
Unspeculation∗

Noah Snavely Saumya Debray Gregory Andrews
Department of Computer Science

The University of Arizona
Tucson, AZ 85721, USA

Email: {snavely, debray, greg}@cs.arizona.edu

Abstract

Modern architectures, such as the Intel Itanium, support
speculation, a hardware mechanism that allows the early
execution of expensive operations—possibly even before it
is known whether the results of the operation are needed.
While such speculative execution can improve execution
performance considerably, it requires a significant amount
of complex support code to deal with and recover from
speculation failures. This greatly complicates the tasks of
understanding and re-engineering speculative code. This
paper describes a technique for removing speculative in-
structions from optimized binary programs in a way that is
guaranteed to preserve program semantics, thereby making
the resulting “unspeculated” programs easier to understand
and more amenable to re-engineering using traditional re-
verse engineering techniques.

1 Introduction

It is well known that processor speeds are growing faster
than memory speeds, which means that the performance
gap between the processors and memory is also growing
steadily. One effect of this is that high-performance proces-
sors may be hamstrung because the memory system cannot
deliver data as fast as the CPU would like. To alleviate
this problem beyond what is possible using conventional
instruction scheduling techniques, advanced architectures
such as the Intel IA-64 (Itanium) have offered an innova-
tive architectural feature calledspeculation. The idea is
to allow (long-latency) instructions to be executed much
earlier than would be possible in traditional architectures—
possibly before it is even known whether the results of the
computation will be used—in the hopes that initiating such
expensive computations early will result in their results be-
ing available if and when they are needed. Judicious use
of speculation can lead to significant improvements in per-
formance [6]. However, speculation alters the structure of
generated code in ways that do not reflect any logic in the
original source, and it can significantly change the place-
ment of instructions relative to unoptimized code. As a
result, speculation tends to make low-level code obscure

∗This work was supported by the National Science Foundation under
grants CCR-0073394, EIA-0080123, and CCR-0113633.

and difficult to understand, analyze, and reverse engineer.
This can complicate the task of maintaining or understand-
ing software for which the original source code is unavail-
able, e.g., pre-compiled libraries or applications distributed
as executables.

The contribution of this paper is to present a technique
for undoing low-level optimizations based on speculation
in order to expose the original structure of speculative pro-
grams and thereby to render them more amenable to the
application of higher-level reverse engineering tools. We
explain speculation in some detail, discuss how speculated
code can be more difficult to understand than normal code,
and describe a method for undoing optimizations based on
speculation. The model for speculation we use follows that
of the Intel Itanium, but the techniques we present are gen-
eral enough to be applied to any architecture that supports
similar speculative operations.

2 Background: Speculation

In order to generate efficient code, optimizing compilers
attempt to hide the latencies of expensive operations by
scheduling them as far apart as is necessary. However,
instruction scheduling is constrained by dependencies be-
tween instructions. In particular, an instructionI that is
control dependenton a conditional branchJ—i.e., J deter-
mines whetherI is executed—cannot, in general, be sched-
uled earlier than the branch instructionJ. This is illustrated
in Figure 1(a). Basic block B0 tests whether registerr2 con-
tains a non-NULL value, and the load instruction in block
B1 is control dependent on the branch in B0. Moving the
load above the branch in this case would be incorrect: the
resulting code would generate an error ifr2 has a NULL
value. Such control dependencies limit our ability to hide
the latencies of expensive operations such as loads from
memory.

To address this problem, next-generation architectures,
notably the Intel Itanium, have introduced an architectural
feature calledcontrol speculation, whose essential feature
is the speculative load instruction, denoted by the opcode
‘load.s.’ The behavior of a speculative load is similar to
that of a normal load, but with one important difference: If
the instruction generates an exception, such as a segmenta-
tion or page fault, the exception is not handled immediately;

1

B1

if p goto B2
p := cmp.eq r2, #0

B0

r3 := add r1, r3

B2

r4 := add r3, r5

r1 := load [r2]

if p goto B2

p := cmp.eq r2, #0
B0

r3 := add r1, r3

recovery code

B1

r3 := add r1, r3

B3

B2

chk.s r3, B3

r4 := add r3, r5

r1 := load.s [r2]

r1 := load [r2]

(a) Original unspeculated code (b) Code with speculation

Figure 1: An example of control speculation

instead, a special bit associated with the destination register
of the load, called aNaT (“Not a Thing”) bit, is turned on.
Later when the program reaches a point where the result of
the load is needed, a special speculation check instruction
(with the opcode ‘chk.s’) is issued on the destination reg-
ister of the load. If the register has itsNaT bit set, then
execution branches to recovery code provided by the com-
piler; otherwise, execution continues as normal. TheNaT
bits can propagate from one register to another. That is, if
a source register of an instruction has itsNaT bit set, then
theNaT bit of its destination register will become set. This
means that a string of dependent instructions can follow a
speculative load, and in general these instructions will all
have to be reissued in recovery code.

Using control speculation in the example shown above,
we can move the load instruction above the preceding
branch, in the process turning it into a speculative load.
The resulting code,1 shown in Figure 1(b), is considerably
harder to understand than the original. First, there are more
instructions, more execution paths, and more convoluted
program structure to consider in the speculated code. Sec-
ond, the speculative load has moved farther from its use,
with intervening recovery code whose behavior has to be
taken into account, thereby obscuring the original program
logic. The problem is exacerbated even further in larger
programs where the speculation is more aggressive—e.g.,
when a speculative load is moved across several condi-
tional branches rather than the single branch in the example

1For simplicity, we depart from the syntax of Itanium assembly in-
structions (which tend to be quite different from those of more familiar
architectures) and write our instructions as follows:

dst:= op src1 src2 . . .

Hereop denotes the operation,dst is the destination, andsrc1, src2, . . . are
the source operands. A memory load instruction is expressedas a simple
indirect access through a register, with any necessary address computa-
tions, displacements, etc., being carried out explicitly:

dst:= load [r] .

above—and where the recovery code may, for example, it-
self contain other speculative or check instructions, thereby
resulting in significantly more convoluted control flow. The
next section describes a method of unspeculating code that
essentially reverses the process of speculation, and hence
makes the code easier to understand.

3 Unspeculation

Unspeculation refers to the process of transforming a pro-
gram containing speculative loads to a semantically equiv-
alent program where some or all of the speculative in-
structions have been replaced by “ordinary” load opera-
tions. Our approach to unspeculation consists of two dis-
tinct phases. First, we move each speculative load to one or
more points in the code stream where it can potentially be
replaced by an unspeculative load operation. We call this
load sinking. Second, we verify that the check and corre-
sponding recovery code can safely be eliminated and hence
that the speculative load can be replaced by an unspecula-
tive load. Each of these steps must, of course, be semantics-
preserving.

As an example, starting with the speculative code in Fig-
ure 1(b), load sinking involves moving the speculative load
to the start of block B1. Recovery code verification involves
checking that the results of executing blocks B1 and B3 are
identical, and hence that the code in Figure 1(b) can be sim-
plified to that in Figure 1(a). Both steps are in general much
more complicated than illustrated by this example, because
there is not necessarily a one-to-one correspondence be-
tween speculative loads and checks, because recovery code
does not necessarily contain the same instructions as regu-
lar code, and because exceptions are handled differently for
speculative and unspeculative loads.

Below we describe in detail how we move speculative
loads to be near check instructions, and how we verify
whether recovery code and check instructions can be elim-

2

r2 := add #8, r4
r1 := load.s [r2]
r2 := add #4, r2
r3 := add #1, r1

chk.s r3, Recover

r2 := sub #8, r5
r1 := load.s [r2]
r2 := add #4, r2
r3 := add #1, r1

(a) Before load sinking

r1 := load.s [r2]

r3 := add #1, r1
r2 := add #4, r2

chk.s r3, Recover

r2 := add #8, r4 r2 := sub #8, r5

(b) After load sinking

Figure 2: An example of load sinking

inated. Both analyses require examing possible instruction
dependencies, which in turn requires determining whether
memory addresses in registers might possibly overlap. Sec-
tion 3.3 describes this memory-disambiguation problem.

3.1 Load Sinking
The main difference between “ordinary” and speculative
load operations is that exceptions raised by the latter are
deferred via theNaT bits. It follows that the appearance of
a speculative load in a program indicates that it cannot be
guaranteed to execute without any exceptions. In general,
therefore, we cannot simply replace a speculative load by an
unspeculative one and expect to preserve program seman-
tics. Instead, the speculative load must be moved to some
appropriate later point in the code stream.

The check instruction(s) associated with a speculative
load indicates where a legal result for that load is expected,
and hence suggests a natural placement for the load: imme-
diately before the check instruction(s). In effect, this pushes
the speculative load down into the basic block containing
the corresponding check instruction, past any intervening
conditional branches.

We refer to this process of moving speculative loads
“down” towards their check instructions asload sinking. It
is illustrated in Figure 2. Note that when a speculative load
I is sunk, other instructions that depend onI must be sunk as
well. To make this notion of “dependence” precise, define
two instructionsI andJ to bedirectly dependent(written
I ⇀↽ J) if:

1. I may write to any register or memory location that
may be read byJ; or

2. I may read from any register or memory location that
may be written to byJ; or

3. I andJ may write to the same register or memory lo-
cation.

Let ⇀↽⋆ denote the reflexive transitive closure of the⇀↽ re-
lation. We say thatI andJ aredependentif I ⇀↽⋆ J.

Load sinking is complicated by the fact that there may
not be a one-to-one correspondence between speculative
load and check instructions: a speculative load may be

checked by several different check instructions, and a check
instruction may check several different speculative loads.
Moreover, in the latter case, the speculative loads may have
different sets of dependent instructions. The various com-
binations of speculative loads and checks are illustrated in
Figure 3. The remainder of this section addresses how to
deal with these issues. The problem of memory disam-
biguation for identifying dependencies between memory
reads and writes is discussed in Section 3.3.

I1 I3

J1
J2 J3 J4

I2 load.s

J5

load.s load.s

chk.s chk.s chk.s chk.s

load.sI4

chk.s

Figure 3: General structure of speculative computations

3.1.1 Finding relationships between instructions

Our first goal is to identify, for a given speculative load,
the set of check instructions that test whether that load suc-
ceeded or failed. As mentioned in Section 2, however, a
computation can propagateNaT bits from one register to
another. For this reason, a speculation check associated
with a speculative load into a registerr may not check the
registerr itself, but possibly some other registerr ′ whose
value has been computed from that ofr. This occurs in
Figure 1(b), where the speculation check (in basic block
B1) checks registerr3 even though the speculative load (in
block B0) loads into registerr1.

In general, to determine whether a given check is as-
sociated with a given speculative load, we need to know
whether or not the check’s source register may be aNaT as
a result of the failure of that load. To this end, given an in-
structionI ≡ ‘ r := load.s ...’ that defines a register
r and a check instructionJ ≡ ‘chk.s r ′, . . . ’, we say that
J checks Iif either of the following hold:

3

1. r ′ ≡ r, and the definitionI of r reachesJ;2 or

2. there is an instructionI ′ that usesr and that propagates
NaT bits from its source operands to its destination,
such that(i) the definitionI of r reachesI ′, and(ii) J
checksI ′.

The set of speculation checksChk(I) associated with a
speculative loadI can then be defined as

Chk(I)
△
= {J | J is a speculation check andJ checksI}.

In Figure 1(b), for example, sinceadd instructions propa-
gateNaT bits, the chain of reaching definitions along the
execution path

r1 := load.s [r2] # Block B0
r3 := add r1, r3 # Block B1
chk.s r3, B3 # Block B1

allows us to infer that the check instruction in block B1 is
associated with the speculative load in block B0.

Given a speculative loadI , the setChk(I) can be deter-
mined via a depth-first traversal of the control flow graph
starting atI . At each point, we keep track of the set ofspec-
ulative registersat that point, i.e., the registers whoseNaT
bits may be set. Initially, this contains only the destination
register of the speculative load. It is updated during the
traversal using information about instructions that propa-
gateNaT bits. The traversal stops whenever the speculative
register set becomes empty. The setChk(I) then consists of
the speculation checks that can be reached in this traversal.

Analogous to the setChk(I) for a speculative loadI , we
can consider the setLd(J) of speculative loads associated
with a check instructionJ:

Ld(J)
△
= {I | I is a speculative load andJ ∈ Chk(I)}.

This set can be derived from theChksets computed for the
speculative loads in the program.

3.1.2 Speculative regions

Intuitively, in order to carry out load sinking to a specu-
lation checkJ, the set of instructions sunk toJ must be
well defined, i.e., must be the same for all speculative loads
I ∈ Ld(J). To see the reason for this, consider the specula-
tive loadsI3 andI4, and the speculation checkJ5, in Figure
3. LetS3 be the set of instructions dependent on the specu-
lative loadI3, andS4 the set dependent onI4. When sinking
I3 we want to move all the instructions inS3 down to the
check instruction; when sinkingI4, similarly, we want to
move all ofS4. If S3 6= S4 it is not clear what instructions
ought to be moved down to the check; if this happens, load
sinking is said to fail.

2A definition I of a variable or registerx is said toreach a program
point p if there exists an execution path fromI to p along whichx is not
redefined, i.e., along which the value assigned tox by I may survive [1].

To make these ideas precise, we define a speculative re-
gion as follows:

Definition 3.1 Thespeculative regionof a speculative load
I is a pair(L,C) whereL is a set of speculative loads and
C is a set of speculation checks, such thatL and C are
the smallest sets satisfying:(i) I ∈ L; (ii) if x ∈ L and
y ∈ Chk(x) then y ∈ C; and (iii) if x ∈ C and y ∈ Ld(x)
theny∈ L.

A speculative region is unspeculated as a single unit.
This means that for each such region, either load sinking
succeeds and all speculative code in the region is moved at
once, or it fails and no instructions are moved. To make this
notion precise, consider an execution pathπ from a specula-
tive loadL to a checkC∈ Chk(L). Let DepL(π) denote the
set of instructions alongπ that are dependent onL. We can
now make precise the conditions under which load sinking
can be carried out for a speculative region:

Definition 3.2 A speculative region(L,C) of a speculative
load is said to bepath-independentif, for any pair of spec-
ulative loadsI1, I2 ∈ L and checkJ ∈C, and any two paths
π1 betweenI1 andJ andπ2 betweenI2 andJ, it is the case
thatDepL1

(π1) = DepL2
(π2).

As an example, in Figure 3, path independence requires that
the instructions dependent on the speculative loadI3 along
the path(I3 . . .J5) be the same as the set of instructions de-
pendent on the speculative loadI4 along the pathI4 . . .J5.

If a speculative region(L,C) is path-independent, load
sinking becomes straightforward:

1. Letπ be an arbitrary path from some load inL to some
check inC andS= DepL(π) the instructions onπ de-
pendent onL.

2. For each speculative loadI ∈ L delete the instructions
SbetweenI and any check inC.

3. For each checkJ∈C, copy the instructionsSto the top
of J’s basic block. Additionally, if there are any non-
speculative instructionsS′ in S that compute a value
that is live along a path that leaves the region without
going through a speculation check, copyS′ onto this
path.

The code structure resulting from load sinking is illustrated
in Figure 4.

3.2 Recovery Code Verification
In Figure 4 there are two possible outcomes for the specula-
tion check in blockBchk. If the speculative load completes
successfully without setting anyNaT bits, then execution
takes thepass pathπpass ≡ Bchk → Bfallthru → Bmerge. If
the speculative load may fail and setNaT bits, then exe-
cution goes through the recovery code along thefail path
πfail ≡ Bchk→ Brec → Bmerge.

4

load.sr := addr

Brecr’,chk.s

recovery code
+

...fall−through code...

BrecBfallthru

...fall−through code...

Bmerge

πpass π fail

Bchk

... speculative instructions...
pass path fail path

Figure 4: Code structure after load sinking

The effect of unspeculation is twofold. First, the spec-
ulation check instruction and the fail pathπfail are elimi-
nated. Second, the speculative instructions inBspecare con-
verted to unspeculative ones, which means that exceptions
deferred by the speculative code are no longer deferred af-
ter unspeculation. In order for this to be correct, the code
must satisfy two conditions:

1. [Path Equivalence.] The execution pathsπpassandπfail
must be equivalent, in the sense that for every register
and memory locationx, the value ofx at the entry to
Bmerge must be the same when execution goes along
πpassas when it goes alongπfail .

2. [Load Equivalence.] For every memory locationy
from which there is a speculative load inBchk, there
must be an unspeculative load fromy in Brec.

The need for the first criterion is obvious: ifπpassandπfail
can produce different values for some register or memory
location, then eliminatingπfail in the course of unspecula-
tion can potentially change the behavior of the program.
The second criterion is motivated by the need to ensure that
the exception behavior of the code after unspeculation is the
same as that of the original code before unspeculation.

The remainder of this section discusses how we verify
these criteria. Our current implementation is able to rea-
son about path equivalence only when each of the pass path
πpassand the fail pathπfail is a single straight-line path with
no branches. It can sometimes happen that the pass and/or
fail path may contain other speculation checks that intro-
duce branching structure into the code, but this gets elimi-
nated during the course of unspeculation. To catch such sit-
uations, we iterate the unspeculation process until no more
speculative code can be eliminated. As the experimental
results reported in Section 4 indicate, this suffices for most
instances of speculation encountered in practice.

chk.s r3, Brec

Brec

B0

B1

r1 := load.s [r2]
r2 := add #4, r2

r3 := add #1, r1

(1)
(2)
(3)
(4)

r2 := sub #4, r2

r3 := add #1, r1

r1 := load [r2]
r2 := add #4, r2

(5)
(6)

(8)
(7)

Figure 5: An Example of Recovery Code Verification

3.2.1 Verifying Path Equivalence

The simplest case of path equivalence is when the recov-
ery code is identical to the speculated code, except for the
speculative load that is replaced with an unspeculative load.
This occurs, for example, in the code in Figure 1(b). In gen-
eral, however, the contents of registers may change between
a speculative load through a registerr and a check on that
load, as illustrated in basic block B3 in Figure 2(b). To re-
cover if the load fails, the correct address has to recomputed
before reissuing the load, and so the recovery code needs
extra instructions to fix the program state appropriately.

The general case is illustrated in Figure 5. Instructions 1-
4 are from the longest block in Figure 2(b) after load sink-
ing. Instructions 5-8 are the corresponding recovery block.
The first instruction in the recovery code (instruction 5) un-
does the changes to registerr2 after the speculative load,
restoring its value to that at the speculative load. After this
the load is reissued, this time unspeculatively. The remain-
der of the recovery code recomputes values that were com-
puted using the result of the speculative load. As this exam-
ple illustrates, both the speculative code and the recovery
code may contain address and register computations, which
have to be taken into account when reasoning about path
equivalence.

Proving path equivalence involves reasoning about the
contents of registers and memory locations along the pass
and fail paths. In doing this, our current implementation is
conservative in its treatment of memory: if either the pass
path or the fail path contains any stores to memory among
the instructions that are dependent on a speculative load, we
conservatively assume that path equivalence does not hold,
and abandon the unspeculation effort for that speculative re-
gion. This is not a significant problem in practice, as shown
by our experimental results (see Section 4).

Given this treatment of memory stores, proving path
equivalence boils down to reasoning about the contents of
registers along the pass and fail paths. To do this, we spec-
ify a logical formulaΦ asserting that there exist program

5

states for which path equivalence does not hold—i.e., for
some registerr, the value ofr along the pass path differs
from its value along the fail path. We then use constraint
solving techniques to try and show thatΦ is unsatisfiable.
If we are able to do so, we conclude that there are no pro-
gram states that can cause path equivalence to be violated,
and hence that path equivalence holds.

Given a logical formulaA, let (∃)A denote the “existen-
tial closure” ofA, i.e., the formula where all free variables
in A are existentially quantified. Using this notation, we can
write the formulaΦ as:

Φ = (∃)[Ψp∧Ψ f ∧∆]

whereΨp andΨ f are formulae expressing the values of lo-
cations at the end of the pass path and the fail path respec-
tively, in terms of their initial values; and∆ is a formula
stating that there is some location whose value at the end
of the pass path is different from that at the end of the fail
path, i.e., path equivalence does not hold.

Assume that each instruction in the program has a unique
nameIk. We describe the construction of the formulaΨp,
corresponding to the pass path, as a conjunction of the
constraints specified below; the construction ofΨ f , corre-
sponding to the fail path, is exactly analogous. The value of
a registerr at the beginning and the end of the pass path are
denoted byr p

0 andr p
e respectively. At intermediate points

along the pass path, the value of registerr immediately after
instructionIk is denoted byr p

k . For each instructionIk along
the pass path,Ψp contains a conjunctCk that captures the
effect ofIk. These are defined as follows:

1. Ik ≡ ‘ r := load [s]’. In this caseCk ≡ r p
k = mem(sp

j)
whereI j is the most recent instruction that defines reg-
ister s (j = 0 if s has not yet been defined along the
pass path), andmemis an uninterpreted function sym-
bol.

2. Ik ≡ ‘ r := s⊕ t ’ for some operation⊕, and registerss
andt, where the semantics of⊕ is known to the ana-
lyzer. In this case,Ck ≡ r p

k = f⊕(sp
i ,t p

j) whereIi and
I j refer to the most recent instructions defining regis-
terssandt respectively;i = 0 (respectively,j = 0) if s
(respectively,t) has not yet been defined along the pass
path); andf⊕ expresses the semantics of the operation
⊕. Our analyzer knows about the semantics of some
common arithmetic instructions: e.g., if⊕ = add then
f⊕ is the binary function ‘+,’ signifying addition; if
⊕ = sub then f⊕ is ‘−,’ signifying subtraction; etc.

3. Otherwise, the effects of instructionIk cannot be mod-
elled by the analyzer. The analysis is aborted in this
case, and our system conservatively assumes that path
equivalence does not hold.

Finally, for each registerr, Ψp contains a conjunct express-
ing the final value ofr. Let the last instruction along the
pass path that definesr beIk (k = 0 if r is not defined along
the pass path), then this conjunct is given by

r p
e = r p

k .

As mentioned above, the construction ofΨ f , corresponding
to the fail path, is exactly analogous.

The formula∆ expresses that some register has a final
value that is different along the pass and fail paths:

∆ ≡
_

r a register
r p
e 6= r f

e.

In the actual implementation, we refine this process to re-
duce the size of constraints and the cost of checking satisfia-
bility of constraints. First, it suffices to restrict our attention
to the (usually small) set of registers that are actually mod-
ified along at least one of the pass and fail paths. Second,
we reduce the number of instructions that we have to con-
sider by walking backwards on each path from the merge
point, marking instructions that are identical on both paths,
until we reach two non-identical instructions or the top of
the check block. If we happen to hit the top of the check
block, then the relation becomes vacuously empty, so there
is nothing to check. Our implementation uses the Omega
calculator [11] to determine the satisfiability of the formula
Φ.

The algorithm can be illustrated using the recovery code
shown in Figure 5. We haveΦ = (∃)[Ψp∧Ψ f ∧∆], where:

Ψp = r1p
1 = mem(r20)

∧ r2p
2 = r20 +4

∧ r3p
3 = r1p

1 +1
∧ r1p

e = r1p
1

∧ r2p
e = r2p

2
∧ r3p

e = r3p
3.

Ψ f = r1f
1 = mem(r20)

∧ r2f
2 = r20 +4

∧ r2f
5 = r2f

2 −4
∧ r3f

3 = r1f
1 −1

∧ r1f
6 = mem(r2f

5)

∧ r2f
7 = r2f

5 +4
∧ r3f

8 = r1f
6 +1

∧ r1f
e = r1f

6
∧ r2f

e = r2f
7

∧ r3f
e = r3f

8.
∆ = r1p

e 6= r1f
e ∨ r2p

e 6= r2f
e ∨ r3p

e 6= r3f
e

The reader may verify that these constraints simplify in a
straightforward way to give

r1p
e = mem(r20)∧ r2p

e = r20 +4∧ r3p
e = mem(r20)+1

r1f
e = mem(r20)∧ r2f

e = r20 +4∧ r3f
e = mem(r20)+1

whence the∆ constraints are falsified, which implies thatΦ
is unsatisfiable. This, in turn, implies path equivalence for
the code in Figure 5.

6

3.2.2 Verifying Load Equivalence

Load equivalence can be determined using an approach
very similar to that described above for path equivalence.
The idea is to pair up speculative loads with unspeculative
loads in the recovery code, and then to use a constraint-
based test analogous to that above to determine whether the
address registers being used in the two loads could have
different values.

3.3 Memory Disambiguation
Memory disambiguation involves learning enough about
the contents of registers at a given program point to decide
if two registers can contain overlapping addresses at any
time during execution. We need to solve this problem in or-
der to determine whether instructions are dependent when
doing load sinking and recovery code verification. The
problem is difficult in general, and it is exacerbated here
by the lack of semantic structure at the machine code level.
Our current implementation generalizes a simple analysis
technique known asinstruction inspection[5]. The general
idea here is that two memory references can be inferred to
be non-conflicting if either(i) they use distinct offsets from
the same base registerr, with no intervening definitions of
r; or (ii) they point to disjoint regions of memory, e.g., the
stack and the global data area. The first of these is straight-
forward to adapt to the Itanium; due to space constraints
we do not discuss it further. The remainder of this section
focuses on the second technique.

We use a simple iterative dataflow analysis calledregion
analysisto associate, with each memory reference in the
program, a subset of the memory regions that the reference
may access. The basic idea behind this analysis comes
from the manner in which the different sections of an ex-
ecutable file are generated. The object module generated
by a compiler from a source module typically consists of
several code and data sections, e.g., the code section, the
constant data section, the zero-initialized data section,etc.
The linker combines a number of such object modules into
an executable program: in the process, it puts all the sec-
tions in their final order and location. The sections of the
same type coming from different object modules are typi-
cally combined into a single region of that type in the final
executable. In general, when generating an object module
from a source module, a compiler has no information about
other object modules, e.g., their number, size, or the order
in which they will be linked together, so it cannot make any
assumptions about the eventual locations of these regions
in the final executable. As a result, because the distance be-
tween the two regions of memory is not known at compile
time, the code generated by a compiler for address compu-
tations cannot use a pointer to a particular region of memory
to obtain an address pointing to some other region of mem-
ory. In other words, an address obtained by doing address
arithmetic starting with a pointer to a particular region of
memory can be safely assumed to fall within that same re-

gion of memory. This observation forms the basis of this
analysis.

Our analysis considers the set of regions

D = {stack, global, GOT, num}

wherestack refers to stack locations,global to globals,
GOT to the global offset table, andnum to numerical
constants. Here, the stack and global regions are self-
explanatory. The global offset table is a read-only region
of memory containing 64-bit addresses that are either code
addresses or global data addresses.3 Since memory disam-
biguation is relevant only when at least one of the refer-
ences is astoreinstruction, and the text section (the memory
region containing the actual executable code for the pro-
gram) is read-only, we make the simplifying assumption
that all addresses in the global offset table point to global
data. This is safe, though in theory it may occasionally lose
precision. The elementnum refers to numerical constants
that may be computed as part of address computations.

Our analysis domain is the powerset of this set,P (D),
ordered by subset inclusion;(P (D),⊆) forms a complete
lattice, with least element/0 (denoting an unreachable refer-
ence), and greatest elementD (denoting an unknown value),
and meet operation∪. Instructions within a basic block are
handled as follows, with the notation ‘r 7→ S’ denoting that
a registerr points to a set of regionsS:

1. If r 7→ S, and the value ofr ′ is obtained by an arith-
metic computation involvingr, thenr ′ 7→ S.

This reflects the characteristics of address computa-
tions discussed above.

2. [Standard register usage conventions]: the register
r1 7→ {GOT}; the stack pointersp 7→ {stack}.

3. [Loads from memory]: Given an instruction

r ′ := load [r]

if r 7→ {GOT} immediately before this instruction,
then immediately after this instruction we haver ′ 7→
{global}. Otherwise, ifr 7→ S and S 6= GOT, then
r ′ 7→ D after the instruction.

This reflects the assumption above that addresses in
the global offset table point to global data. We make
no assumptions about the contents of other memory
regions, so loads from them produce the valueD, de-
noting ‘unknown.’

Set union is used as the meet operator to propagate informa-
tion across basic blocks. Values are propagated iteratively
until a fixpoint is attained, i.e., until there is no change to
the set computed for any register.

3Other 64-bit architectures where the instruction width is smaller than
64 bits, e.g., the Compaq Alpha, use a similar table for handling 64-bit
constants and absolute addresses.

7

Program SPECULATIVE LOADS SPECULATION CHECKS

Orig. Unspec. Reduction (%) Orig. Unspec. Reduction (%)
(L0) (L1) ((L0−L1)/L0) (C0) (C1) ((C0−C1)/C0)

bzip2 130 31 76.2 124 42 66.1
gzip 224 62 72.3 181 54 70.2
mcf 94 31 67.0 97 34 64.9
parser 483 85 82.4 451 75 83.4
twolf 1542 385 75.0 1399 354 74.7
vortex 5339 451 91.6 5217 352 93.2
vpr 608 152 65.0 614 145 76.4

GEOM. MEAN: 75.2 75.0

Table 1: Amount of speculated code before and after unspeculation

After the analysis, two indirect memory references
through registersr1 and r2, wherer1 7→ S1 and r2 7→ S2,
can be inferred to be independent ifS1∩S2 = /0.

3.4 Putting it All Together
The discussion of unspeculation thus far can be summa-
rized as the following sequence of steps:

1. Group the speculative loads and speculation checks
into speculative regions (Section 3.1.2).

2. For each speculative region, verify path independence
(use the memory disambiguation techniques discussed
in Section 3.3 to identify dependencies between mem-
ory accesses). If path independence cannot be verified
for a region, abandon unspeculation for that region.

3. For each speculative region that is path independent,
carry out load sinking (Section 3.1).

4. Verify path equivalence and load equivalence for the
code resulting from load sinking (Section 3.2).

Once these steps have been carried out, we are in a position
to carry out the final step of unspeculation for the specula-
tive regionR:

1. Replace each speculative load inRby an unspeculative
load.

2. Delete each speculation check inR.

Deleting the speculation check causes the corresponding
control flow edge to the recovery code to be deleted as
well. Usually, this causes the corresponding recovery code
to become unreachable. Such unreachable code is detected
and eliminated in the normal course of subsequent program
analyses.

4 Experimental Results

We implemented our ideas withinILTO, a binary rewriting
system we have created for manipulating and optimizing

Itanium binaries [13]. We used a set of seven programs
from the SPECint-2000 benchmark suite:bzip2, gzip, mcf,
parser, twolf, vortex, andvpr, compiled using Intel’secc
compiler version 5.0.1, at optimization level-O3 together
with profile feedback. The resulting binaries contain a sig-
nificant amount of control speculation.

The effectiveness of our unspeculation algorithm can be
measured in two ways: quantitatively and qualitatively.
First, there are situations—such as when the path indepen-
dence condition is not met—where our algorithm will fail
to unspeculate a region of code. Therefore we want to know
how often our unspeculation algorithm succeeds in convert-
ing speculated code to non-speculated code. Second, since
the goal of unspeculation is to make programs easier to un-
derstand, we need some way to gauge how successful our
algorithm is in this respect.

To address the first question, we compare the proportion
of speculative loads and speculation checks removed from
each program by our algorithm. Table 1 shows the results of
counting the number of (a) speculative loads and (b) spec-
ulation checks before and after speculation. It can be seen
that our algorithm reduces the number of speculative loads
and speculation checks by about 75% on average.

For the second question, we use the idea that a simpler
control-flow graph is usually easier to analyze and under-
stand than a more complicated one, and therefore one mea-
sure of how much our algorithm contributes to comprehen-
sion is the relative complexity of the CFG before and after
unspeculation. To estimate complexity, we count the num-
ber of instructions, basic blocks, and edges between blocks
in the program. The results of this experiment are shown
in Table 2. This table shows that, on average, the num-
ber of instructions decreased by about 6%, the number of
basic blocks decreased by about 13%, and the number of
edges decreased by about 12% after unspeculation. For one
benchmark, vortex, we saw a significantly larger decrease
in the number of instructions, blocks, and edges — about
14.5%, 29.1%, and 25.6% respectively.

We are also interested in the effect that unspeculation
has on performance. Since unspeculation attempts to undo

8

BASIC BLOCKS EDGES INSTRUCTIONS

PROGRAM Orig. Unspec. Change (%) Orig. Unspec. Change (%) Orig. Unspec. Change (%)
(B0) (B1) (B0−B1)/B0 (E0) (E1) (E0−E1)/E0 (I0) (I1) (I0− I1)/I0

bzip2 2509 2299 8.7 4188 3867 7.7 9259 8881 4.1
gzip 3189 2845 10.8 5297 4767 10.0 12957 12345 4.7
mcf 1118 956 14.5 1774 1533 13.6 4000 3715 7.1
parser 8866 7838 11.6 15891 14243 10.4 29779 27939 6.8
twolf 20543 17916 12.8 33083 29022 12.3 79469 74571 6.2
vortex 43641 30932 29.1 79658 59251 25.6 165189 141245 14.5
vpr 10570 9425 10.3 18805 16997 9.6 44319 42143 4.9

GEOM. MEAN: 12.9 11.9 6.3

Key: Orig: Original speculated code; Unspec: Unspeculated code

Table 2: Effects of unspeculation on program size

Program Execution Time(sec) T1/T0
Original (T0) Unspeculated (T1)

bzip2 843.65 859.86 1.019
gzip 633.15 700.33 1.106
mcf 1409.94 1432.59 1.016
parser 1190.45 1268.94 1.066
twolf 1267.49 1333.95 1.052
vortex 835.32 839.26 1.005
vpr 906.85 985.82 1.087

GEOMETRICMEAN 1.050

Table 3: Performance

a compiler optimization, we expect that unspeculation re-
sults in less efficient code. To test this, we measured the
execution times of the seven benchmarks before and after
unspeculation. The programs were run on an HP i2000
workstation with a 733 MHz Intel Itanium processor run-
ning Redhat Linux 7.1 with 1 GB of main memory and
2 GB of swap space. Execution times for these programs
were obtained as follows: Each binary was run five times
on an unloaded machine and its runtime was measured us-
ing the Unixtime command; the largest and smallest of
the resulting run times were discarded; then the arithmetic
mean of the remaining three execution times was computed
and taken as the running time for that binary. We used stat-
ically linked binaries for our experiments, compiled with
additional flags to instruct the linker to retain relocationin-
formation.4 The results of these tests are shown in Table
3. This table shows that the unspeculated binaries suffer a
performance hit of about 5% on average.

Figure 4 shows the time taken to carry out unspeculation.
The primary goal of our current system is flexibility for ex-
perimentation, and processing speed is not a high priority.

4The requirement for statically linked executables is a result of the fact
that ILTO relies on the presence of relocation information to distinguish
addresses from data. The Unix linkerld refuses to retain relocation infor-
mation for executables that are not statically linked.

Processing time(sec)
Program size Unspeculation Total Tuns/Ttot

(bytes) (Tuns) (Ttot) (%)

bzip2 756848 2.565 99.730 2.57
gzip 783312 3.234 96.715 3.34
mcf 677712 2.765 87.653 3.15
parser 870032 5.350 125.541 4.26
twolf 1283968 90.856 277.396 32.75
vortex 2067440 79.756 430.865 18.51
vpr 1030080 8.468 146.303 5.79

GEOM. MEAN : 5.02

Table 4: Processing time

In particular, we use a simple file-based interface between
the unspeculation module and the Omega calculator: the
constraints generated are written out to a file, the Omega
calculator is invoked on this file and the results written out
to another file, which is then read back in by the unspecula-
tor. The associated overheads lead to a significant increase
in the cost of unspeculation: while they are around 2–4% of
the total processing time for most of the benchmarks tested,
they can be as high as 33%. We believe that a more ef-
ficient interface with the Omega calculator would reduce
these costs significantly. On average, the cost of unspecu-
lation is just over 5% of the total processing time.

5 Related Work

There is a large body of literature on reverse engineering,
re-engineering, and program understanding (see, for exam-
ple, [2, 3, 7, 10, 12]). Our work is complementary to, and
supportive of, the traditional literature on reverse engineer-
ing and re-engineering: by undoing the effects of optimiza-
tions, it simplifies the task of reverse engineering highly
optimized code containing speculative operations.

Also related is the work on debugging of optimized code
(e.g., see [4, 8, 9]). This problem is similar to ours in the

9

sense that when dealing with optimized code, a debugger
must attempt to undo the effects of optimization and map
the program state in the optimized code to source-level con-
structs in the original program. The technical issues that
arise in this context, however, have to do with figuring out
the relationship between the optimized executable and the
original source code at runtime; by contrast, we examine
static program transformation techniques for undoing opti-
mizations. Moreover, our goals are fundamentally differ-
ent, since they are aimed at reverse engineering rather than
debugging. Finally, to the best of our knowledge none of
these works address the problem of dealing with specula-
tive execution.

6 Conclusions

While the speculative execution features of modern archi-
tectures such as the Intel Itanium can lead to significant
performance improvements, they also lead to a consider-
able increase in the complexity of low level code. This can
hinder reverse engineering and program comprehension of
such codes. This paper describes a technique to transform
speculative code into “normal” unspeculative code while
preserving program semantics, thereby allowing more ef-
fective application of traditional reverse engineering and
re-engineering techniques. Experiments indicate that our
technique is effective: we are able to eliminate around 75%
of the speculative loads and speculation checks in the pro-
grams tested.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers –
Principles, Techniques, and Tools. Addison-Wesley,
Reading, Mass., 1985.

[2] E. J. Byrne. A conceptual foundation for software re-
engineering. InInternational Conference on Software
Maintenance, pages 216–235, November 1992.

[3] E. J. Chikofsky and J. H. Cross II. Reverse engineer-
ing and design recovery: A taxonomy.IEEE Software,
pages 13–17, January 1990.

[4] Max Copperman. Debugging optimized code with-
out being misled.ACM Transactions on Programming
Languages and Systems, 16(3):387–427, May 1994.

[5] S. K. Debray, R. Muth, and M. Weippert. Alias analy-
sis of executable code. InProc. 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages (POPL-98), pages 12–24, January 1998.

[6] S. S. Liao et al. Post-pass binary adaptation for
software-based speculative precomputation. InProc.
ACM SIGPLAN’02 Conference on Programming Lan-
guage Design and Implementation (PLDI), June 2002.

[7] P. A. V. Hall. Software Reuse, Reverse Engineering,
and Re-engineering, pages 3–31. Software Reuse and
Reverse Engineering in Practice.

[8] J. Hennessy. Symbolic debugging of optimized pro-
grams. ACM Transactions on Programming Lan-
guages and Systems, 4(3):323–344, 1982.

[9] U. Hölzle, C. Chambers, and D. Ungar. Debug-
ging optimized code with dynamic deoptimization.
In Proc. SIGPLAN ’92 Conference on Programming
Language Design and Implementation (PLDI), pages
32–43, 1992.

[10] K. Lano and H. Haughton. Reverse Engineering
and Software Maintenance — A Practical Approach.
McGraw-Hill, 1994.

[11] W. Pugh. The Omega test: a fast and practical inte-
ger programming algorithm for dependence analysis.
Comm. ACM, 35:102–114, August 1992.

[12] M. Rekoff. On reverse engineering.IEEE Transac-
tions on Systems, Man and Cybernetics, 3/4:244–252,
1985.

[13] N. Snavely, S. K. Debray, and G. R. Andrews. Predi-
cate analysis and if-conversion in an Itanium link-time
optimizer. InProc. Workshop on Explicitly Parallel
Instruction Set (EPIC) Architectures and Compilation
Techniques (EPIC-2), November 2002.

10

