s
=r3}.

isters (j = 0 if s has not yet been defined along the

f
. - . Y= rl, = 2
pass path), anchemis an uninterpreted function sym- f ' mentr2o)

bol. AT2 :r2(f)+4
ANr2e =12,—4
2. lx="'r :=sdpt’ for some operationp, and registers A r3§ — rli —1
andt, where the semantics &f is known to the ana- Arl = menir2))
lyzer. In this caseC = rf = f.(s",t) wherel; and \ rz? o +45
Ij refer to the most recent instructions defining regis- A r3¥ _ rl? 1
terss andt respectivelyj = 0 (respectivelyj = 0) if s § ¢
(respectivelyt) has not yet been defined along the pass A rl? - r1§
path); andf;, expresses the semantics of the operation A r2$ = r2¥
@. Our analyzer knows about the semantics of some AT3e = 238' ; ‘
common arithmetic instructions: e.g. gif= add then A= 118 #r1e V2l #r2e V38 £13e
fg is the binary function ‘+, signifying addition; if _) S
@ = sub thenf, is ‘—,’ signifying subtraction; etc. The reader may verify that these constraints simplify in a

_ i) straightforward way to give
3. Otherwise, the effects of instructibpcannot be mod-

elled by the analyzer. The analysis is aborted in this 1P — menfr2) Ar2P = r2p+4Ar30 = menir2o) + 1
case, and our system conservatively assumes that path

equivalence does not hold. ¢ f f
) .) . rle =mentr2p) Ar2e =r29+4Ar3 =menir2g) + 1
Finally, for each register, W, contains a conjunct express-

ing the final value of. Let the last instruction along the whence thé\ constraints are falsified, which implies thit
pass path that definedely (k=0 if r is not defined along is unsatisfiable. This, in turn, implies path equivalenae fo

the pass path), then this conjunct is given by the code in Figure 5.

3.2.2 Verifying Load Equivalence gion of memory. This observation forms the basis of this

. . _ analysis.
Load equivalence can be determined using an approach Our analysis considers the set of regions

very similar to that described above for path equivalence.
The idea is to pair up speculative loads with unspeculative
loads in the recovery code, and then to use a constraint-
based test analogous to that above to determine whether thevhere stack refers to stack locationglobal to globals,

address registers being used in the two loads could haveGOT to the global offset table, andum to numerical
different values. constants. Here, the stack and global regions are self-

explanatory. The global offset table is a read-only region
of memory containing 64-bit addresses that are either code
addresses or global data address&#nce memory disam-
biguation is relevant only when at least one of the refer-
ences is atoreinstruction, and the text section (the memory
region containing the actual executable code for the pro-
gram) is read-only, we make the simplifying assumption
that all addresses in the global offset table point to global
data. This is safe, though in theory it may occasionally lose
precision. The elememum refers to numerical constants
that may be computed as part of address computations.
Our analysis domain is the powerset of this sD),
ordered by subset inclusioni?(D),C) forms a complete
lattice, with least elemeffit(denoting an unreachable refer-
ence), and greatest elem@&nfdenoting an unknown value),
and meet operation. Instructions within a basic block are
handled as follows, with the notation*~ S denoting that
a register points to a set of regiors

D = {stack, global, GOT, num}

3.3 Memory Disambiguation

Memory disambiguation involves learning enough about
the contents of registers at a given program point to decide
if two registers can contain overlapping addresses at any
time during execution. We need to solve this problem in or-
der to determine whether instructions are dependent when
doing load sinking and recovery code verification. The
problem is difficult in general, and it is exacerbated here
by the lack of semantic structure at the machine code level.
Our current implementation generalizes a simple analysis
technique known amistruction inspectioff5]. The general
idea here is that two memory references can be inferred to
be non-conflicting if eithe(i) they use distinct offsets from
the same base registerwith no intervening definitions of

r; or (i) they point to disjoint regions of memory, e.g., the
stack and the global data area. The first of these is straight-
forward to adapt to the Itanium; due to space constraints
we do not discuss it further. The remainder of this section
focuses on the second technique.

We use a simple iterative dataflow analysis catiegion
analysisto associate, with each memory reference in the
program, a subset of the memory regions that the reference
may access. The basic idea behind this analysis comes
from the manner in which the different sections of an ex-
ecutable file are generated. The object module generated
by a compiler from a source module typically consists of 3.
several code and data sections, e.g., the code section, the

1. If r — S and the value of’ is obtained by an arith-
metic computation involving, thenr’ — S.

This reflects the characteristics of address computa-
tions discussed above.

2. [Standard register usage conventjonthe register
r1+— {GOT}; the stack pointegp — {stack}.

[Loads from memody Given an instruction

constant data section, the zero-initialized data secétm,

The linker combines a number of such object modules into
an executable program: in the process, it puts all the sec-
tions in their final order and location. The sections of the
same type coming from different object modules are typi-
cally combined into a single region of that type in the final
executable. In general, when generating an object module
from a source module, a compiler has no information about
other object modules, e.g., their number, size, or the order
in which they will be linked together, so it cannot make any
assumptions about the eventual locations of these regions
in the final executable. As a result, because the distance be-

r':=load [r]

if r — {GOT} immediately before this instruction,
then immediately after this instruction we have—
{global}. Otherwise, ifr — SandS# GOT, then
r’ — D after the instruction.

This reflects the assumption above that addresses in
the global offset table point to global data. We make
no assumptions about the contents of other memory
regions, so loads from them produce the vdlyale-
noting ‘unknown.’

tween the two regions of memory is not known at compile Setunionis used as the meet operator to propagate informa-
time, the code generated by a compiler for address compu-tion across basic blocks. Values are propagated itergtivel
tations cannot use a pointer to a particular region of memory until a fixpoint is attained, i.e., until there is no change to
to obtain an address pointing to some other region of mem- the set computed for any register.

ory. In other words, an address obtained by doing address 30ther 64-bit architectures where the instruction widthnigatier than

arithmetic starting with a pointer to a pa_rti(_:UIar region of g4 pits, e.g., the Compaq Alpha, use a similar table for tiagdd4-bit
memory can be safely assumed to fall within that same re- constants and absolute addresses.

Program SPECULATIVE LOADS SPECULATION CHECKS
Orig. | Unspec.| Reduction (%)| Orig. | Unspec.| Reduction (%)
(Lo) (Ly) | ((Lo—L1)/Lo) | (Co) (C) | ((C—C1)/Co)
bzip2 130 31 76.2 124 42 66.1
gzip 224 62 72.3 181 54 70.2
mcf 94 31 67.0 97 34 64.9
parser 483 85 82.4 451 75 83.4
twolf 1542 385 75.0 1399 354 74.7
vortex 5339 451 91.6 5217 352 93.2
vpr 608 152 65.0 614 145 76.4
[GEOM. MEAN: | 75.2 | 75.0 |

Table 1: Amount of speculated code before and after unsatacnl

After the analysis, two indirect memory references Itanium binaries [13]. We used a set of seven programs

through registers; andry, wherery — S andry — S, from the SPECint-2000 benchmark suibzip2 gzip, mcf,

can be inferred to be independengifn S, = 0. parser, twolf, vortex andvpr, compiled using Intel'sscc
o compiler version 5.0.1, at optimization leve03 together

3.4 Putting it All Together with profile feedback. The resulting binaries contain a sig-

The discussion of unspeculation thus far can be summa- nificant amount of control speculation.

rized as the following sequence of steps: The effectiveness of our unspeculation algorithm can be

,) measured in two ways: quantitatively and qualitatively.

1. Group the speculative loads and speculation checks First, there are situations—such as when the path indepen-
into speculative regions (Section 3.1.2). dence condition is not met—where our algorithm will fail

to unspeculate a region of code. Therefore we want to know

2. For each speculative region, verify path independence h k lati laorith dsi N
(use the memory disambiguation techniques discussed. ow often ourunspecuiation algorithm succeecs in convert-

in Section 3.3 to identify dependencies between mem- ing speculated code to no.n-speculated code. SeC(_)nd, since
ory accesses). If path independence cannot be Veriﬁedthe goal of unspeculation is to make programs easier to un-
for a region, abandon unspeculation for that region. derstand, we ne_ed some way to gauge how successful our
algorithm is in this respect.
3. For each speculative region that is path independent, To address the first question, we compare the proportion
carry out load sinking (Section 3.1). of speculative loads and speculation checks removed from
_ _) each program by our algorithm. Table 1 shows the results of
4. Verify path_equwalence a_nd _Ioad equ_lvalence for the counting the number of (a) speculative loads and (b) spec-
code resulting from load sinking (Section 3.2). ulation checks before and after speculation. It can be seen

Once these steps have been carried out, we are in a positionthat our algorithm reduces the number of speculative loads

to carry out the final step of unspeculation for the specula- 2nd Speculation checks _by about 75% onaverage.
tive regionR: For the second question, we use the idea that a simpler

control-flow graph is usually easier to analyze and under-

1. Replace each speculative loadRiby an unspeculative stand than a more complicated one, and therefore one mea-
load. sure of how much our algorithm contributes to comprehen-
sion is the relative complexity of the CFG before and after
unspeculation. To estimate complexity, we count the num-

Deleting the speculation check causes the correspondingP€r Of instructions, basic blocks, and edges between blocks
control flow edge to the recovery code to be deleted as the program. The results of this experiment are shown

well. Usually, this causes the corresponding recovery code In Table 2. This table shows that, on average, the num-

to become unreachable. Such unreachable code is detecte@®r Of instructions decreased by aboout 6%, the number of
and eliminated in the normal course of subsequent program Pasic blocks decreased by about 13%, and the number of
edges decreased by about 12% after unspeculation. For one

2. Delete each speculation check’n

analyses. T
benchmark, vortex, we saw a significantly larger decrease
4 E . tal R It in the number of instructions, blocks, and edges — about
Xperimental Results 14.5%, 29.1%, and 25.6% respectively.
We implemented our ideas withlhTO, a binary rewriting We are also interested in the effect that unspeculation

system we have created for manipulating and optimizing has on performance. Since unspeculation attempts to undo

BAsIC BLOCKS EDGES INSTRUCTIONS
PROGRAM Orig. | Unspec.| Change (%) Orig. | Unspec.| Change (%)| Orig. | Unspec.| Change (%)
(Bo) (B1) | (Bo—B1)/Bo | (Eo) (E1) | (Eo—E1)/Eo | (lo) (1) (lo—11)/lo

bzip2 2509 2299 8.7 4188 3867 7.7 9259 8881 4.1
gzip 3189 2845 10.8 5297 4767 10.0 12957 | 12345 47
mcf 1118 956 145 1774 1533 13.6 4000 3715 7.1
parser 8866 7838 11.6 15891 | 14243 104 29779 | 27939 6.8
twolf 20543 | 17916 12.8 33083 | 29022 12.3 79469 | 74571 6.2
vortex 43641 | 30932 29.1 79658 | 59251 25.6 165189 | 141245 145
vpr 10570 9425 10.3 18805 | 16997 9.6 44319 | 42143 4.9

[GEOoM. MEAN: | 12.9 | 11.9 | 6.3 |

Key: Orig: Original speculated code; Unspec: Unspeculated code

Table 2: Effects of unspeculation on program size

Program Execution Timgsec) T1/To Processing timésec)

Original (Tp) | UnspeculatedTy) Program size Unspeculation| Total Tuns/ Ttot
bzip2 843.65 859.86| 1.019 (bytes) (Tuns) (Tiot) (%)
gzip 633.15 700.33| 1.106 bzip2 756848 2.565 99.730 2.57
mcf 1409.94 1432.59| 1.016 gzip 783312 3.234 96.715 3.34
parser 1190.45 1268.94 | 1.066 mcf 677712 2.765 87.653 3.15
twolf 1267.49 1333.95| 1.052 parser 870032 5.350 125.541 4.26
vortex 835.32 839.26 | 1.005 twolf 1283968 90.856 277.396| 32.75
vpr 906.85 985.82 | 1.087 vortex 2067440 79.756 430.865| 18.51

| GEOMETR|CMEAN | 1050 | Vpl’ 1030080 8468 146303 579
| GEOM. MEAN: | 5.02]

Table 3: Performance Table 4: Processing time

a compiler optimization, we expect that unspeculation re-]) _)

sults in less efficient code. To test this, we measured the [N particular, we use a simple file-based interface between

execution times of the seven benchmarks before and afterthe unspeculation module and the Omega calculator: the

unspeculation. The programs were run on an HP 2000 constraints generated are written out to a file, the Omega

workstation with a 733 MHz Intel Itanium processor run- calculator is mvoked on this file and the results written out

ning Redhat Linux 7.1 with 1 GB of main memory and t0 another file, which is then read back in by the unspecula-

2 GB of swap space. Execution times for these programs ©Or- The associated overheads lead to a significant increase

were obtained as follows: Each binary was run five times in the cost of unspeculation: while they are around 2—4% of

on an unloaded machine and its runtime was measured us-the total processing time for most of the benchmarks tested,

ing the Unixt i me command; the largest and smallest of they can be as high as 33%. We believe that a more ef-

the resulting run times were discarded; then the arithmetic ficient interface with the Omega calculator would reduce

mean of the remaining three execution times was computed these costs significantly. On average, the cost of unspecu-

and taken as the running time for that binary. We used stat- lation is just over 5% of the total processing time.

ically linked binaries for our experiments, compiled with

additional flags to instruct the linker to retain relocation 5 Related Work

formation?® The results of these tests are shown in Table

3. This table shows that the unspeculated binaries suffer aThere is a large body of literature on reverse engineering,

performance hit of about 5% on average. re-engineering, and program understanding (see, for exam-
Figure 4 shows the time taken to carry out unspeculation. ple, [2, 3, 7, 10, 12]). Our work is complementary to, and

The primary goal of our current system is flexibility for ex- ~ supportive of, the traditional literature on reverse eegin

perimentation, and processing speed is not a high priority. ing and re-engineering: by undoing the effects of optimiza-

tions, it simplifies the task of reverse engineering highly

4The requirement for statically linked executables is alteduhe fact optimized code containing speculative operations.

that ILTO relies on the presence of relocation information to distisiy . . -

addresses from data. The Unix linked refuses to retain relocation infor- Also related is the work on debugging of optimized code

mation for executables that are not statically linked. (e.g., see [4, 8, 9]). This problem is similar to ours in the

sense that when dealing with optimized code, a debugger [7]
must attempt to undo the effects of optimization and map
the program state in the optimized code to source-level con-
structs in the original program. The technical issues that
arise in this context, however, have to do with figuring out (8]
the relationship between the optimized executable and the
original source code at runtime; by contrast, we examine
static program transformation techniques for undoing-opti 9]
mizations. Moreover, our goals are fundamentally differ-
ent, since they are aimed at reverse engineering rather than
debugging. Finally, to the best of our knowledge none of
these works address the problem of dealing with specula-
tive execution.

[10]
6 Conclusions

While the speculative execution features of modern archi-
tectures such as the Intel Itanium can lead to significant [11]
performance improvements, they also lead to a consider-
able increase in the complexity of low level code. This can
hinder reverse engineering and program comprehension of 12]
such codes. This paper describes a technique to transform[
speculative code into “normal” unspeculative code while
preserving program semantics, thereby allowing more ef-
fective application of traditional reverse engineeringlan [13]
re-engineering techniques. Experiments indicate that our
technique is effective: we are able to eliminate around 75%

of the speculative loads and speculation checks in the pro-
grams tested.

References

[1] A. V. Aho, R. Sethi, and J. D. UllmanCompilers —
Principles, Techniques, and Tool#\ddison-Wesley,
Reading, Mass., 1985.

[2] E. J. Byrne. A conceptual foundation for software re-
engineering. Innternational Conference on Software
Maintenancepages 216—235, November 1992.

[3] E. J. Chikofsky and J. H. Cross Il. Reverse engineer-
ing and design recovery: A taxonomiEE Software
pages 13-17, January 1990.

[4] Max Copperman. Debugging optimized code with-
out being misledACM Transactions on Programming
Languages and System$(3):387—427, May 1994.

[5] S. K. Debray, R. Muth, and M. Weippert. Alias analy-
sis of executable code. FProc. 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages (POPL-98pages 12—-24, January 1998.

[6] S. S. Liaoet al. Post-pass binary adaptation for
software-based speculative precomputationPioc.
ACM SIGPLAN’02 Conference on Programming Lan-
guage Design and Implementation (PLRIune 2002.

10

P. A. V. Hall. Software Reuse, Reverse Engineering,
and Re-engineeringages 3—-31. Software Reuse and
Reverse Engineering in Practice.

J. Hennessy. Symbolic debugging of optimized pro-
grams. ACM Transactions on Programming Lan-
guages and System¥3):323—-344, 1982.

U. Holzle, C. Chambers, and D. Ungar. Debug-
ging optimized code with dynamic deoptimization.
In Proc. SIGPLAN '92 Conference on Programming
Language Design and Implementation (PLOdages
32-43,1992.

K. Lano and H. Haughton. Reverse Engineering
and Software Maintenance — A Practical Approach
McGraw-Hill, 1994.

W. Pugh. The Omega test: a fast and practical inte-
ger programming algorithm for dependence analysis.
Comm. ACM35:102-114, August 1992.

M. Rekoff. On reverse engineerindEEE Transac-
tions on Systems, Man and Cyberneti®/g:244—-252,
1985.

N. Snavely, S. K. Debray, and G. R. Andrews. Predi-
cate analysis and if-conversionin an Itanium link-time
optimizer. InProc. Workshop on Explicitly Parallel
Instruction Set (EPIC) Architectures and Compilation
Techniques (EPIC-2November 2002.

