Deobfuscation
Reverse Engineering Obfuscated Code

Sharath K. Udupa,Saumya K. Debray,Matias Madoli

Abstract It is important to note, however, that code obfuscation
) ~is merely a technique. Just as it can be used to protect
In recent years, code obfuscation has attracted attentionsoftware against attackers, so too it can be used to hide
as a low cost approach to improving software security by malicious content. For example, certain kinds of sophis-
maklng it difficult for attackers to understand the inner ticated computer viruses, e.g., po|ymorphic viruses, have

workings of proprietary software systems. This paper ex- resorted to using obfuscation techniques to prevent detec-
amines techniques for automatic deobfuscation of obfus- tjon by virus scanners [27].

cated programs, as a step towards reverse engineering such
programs. Our results indicate that much of the effects This raises two closely related questions. The first ques-
of code obfuscation, designed to increase the difficulty of tion, from a software engineering pespective, M/hat
static analyses, can be defeated using simple combinationssorts of techniques are useful for understanding obfuscate
of straightforward static and dynamic analyses. Our result code?For example, suppose we have downloaded, from a
have applications to both software engineering and soéwar Web site, a file purporting to be a security patch for some ap-
security. In the context of software engineering, we show plication. Before applying the patch, we may want to verify
how dynamic analyses can be used to enhance reverse engithat the file does not contain any malicious payload. How
neering, even for code that has been designed to be difficultcan we verify this if the contents of the file have been obfus-
to reverse engineer. For software security, our resuligeser ~cated? The second question, from a security perspective, is
as an attack model for code obfuscators, and can help with What are the weaknesses of current code obfuscation tech-
the development of obfuscation techniques that are more niques, and how can we address theth@ur obfuscation
resilient to straightforward reverse engineering. schemes are ineffective in thwarting attackers from revers
engineering the code, then they are not only useless, but
are in fact worse than useless: they increase the time and
1 Introduction space requirements of the program, and can contribute to a
. false sense of security that keeps other security measures
In recent years, code obfuscat[on has attracted some attenfrom being deployed. Thus, identifying any weaknesses
tion as a low cost approach to improving software security in current obfuscation schemes by developing and testing

[5,8,9,21,22,29]. The goal of code obfuscationis to make attack models can lead to better obfuscation schemes and
it difficult for an attacker to reverse engineer programse Th concomitant improvements in software security.

idea is to prevent an attacker from understanding the inner

workings of a program by making the obfuscated program This paper aims to address the questions raised above, re-
“too difficult” to understand—that is, by making the task of ~garding techniques for understanding obfuscated code and
reverse engineering the program “too expensive” in terms the strengths and weaknesses of sophisticated obfuscation
of the resources or time required to do so. Obfuscation algorithms. We describe a suite of code transformations
has also been used to protect “software watermarks” and and program analyses that can be used to identify and re-
fingerprints, which are designed to thwart software piracy move obfuscation code and thereby help reverse engineer
[2, 8, 9]. The presumption is that making it difficult for ~obfuscated programs. We use these techniques to exam-
attackers to understand the internal workings of a program ine the resilience of theontrol flow flatteningpbfuscation
prevents them from discovering vulnerabilities in the gode technique, which has been proposed in the research liter-
and serves to protect the program owner’s intellectualprop ature [3, 29] and used in a commercial code obfuscation

erty. product by Cloakware [6], against attacks based on combi-
nations of static and dynamic analyses. Our results inglicat
*Department of Computer Science, The University of Arizofiag- that from the_perspectlve of reverse engineering, S|_mple ij
son, AZ 85721, USA. Email{sku, debray}@s. arizona. edu namic techniques can often be very useful in coping with
Supported in part by the National Science Foundation undertg CNS- code obfuscation. From a software Secu”ty perspectlve’ we

0410918 and CCR-0113633. . .
TGhent University, St.-Pietersnieuwstraat 41, B-9000 GHeelgium. show that many obfuscation teChmqueS can be largely neu-

Email: mmadou@! i s. ugent . be This research was funded by Ghent tralized using combinations of simple and well known static
University, by the Fund for Scientific Research-Flandei/@=Flanders). and dynamic analyses.

int f(int i, intj)

intA[..]; /* global array of indices */

intw; [* offset into array A */
:][]t (|a z Jl) { call_site_1: call_site_2:
a=j; w = random w = random,
Aw] =3 Aw] =3
}él se Alw+l] =1 Alw+1] =1
do { Alw+2] =2 Alw+2] = 2
a v=i-- call (. call (.)
} while (i > 0);

return a;

}

Figure 1: An example program and its control flow graph

i a=1
Alw+1] :
Alw+2]

JEGTN

return a

return a

Figure 3: Enhancing flattening with Interprocedural Data
Flow

quires reasoning about semantic aspects of the program—is
intuitively more difficult than working around surface ob-
fuscation, which is essentially a syntactic issue. Thisspap
2 Obfuscating Transformations is concerned pr_imarjly with deep obfusca}ion techniques
that attempt to disguise the control flow logic of a program.
Conceptually, we can distinguish between two broad In prior work, we considered the problem of deobfuscat-
classes of obfuscating transformations. The figsirface ing programs that had been subjected to a number of control
obfuscation focuses on obfuscating the concrete syntax flow obfuscations based on opaque predicates; we found
of the program. An example of this is changing variable that for the obfuscations considered (a set of control flow
names or renaming different variables in different scopes obfuscations implemented in Collbergdandmarkobfus-
to the same identifier , as carried out by the “Dotfuscator” cation tool for Java programs [7]), most of the obfuscation
tool for obfuscating .NET code [25]. The seconégp ob- could be removed using a combination of fairly straightfor-
fuscation attempts to obfuscate the actual structure of the ward static and dynamic analyses [4]. This paper considers
program, e.g., by changing its control flow or data reference a differentapproach to control flow obfuscation, taken from
behavior [5, 9]. While the former may make it harder for Chenxi Wang's dissertation [29, 30]. This choice is moti-
a human to understand the source code, it does nothing tovated by three factors. First, based on our experiments, it
disguise the semantic structure of the program. It theeefor seems more difficult to break than those we had considered
has no effect on algorithms used for reverse engineering, earlier [4]. Second, this approach has been considered by
such as program slicing, that rely on code structure and se-other researchers as well [3], and its resilience is theeefo
mantics rather than the concrete syntax. For example, it is Of interest to the research community. Finally, it is a key
straightforward to undo most of the effects of Dotfuscator- component of an industrial obfuscation tool by Cloakware
style variable renaming simply by using a parser to resolve Inc. [6].
variable references using the scope rules of the language This section describes the basic control flow obfuscation
and rename variables accordingly. Deep obfuscation, by technique as well as two variants that aim to make the basic
contrast, changes the actual structure of the program, andapproach harder to break.
therefore affects the efficacy of semantic tools for program . .
analyses and reverse engineering. Space constraints pre-1 Basic Control Flow Flattening
clude a more detailed elaboration of different kinds of deep Control flow flattening aims to obscure the control flow
obfuscation techniques, but the interested reader isreefer logic of a program by “flattening” the control flow graph
to a discussion and more detailed taxonomy by Collberg so that all basic blocks appear to have the same set of pre-
et al. [10]. For the purposes of this paper, it suffices decessors and successors. The actual control flow during
to note that working around deep obfuscation—which re- execution is guided by dispatcher variable At runtime,

Figure 2: Control flow graph after basic flattening

Init

f:

. S
5
B

p=&b a=1 p=&b p=&b p=&b a=j p=2&b p=&a a=a

=4 p= =3 =i-1 ¢
p=3 X=i<j?b:c p= p=9 p= x=b p=8 p=3 i=i- return a
q=&c q=&c = x=6 x=i>0?b:c

.
q=4
x=1

Figure 4: Enhancing flattening with artificial blocks andmters

each basic block assigns to this dispatcher variable a valueThe offset so chosen may be different at different call sites
indicating which next basic block should be executed next. for the function, and is passed to the obfuscated calleereith
A switchblock then uses the dispatcher variable to jumpin- as a global or as an argument. The obfuscated code then
directly, through a jump table, to the intended control flow assigns values to the dispatch variable from the global ar-
successor. ray. Neither the actual locations accessed, nor the cantent
As an example, consider the program shown in Figure 1. of these locations, are constant values, and are not evident
Basic control flow flattening of this program results in the by examining the obfuscated code of the callee. The code
control flow graph shown in Figure 2, whesds the switch resulting from applying this obfuscation to the program in
block andx the dispatcher variabfeThe initial assignment Figure 1 is illustrated in Figure 3.
to the dispatcher variabbein the blocklnit is intended to
route control toA, the original entry block of(), whencon- 2 3 Enhancing Flattening II: Artificial Blocks and
trol first enters the function,; after this, control flow is dad Pointers
by assignments tw in the various basic blocks.
The obfuscation technique detailed above can be extended
2.2 Enhancing Flattening I: Interprocedural Data by adding artificial basic blocks to the control flow graph.
Flow Some of these artificial blocks are never be executed, but
. . . . this is difficult to determine by a static examination of
In the basic control flow flattening transformation discasse ihe program because of the dynamically computed indirect
in Section 2.1, the values assigned to the dispatch variabley, o nch targets in the obfuscated code. We then add indirect
are available within the function itself. Because of this, o445 and stores, through pointers, into these unreachable
while the control flow behavior of the obfuscated code is p|ocks. These have the effect of confusing static analyses
not obvious, it can be reconstructed by examining the con- 5,4t the possible values taken on by the dispatch variable.

stants being assigned to the dispatch variable. This, M tur - rjgyre 4 shows the result of applying this to the program of
requires only intra-procedural analysis. Figure 1.

The resilience of the obfuscation technique can be im-
proved using interprocedural information passing. Thaide
is to use a global array to pass the dispatch variable values.
At each call site to the function, these values are written
into the global array starting at some random offset within
the array (appropriately adjusted to avoid buffer overflows

In our implementation, we add two artificial basic blocks
corresponding to each block in the original function: one of
these blocks is actually executed at runtime, while therothe
is simply a decoy added to mislead static analysis. Given
a blockB in the original program, let the corresponding ar-
tificial block that gets executed be denotedBfy and the

o 7 : .

1strictly speaking, Figure 2 is slightly inaccurate in thashows that de.coy artlflCIa:jglo(;:k bk;B h lr?dlreCt a.‘fs.s.lglngenkts turOUQh
the control flow from basic blocka, B, andC come together into a single pointers are _a edto - oth these ?rt' ICia (_)C S. Owe_ver'
block, at the bottom of the picture, from which it then braesho the top only the assignments in the blo&k set the dispatch vari-
of the switch blockS. In practice, control would go directly from each of able to the appropriate values so as to give the right control
A, B, andC directly to the top ofS. We draw it as shown to rgduce_ the flow during execution: the decoy blo&¥, by contrast, sets
clutter of control flow edges and bring out the essentialdagiderlyig . . ; .
the transformation. This becomes especially importantnahe consider the dispatch variable to other values, so as to give a mis-
enhancements to the basic transformation, as illustrat&igs. 3 and 4. leading picture of control flow. In the original blodk the

H

=

!

o
AN

e]

(a) Original code (b) After cloning

Figure 5: Code Cloning

value of the dispatch variable that gets loaded is that previ
ously assigned in the artificial blod&. Hiding the starting
value of the switch variable makes it harder for a static an-
alyzer to deduce which blocks are executed and hence find
out the valid definitions of the switch variable.

3 Deobfuscation

This section describes a number of analyses and program
transformations that we have found useful for reverse engi-
neering obfuscated code.

3.1 Cloning

Many obfuscation techniques rely on introducing spurious
execution paths into the program to thwart static program
analyses [5, 9]. These paths that can never be taken at run
time, but cause bogus information to be propagated along
them during program analyses, thereby reducing the pre-
cision of information so obtained and making it harder to
understand the program logic. This is illustrated in Figure
5(a), where information is propagated between basic blocks
A and B along the “actual” control flow path 1 as well as the
spurious control flow path 2, the latter having been intro-
duced by the obfuscator. The bogus data flow information
propagated along 2 then has the effect of introducing im-
precision in the results of program analyses at points where
execution paths come together. In Figure 5(a), the resiilts o
forward dataflow analyses, such as reaching definitions, are
tainted at the entry t8, while those of backward analyses,
such as liveness analyses, are affected at the exitAom

One way to address this problem is to clone portions of
the program in such a way that the spurious execution paths
no longer join the original execution paths and taint the in-
formation obtained from analysis. The result of applying
cloning to basic blocIB in Figure 5(a) is shown in Figure
5(b). In this case, this results in improved forward dataflow
information available at the entry #. In this example,
however, cloning does not eliminate the spurious control
flow edgeA — B, and so does not improve the backward
dataflow information available at the exit frofn

This transformation obviously has to be applied judi-
ciously, since otherwise it can cause large increases ia cod

(a) Original (obfuscated) code

) |~———

Al L[] [c]

[s1]

45

A BC

[s2]

4

A BC

s3]

o

A BC

(b) Obfuscated code after cloning

Figure 6: Code Cloning for Control Flow Flattening

of time, which execution paths are spurious and which are
not. One possible approach, in such situations, would be to
apply cloning selectively at points where multiple control

flow paths join, and where the dataflow information propa-
gated along some paths is significantly less precise than tha
propagated along others. Alternatively, if we know some-
thing about the kind of obfuscation that has been applied, it
may be possible to apply cloning in a way that exploits this
information. For example, it is relatively straightforwigo
infer that control flow flattening has been applied, because
of the distinctive control flow graphs it produces.

For the purposes of this paper, we use cloning in the con-
text of one of our deobfuscator implementations (see Sec-
tion 4.1), as illustrated in Figure 6. Consider the obfusdat
program fragment shown in Figure 6(a), where the basic
blocks A, B, and C all transfer control tosavitch-block S.
Cloning creates three copies S1, S2, and S3 obthich
block S, corresponding to the successors A, B, and C re-
spectively. The control flow successors of each of these
copies is the set of control flow successors of the original
switchblock, i.e., each of the copies S1, S2, and S3 has
an edge to each of the blocks A, B, and C. In the resulting
program, shown in Figure 6(b), the dataflow information
entering theswitch-block S1 is not commingled with that
entering theswitch-block S2 from B or that entering the
switch-block S3 from C.

3.2 Static Path Feasibility Analysis
We use the ternstatic path feasibility analysi® refer to

size and further exacerbate the reverse engineering prob-constraint-based static analyses to determine whether an

lem. Moreover, since the goal of deobfuscation is to try to
identify and remove obfuscation code, this means that in
general, cloning has to be applied without knowing, ahead

(acyclic) execution path is feasible. Given an acyclic ex-
ecution pathtwith x the set of variables live at entry 1
the idea is to construct a constra@ such that the logical

formula (3x)Cyr is unsatisfiable only if, for all possible ex-
ecutions of the progrant is never executedCy, is thus a
conservative approximation to the effects of the execution
of the instructions alongt If (3x)Cy can be shown to be
unsatisfiable, we can conclude theis unfeasible.

In principle, we can imagine many different ways to con-
struct the constrain®; corresponding to a patit For the
purposes of this paper, our goal is to take into account the
effects of arithmetic operations on the values of varigbles
effectively obtaining an analysis that resembles constant
propagation, but propagates information along a single ex-
ecution path rather than along all execution paths. To this
end, we use linear arithmetic constraints to reason about
variable values. The discussion below assumes a low-level
program representation, e.g., as three-address code, RTL
or even machine instructions.

Assume that each instruction in the program has a unique
namely. The value of a variablg at the beginning oftis
denoted by, while at intermediate points along the path,
the value ok immediately after instructioly is denoted by
Xk. An unknown value is denoted hy. The constrainCy
is constructed as a conjunction of a Constrélpfor each
instructionly in , as follows:

1. Assignmentl,=‘x=Yy'. Then,Cx = x =Yj, where
I refers to the most recent instructiorrithat defined
y (j = 0if there is no definition of in Ttbeforely).

. Arithmetic. |y = ‘x = y® Z for some operationp,
wherel; andlj refer to the most recent instructions
definingy and z respectively (= 0 if y has not yet
been defined along, and similarly with j). Then,
C« = x= fa(¥i,zj). Here,fs expresses the seman-
tics of the operatiomp. If the semantics of is not
known to the analyzer, or if eithgf = L orz; = L,
thenCy=x= 1.

. Indirection Pointers can be modelled at different lev-
els of precision, with a concomitant tradeoff in anal-
ysis speed [15]. A full discussion of pointer analysis
is beyond the scope of this paper; we require only that
the treatment of pointers be conservative, i.e., that the
set of possible targets for a pointer during analysis be
a superset of the actual set of targets during any exe-
cution.

. Branchesly = ‘if egotoL’ for some Boolean expres-
sione. In this case,

{

Unconditional branches can be treated as a special
case where = true, while multi-way branches such
as those arising fromwitch statements, can be mod-
elled as a semantically equivalent series of conditional
branches.

e
—e

if I is a taken branchim,
if I is not taken inr

Ck

. Otherwise, the effects of instructibpcannot be mod-
elled by the analyzer. The analysis is aborted in this

BO
1
y 2
if (u>0) goto Bl

T

B2
o 0

\/

if (z>0) goto B5 ‘(6)

/\

| 7] |

1)
@
®

X

Bl
‘ z=x-y

‘)

B3

"’

Figure 7: An example of static path feasibility analysis

case, and our system conservatively assumegtlsat
a feasible path.

Once the constrair@;; has been constructed in this way, a
constraint solver is used to determine its satisfiabilitur O
current implementation uses the Omega calculator [23] to
test satisfiability.

Figure 7 illustrates the use of constraints for static path
feasibility analysis. The parenthetical figures to the tigh
of each basic block serve to identify different instrucion
Consider the patimt = BO—B2—B3— B5. The only rel-
evant live variable at the entry to this pathuisThe corre-
sponding constrair@y is therefore:

(Fuo)x1 =1AY2=2AUp>0AZ5=X1 —Y2AZ5 > 0.

It is not difficult to see that this constraint is unsatisfgbl
which means that the pathis unfeasible. Note that con-
ventional constant propagation would obtais | at entry
to block B3, and thereby conclude that the patlis feasi-
ble.

Note that this example could also have been handled by
cloning blockB3, which would have the effect of prevent-
ing the loss of information resulting from the control flow
join of edgesB1—B3 andB2—B3, after which constant
propagation would give the expected results. Thus, path
feasibility analysis and cloning can be seen as complemen-
tary techniques.

3.3 Combining Static and Dynamic Analyses

Conventional static analyses, such as that of Section 3.2,
are inherently conservatifeso the set of edges resulting
from purely static deobfuscation techniques are, in génera
a superset of the actual set of edges. Conversely, dynamic
analyses, such as program tracing or edge profiling, cannot
take into account all the possible input values to a program,

2This follows from soundness considerations, which causticsinal-
yses to propagate information along a superset of the erequaths that
may actually be taken by a program during execution. Thi®agion
need not hold if soundness is sacrificed, as with some rgepraposed
analyses [13, 14].

and therefore are able to observe only a subset of all its
possible execution paths.

The dual natures of these two approaches to program
analysis suggests that we try to combine them. This can be
done in two ways. We can begin with an underapproxima-
tion to the set of control flow edges obtained via dynamic
analysis, then use static analysis to add back some control
flow edges that could be taken. Alternatively, we can begin
with an overapproximation to the set of control flow edges
edges obtained via static analysis, then use dynamic anal-
ysis to remove some control flow edges (or paths) that are
not actually taken. In either case, the result may contain ei
ther more or less edges than the original program, i.e., when
we combine static and dynamic analyses the result cannot
be guaranteed to be either sound or precise. Nevertheless
from the perspective of reverse engineering and program
understanding, such combined analyses can be very usefu
for overcoming the limitations of purely static and purely
dynamic analyses.

For the work described in this paper, we used a static
analysis to improve the results of dynamic analysis by
adding back some control flow edges that could possi-
bly be taken. The essential idea behind our approach is
based on the followingiedankenexperimensuppose we
know, somehow, which control flow edges can actually be
taken during execution. Then, we can simply mark these
edges and propagate dataflow information only along such
marked edges, thereby avoiding the imprecision resulting
from propagating information along edges that can never
be taken at runtime. Conventional static analyses can then
be thought of as the degenerate case where all edges ar
marked. We can improve on this situation by using dynamic
analyses to identify edges that are actually taken during
execution and marking only these edges, then propagating
dataflow information along these marked edges, as follows:

1. Initially mark only those edges that are identified as
taken by the dynamic analysis.

2. Carry out constant propagation on the program, prop-
agating information only along marked edges.

If a conditional branch is encountered where only one
the outgoing control flow edges is taken during exe-
cution, but where the outcome of the branch cannot
be uniquely determined from the constant propagation,
add the branch that is not taken during execution into
the set of control flow edges that can be taken, and
mark it.

In our implementation, the effect of this approach is to
prune the dataflow information propagated irdwitch
blocks. As an example, consider the following control flow
fragment, where solid arrows represent control flow edges
that are taken during execution, while dashed arrows corre-
spond to edges that are never taken:

switch (x)

— executed edge

A - -» non-executed ed¢

B Y C
x=1] [x=2] | x=3]

In this example, basic block B is never executed, so the con-
trol flow edges S»B and B—S are not marked and have no
information propagated along them. The assignmen®’

in block B is therefore not considered for static analysis;
this results in the value 2 not being considered to be a pos-
sible value for the variablbe at theswitch

I4 Experimental Evaluation
We evaluated our ideas using two different binary rewriting

systems for the Intel x86 platform:LiPo [24] and DABLO

[11]. We implemented three control flow flattening obfus-
cations described in Wang'’s dissertation and discussed in
Section 2 in these tools, and used these to obfuscate ten
programs from the SPECint-2000 benchmark suite. While
these programs happen to be written in C, our experiments
were carried out on program binaries.

Each of our benchmarks was compiled usjjegversion
3.2.2, at optimization level O3, with additional command-
line flags to produce statically linked relocatable bingyrie
and the resulting binaries processed using the obfuscators
mentioned above. Functions containing (indirect jumps

esulting from)swi t ch statements were not obfuscated

ecause our obfuscators currently are not able to process
the resulting control flow. Library functions were also ex-
cluded, because in most cases such functions contain non-
standard control flow, e.g., where control jumps from one
function into another without using the normal call/return
mechanism for inter-procedural control transfers. Static
characteristics of these benchmarks are shown in Table 1,
which compares the original programs with those resulting
from basic control flow flattening.Overall, Table 1 shows
that our tools obfuscate most user functions in the program
(on average, about 88%). As expected, obfuscation causes
the number of control flow edges to increase, though the
scale of the increase—a factor of roughly>5% 60x—is
larger than we had expected.

Control flow deobfuscation involves deleting spurious
control flow edges that have been added by the obfusca-
tor. To evaluate the efficacy of various deobfuscation tech-
niques, therefore, we compare the deobfuscated program
Paeobf With the original prograntfyrig to classify any errors
made by the deobfuscator in deleting control flow edges. In
principle, there are two kinds of such errors that can occur:
first, Pgeobf may contain some edge that does not appear in

3The differences in the number of functions, basic blocks, edges
reported by PTo and DABLO arise partly because they linked in different
versions of the standard C library, and partly due to sonferdifices in
code transformations carried out by the two tools, e.gaEDO carries
out some tail-call optimization before obfuscation.

Original Obfuscated Effects of Obfuscation
Program| Functions| Edges | Functions] Edges EE EJE
(Forig) | (Eorig) | (Fobr) (Eobt) obfTorig | “obfTorig
bzip2 42 2,655 30 157,192 0.714 59.21
crafty 104 12,172 89 4,309,502| 0.855 352.05
gap 825 43,079 768 1,973,980 0.930 45.82
gcc 1,792 99,516 | 1,398 8,816,058 0.780 88.59
gzip 73 2,916 59 107,882 0.808 37.00
mcf 19 799 19 16,756 1.000 20.97
parser 180 12,299 174 684,904 0.966 55.69
twolf 165 14,799 157 1,277,410f 0.951 86.32
vortex 638 39,229 615 1,969,734 0.963 50.21
vpr 252 8,948 211 310,210 0.837 34.67

| GEOM. MEAN: | 0876 | 59.43]

(@) ALTo

Original Obfuscated Effects of Obfuscation
Program| Functions| Edges | Functions] Edges EE E. JE
(Forig) (Eorig) (Fobt) (Eobf) obfTorig obf!=orig
bzip2 35 2,167 34 168,032 0.971 77.54
crafty 102 11,853 86 2,701,600(0.843 227.92
gap 809 44,431 738 2,963,737 0.912 66.70
gcc 1,071 80,168 685 1,801,553 0.639 22.47
gzip a4 1,871 35 99,486 0.795 53.17
mcf 18 605 18 16,908 1.000 27.97
parser 185 10,301 174 714,223 0.940 69.34
twolf 165 12,772 156 1,553,117 0.945 121.60
vortex 620 32,048 599 1,298,439 0.966 40.52
vpr 103 2,305 84 44,288 0.815 19.21

| GEOM. MEAN: | 0876 | 55.1 |

(b) DiaBLO

Table 1: Static characteristics of original and obfuscéuchmark programs

Porig; and secondPgeont may not contain some edge that The results of deobfuscation are shown in Table 2(a).

appears irPyig. We term the first kind of errooveresti- For each of our implementations, we consider two metrics:
mation errors(written Agyer), and the second kind of errors theextent of deobfuscatione., the number of obfuscation
underestimation errorgwritten Aynger): edges that we were able to remove via the deobfuscation
process; angrecision which gives the number of over-
Dover = |{€]e€ Pyeoprande ¢ Porig}| estimated and underestimated edges, as discussed above. It
Dunder = [{€] € ¢ Pyeobt ande € Porig }| can be seen that the o implementation, using constraint-

based path feasibility analysis, is able to recover thei-orig
nal programs completely, without any error. TheaBLO
implementation, which uses code cloning followed by con-
stant propagation, is able to remove over 99% of the ob-
fuscation edges. The resulting programs still have a small
4.1 Basic Flattening amount of over_estimation errors (0.7_20_/0 on average), dL_Je
. , , , to edges that did not appear in the original programs. This
We first consider programs obfuscated using the basic con-js tg a great extent an artifact of the program transforma-
trol flow flattening technique described in Section 2.1. {jon ysed: the cloning process introduces a number of ad-
This turns out to be straightforward to deobfuscate using gitional control flow edges into the program, and these are
purely static techniques. We considered two different ap- ot all eliminated by the constant propagation. It turns out
proaches: the DBLO implementation used cloning (Sec- that most of them could be eliminated quite easily by an
tion 3.1) followed by conventional constant propagation to aqgditional phase of liveness analysis and jump-chain col-

Constraint-based Path Feasibility Analysis (Section.3.2)

Since the input to the deobfuscator is the obfuscated pro-
gram, we express the overestimation and underestimation
errors relative to the number of edges in the input obfus-

cated program.

PLTO DIABLO
Program Added | Removed| % Over | % Under Added | Removed| % Over | % Under

bzip2 154,537| 154,537| 0.00 0.00 165,865| 164,657 0.73 0.00
crafty 4,297,330| 4,297,330| 0.00 0.00 2,689,747| 2,685,374 0.16 0.00
gap 1,930,901 1,930,901 0.00 0.00 2,919,306| 2,900,564 0.64 0.00
gcc 8,716,542| 8,716,542 0.00 0.00 1,801,553 90,893 0.60 0.00
gzip 104,996| 104,996| 0.00 0.00 97,615 96,821 0.81 0.00
mcf 15,957 15,957 | 0.00 0.00 16,303 15,944 2.20 0.00

parser 672,605| 672,605| 0.00 0.00 703,922 698,700 0.74 0.00
twolf 1,262,611| 1,262,611 0.00 0.00 1,540,345| 1,533,774 0.43 0.00
vortex 1,930,505 1,930,505 0.00 0.00 1266,391| 1,255,663 0.85 0.00
vpr 301,262 301,262 0.00 0.00 41,983 41,226 1.80 0.00

GEOM. MEAN: [000 [0.00] [072] 000]
(a) Basic Flattening

Program| ~ Added | Removed] % Over | % Under |

Program| Added | Removed]| % Over | % Under |

bzip2 154,537 116,896 23.95 0.00 bzip2 165639 130743 21.76 0.56
crafty 4,297,330| 3,051,105 28.92 0.00 crafty 4403750 3169697 28.21 0.01
gap 1,930,901 1,177,850 38.15 0.00 gap 2365955| 1655983 31.23 0.03
gcc 8,716,542| 4,936,993| 42.87 0.00 gcc 9609646 | 5830097 39.94 0.01
gzip 104,996 74,111| 28.63 0.00 gzip 125508 97539 | 23.69 0.36
mcf 15,957 15,198 4.50 0.00 mcf 22335 22375 1.60 1.69
parser 672,605 464,098 30.44 0.00 parser 786423 590215 26.09 0.02
twolf 1,262,611 820,698 34.59 0.00 twolf 1401063 973949 31.18 0.03
vortex 1,930,505 1,351,354 29.40 0.00 vortex 2275709 | 1735787 25.00 0.02
vpr 301,262 165,695| 43.70 0.00 vpr 386508 259889 34.21 0.08
[GEOM. MEAN: | 2689 | 0.00 | [GEOM. MEAN: [21.40] 0.06 |
(b) Flattening with Interprocedural Data Flow (c) Flattening with Artificial Blocks and Pointers
Key:
Added: Number of edges added due to obfuscation EoiF— Eorig (See Table 1).
Removed: Number of edges removed by the deobfuscator.
% Over: Overestimation error relative to number of edgediiuscated program Agyer/Eobt-

% Under: Underestimation error relative to number of edgesbifuscated program &ynder/ Eobt-
Dover, Dunder are defined in Section 4.

Table 2: Deobfuscation results

jump to the final target). However, we did not do this for marks. It is significant that even though the underlying

the purposes of this paper. static analysis is purely intra-procedural, and has no €deob
. . fuscation effect by itself, the effect of combining it witly-d
4.2 Flattening with Interprocedural Data Flow namic analysis is to remove 16026.9 ~ about 73% of the

For flattening with interprocedural data flow (Section 2.2), obfuscation edges. Note that the combination of static and
we used only the Bro implementation, using static path ~ dynamic analyses makes a difference only for functions that
feasibility analysis by itself as well as in combinationtwit ~ are actually executed: for functions that are not executed o
dynamic execution tracing (Section 3.3). our test inputs, we do not consider any edges to be removed,
In this case, because our path feasibility analysis is and all of their obfuscation edges are counted towards the
purely intra-procedural in nature, it is unable to achiewe a Overestimation error in Table 2(b).
deobfuscation. . . i .
We do somewhat better when the static analysis is com- 4.3 Flattening with Artificial Blocks and Pointers
bined with dynamic tracing. The results are shown in Table For flattening with dummy blocks and pointers (Section
2(b). The resulting deobfuscated programs have some over-2.3), we again used only theLRo implementation, using
estimation errors, ranging from 4.5% for tinecf bench- static path feasibility analysis by itself as well as in caémb
mark to 43.7% forvpr, with an overall mean of 26.9%. nation with dynamic execution tracing (Section 3.3).
There is no underestimation error for any of the bench- The static path feasibility analysis is unable to deobfus-

cate this case, because it currently does not handle indirec with dynamic analyses, we are able to eliminate about 73%
memory accesses through pointers. of the spurious edges introduced by obfuscation with inter-
Deobfuscation improves when static and dynamic analy- procedural data flow, and about 78% of those introduced by
ses are combined. The results are shown in Table 2(c). In obfuscation with artificial blocks and memory indirection.
this table, the values in the column labelled ‘Added’ dif- The total time required for constraint generation and solu-
fer from the corresponding values in Table 2(b) because tion in these cases is similar to those for basic control flow
the addition of artificial blocks introduces some additiona flattening, ranging from 7 sec to 22 mins for the case of in-
control flow edges in this case. As in the case of flatten- terprocedural data flow, and from 8.5 sec to 24 mins for the

ing with interprocedural data flow, all of the obfuscation case of artificial blocks and indirection.

These results represent an encouraging first step in au-
tomated deobfuscation of obfuscated programs. There are
many directions in which this work can be extended, e.g.,

edges for functions that are not executed are counted to-

wards the overestimation error. Overestimation erroreang
from 1.6% formcfto just under 40% fogcg with an overall

mean of 21.4%. There is a small amount of underestima- by improving the sophistication of our static analyses to in

tion error as well in this case, ranging from 0.01%dcafty
andgccto 1.7% formcf with an overall mean of 0.06%. In
other words, deobfuscation removes 10(21.4+ 0.06) ~
78% of the obfuscation edges.

4.4 Discussion

corporate interprocedural analysis or pointer alias aisly

or by using more sophisticated test case generation to im-
prove code coverage for dynamic analysis. At the same
time, it is likely that an obfuscator would use many differ-
ent kinds of code obfuscation in concert, and interactions
between these different obfuscations would be likely to af-
ect the quality of deobfuscation. A study of these topics

Our results indicate that automated techniques can be useC{emains work for the future.

to remove much of the effects of a nontrivial control flow
obfuscation technique.

Basic control flow flattening turns out to be relatively
straightforward to deobfuscate using purely static tech-
nigues: the Pro implementation is able to reconstruct the
original control flow graphs completely in this case, while
the DIABLO implementation incurrs a mean overestimation
error of about 0.7% (much of which can be easily removed
using straightforward off-the-shelf techniques suchas li
ness analysis, which identifies variables that will never be
used before being redefined [1], and jump-chain collaps-
ing, which replaces a chain of jumps by a single jump to
the final target). The total time taken by thet®-based
deobfuscator ranges from about 7 secondsnfief (con-
straint generation: 2.5 sec; constraint solution: 4.5 s&c)
about 21 minutes fogcc (constraint generation: 631.5 sec;
constraint solution: 640.1 sec). TheABLO-based imple-

5 Related Work

There does not appear to be a great deal of prior work
on reverse engineering obfuscated code. Kapoor [16] and
Kruegelet al. [18] discuss algorithms for disassembling ob-
fuscated binaries. Lakhotia and Kumar discuss techniques
to handle obfuscated procedure calls in binaries [19, 20].
The focus of these works, as well as the techniques used,
are very different from those described here.

A number of researchers have considered the use of dy-
namic analysis—either by itself, or in conjunction with
static analysis—for reverse engineering [17, 26, 28];stro
lia and Systa give an overview [26]. Much of this work
focuses on dealing with legacy software, e.g., for determin
ing modularization and semantic clustering or understand-
ing high level design patterns, and for visualizing dynamic

mentation uses an interprocedural constant propagation al system behavior. All of this is fundamentally differentrito

gorithm, originally written for code optimization purpase

the work described here, which has the dual aims of identi-

without any deobfuscation-oriented modifications. In this fying techniques to help reverse engineer obfuscated code,

case, interprocedural constant propagation across the hug and for evaluating the strengths and weaknesses of code ob-

number of control flow edges in the obfuscated programs— fuscation techniques. In particular, our work focuses en us

a number that increases quadratically during deobfusca- ing simplestatic and dynamic analyses to reverse engineer

tion due to the cloning transformation described in Sec- programs that have specifically been engineered to make

tion 3.1—turns out to be relatively expensive, with deob- reverse engineering difficult.

fuscation times of several hours. We believe this can be Theidea of combining static and dynamic analyses is dis-

reduced somewhat by applying constant propagation intra- cussed by Ernst [12].

procedurally rather than inter-procedurally: this wousd r

duce the memory requirements for constant propagation, ;

and thereby reduce the overhead due to paging in the vir- 6 Conclusions

tual memory system. Code obfuscation has been proposed by a number of re-
The two enhancements to the basic control flow flatten- searchers as a means to make it difficult to reverse engineer

ing technigue we studied, using interprocedural data flow software. Obfuscating transformations typically rely ba t

and memory indirection, turn out to be harder to deobfus- theoretical difficulty of reasoning statically about cérta

cate. Purely static techniques, at the level of sophisticat ~ kinds of program properties. This paper shows, however,

of the static analyses we used, turn out to be inadequatethat it may be possible to bypass much of the effects of

for these obfuscations. However, when they are combined some obfuscations by a combination of static and dynamic

analyses. In particular, we examine the problem of deob- [13] D.Evans and D. Larochelle. Improving security usingeex
fuscating the effects afontrol flow flatteninga control ob-

fuscation technique proposed in the research literatude an
used in commercial code obfuscation tools. Our results [14]
show that basic control flow flattening can be removed in
a relatively straightforward way using purely static tech-
nigues, while enhancements to the basic technique can be

largely deobfuscated using a combination of static and dy- [15]
namic techniques.

References
[1] A. V. Aho, R. Sethi, and J. D. UllmanCompilers — Prin-

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

ciples, Techniques, and ToolsAddison-Wesley, Reading,
Mass., 1985.

G. Arboit. A method for watermarking java programs via
opaque predicates. IRAroc. 5th. International Conference
on Electronic Commerce Research (ICECRZ)02.

L. Badger, L. D’'Anna, D. Kilpatrick, B. Matt, A. Reisse,
and T. Van Vleck. Self-protecting mobile agents obfuscatio
techniques evaluation report. Technical Report Report No.
#01-036, NAI Labs, March 2002.

S. Chandrasekharan. An evaluation of the resilienceoof ¢
trol flow obfuscations. Undergraduate Honors Thesis, Dept.
of Computer Science, The University of Arizona, Tucson,
Dec. 2003.

W. Cho, I. Lee, and S. Park. Against intelligent tampgrin
Software tamper resistance by extended control flow obfus-
cation. InProc. World Multiconference on Systems, Cyber-
netics, and Informatic2001.

S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov. An ap-
proach to the obfuscation of control-flow of sequential com-
puter programs. IfProc. 4th. Information Security Confer-
ence (ISC 2001)Springer LNCS vol. 2000, pages 144-155,
2001.

C. Collberg, G. Myles, and A. Huntwork. Sandmark — a tool
for software protection researdiEEE Security and Privagy
1(4):40-49, July/August 2003.

C. Collberg and C. Thomborson. Software watermarking:
Models and dynamic embeddings.Pnoc. 26th. ACM Sym-
posium on Principles of Programming Languaggmges
311-324, January 1999.

C. Collberg and C. Thomborson. Watermarking, tamper-
proofing, and obfuscation — tools for software protection.
IEEE Transactions on Software Engineerir28(8), August
2002.

C. Collberg, C. Thomborson, and D. Low. A taxonomy of
obfuscating transformations. Technical Report 148, Diepar
ment of Computer Sciences, The University of Auckland,
July 1997.

B. De Bus, B. De Suitter, L. Van Put, D. Chanet, and K. De
Bosschere. Link-time optimization of arm binaries.Aroc.
2004 ACM Conf. on Languages, Compilers, and Tools for
Embedded Systems (LCTES Q#gges 211220, 7 2004.

Michael D. Ernst. Static and dynamic analysis: Synergy
and duality. InWODA 2003: ICSE Workshop on Dynamic
Analysis, Portland, ORpages 24-27, May 2003.

10

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

sible lightweight static analysisSEEE Software 19(1):42—
51, January/February 2002.

S. Guyer and K. McKinley. Finding your cronies: Static
analysis for dynamic object colocation. Rroc. ACM Con-
ference on Object-Oriented Systems, Languages and Appli-
cations (OOPSLA'04)pages 237-250, October 2004.

M. Hind and A. Pioli. Which pointer analysis should | @se
In Proc. 2000 ACM SIGSOFT International Symposium on
Software Testing and Analysigages 113—-123, 2000.

A. Kapoor. An approach towards disassembly of mali-
cious binaries. Master’s thesis, University of Louisiana a
Lafayette, 2004.

R. Kazman and S. J. Carriére. Playing detective: Recon
structing software architecture from available evidene-
tomated Software Engineering: An International Journal
6(2):107-138, April 1999.

C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. $tati
disassembly of obfuscated binaries. Aroc. 13th USENIX
Security SymposiunAugust 2004.

E. U. Kumar, A. Kapoor, and A. Lakhotia. DOC — answering
the hidden ‘call’ of a virus. Virus Bulletin, April 2005.

A. Lakhotia and E. U. Kumar. Abstract stack graph to dete
obfuscated calls in binaries. Rroc. 4th. IEEE International
Workshop on Source Code Analysis and Manipulati@yes
17-26, September 2004.

C. Linn and S.K. Debray. Obfuscation of executable code
to improve resistance to static disassembly.Pioc. 10th.
ACM Conference on Computer and Communications Secu-
rity (CCS 2003) pages 290-299, October 2003.

T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Software
obfuscation on a theoretical basis and its implementation.
IEEE Trans. Fundamentgl&86-A(1), January 2003.

W. Pugh. The Omega test: a fast and practical integer pro
gramming algorithm for dependence analy§iemm. ACM
35:102-114, August 1992.

B. Schwarz, S. K. Debray, and G. R. Andrews. PIto: A link-
time optimizer for the Intel IA-32 architecture. Rroc. 2001
Workshop on Binary Translation (WBT-2002D01.

Preemptive Solutions. Dotfuscator.
www. preenpti ve. com product s/ dot fuscator.

E. Stroulia and T. Systa. Dynamic analysis for revensgi-
neering and program understandifgCM SIGAPP Applied
Computing Revieyd 0(1):8-17, 2002.

Symantec Corp. Understanding and managing polymorphi
viruses. Technical report, 1996.

T. Systa. Static and Dynamic Reverse Engineering Tech-
niques for Java Software SysterR$D thesis, Dept. of Com-
puter and Information Sciences, University of Tampere; Fin
land, 2000.

C. Wang, J. Davidson, J. Hill, and J. Knight. Protection
of software-based survivability mechanisms.Ploc. Inter-
national Conference of Dependable Systems and Networks
July 2001.

Chenxi Wang. A Security Architecture for Survivability
MechanismsPhD thesis, Department of Computer Science,
University of Virginia, October 2000.

