
Unpredication, Unscheduling, Unspeculation:
Reverse Engineering Itanium Executables

Noah Snavely, Saumya Debray, and Gregory R. Andrews

Abstract—EPIC (Explicitly Parallel Instruction Computing) architectures, exemplified by the Intel Itanium, support a number of

advanced architectural features, such as explicit instruction-level parallelism, instruction predication, and speculative loads from

memory. However, compiler optimizations that take advantage of these features can profoundly restructure the program’s code,

making it potentially difficult to reconstruct the original program logic from an optimized Itanium executable. This paper describes

techniques to undo some of the effects of such optimizations and thereby improve the quality of reverse engineering such executables.

Index Terms—Reverse engineering, EPIC architectures, speculation, predication, code optimization.

�

1 INTRODUCTION

THERE has been a great deal of recent interest in EPIC
(Explicitly Parallel Instruction Computing) architec-

tures, such as the Intel IA-64 (Itanium), which support
advanced architectural features designed to get around
low-level performance bottlenecks and enhance perfor-
mance. Such features include explicit instruction-level
parallelism, to increase throughput; predicated instructions,
to reduce the need for explicit control transfers and
associated pipeline stalls; and speculative loads, to reduce
the latency associated with loads from memory. These
features, moreover, are exposed to the compiler, which is
responsible for generating code in a way that exploits them
effectively.

In order to make effective use of the capabilities of EPIC
architectures, compilers typically carry out a number of
low-level optimizations. In particular, there are three
optimizations that can significantly improve program
performance: instruction scheduling, predication (or if-
conversion), and speculation. Instruction scheduling refers
to changing the order of instructions, where possible, in
order to increase instruction-level parallelism. Predication

refers to the selective elimination of conditional branches in
favor of predicated instructions, thereby eliminating bub-
bles (resulting from control transfers) in the instruction
pipeline. Speculation refers to the early execution of memory
operations in order to hide their latency.

These optimizations can be very effective in exploiting
the advanced architectural features of the underlying
processor. However, they also profoundly restructure the
low level code of programs, making it potentially difficult to

reconstruct the original program logic from an optimized
executable. This complicates the task of software systems
that statically analyze or modify executable programs, e.g.,
reverse engineering systems, static binary translators, and
link-time optimizers.

This paper is aimed specifically at the task of reverse
engineering optimized Itanium binaries. There are many
legitimate reasons why one might want to reverse engineer
such files, the general reason being a need to understand
the structure and/or working of software whose source
code is not available. For example, a software vendor may
wish to reverse engineer an existing product, made by a
different vendor, in order to develop software interoperable
with it. A vendor may reverse engineer software sold by
another vendor to determine whether any of his patents are
being violated. A user may wish to reverse engineer a
software package to ensure that it does not contain any
backdoors or other malware embedded within it. Note that
in such applications, it is not important for the result of
reverse engineering to be identical to the original source
code (indeed, the very assumption that no source code is
available implies that there is no way to determine whether
it is): It simply has to be semantically equivalent to the
original. Indeed, because of compiler transformations, such
as function inlining, common subexpression elimination,
dead code elimination, etc., in general, it is impossible to
guarantee that a reverse engineering effort, starting with an
executable, will recover the original source code (e.g., the
result of function inlining, followed by constant propaga-
tion into the inlined code and then dead code elimination or
common subexpression elimination, can bear very little
resemblance to the original source code). A direct implica-
tion of this is that the techniques described in this paper do
not promise to reconstruct the original source code, but
rather simply a semantically equivalent version.

This paper presents algorithms for undoing many of the
effects of scheduling, predication, and speculation, thereby
simplifying the problem of identifying the original program
structure and reasoning about its behavior. It is comple-
mentary to and supportive of traditional approaches to
reverse engineering and reengineering (e.g., see [2], [8],

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 2, FEBRUARY 2005 99

. N. Snavely is with the Department of Computer Science, University of
Washington, Box 352350, Seattle, WA 98195-2350.
E-mail: snavely@cs.washington.edu.

. S. Debray and G.R. Andrews are with the Department of Computer
Science, University of Arizona Tucson, AZ 85721.
E-mail: {debray, greg}@cs.arizona.edu.

Manuscript received 15 Jan. 2004; revised 25 June 2004; accepted 1 Dec. 2004;
published online 23 Feb. 2005.
Recommended for acceptance by E. Stroulia and A. van Deursen.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-0011-0104.

0098-5589/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

[14]): By undoing the effects of optimizations, it simplifies
the task of reverse engineering highly optimized Itanium
executables.

While there is a significant body of work on reverse
engineering of binaries [1], [3], [4], [5], [6], [9], [13], [16], [18],
[23], they typically deal either with interpreted bytecode
formats or with executables on architectures, such as the
Intel x86, that do not support features such as predication
and speculation. We are not aware of any other work on
reverse engineering that attempts to deal with such
architectural features and the compiler optimizations that
exploit them.

The remainder of the paper is organized as follows:
Section 2 gives some background on the Itanium architec-
ture and related compiler optimizations. Section 3 discusses
a straightforward approach to reverse engineering Itanium
executables. Section 4 describes a dataflow analysis for
inferring relationships between predicate registers on the
Itanium. Sections 5, 6, 7, and 8 discuss a number of low-
level code transformations for undoing the effects of
Itanium compiler optimizations. Section 9 provides experi-
mental results, and Section 10 concludes.

2 BACKGROUND

This section gives background information on the Intel
Itanium architecture and on the ways compilers make use
of predication, scheduling, and speculation. The reader
familiar with the Itanium can skip this section and go
directly to Section 3, which discusses a straightforward
approach to reverse engineering Itanium executables.

The Itanium contains multiple functional units and uses
programmer specified instruction-level parallelism. Every
instruction is predicated: It specifies a one-bit predicate
register and, if the value of that register is true (i.e., 1), then
the instruction is executed; otherwise, it has no effect. For
example, the instruction

(p6) add r15 = r15, r16

writes the sum of registers r15 and r16 into r15 if the
predicate register p6 has the value 1 when this instruc-
tion is executed at runtime, and has no effect otherwise.
The Itanium has 64 predicate registers; register p0 is
hard-wired to the constant value true (assignments to it
are ignored). Many instructions in programs use p0 as
their predicate; these are said to be unguarded and by
convention the predicate register is not specified in
assembly code (as shown below). Instructions that specify
a predicate register other than p0 are said to be guarded.
Conditional branches are also expressed using guarded
branch instructions, e.g.:

set p based on test

(p) br.cond TargetAddr

Predicate registers are set by compare instructions, which
typically set them in complementary pairs: One register is
set to indicate whether the condition being tested is true, the
other is set to indicate whether it is false. There are three
broad classes of compares: normal, unconditional, and
parallel. A normal compare is of the form

(p) cmp.rel dst1; dst2 ¼ src1; src2,

where rel is a relation and dst1 and dst2 are predicate
registers. It has the following semantics:

if (p) {

if (src1 rel src2) {

dst1 ¼ 1; dst2 ¼ 0;

}

else {

dst1 ¼ 0; dst2 ¼ 1;

}

}

For example, the instruction

(p6) cmp.eq p7,p8 = r10, r11

behaves as follows: If predicate register p6 has the value 1,
it sets the predicate registers p7 and p8 to 1 and 0,
respectively, if r10 and r11 are equal, and to 0 and 1 if they
are not. If p6 is 0, the values of p7 and p8 are unaffected.

An unconditional compare has the form

(p) cmp.unc.rel dst1; dst2 ¼ src1; src2

and has the following semantics:

dst1 ¼ dst2 ¼ 0;
if (p) {

if (src1 rel src2) {

dst1 ¼ 1; dst2 ¼ 0;

}

else {

dst1 ¼ 0; dst2 ¼ 1;

}

}

Thus, it is like a normal compare, except that it clears both
predicate-register operands before doing the comparison.

A parallel-OR compare sets both predicate-register
operands if the data comparison is true; otherwise neither
predicate register is changed. A parallel-AND compare
clears both predicate-register operands if the data compar-
ison is false; otherwise, neither predicate register is
changed. Parallel compares are used to compute sequences
of logical OR and logical AND operations.

Programs express instruction-level parallelism using
instruction groups. Each group is a sequence of instructions
that do not contain register dependencies and therefore can
potentially be issued in parallel. Instructions are fetched in
three-instruction “bundles” that are executed in parallel if
possible. Predication, combined with careful instruction
scheduling, can be used to eliminate explicit branch
instructions and to increase the amount of instruction-level
parallelism considerably.

Performance can be improved still further by using a
feature called speculation to ameliorate the effects of long-
latency memory operations [15]. The idea is to allow such
instructions to be executed much earlier than would be
possible in traditional architectures—possibly before it is
even known whether the address that is being loaded from
is a valid address. The hope is that initiating such expensive
computations early will allow their results to be available
by the time (if) they are needed. A speculative load is

100 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 2, FEBRUARY 2005

denoted by an opcode “ld.s” and has semantics similar to
those of “ordinary” loads, except that exceptions (e.g., due
to an invalid address or a page fault) are deferred for later
handling. This is done by setting a special bit associated
with the destination register of the load, called a NaT (“Not
a Thing”) bit if an exception occurs during speculative
execution. The NaT bits are propagated by any instruction
attempting to use the result of the load. Later, when the
program reaches a point where the result of a speculative
computation is needed, a special speculation check instruc-
tion (with opcode “chk.s”) is used to determine whether
the speculative computation succeeded: If the checked
register has its NaT bit set, execution branches to recovery
code generated by the compiler; otherwise, execution
continues as normal. The recovery code re-executes the
computation where speculation failed, then transfers con-
trol back to the regular program code.

While an aggressive optimizing compiler that takes full
advantage of these architectural features can obtain
significant performance improvements relative to tradi-
tional architectures, the resulting code can be quite
obscure and difficult to understand and reverse engineer.
The problem is that predication, aggressive instruction
scheduling, and speculation can change the order and

placement of instructions in a program dramatically. This

results in code whose structure and operations bear little

resemblance to that of the original source code. This is

illustrated in Fig. 1, which shows the code that might be

generated, under different levels of optimization, for the

following source code fragment, which iterates down a

linked list computing a value:

while (ptr != NULL) {

if (i == 0) {

sum += ptr->data1;

}

else {

sum -= ptr->data2;

}

ptr = ptr->next;

i--;

}

Fig. 1a shows Itanium machine code generated in a

straightforward way from this source code fragment. The

logic of this code—involving the test and conditional branch

to either of two distinct computations—is not difficult to

figure out, and the code is correspondingly straightforward

to reverse engineer using standard techniques.

SNAVELY ET AL.: UNPREDICATION, UNSCHEDULING, UNSPECULATION: REVERSE ENGINEERING ITANIUM EXECUTABLES 101

Fig. 1. Itanium code under different optimizations. (a) Naively generated code. (b) After if-conversion. (c) After scheduling. (d) After speculation.

Fig. 1b shows the code resulting from applying if-

conversion, i.e., predication, to the code from Fig. 1a. The

conditional branch in block B1, and the conditionally

executed instructions in blocks Bthen and Belse, have been

replaced by a set of predicated instructions in B1. Note that

this has eliminated a conditional branch (in block B1) and

an unconditional branch (in either Bthen or Belse). Typically,

branch instructions take several cycles to execute because

the instructions at the branch target may not be immedi-

ately available in the CPU instruction pipeline. This results

in a “bubble” in the instruction pipeline, i.e., one or more

cycles when no useful instructions are executed. Replacing

the branches with predicated instructions causes these

bubbles to be eliminated. This can improve performance,

but it obscures the logic of the computation because it

requires a careful examination of the relationships between

the values of the predicate registers p8 and p9 to determine

what the computation is doing.
Fig. 1c shows the result of applying instruction schedul-

ing to the code from Fig. 1b. This code is better able to

exploit instruction-level parallelism, but by rearranging the

instructions so that instructions guarded by the same

predicate register become separated, it makes the program

harder to understand and reverse engineer.
Finally, Fig. 1d shows the code resulting from applying

speculation to the code from Fig. 1c. The resulting code is

better able to hide the delays associated with memory load

operations. However, it has two effects on code structure.

First, the load operation that used to be in block B1 is now

moved across a conditional branch it depends on, into block

B0, where it may potentially fail (if register r5 contains

NULL). Second, additional code is added—the speculation

check in block B1, and the recover code in basic block

Brecover and associated control transfer—to recover from any

such failures in the speculative code. These serve to further

obscure the program logic.
Overall, it can be seen that the structure of the fully

optimized code in Fig. 1d is quite different from that of the

original code in Fig. 1a. This makes it difficult to recover the

original program logic from the code of Fig. 1d. This paper

addresses low-level program analyses and code transfor-

mations that can be used to unravel the original structure of

optimized Itanium code, thereby laying a foundation for the

application of other, higher level, reverse engineering tools.

Our goal is to take an optimized Itanium program and

recover from it an “ordinary” control flow graph that is as

simple as possible. This process consists of three transfor-

mations: unpredication, to undo the effects of predication

and make control flow explicit (Section 5); unscheduling, to

undo the effects of instruction scheduling and group related

instructions together (Section 6); and unspeculation, to undo

the effects of speculation and recover the original unspecu-

lative code (Section 7). These transformations are assisted

by predicate analysis, which infers relationships between

predicate registers and allows us to improve the quality of

our transformations (Section 4).

3 NAIVE REVERSE ENGINEERING OF ITANIUM
EXECUTABLES

Recent years have seen the introduction of a number of

architectures supporting predication, where the execution of

an instruction can effectively be turned on or off dynami-

cally using 1-bit predicate registers. Among the best known

of these is the Itanium, though other architectures support-

ing predication include the Philips Trimedia, Texas Instru-

ments TMS320C6x DSP, and the ARM. Predication has the

effect of eliminating conditional branches, which can be an

advantage architecturally, but which can also have the

effect of obscuring the control flow logic of a program. For

example, the structure of the predicated control flow graph

shown in Fig. 1b is significantly different from the control

flow logic of the original program (Fig. 1a). This affects

program analyses and impedes program understanding.

This suggests that the most fundamental component of any

system that aims to reverse engineer an Itanium executable

should be the removal of predication, i.e., the replacement

of guarded instructions by a combination of unguarded

instructions1 and explicit control flow. This transformation

is referred to as unpredication (sometimes called “reverse

if-conversion”).

One simple way to get rid of predication is to replace

each predicated instruction by an unguarded instruction

together with explicit control flow. Thus, each instruction of

the form Thus, each instruction of the form “(p) instr” is

converted to code of the form

In carrying out this transformation, a contiguous sequence
of instructions where each instruction is guarded by the
same predicate register p and none of which modify p can
all be put into the same basic block, preceded by a single
conditional branch on p.

This straightforward transformation eliminates guarded

instructions, but it has the effect of introducing a great

many new basic blocks and control flow edges. This results

in a large and messy control flow graph, with a great many

unfeasible paths that serve to obscure program logic and

adversely affect program analyses. The next two sections

discuss how this problem can be mitigated.

4 PREDICATE ANALYSIS

This section sketches a dataflow analysis we use to derive
relationships between predicate registers. This information
is then used to improve the quality of reverse engineering,
as discussed in the remainder of the paper.

Our analysis reasons about two kinds of relationships
between predicate registers. Let P and Q be two predicate
registers,) denote logical implication and , denote

102 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 2, FEBRUARY 2005

1. Recall that, as discussed in Section 2, an unguarded instruction is one
where the predicate register is hard-wired to the value true.

logical equivalence, i.e., x , y iff x) y and y) x. We have
the following definitions:

. Complementarity: P and Q are complementary at a
program point if P , :Q, i.e., exactly one of them
must be true when control reaches that point.

. Dominance: P dominatesQ if Q) P . This means that
if Q is false then P must be false as well, i.e., Q can
only be true if P is also true.

Our implementation also keeps track of the weaker
property of disjointness: two predicates P and Q are disjoint
at a program point if :ðP ^QÞ whenever control reaches
that point, i.e., they cannot both be true at the same time.
While disjointness information is useful, e.g., for instruction
scheduling [20], it is not central to this discussion and
therefore is not pursued further here.

An an example, the following instruction sets predicate
registers p6 and p7 to complementary values, depending
on whether r5 � r6:

cmp.le p6,p7=r5,r6

Immediately after this instruction, p6 and p7 are comple-
mentary, regardless of their actual values. Suppose that the
next instruction that alters p6 or p7 is

(p8) cmp.eq p6,p7=r10,r11

This instruction is executed conditionally, depending on
whether p8 is true. However, p6 and p7 will still be
complementary, even though their values might have
changed.

Dominance relations typically arise from unconditional
compare instructions: e.g., predicate registers p6 and p7 are
both dominated by p8 after the instruction

(p8) cmp.unc.eq p6,p7=r10,r11

Conceptually, dominance between predicate registers cor-
responds to nested conditionals in terms of control
structure.

Example 1. The C code:

if (x == 0) {

if (y == 0)

z = 1;

else

z = 2;

}

else {

z = 3;

}

corresponds to the following Itanium code:

cmp.eq P,Q = x,0 # I1

(P) cmp.unc.eq R,S = y,0 # I2

(R) mov z = 1 # I3

(S) mov z = 2 # I4

(Q) mov z = 3 # I5

After instruction I1, P is 1 and Q is 0 if x is 0, while
otherwise P is 0 and Q is 1. Recall that an unconditional
compare instruction first clears its destination registers,
after which, if its predicate register has the value 1, it sets

its destination registers appropriately based on the
condition and the operand values (see Section 2). It
follows that after instruction I2 we have the following
relationships between the registers:

R ¼
1 if P ¼ 1 and y ¼ 0
0 if P ¼ 1 and y 6¼ 0
0 if P ¼ 0;

8<
:

S ¼
0 if P ¼ 1 and y ¼ 0
1 if P ¼ 1 and y 6¼ 0
0 if P ¼ 0:

8<
:

It can be seen that each of the predicate registers R and S

is true only if P is true, whence it follows that both R and
S are dominated by P. Note that this reflects the nesting
structure of original control flow in the source code,
where the predicate “y == 0” is evaluated only if “x ==

0” is true.

Our predicate analysis is a forward dataflow analysis
that propagates sets of pairs of predicates ðp; qÞ over the
control flow graph of a function. For simplicity of
exposition, we discuss only the propagation of comple-
mentarity relations here; the propagation of dominance
relations is conceptually similar, and discussed in more
detail elsewhere [20]. The set INðBÞ denotes the set of pairs
of complementary predicates at the entry to block B, and
OUTðBÞ the set of pairs of complementary predicates at the
exit from B.

Let B0 denote the entry block of the function under
consideration. The following dataflow equations specify
how the above four sets are computed.

1. Determining complementarity relationships at the
entry to a block B involves three cases:

a. For intraprocedural analysis we assume that
nothing is known at the entry block B0 to a
function:

INðB0Þ ¼ ;:

b. If B is the return block for a call to a function
f from a block B0, then the dataflow informa-
tion entering B is obtained by taking the
complementarity relations that hold at exit
from B0, i.e., just before control is transferred
to f , and filtering this through the summary
information known about the behavior of the
callee function f :

INðBÞ ¼ FnOutfðOUTðB0ÞÞ:

c. Otherwise, it consists of the complementarity
relations that hold at the exit from each of B’s
predecessors, and so are guaranteed to hold at
entry to B:

INðBÞ ¼
\

P 2 predsðBÞ
OUTðP Þ:

SNAVELY ET AL.: UNPREDICATION, UNSCHEDULING, UNSPECULATION: REVERSE ENGINEERING ITANIUM EXECUTABLES 103

2. The dataflow information at the exit from a basic

block B is obtained by taking the dataflow informa-

tion INðBÞ entering B and propagating it through B

to compute OUTðBÞ as a function of INðBÞ and the

instructions in B. The details of this computation are

given in Fig. 2.

We solve the dataflow equations given above by starting

with the initial values INðBÞ ¼ OUTðBÞ ¼ ; for all basic

blocks B in the function under consideration, and then

computing a fixpoint by iteratively applying the equations

above until there is no change to any of these sets.
In case 1b of the dataflow equations above, FnOutfðSÞ

denotes the effect of the function call f on the complemen-

tarity relations at the call site. A simple conservative

estimate for intraprocedural analyses is to assume that

nothing is known about complementarity relationships at

the return from a function call, i.e., FnOutfðSÞ ¼ ; for all f

and S. We can do better, however, by identifying, for each

function f whose complete call graph is available for

analysis, the set UnchgðfÞ of predicate registers whose

values will not be affected by a call to f . This is done as

follows:

1. Define SaveRestoreðfÞ to be the set of predicate
registers that are saved at entry to f before any use,
and restored prior to leaving f . These sets can be
determined by inspecting the prolog and epilog of
f’s code.

2. Let UnchgðBÞ be the set of predicate registers
whose values will not be changed during the
execution of B:

UnchgðBÞ ¼ ; if B ends in a function call
fp j p not assigned to in Bg otherwise:

�

Then, the set of predicate registers that are unaffected by a
call to f is given by

UnchgðfÞ ¼ SaveRestoreðfÞ
[\

B 2 blocksðfÞ
UnchgðBÞ

0
@

1
A:

Note that the set UnchgðfÞ can be computed in a single pass
over the instructions of f . We can then define the effect of a
call to a function f on predicate complementarity relation-
ships as follows:

FnOutfðSÞ ¼ fðp; qÞ 2 S j fp; qg � UnchgðfÞg:

This is a pessimistic estimate of the effects of a function call,

because when computing UnchgðBÞ for a basic block B, we

assume that all predicate registers may be overwritten if B

contains a function call. A better approach, which we have

implemented, is to propagate UnchgðfÞ values over the call

graph of the program and iterate to a fixpoint.

To reason about the soundness of this dataflow analysis,

we first observe that the algorithm shown in Fig. 2 for

analyzing a single basic block is sound. In other words, if

ðpA; pBÞ 2 OUTðBÞ for some basic block B, then either

ðpA; pBÞ 2 INðBÞ and B does not contain any compare

instructions that assign to either pA or pB; or B contains a

compare instruction that assigns complementary values to

pA and pB that can reach the end of B. The soundness of the

overall iterative algorithm then follows directly from the

fact that the analysis is a monotone (in fact, distributive)

dataflow analysis [11], [12]. Function calls are handled by a

104 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 2, FEBRUARY 2005

Fig. 2. Computing predicate complementarity sets for a basic block B.

simple examination of registers that are not changed by the

call, and so do not affect soundness. Since the IN and OUT

sets consist of pairs drawn from a finite set of predicate

registers, they are finite as well, whence termination follows

from the monotonicity of the operators used in the analysis.
Unlike other proposals for inferring relationships be-

tween predicates in Itanium-like EPIC processors [7], [10],
[19], our analysis is formulated within the framework of a
traditional meet-over-all-paths dataflow analysis. Thus, it is
relatively straightforward to understand, implement, and
extend in various ways, e.g., to interprocedural analysis.
Our current implementation extends the algorithm de-
scribed above to a simple context-insensitive interproce-
dural analysis.

5 INTELLIGENT UNPREDICATION

The naive unpredication algorithm described in Section 3
has the disadvantage of creating a large and messy control
flow graph. Here, we describe a more intelligent approach
to unpredication that utilizes the results of the predicate
analysis described in Section 4. We consider “predicate
groups,” which are instructions whose predicate registers
are related based on information obtained from predicate
analysis. More formally, a predicate group is defined to be a
maximal sequence of consecutive predicated instructions
ðp1ÞI1; ðp2ÞI2; . . . ; ðpnÞIn within the same basic block, such
that for any pair of predicate registers pi; pj guarding
instructions in the sequence, one of the following holds:
1) pi ¼ pj, 2) some pk dominates both pi and pj, or 3) pi and
pj are complementary. As a special case, a sequence of
unguarded instructions forms a predicate group since their
predicates (all p0) are identical.

Given a set of dominance relationships D inferred at a
program point via predicate analysis, let ðp1; p2; . . . ; pkÞ be a
maximal sequence of predicates such that

D � p1) p2) � � �) pk;

where � denotes logical entailment. In other words, from D
we have pk dominates pk�1; . . . ; p2 dominates p1. We refer to
such a maximal chain of dominance relations as a dominance

chain for the predicate p1; the last element pk of the chain is
referred to as its anchor. Recall that, as discussed in the
previous section, dominance relations between predicate
registers in a program reflect nested conditionals in the
control flow of the original program. Thus, given an
instruction I � ‘(p) instr,’ the dominance chain for p

makes explicit the control flow nesting corresponding to the
predicates that affect the execution of instruction I. Suppose
that this dominance chain is ðp; p1; . . . ; pnÞ; this means
—from the definition of the dominance relation—that I will
be executed only if each of the predicates p; p1; . . . ; pn is true.
We can state this explicitly by writing the instruction I as2

ðp; p1; . . . ; pnÞ instr.

Once dominance chains have been made explicit, we can
use them to identify predicate groups based on comple-
mentarity relationships between the anchors of these
dominance chains and carry out unpredication on these
predicate groups. The algorithm for this is shown in Fig. 3.

To reason about the soundness of this algorithm,
suppose that GB is the unpredicated control flow graph
obtained by applying the algorithm to a predicated basic
block B. A simple induction on the depth of recursion of the
algorithm of Fig. 3 suffices to show that GB is equivalent to
B: The base case is trivial and the main issue in the
inductive step is showing that the transformation resulting
from a single level of recursion preserves semantic
equivalence. To this end, consider a maximal sequence of
instructions S � I1; . . . ; In, found in Step 1 of the algorithm,
such that the anchors p and q of the dominance chains of
these instructions are complementary. Let Sp consist of
those instructions in S that have p as the anchor of their
dominance chains, and Sq consist of those whose anchor is
q. Since p and q are complementary, it follows that

Sp will be executed iff p is true at the beginning of S

iff q is false at the beginning of S

iff Sq is not executed.

This means that the instruction sequence S is semantically
equivalent to

if ðpÞ then Sp else Sq. (*)

Furthermore, considering the conditional (*), if Sp is
executed, it must be the case that p is true, which means
that the anchor predicate register p can safely be deleted
from the dominance chains of instructions within Sp.
Reasoning similarly, the anchor predicate register q can be
deleted from instructions within Sq. Note that this results in
the code fragment

if ðpÞ then bSSp else bSSq

resulting from a single level of recursion in the algorithm of
Fig. 3, which establishes that a single level of recursion is
semantics-preserving. It follows, by induction on the depth
of recursion, that the unpredication algorithm preserves
semantic equivalence. Termination follows from the fact
that at each level of recursion, there is a decrease in either
the length of the instruction sequence under consideration,
or the length of their dominance chains, or both.

Example 2. Making dominance chains explicit on the
instruction sequence shown in Example 1 yields:

cmp.eq P,Q = x,0

(P) cmp.unc.eq R,S = y,0

(R,P) mov z = 1

(S,P) mov z = 2

(Q) mov z = 3

The effect of applying the algorithm of Fig. 3 to this basic
block is shown in Fig. 4.

In the first iteration, there is a single predicate group
in the block consisting of the three instructions pre-
dicated on P and the one predicated on P’s complement,
Q. The first iteration splits these four instructions into
two blocks as shown in Fig. 4b. The three instructions

SNAVELY ET AL.: UNPREDICATION, UNSCHEDULING, UNSPECULATION: REVERSE ENGINEERING ITANIUM EXECUTABLES 105

2. Note that this is simply an internal representation, within a software
tool, of an instruction, intended to make some aspects of its runtime
behavior explicit for program transformation purposes. The instructions
actually executed on the Itanium hardware still have just a single predicate
register.

that had been predicated on P have been put in the
then-block, and P has been removed from their dom-
inance chains. The instruction that had been predicated
on Q has been moved into the else-block, and Q has been
removed from its dominance chain.

The unpredication algorithm then recursively pro-

cesses the basic blocks so obtained. The resulting control

flow graph is shown in Fig. 4c. At this point, only

conditional branches are predicated, so the algorithm

terminates. Note that the final result here is isomorphic

to the control flow structure of the source code shown in
Example 1.

6 UNSCHEDULING

Aggressive instruction scheduling permutes instructions

within basic blocks. This can result in code whose behavior

is difficult to understand and reason about. As an example,

consider the code:

(p6) mov r1 = r2

(p6) add r2 = 8,r2

(p7) sub r3 = 8,r1

Even if we know nothing about the relationship between
predicates p6 and p7, it is easy to see that the first two
instructions are both controlled by p6, and that the code
therefore has the control flow structure shown in Fig. 5a.
However, suppose that instruction scheduling permutes
this instruction sequence to the following:

(p6) mov r1 = r2

(p7) sub r3 = 8,r1

(p6) add r2 = 8,r2

The control flow structure we would infer for this code
sequence, shown in Fig. 5b, is much more complex. In
addition, the resulting control flow graph has unfeasible
paths (e.g., the path B0 ! B2 ! B4 ! B5), which can have
an adverse effect on program analyses and hamper
program understanding.

The goal of unscheduling is to group together related
instructions that may have been separated during schedul-
ing (it is possible for this to also group together code
fragments that had been separate in the original program).
Put another way, the unscheduler seeks to permute
instructions within a basic block so as to minimize the
number of predicate groups in that block (see Section 5 for a

106 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 2, FEBRUARY 2005

Fig. 3. An algorithm for intelligent unpredication.

definition of predicate groups). It does so by merging

predicate groups whenever possible. Two predicate groups

A and B can be merged if 1) each of the predicates that

appear in A is related to each of the predicates that appear

in B and 2) it is possible to move A and B so that they are

adjacent. A predicate group can be moved past an adjacent

group as long as no dependencies exist between their

instructions. Assuming all other groups remain in place, a

predicate group can occupy a range of positions whose

boundaries are either dependent predicate groups or the

boundaries of the basic block containing that group.
Our algorithm has two stages. First, it finds the forward

range of each predicate group and looks for another group

in that range with which the first can be merged. Then, it

does the same for the backward range. The forward range

scan algorithm is described in more detail in Fig. 6; the

backward range scan is completely analogous. The scan

must be done in both directions because the process of

merging two groups can be asymmetric; that is, it is

possible that a group G cannot be moved forward to

another group G0, but that G0 can be moved backward to

meet G, or vice-versa. Recall the fragment

(p6) mov r1 = r2 /* group G1 */

(p7) sub r3 = 8,r1 /* group G2 */

(p6) add r2 = 8,r2 /* group G3 */

The first predicate group, G1, cannot be moved down to

meet and merge with group G3, since there is a dependent

instruction in the way. However, G3 can be moved back to

meet and merge with G1.
To see that this transformation preserves program

semantics, note that two nonadjacent predicate groups G

and G0 are merged only if one of them can be moved

past the intervening code, thereby making G and G0

adjacent instruction sequences, without violating any

dependencies between instructions. Suppose that G0 is

moved past the intervening instruction sequence G00, i.e.,

there are no dependencies between any instruction in G0

and any instruction in G00. Since both G0 and G00 are

within the same basic block B, they will both be executed

if B is executed. This, together with the fact that there are

no dependencies between G0 and G00, mean that the

relative order of execution between G0 and G00 does not

affect the behavior of the program. A similar argument

applies if G is moved past G00. It follows that the
transformation is semantics-preserving.

An important point to note here is that the notion of
“dependence” between instructions, which plays a central
role in the unscheduling algorithm, should take predication
into account. The usual notion of dependence is that two
instructions I and J are dependent if either one can write to
a (register or memory) location that may be read from or
written to by the other. When applied to predicated
instructions, we can use the results of predicate analysis,
described in Section 4, to refine this notion, as follows: Two
instructions I and J , guarded by predicate registers p and q,
respectively, are dependent if 1) predicate registers p and q
are not known to be disjoint, and 2) either of them may
write to a location that may be read from or written to by
the other.

7 UNSPECULATION

As discussed in Section 2, the main difference between
speculative and unspeculative loads is that any exceptions
raised by the former are deferred via the NaT bits. Our
approach to unspeculation consists of two distinct phases.
First, we move each speculative load to one or more points
in the code stream where it can potentially be replaced by
an unspeculative load operation. We call this load sinking.
The details of load sinking are discussed in Section 7.1; for
technical reasons, as discussed below, this has to be done

SNAVELY ET AL.: UNPREDICATION, UNSCHEDULING, UNSPECULATION: REVERSE ENGINEERING ITANIUM EXECUTABLES 107

Fig. 4. An example of intelligent unpredication. (a) Initial basic block. (b) After first iteration. (c) After second iteration.

Fig. 5. Effect of instruction scheduling on reverse engineered control

flow graphs. (a) Without scheduling. (b) With scheduling.

together for groups of “related” speculative loads and

speculation checks called speculative regions. Second, we

verify that the check and corresponding recovery code can

safely be eliminated and hence that the speculative load can

be replaced by an unspeculative load. This is discussed in

Section 7.2. Each of these steps must, of course, be

semantics-preserving.
Once these steps have been carried out, we replace each

speculative load in the speculative region by an unspecu-

lative load, and delete each speculation check in that region.

Deleting the speculation check causes the corresponding

control flow edge to the recovery code to be deleted as well.

Usually, this causes the corresponding recovery code to

become unreachable. Such unreachable code is detected and

eliminated in the normal course of subsequent program

analysis and optimization.
A more comprehensive discussion of this transformation

appears elsewhere [22].

7.1 Load Sinking

The appearance of a speculative load in a program indicates

that it cannot be guaranteed to execute without any

exceptions. Thus, simply replacing a speculative load by

an unspeculative one may not preserve program semantics.

Instead, the speculative load must be moved to some

appropriate later point in the code stream. The check

instruction(s) associated with a speculative load indicates

where a legal result for that load is expected, and suggests a

natural placement for the load: immediately before the

check instruction(s). In effect, this pushes the speculative

load down into the basic block containing the correspond-

ing check instruction, past any intervening conditional

branches. The process of moving speculative loads “down”

to their check instructions is referred to as load sinking and is

illustrated in Fig. 7.
There are two aspects of speculative code that complicate

load sinking. First, it is possible to do various operations,

e.g., arithmetic, on the results of a speculative load: If the

speculation fails, the resulting NaT bit is propagated by

such operations. The second is that speculative loads and

speculation checks need not even be in one-to-one

correspondence: A particular speculative load may have

several associated checks and a speculation check may

correspond to several different speculative loads (see Fig. 8).

The first of these means that when carrying out load

sinking, it may be necessary to move not just the speculative

load instruction, but other instructions that depend on it, as

shown in Fig. 7. The second aspect means that if a

speculation check is associated with multiple speculative

loads, we have to make sure that the set of instructions that

has to be sunk to that check is the same for each of the

associated speculative loads. We do this by grouping

speculative loads and speculated checks into speculative

regions that satisfy the following property:

1. If x is a speculative load in a speculative region R
and y is a speculation check on x, then y is in R.

2. If y is a speculation check in R and x is a speculative
load that is checked by y, then x is in R.

Intuitively, speculative regions capture the closure of
checker and checkee relationships between speculative
loads and associated speculation checks.

For each speculative region R, we check that for any
speculation check C in R, the set of instructions I that must
be sunk to C is the same regardless of which associated
speculative load in Rwe consider. We refer to this condition
as path independence. If this condition is satisfied, load
sinking is effected by deleting the instruction sequence I

from each speculative load in R and inserting I at the
beginning of each speculation check in R.

The code structure resulting from load sinking is
illustrated in Fig. 9.

7.2 Recovery Code Verification

In Fig. 9, there are two possible outcomes for the speculation
check in block Bchk. If the speculative load completes
successfully without setting any NaT bits, then execution
takes the pass path �pass � Bchk ! Bfallthru ! Bmerge. If the
speculative load may fail and set NaT bits, then execution
goes through the recovery code along the fail path
�fail � Bchk ! Brec ! Bmerge.

In general, the contents of registers may change between
a speculative load through a register r and a check on that
load, as illustrated in basic block B2 in Fig. 7b. To recover if
the load fails, the correct address has to be recomputed
before reissuing the load, and so the recovery code needs
extra instructions to fix the program state appropriately.
The first instruction in the recovery code (block Brec)
undoes the changes to register r2 after the speculative load,
restoring its value to that at the speculative load. After this
the load is reissued, this time unspeculatively. The
remainder of the recovery code recomputes values (in this
case, register r3) that were computed using the result of the
speculative load, and also resets the value of registers (in
this case r2) whose values had to be changed to reissue the
load. As this example illustrates, both the speculative code
and the recovery code may contain address and register
computations, which have to be taken into account when
reasoning about path equivalence. The effect of unspecula-
tion is twofold. First, the speculation check instruction and
the fail path �fail are eliminated. Second, the speculative
instructions in Bspec are converted to unspeculative ones,
which means that exceptions deferred by the speculative
code are no longer deferred after unspeculation. In order for
this to be correct, the code must satisfy two conditions:

1. [Path Equivalence.] The execution paths �pass and �fail

must be equivalent, in the sense that for every
register and memory location x, the value of x at the
entry to Bmerge must be the same when execution
goes along �pass as when it goes along �fail.

2. [Load Equivalence.] For every memory location y from
which there is a speculative load in Bchk, there must
be an unspeculative load from y in Brec.

The need for the first criterion is obvious: if �pass and �fail

can produce different values for some register or memory
location, then eliminating �fail in the course of unspecula-
tion can potentially change the behavior of the program.
The second criterion is motivated by the need to ensure that

108 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 2, FEBRUARY 2005

the exception behavior of the code after unspeculation is the

same as that of the original code before unspeculation.
Proving path equivalence involves reasoning about the

contents of registers and memory locations along the pass

and fail paths. While doing this, our implementation

currently handles only the case where each of the pass

path �pass and the fail path �fail is a single straight-line path

with no branches: If either �pass or �fail contains branches,

the analysis conservatively assumes that path equivalence

does not hold. It can sometimes happen that the pass and/

or fail path may contain other speculation checks that

introduce branching structure into the code, but this gets

eliminated during the course of unspeculation. To catch

such situations, we iterate the unspeculation process until

no more speculative code can be eliminated. Our imple-

mentation is also conservative in its treatment of memory:

If either the pass path or the fail path contains any stores to

memory among the instructions that are dependent on a

speculative load, we conservatively assume that path

equivalence does not hold and abandon the unspeculation

effort for that speculative region. As the experimental

results reported in Section 9 indicate, these assumptions

suffice for most instances of speculation encountered in

practice.
Given this treatment of memory stores, proving path

equivalence boils down to reasoning about the contents of

registers along the pass and fail paths. To do this, we

specify a logical formula � asserting that there exist

program states for which path equivalence does not

hold—i.e., for some register r, the value of r along the pass

path differs from its value along the fail path. We then use

constraint solving techniques to try and show that � is

unsatisfiable. If we are able to do so, we conclude that there

are no program states that can cause path equivalence to be
violated and, hence, that path equivalence holds.

There are three components to the formula �: �p, which
expresses the values of locations at the end of the pass path;

�f , which expresses the values of locations at the end of the
fail path; and �, which combines values from �p and �f to
state that there is some location whose value at the end of

the pass path is different from that at the end of the fail
path, i.e., path equivalence does not hold. We first define

how these formulae are constructed, then describe how they
are composed to give the formula �.

Assume that each instruction in the program has a
unique name Ik. We describe the construction of the
formula �p, corresponding to the pass path, as a conjunc-

tion of the constraints specified below; the construction of
�f , corresponding to the fail path, is exactly analogous. The

value of a register r at the beginning and the end of the pass
path are denoted by rp0 and rpe , respectively. At intermediate

points along the pass path, the value of register r

immediately after instruction Ik is denoted by rpk. For each

instruction Ik along the pass path, �p contains a conjunct Ck

that captures the effect of Ik. These are defined as follows:

1. Ik � ‘r :¼ load½s�0. In this case, Ck � rpk ¼ memðspj Þ
where Ij is the most recent instruction that defines
register s (j ¼ 0 if s has not yet been defined along
the pass path), and mem is an uninterpreted function
symbol.

2. Ik � ‘r :¼ s� t0 for some operation � and registers s
and t, where the semantics of � is known to the
analyzer. In this case, Ck � rpk ¼ f�ðspi ; t

p
j Þ, where Ii

and Ij refer to the most recent instructions defining
registers s and t, respectively, i ¼ 0 (respectively,
j ¼ 0) if s (respectively, t) has not yet been defined

SNAVELY ET AL.: UNPREDICATION, UNSCHEDULING, UNSPECULATION: REVERSE ENGINEERING ITANIUM EXECUTABLES 109

Fig. 6. The Basic Unscheduling Algorithm.

along the pass path); and f� expresses the semantics
of the operation �. Our analyzer knows about the
semantics of some common arithmetic instructions,
e.g., if � ¼ add then f� is the binary function “þ,”
signifying addition; if � ¼ sub then f� is “�,”
signifying subtraction, etc.

3. Otherwise, the effects of instruction Ik cannot be
modeled by the analyzer. The analysis is aborted in
this case, and our system conservatively assumes
that path equivalence does not hold.

Finally, for each register r, �p contains a conjunct expres-

sing the final value of r. Let the last instruction along the

pass path that defines r be Ik (k ¼ 0 if r is not defined along

the pass path), then this conjunct is given by

rpe ¼ rpk:

As mentioned above, the construction of �f , corresponding

to the fail path, is exactly analogous.
The formula � expresses that some register has a final

value that is different along the pass and fail paths:

� �
_

r a register

rpe 6¼ rfe :

Let

S ¼ fr0 j r is a register used along the pass

or fail path prior to being definedg;

i.e., S denotes the initial values of registers that are used

along either the pass o the fail path. Then, the formula � is

defined as

� ¼ ð9SÞ½�p ^�f ^��:

This quantification asserts that there exist some incoming

register values for which path equivalence may not hold. If

we can then show that � is unsatisfiable, it follows that path

equivalence must hold for all possible values of the

registers. Note that this is conservative: For example, it

may be that a particular register always has the value 7

when control enters the code segment of interest, or is

always divisible by 4, but the constraint above does not take

such invariants into consideration. We could extend our

ideas to take such invariants into account by adding

conjunctively to the formula above; this is somewhat

orthogonal to the central focus of our discussion, however,

and we do not pursue it further.
In the actual implementation, we refine this process to

reduce the size of constraints and the cost of checking

satisfiability of constraints. First, it suffices to restrict our

attention to the (usually small) set of registers that are

actually modified along at least one of the pass and fail

paths. Second, we reduce the number of instructions that

we have to consider by walking backwards on each path

from the merge point, marking instructions that are

identical on both paths, until we reach two nonidentical

instructions or the top of the check block. If we happen to

hit the top of the check block, then the relation becomes

vacuously empty, so there is nothing to check. Our

implementation uses the Omega calculator [17] to deter-

mine the satisfiability of the formula �.
Applied to the recovery code shown in Fig. 7, we get

� ¼ ð9SÞ½�p ^�f ^��; where S ¼ fr20g, and:

110 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 2, FEBRUARY 2005

Fig. 7. An example of load sinking. (a) Before load sinking. (b) After load sinking.

Fig. 8. General structure of speculative computations. Fig. 9. Code structure after load sinking.

�p ¼ r1p1 ¼ memðr20Þ ^ r1pe ¼ r1p1
^ r2p2 ¼ r20 þ 4 ^ r2pe ¼ r2p2
^ r3p3 ¼ r1p1 þ 1 ^ r3pe ¼ r3p3:

�f ¼ r1f1 ¼ memðr20Þ ^ r1f6 ¼ memðr2f5Þ ^ r1fe ¼ r1f6

^ r2f2 ¼ r20þ4 ^ r2f5¼r2f2�4^r2f7¼r2f5þ4^r2fe ¼r2f7

^ r3f3 ¼ r1f1 þ 1 ^ r3f8 ¼ r1f6 þ 1 ^ r3fe ¼ r3f8 :

� ¼ r1pe 6¼ r1fe _ r2pe 6¼ r2fe _ r3pe 6¼ r3fe :

The reader may verify that these constraints simplify in a
straightforward way to give

�p � r1pe ¼ memðr20Þ ^ r2pe ¼ r20 þ 4 ^ r3pe ¼ memðr20Þ þ 1

�f � r1fe ¼ memðr20Þ ^ r2fe ¼ r20 þ 4 ^ r3fe ¼ memðr20Þ þ 1:

The overall constraint �, after simplification, is therefore the
following:

ð9r20Þ½r1pe ¼ memðr20Þ ^ r2pe ¼ r20 þ 4 ^
r3pe ¼ memðr20Þ þ 1 = 	�p 	 =^

r1fe ¼ memðr20Þ ^ r2fe ¼ r20 þ 4 ^
r3fe ¼ memðr20Þ þ 1 = 	�p 	 =^

ðr1pe 6¼ r1fe _ r2pe 6¼ r2fe _ r3pe 6¼ r3fe Þ� = 	� 	 =:

It is not difficult to see, from this, that the � constraints are
not satisfiable, which implies that � is also unsatisfiable.
This, in turn, implies path equivalence for the code in Fig. 7.

Load equivalence can be determined using an approach
very similar to that described above for path equivalence.
The idea is to pair up speculative loads with unspeculative
loads in the recovery code, and then to use a constraint-
based test analogous to that above to determine whether the
address registers being used in the two loads could have
different values.

7.3 The Unspeculation Transformation

The overall unspeculation transformation consists of the
following sequence of steps:

1. Group the speculative loads and speculation checks
into speculative regions.

2. For each speculative region R:

a. Verify path independence for R. If path inde-
pendence cannot be verified, abandon unspecu-
lation for R.

b. Carry out load sinking.
c. Verify path equivalence and load equivalence

for the code resulting from load sinking.
d. Replace each speculative load in R by an

unspeculative load and delete each speculation
check in R.

Deleting the speculation check in the final step of the
algorithm causes the corresponding control flow edge to the
recovery code to be deleted as well. Usually, this causes the
corresponding recovery code to become unreachable. Such
unreachable code is detected and eliminated in the normal
course of subsequent program analyses.

The correctness of the overall unspeculation transforma-
tion follows from the fact that each step of the transforma-
tion preserves program semantics. The correctness of load
sinking follows from path independence, which implies
that the instruction sequence I consisting of a speculative
load, and comprising all the instructions that depend on
that load, is the same for every speculative load and
speculation check in a speculative region. This implies that
the instructions that are executed on any path between a
speculative load and a speculation check in that region are
the same before and after sinking. Furthermore, since all
instructions (transitively) dependent on the speculative
load are sunk, it follows that the transformation does not
affect the order of dependent instructions, i.e., does not
violate any dependencies between instructions. It follows
from this that load sinking does not affect program
semantics. After load sinking, the path equivalence and
load equivalence conditions ensure that the behavior of the
program is the same whether the recovery code is executed
or not, which implies that it suffices to retain just one of
these two execution paths. Our transformation retains the
pass path and eliminates the fail path.

8 PATH SIMPLIFICATION

The discussion on intelligent unpredication in Section 5
focused on exploiting predicate relationships within a basic
block. It turns out that the control flow graphs obtained
from this algorithm can be further simplified using knowl-
edge of predicate relationships across basic block bound-
aries. This is illustrated by the following code:

Begin:

cmp.eq P,Q = x,0

(P) mov y = 1

(Q) br.cond After

Fallthrough:

(P) mov z = 1

After:

(Q) mov z = 2

This fragment consists of three blocks, each of which will be
unpredicated separately. Unpredication produces the
control-flow graph shown in Fig. 10a.

In this control-flow graph there are multiple paths that
can never be taken. For instance, it is impossible that blocks
B2, B4, B6 are executed in that order because B2 can only be
reached if P is true—hence, if B4 is reached from B2, the
branch in B4 must always be taken. So, nothing prevents us
from redirecting the edge from B2 to B4 to instead point to
B5. We call such a redirection a path simplification.

In general, given edges A ! B and B ! C, it is safe to
replace A ! B with A ! C if the following hold:

1. Executing B does not change the value of any
register or memory location.

2. Whenever control flows from A to B, the edge B !
C must be taken (as opposed to any other edge
B ! D).

For the first condition above, ensuring that the execution of

a block B does not change the contents of any memory

SNAVELY ET AL.: UNPREDICATION, UNSCHEDULING, UNSPECULATION: REVERSE ENGINEERING ITANIUM EXECUTABLES 111

location is difficult in general, and we resort to simple

sufficient conditions, e.g., that B does not contain any store

instructions. In particular, if B contains a single instruction

and that instruction is a branch, then B satisfies the first

condition.
We can also use the following (weaker) condition in

place of the second condition above:

2a. There is a predicate P such that: 1) P is true at exit
from A and 2) P is false at the entry to each of B’s
successors except C.

If P is always true at the exit from A, then when control
goes from A to B along the edge A ! B, P must be true at
the beginning of B. If condition 1 is satisfied, then B does
not change the value of P , so P must be also be true at the
beginning of the block that is branched to from B. Among
B’s successors, P can only be true on entry to C, so control
can only flow to C. Therefore, conditions 1 and 2a imply
condition 2.

Information about which predicates must be true or false

at the entry to any basic block are derived from the guard

predicates of conditional branches that transfer control to

them, using a straightforward dataflow analysis that

propagates truth values for predicate registers. This

analysis is conceptually simply a straightforward applica-

tion of constant propagation to predicate registers, and is

not discussed further here.
Path simplification of our example CFG produces the

CFG shown in Fig. 10b. While the number of blocks and
edges is unchanged, the number of paths from B1 to B8 has
decreased from six to two.

9 EXPERIMENTAL RESULTS

We evaluated our ideas using a set of nine programs from

the SPECint-2000 benchmark suite: bzip2, crafty, gap, gzip,

mcf, parser, twolf, vortex, and vpr. The programs were

compiled using Intel’s ecc compiler version 5.0.1, at

optimization level -O3 together with profile feedback, and

run on an HP i2000 workstation with a 733 MHz Intel

Itanium processor with 1 GB of main memory, running

Redhat Linux 7.1, kernel 2.4.3-12. We used statically linked

binaries for our experiments, compiled with additional flags

to instruct the linker to retain relocation information

(relocation information is used by our particular imple-

mentation during disassembly, but is not fundamental to

any of the algorithms described in this paper).

The baseline for our experiments is the set of control flow

graphs obtained using the naive algorithm described in

Section 3. Fig. 11 illustrates the extent to which these control

flow graphs could be simplified using the ideas described in

this paper, showing the percentage reductions obtained,

respectively, in the number of basic blocks, control flow

edges, and instructions in the reverse engineered program.

It can be seen that unpredication based on predicate

analysis, by itself, is able to achieve fairly modest reductions

in flow graph complexity: the number of basic blocks

decreases by 3.4-7.7 percent (5.2 percent on average);3 the

number of edges by 2.0-5.0 percent (3.2 percent on average),

and the number of instructions by 1.0-2.4 percent (1.6 per-

cent on average). The reason for these modest numbers is

that for most of these programs, instruction scheduling has

the effect of ordering instructions such that, even after

predicate analysis, the predicate groups that we are able to

construct are often not very large.

However, unscheduling is able to undo much of these

effects of instruction scheduling. Thus, when unscheduling

is added to predicate analysis based unpredication, there

are significant improvements to the amounts of flow graph

simplification that we are able to achieve. Compared to the

results of naive reverse engineering, the number of basic

blocks decreases by 8.6-17.9 percent (13.9 percent on

average); the number of edges by 6.0-13.5 percent

(average: 10.3 percent); and the number of instructions

by 1.9-4.6 percent (average: 3.3 percent).

Unspeculation is able to improve these results with

varying degrees of success for each benchmark. Relative to

the results of naive reverse engineering, the number of basic

blocks decreases by 15.0-25.6 percent (average: 18.9 per-

cent), the number of edges by 11.1-21.5 percent (average:

14.7 percent), and the number of instructions by

3.8-10.9 percent (average: 5.6 percent). One of the reasons

for the apparently small effect of unspeculation in some

112 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 2, FEBRUARY 2005

Fig. 10. An example of path simplification. (a) Unpredicated CFG before path simplification. (b) Unpredicated CFG after path simplification.

3. All averages quote here are computed as geometric means.

cases is that we consider statically linked binaries, and the

library code we used did not have any speculation.

Therefore, for small benchmarks such as gzip and mcf,

unspeculation affects a relatively small portion of the code,

whereas for large benchmarks like gap and vortex, unspe-

culation has a more noticeable effect. If we confine

ourselves only to user code, we find that unspeculation is

able to eliminate about 75 percent of the speculative loads

and speculation checks, as shown in Table 1; this results in

average reductions of 14.0 percent in the number of basic

blocks, 12.7 percent in the number of control flow edges,

and 6.8 percent in the number of instructions (all relative to

the user code without unspeculation).

Overall, we accomplish significant improvements in the

quality of reverse engineering: relative to a naive approach

we obtain an average reduction of 18.9 percent in the

number of basic blocks, 14.7 percent in the number of

control flow edges, and 5.6 percent in the number of

instructions, in the control flow graphs constructed from

optimized Itanium executables.

10 CONCLUSIONS

EPIC architectures such as the Intel Itanium contain a

number of architectural features, such as predication of

instructions, explicit instruction-level parallelism, and

SNAVELY ET AL.: UNPREDICATION, UNSCHEDULING, UNSPECULATION: REVERSE ENGINEERING ITANIUM EXECUTABLES 113

Fig. 11. Effects of program analysis and transformations on the complexity of control flow graphs. (a) Basic blocks. (b) Control flow edges.

(c) Instructions.

speculative execution, that can significantly improve per-

formance. However, aggressively optimizing a program to

take advantage of these features can restructure the low-

level structure of the code dramatically, making it difficult

to reconstruct the original program logic via reverse

engineering. This paper describes a number of techniques

that can be used to undo many of the effects of such

program transformations, so as to simplify the task of

identifying the original program structure and reasoning

about its behavior. Experimental results indicate that our

ideas are able to effect significant reductions in the size and

complexity of the control flow graphs obtained in the course

of reverse engineering optimized Itanium executables.

ACKNOWLEDGMENTS

A preliminary version of this paper appeared in the

Proceedings of the 10th IEEE Working Conference on

Reverse Engineering (WCRE-2003) [21]. This work was

supported in part by the US National Science Foundation

under grants CCR-0073394, EIA-0080123, and CCR-0113633.

REFERENCES

[1] S. Burford, “Reverse Engineering Linux ELF Binaries on the x86
Platform,” 2002, www.linuxsa.org.au/meetings/reveng-0.2.pdf.

[2] E.J. Byrne, “Software Reverse Engineering: A Case Study,”
Software—Practice and Experience, vol. 21, no. 12, pp. 1349-1364,
1991.

[3] C. Cifuentes and K.J. Gough, “Decompilation of Binary Pro-
grams,” Software—Practice and Experience, vol. 25, no. 7, pp. 811-
829, July 1995.

[4] C. Cifuentes and D. Simon, “Procedural Abstraction Recovery
From Binary Code,” Proc. European Conf. Software Maintenance and
Reeng., Mar. 2000.

[5] C. Cifuentes and M. Van Emmerik, “UQBT: Adaptable Binary
Translation at Low Cost,” Computer, vol. 33, no. 3, pp. 60-66, Mar.
2000.

[6] C. Cifuentes and M. Van Emmerik, “Recovery of Jump Table Case
Statements from Binary Code,” Science of Computer Programming,
vol. 40, nos. 2-3, pp. 171-188, July 2001.

[7] D.M. Gillies, D.R. Ju, R. Johnson, and M. Schlansker, “Global
Predicate Analysis and Its Application to Register Allocation,”
Proc. 29th Ann. Int’l Symp. Microarchitecture, pp. 114-125, 1996.

[8] P.A.V. Hall, Software Reuse, Reverse Engineering, and Re-Engineering,
pp. 3-31, Software Reuse and Reverse Engineering in Practice.
1992.

[9] C.R. Hollander, “Decompilation of Object Programs,” PhD thesis,
Stanford Univ., 1973.

[10] R. Johnson and M. Schlansker, “Analysis Techniques for Pre-
dicated Code,” Proc. 29th Ann. Int’l Symp. Microarchitecture,
pp. 100-113, 1996.

[11] J.B. Kam and J.D. Ullman, “Global Data Flow Analysis and
Iterative Algorithms,” J. ACM, vol. 23, no. 1, pp. 158-171, Jan. 1976.

[12] J.B. Kam and J.D. Ullman, “Monotone Data Flow Analysis
Frameworks,” Acta Informatica, vol. 7, pp. 305-317, 1977.

[13] �AA. Kiss, J. Jász, G. Lehotai, and T. Gyimóthy, “Interprocedural
Static Slicing of Binary Executables,” Proc. Third IEEE Int’l
Workshop Source Code Analysis and Manipulation (SCAM 2003),
pp. 118-127, Sept. 2003.

[14] K. Lano and H. Haughton, Reverse Engineering and Software
Maintenance—A Practical Approach. McGraw-Hill, 1994.

[15] S.S. Liao, P.H. Wang, H. Wang, G. Hoflehner, D. Lavery, and J.P.
Shen, “Post-Pass Binary Adaptation for Software-Based Specula-
tive Precomputation,” Proc. ACM SIGPLAN’02 Conf. Programming
Language Design and Implementation (PLDI), June 2002.

[16] T.A. Proebsting and S.A. Watterson, “Krakatoa: Decompilation in
Java (does bytecode reveal source?),” Proc. Third USENIX Conf. Object-
Oriented Technologies and Systems, pp. 185-197, 1997.

[17] W. Pugh, “The Omega Test: A Fast and Practical Integer
Programming Algorithm for Dependence Analysis,” Comm.
ACM, vol. 35, pp. 102-114, Aug. 1992.

[18] B. Schwarz, S.K. Debray, and G.R. Andrews, “Disassembly of
Executable Code Revisited,” Proc. IEEE 2002 Working Conf. Reverse
Eng. (WCRE), pp. 45-54, Oct. 2002.

[19] J.W. Sias, W.W. Hwu, and D.I. August, “Accurate and Efficient
Predicate Analysis with Binary Decision Diagrams,” Proc. 33rd
Ann. Int’l Symp. Microarchitecture, pp. 112-123, 2000.

114 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 2, FEBRUARY 2005

TABLE 1
Amount of Speculated Code Before and After Unspeculation

[20] N. Snavely, S.K. Debray, and G.R. Andrews, “Predicate Analysis
and If-Conversion in an Itanium Link-Time Optimizer,” Proc.
Workshop Explicitly Parallel Instruction Set (EPIC) Architectures and
Compilation Techniques (EPIC-2), Nov. 2002.

[21] N. Snavely, S.K. Debray, and G.R. Andrews, “Unscheduling,
Unpredication, Unspeculation: Reverse Engineering Itanium
Executables,” Proc. 2003 IEEE Working Conf. Reverse Eng., Nov.
2003.

[22] N. Snavely, S.K. Debray, and G.R. Andrews, “Unspeculation,”
technical report, Dept. of Computer Science, Univ. of Arizona,
May 2003.

[23] T. Systä, K. Koskimies, and H. Müller, “Shimba: An Environment
for Reverse Engineering Java Software Systems,” Software Practice
and Experience, vol. 31, no. 4, pp. 371-394, Apr. 2001.

Noah Snavely received the BS degree in
computer science and mathematics from the
University of Arizona in 2003. He is now a PhD
student in computer science at the University of
Washington, supported by a US National
Science Foundation Graduate Research Fellow-
ship. His interests lie in low-level compiler
optimizations and in computer graphics and
vision.

Saumya Debray received a BTech (honors)
degree in electronics and electrical communica-
tions engineering from the Indian Institute of
Technology, Kharagpur, in 1981, and the MS
and PhD degrees in computer science, from the
State University of New York at Stony Brook, in
1983 and 1986, respectively. He is a professor
of computer science at the University of Arizona,
where he has been a faculty member since
August 1986. His research interests are primar-

ily in the area of compilers and language implementation. His current
research focuses on binary rewriting and its applications to reverse
engineering, code optimization, code compression, and software
security.

Gregory R. Andrews received the BS degree in
mathematics from Stanford University in 1969
and the PhD degree in computer science from
the University of Washington in 1974. From
1974-1979, he was an assistant professor at
Cornell University. Since 1979, he has been at
the University of Arizona, where he is currently a
professor of computer science. From 1986-
1993, he chaired the department. He also
worked in the CISE directorate at the US

National Science Foundation in 2003 and 2004, where he was the first
division director of computer and network systems. He received a
distinguished teaching award in 1986 and a career distinguished
teaching award in 2002. In 1998, he was named a fellow of the
Association for Computing Machinery (ACM).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SNAVELY ET AL.: UNPREDICATION, UNSCHEDULING, UNSPECULATION: REVERSE ENGINEERING ITANIUM EXECUTABLES 115

