
Dynamic Path-Based Software Watermarking ∗

C. Collberg E. Carter S. Debray A. Huntwork C. Linn M. Stepp
Department of Computer Science

University of Arizona
Tucson, AZ 85721, USA

{collberg,ecarter,debray,ash,linnc,steppm}@cs.arizona.edu

ABSTRACT
Software watermarks — bitstrings encoding some sort of
identifying information that are embedded into executable
programs — are an important tool against software piracy.
Most existing proposals for software watermarking have the
shortcoming that they can be destroyed via fairly straight-
forward semantics-preserving code transformations. This
paper introduces path-based watermarking, a new approach
to software watermarking based on the dynamic branching
behavior of programs. We show how error-correcting and
tamper-proofing techniques can be used to make path-based
watermarks resilient against a wide variety of attacks. Ex-
perimental results, using both Java bytecode and IA-32 na-
tive code, indicate that even relatively large watermarks can
be embedded into programs at modest cost.

1. MOTIVATION
In today’s world, software piracy exacts an enormous eco-

nomic toll. It is estimated that fully 40% of the software in
use around the world is pirated, with dollar losses of over
$13 billion in 2002 [1]. It is therefore crucially important to
be able to protect software intellectual property rights. This
means that the intellectual property owner of a piece of soft-
ware should be able to demonstrate that ownership if called
upon to do so; and in case of suspected piracy, it should be
possible to trace a piece of software back to the person who
originally obtained it prior to illegal distribution. Both of
these goals can be met using software watermarks.

A software watermark is, in essence, an identifier that
is embedded into a piece of software in order to encode
some identifying information about it. The utility of a soft-
ware watermark depends on its resilience against semantics-
preserving code transformations: if it is easy to destroy a
watermark via simple transformations, e.g., by renaming
identifiers in the program, then it has relatively limited util-
ity. In general, it is not possible to devise watermarks that
are immune to all conceivable attacks; it is generally agreed
that a sufficiently determined attacker will eventually be
able to defeat any watermark. The goal, then, is to come up
with watermarking techniques that are “expensive enough”
to break—in time, effort, or resources—that for most at-
tackers, breaking it isn’t worth the trouble.

∗The work of C. Collberg, E. Carter, A. Huntwork, and
M. Stepp was supported in part by the National Science
Foundation under grant CCR-0073483 and the Air Force
Research Lab under contract F33615-02-C-1146. The work
of S. Debray and C. Linn was supported in part by the
National Science Foundation under grants EIA-0080123 and
CCR-0113633.

While a number of researchers have proposed schemes for
software watermarking [2, 3, 4, 10, 13], most of these are
not very difficult to break (see Section 6). For example,
watermarks that rely on static code properties, such as basic
block ordering [4] or register interference [10] can be defeated
using straightforward binary optimizers [5, 11]; watermarks
that use the topology of dynamically constructed data [2]
can be foiled via code obfuscations that modify the pointer
topology of such structures.

The primary contribution of this paper is to describe a
new approach to software watermarking, path-based water-
marking, which embeds the watermark in the runtime branch-
ing structure of the program. The idea is based on the in-
tuition that the (forward) branches executed by a program
are an essential aspect of its computation and part of what
makes the program unique. However, an obvious apparent
drawback with using the branch structure of a program to
encode information is that, in principle, the branch struc-
ture of a program can be modified quite extensively without
affecting program semantics, using well-known transforma-
tions such as basic block reordering, branch chaining (where
the target of a branch instruction is itself a branch to some
other location), loop unrolling, etc. In order for a path-
based watermark to be resilient against such transforma-
tions, we must be able to either cause any such transfor-
mation to change the program semantics, or devise embed-
ding techniques such that the watermark can survive such
transformations. As we will see, path-based watermarking
lends itself well to error-correction and tamper-proofing—
significantly more so than most watermarking schemes pro-
posed in the literature. Finally, since branches are ubiqui-
tous in real programs, path-based watermarks are less likely
to be susceptible to statistical attacks.

The remainder of this paper is organized as follows. Sec-
tion 2 gives some background on software watermarking and
describes the basic idea behind path-based watermarking.
Section 3 discusses how path-based watermarking can be ap-
plied to Java bytecode, and how error correcting codes can
be made to protect against attacks on such watermarks. Sec-
tion 4 discusses the application of path-based watermarking
to native code executables using a very different approach
called branch functions, and describes how the resulting
code can be tamper-proofed. Section 5 gives experimen-
tal evaluations of our approach. Section 6 discusses related
work. Finally, Section 7 concludes.

2. PATH-BASED WATERMARKS
Software watermarking protocols are chiefly classified along

four axes:

static/dynamic: In a static algorithm the watermark rec-
ognizer directly examines the code or data segments of
the executable program. A recognizer for a dynamic
algorithm will execute the watermarked program on
a particular (secret) input sequence and then extract
the watermark from the state of the program at this
point.

watermark/fingerprint: In a pure watermarking algorithm
the recognizer returns a value representing the likeli-
hood that the mark is present. In a fingerprinting al-
gorithm the recognizer returns the mark itself (a num-
ber) which can be different for every distributed copy
of the program.

blind/informed: In a blind watermarking algorithm the
recognizer is given the watermarked program and the
watermark key as input. In an informed algorithm
the recognizer also has access to the unwatermarked
program and/or the watermark itself.

embedding technique: Typical software watermarking al-
gorithms embed the marks by

1. reordering parts of the code where such reordering
can be shown to be semantics preserving;

2. inserting new (non-functional or never executed)
code that encodes a watermark number;

3. manipulating instruction frequencies.

There are several possible attack scenarios:

distortive attacks: The watermarked program can be sub-
jected to a series of semantics-preserving transforma-
tions such as code optimization, binary translation,
code compression, and code obfuscation, in the hopes
that these will render the watermark unrecognizable.

additive attacks: New marks can be added to an already
watermarked application, such that it is impossible to
determine which is the original mark.

subtractive attacks: If the location of the watermark can
be determined (for example by a statistical analysis
of the code), it can be manually cropped out of the
program.

collusive attacks: Different fingerprinted programs can be
compared in order to determine the location of the
marks.

We say that an attack is successful if the watermark cannot
be reliably extracted from an attacked application, and if the
performance of the de-watermarked program is such that it
still has value to the attacker.

In this paper we will describe a new approach to soft-
ware watermarking, path-based watermarking, where the ba-
sic idea is to embed the mark in the branching structure
of the program. This has several interesting consequences.
First, the forward branches that a program takes are an es-
sential part of what makes the program unique. This makes
branches inherently difficult to change or remove, making
path-based watermarks resilient to many distortive attacks.
Second, branches are inherently binary in nature (they are
either taken or not taken), making it easy to embed a bit-
string. Third, as we will see, path-based watermarking lends
itself well to error-correction and tamper-proofing. Fourth,

� �

int main (int argc) {
i f (argc == 3)

p r i n t f (” s e c r e t \n”)
return 0 ;

}
� �

(a) Original program
� �

int main (int argc) {
int a = 1 ,b = 0 ;
i f (argc == 3) {

i f (b == 0) a = 0 ;
i f (b != 0) a = 0 ;
i f (b == 0) a = 0 ;
i f (b != 0) a = 0 ;
i f (b == 0) a = 0 ;
i f (b != 0) a = 0 ;
i f (b != 0) a = 0 ;
i f (b == 0) a = 0 ;
p r i n t f (” s e c r e t \n”)

}
return 0 ;

}
� �

(b) A trivial embedding of the bitstring 01010110.

Figure 1: A simple example of path-based watermark em-
bedding

branches are ubiquitous in real programs, hopefully making
path-based marks insusceptible to statistical attacks.

We will present two realizations of this basic idea, one
for Java bytecode and one for x86 native executables. For
native code we tamper-proof the watermark branches, and
for typed architecture-neutral codes (for which code intro-
spection is not possible) we use error-correcting codes to
increase resilience to attack. Both our implementations are
dynamic blind fingerprinting techniques. That is, (1) every
distributed copy of a program encodes a unique integer, (2)
only the watermarked program itself is used during recon-
gition, and (3) during recognition the program is run with
a special input sequence, a trace of the branches executed
is extracted, and the trace sequence (taken/not taken) is
examined for the watermark.

Figure 1 illustrates the basic path-based watermarking
technique. Figure 1(a) shows the original program, and Fig-
ure 1(b) the code after bogus branches have been inserted
to embed the watermark w = 01010110. The secret input to
the program, in this case, is the number of arguments it is
given: if it is invoked with three arguments (argc = 3), the
watermark code is executed. This is obviously a very simple
example embedding that is trivial to break: a simple at-
tack would be, for example, to randomly change the tests so
that the branch and fall-through cases are flipped. We can
address the issue of resilience against semantics-preserving
code transformations in a number of different ways, includ-
ing more sophisticated embedding techniques and tamper-
proofing of the code. These are discussed in more detail in
the next two sections.

3. WATERMARKING JAVA BYTECODE
We have implemented execution path watermarking for

Java bytecode. Because it is impossible to prevent semantics-

0001,
1000,
0000,
0000,
1101,
1

 }

}
B4:println(b);

void main() {

 b = a;
 a = tmp;

B2: int tmp = b % a;

 int a = 25,b = 10;

B3:

B1:while((a % b) != 0) {

void main() {
 int a=25,b=10,u=0,x=0x1a,c=8;
 while((a%b)!=0) {
 int t = b % a;
 b = a; a = t;
 if (t==a) u++;
 if (t==a) u++;
 if (a==10) u++;
 if (a==10) u++;
 }
 for(int i=0; i<c; i++, x>>=1)
 if ((x&1)==1) x|=1;

}
 println(b);

w1 = 11112

w2 = 00102

w′

1
= 00112

w′

2
= 11002

B©
⇒

A©
⇒w = 111100102

⇑
I0, I1, . . .⇑

I0, I1, . . .

C©
⇒

Trace Information

Location Variables

a b t

B1 25 10

B2 25 10

B3 10 25 10

B1 10 25

B2 10 25

B3 5 10 5

B1 5 10

B2 5 10

B3 10 5 10

B1 10 5

B4 10 5

D©
⇒

E©
⇒

Figure 2: Embedding w into a program.

preserving Java bytecode transformations, our implementa-
tion is designed to survive such attacks. Our implementation
is robust to certain types of semantics-preserving attacks be-
cause it is a dynamic watermark and because we duplicate
the watermark and use error correction.

Our implementation consists of three phases. In the trac-
ing phase, the dynamic behavior of the program is deter-
mined by tracing its execution path on a particular input
sequence. In the embedding phase, a watermark number
is embedded in the input code by modifying its behavior
on the secret input sequence. In the recognition phase, the
program is traced again, and the trace is checked for the
watermark.

Figure 2 illustrates the watermarking process. In A© we
split the watermark number into two pieces. In B© each piece
is run through a block cipher. In C© the original program
is executed with a special input sequence (the watermark
key) in tracing mode. In D© watermark code is inserted into
the original program. When the watermarked program is
executed with the special input sequence (E©), the resulting
trace will contain the watermark pieces.

3.1 Tracing
In the tracing phase, we instrument the input program to

write to a file the sequence of basic blocks it executes, to-
gether with the value of every local variable in the method
executing and every static and instance field of the contain-
ing class. We then execute the instrumented program with
the secret input sequence I = I0, I1,

This trace aids code generation and is used to find ap-
propriate insertion positions in the embedding phase. In
the recognition phase, it is decoded into a bitstring that
encodes the watermark. There are many possible ways of
doing this. The binary representation of the address of the
first instruction in every basic block could be written down.
However, an attacker could change many of the bits in the
resulting string simply by adding no-ops to the watermarked
application. The bitstring can be formed by looking at every
branch instruction of the form “if P goto Q else goto R” and
writing down 0 if P is true and 1 otherwise. However, an
attacker can toggle bits by negating the associated predicate
and exchanging Q and R.

In order to survive these and other attacks that modify
static program characteristics, we have chosen an algorithm
that uses the dynamic behavior of branches to generate bits.
For each conditional branch instruction i that occurs in the

trace, we find its first occurrence, and find the block j that
immediately follows that occurrence in the trace. Then we
decode the trace into a string of bits by scanning the trace
from beginning to end and writing down a 0 whenever a
conditional branch is immediately followed by the same in-
struction by which it was first followed, and a 1 otherwise.

The resulting bitstring does not change if the input code
is reordered, if branch senses are inverted, or if instructions
other than conditional branches are inserted or deleted. Ad-
dition and removal of branches has only local effects on the
resulting bitstring.

3.2 Embedding
The embedding phase modifies the input code so that the

watermark number W can be extracted from a trace of the
basic blocks executed on the input sequence I, as described
in Section 3.3.

The process of turning W into a set of values to be em-
bedded into the program consists of several steps, illustrated
with an example in Figure 3:

1. Let p1, . . . , pr be pairwise relatively prime, where W <� r

k=1 pk. W is split into up to r(r−1)
2

pieces, each
piece being of the form W ≡ xk mod pik

pjk
, where

0 ≤ xk < pik
pjk

. This is step A©.

2. Each statement W ≡ xk mod pik
pjk

is turned into
a single integer by an enumeration scheme. In our
scheme,

wk = xk +

ik−1�

n=1

r�

m=n+1

pnpm +

jk−1�

m=1

pik
pm.

This is step B©.

3. In step C©, each piece wk is put through a block cipher.
This step enables us to make randomness assumptions
about any corrupted data when decoding.

We next insert code that causes the decoded trace to con-
tain each piece of the watermark. Several manners of gener-
ating the inserted code and choosing its location exist. For
example, code could be located so as to supplement bit-
strings already occurring in the program.

For simplicity, we insert code that generates an entire wa-
termark piece. We insert code for each piece in a random
location weighted inversely with respect to its frequency in

p1 = 2, p2 = 3, p3 = 5

W = 17 A©
⇒

W ≡ 5 mod p1p2

W ≡ 7 mod p1p3

W ≡ 2 mod p2p3

B©
⇒

5 = 5
p1p2 + 7 = 13
p1p2 + p1p3 + 2 = 18

C©
⇒ insert into program

5
13
17
0

D©
⇒

W ≡ 5 mod p1p2

W ≡ 7 mod p1p3

W ≡ 1 mod p2p3

W ≡ 0 mod p1p2

E©
⇒ 7 mod p1p3

5 mod p1p2

1 mod p2p3

0 mod p1p2

F©
⇒

7 mod p1p3

5 mod p1p2 G©
⇒ W ≡ 17 mod p1p2p3

Figure 3: Splitting and re-combining the watermark value via the Generalized Chinese Remainder Theorem.

the trace. Thus, code is less likely to be inserted in program
hotspots than in infrequently executed code.

We generate two types of code to insert bits into the input
code’s bitstring. The first is based on loops, and the second
is based on simple tests using variable values collected as
part of the trace.

3.2.1 Loop Code Generation
This code generation technique generates a loop with a

body that contains a conditional branch. The code gener-
ator generates a prologue to the loop and loop body code
that causes the inner branch to succeed and fail in the order
of the bits to be generated. For example, the following code
is generated to insert the bits 0101 into the input code:

� �

int b i t s = 0xa ;
int counter = 5 ;
for (int i = 0 ; i < counter ; i++, b i t s >>= 1)

i f ((b i t s & 1) == 1)
b i t s |= 1 ;

� �

The variable bits is shifted once to the left because the
inner branch must be “primed” by causing it to execute in a
particular direction before the desired bits can be retrieved.
This code generator inserts approximately 60 bytes of in-
structions per 64 bits of input.

While its current incarnation is suboptimal, this approach
could be combined with trace information and an epilogue
containing an opaque predicate to generate a loop body that
appears to have an effect.

3.2.2 Condition Code Generation
This code generation technique inserts sequences of pred-

icates and branches at locations that are executed multiple
times on the secret input sequence. The first execution of the
inserted code on the input sequence identifies which branch
direction should generate which bit, and the remaining exe-
cutions generate sequences of bits. Our embedder generates
code so that at least one of the executions after the “prim-
ing” execution generates the desired bitstring.

Ideally, we would like the conditional branches we insert
to look inconspicuous so that they are less obvious targets
to an attacker. Thus, we base our predicates on existing
program variables so that we do not have to insert new ones
that may look suspicious to an attacker. This is the purpose
of tracing variable values in addition to the sequence of ba-
sic blocks executed. By examining the values of variables in
the program, we can determine predicates that will be true
or false at a particular time in the execution of the program
with the secret input sequence. In addition, for any set of
predicates we determine to be true at a particular point in

the program, we can logically AND them together to pro-
duce compound conditions that will also be true. Thus we
can construct arbitrarily complex conditional statements us-
ing existing program variables, so an attacker cannot know
that these statements are safe to remove while preserving
correctness.

As an example, a trace may indicate that a certain loca-
tion is executed twice on the secret input sequence, that just
before the first execution, a = b and c = d, and that just
before the second execution, a = b and c 6= d. The following
code would be generated to produce the string 1010:

� �

int tmp = 0 ;
i f (c == d)

tmp++;
i f (a == b)

tmp++;
i f (c == d)

tmp++;
i f (a == b)

tmp++;
� �

Once again, this code is suboptimal, but it could be dras-
tically improved by appending an opaquely false predicate
that assigns tmp to some live integer variable:

� �

i f (P f)
a = tmp ;

� �

3.3 Recognition
The recognition phase collects a trace of the input pro-

gram’s execution on secret input I and decodes it into a
string of bits b0b1 . . . bn as described in Section 3.1. The
decoding algorithm is composed of three steps, illustrated
with an example in figure 3. First, the bitstring b0b1 . . . bn

is split into a set of fixed-size blocks B0 = b0 . . . b63, B1 =
b1 . . . b64, These blocks are decrypted using the same
cryptosystem as in the embedding process. Finally, the
resulting 64-bit blocks Bd

0 = dk(B0), B
d
1 = dk(B1) . . . are

passed to an algorithm that attempts to find a group of
these blocks that agree on the watermark as follows.

In step D©, we invert our enumeration scheme to turn these
64-bit blocks into statements about W of the form W ≡
xk mod pik

pjk
.

First, in order to reduce the number of statements to con-
sider, we hold a vote on the value of W mod pi for each i.
If there is a clear winner (which we define as the first-place
vote-getter being strictly greater than twice second-place),
this winner is presumed to be the value of W mod pi, and

all statements contradicting this are removed from consid-
eration.

Among the various pairs of statements, some are inconsis-
tent, some are consistent because the x’s agree mod pi for
some i, and some are consistent by the Chinese Remainder
Theorem since the 4 pi’s referred to are all distinct and the
pi’s are pairwise relatively prime.

Let V = {v0, v1, . . . , vm} be the set of statements on W
we are given. In step E©, we construct two graphs, G and H,
on V . (The figure only shows G.) Two vertices are adjacent
in G iff they are inconsistent. Two vertices are adjacent in
H iff they are consistent because the x’s agree mod pi for
some i, not if they are consistent by the Chinese Remainder
Theorem. For step F©, we initialize U := ∅ and repeat the
following steps until G is a coclique:

1. Let v be some vertex in the set V − U of maximum
degree in H. This vertex is presumed to be a true
statement about W .

2. Let S be the set of v’s neighbors in G. Set G := G−S,
H := H − S, and U := U ∪ {v}.

Once G is a coclique, we have a set of statements about W
that are consistent and can be combined by the Generalized
Chinese Remainder Theorem [8] in step G©.

4. WATERMARKING NATIVE EXECUTA-
BLES

Native code executables offer significantly greater flexibil-
ity, compared to Java bytecode, in terms of the transforma-
tions that can be applied during watermarking. This makes
it possible to use techniques that cannot be used in the case
of bytecode. Here we discuss one such technique for im-
plementing path-based watermarking, using a device called
branch functions.

4.1 Branch Functions: An Overview
A branch function is a function that is called in the nor-

mal manner, but which manipulates its return address such
that, when it returns, control may be transferred to an ad-
dress different from the original call site [9]. Consider a
program containing a particular set of unconditional jumps
of interest, at locations a1, . . . , an, with targets b1, . . . , bn

respectively, i.e., the instruction at location ai is

ai : jmp bi 1 ≤ i ≤ n

With branch functions, we replace each of these jumps by a
call to the branch function f , resulting in code of the form:

ai : call f 1 ≤ i ≤ n

The function f uses the return address to figure out the
location ai(1 ≤ i ≤ n) it was called from, then uses this
information to change its return address to the value bi.
When it subsequently executes a ret instruction, therefore,
control is transferred to the original target bi. The situation
is illustrated in Figure 4.

The implementation of branch functions can be illustrated
by first considering a very simple-minded variation of the
idea above, where the call at location ai passes the offset
to its target address as an argument. The branch function
then simply adds its argument to the return address, then
returns. The corresponding code, on the Intel IA-32 archi-
tecture, has the form:

bn

b1

b2

bn

jmp

jmp

jmp

. . .

:

:

:

an

a

a1

2

b

b

1

2

b1

b2

bn

: call fa1

: call fa2

: call fan

. . .
f

(a) Original code (b) Code using a branch function

Figure 4: Branch functions

xchg %eax, 0(%esp) #I1
add %eax, 4(%esp) #I2
pop %eax #I3
ret #I4

Instruction I1 exchanges the contents of register %eax with
the word at the top of the stack, effectively saving the con-
tents of %eax and at the same time loading the return ad-
dress into %eax. Instruction I2 then has the effect of adding
the displacement to the target (passed as an argument on the
stack) to the return address; the sum—which is in fact the
target address bi—is now written to the location 4(%esp).
I3 restores the previously saved value of %eax, leaving the
address of the target on top of the stack. I4 then has the
effect of branching to the address computed by the function.

The straightforward implementation described above has
two shortcomings. The first is that it is not difficult to detect
a function that modifies its own return address. On archi-
tectures such as the Intel IA-32, the return address is passed
at some fixed offset from the stack pointer; on RISC archi-
tectures, the standard calling convention passes the return
address in some fixed register. In either case, an observant
attacker can detect when the location containing the return
address happens to be the destination of an arithmetic (or
move) instruction. The second shortcoming is that this sim-
ple scheme uses just a single straightforward arithmetic op-
eration for the return address modification, and so is not as
robust against reverse engineering as we would like.

We can address the first problem by using “helper” func-
tions with the branch function. The idea is as follows.
The branch function f does not itself do any tampering
with its return address: instead, it calls a helper function
f1, which might itself call another helper function f2, etc.
The helper function calls cause the original return address
to be saved on the stack regardless of whether the call-
ing convention passes the return address in a register or
on the stack. Moreover, because the chain of helper func-
tions f → f1 → · · · → fm is fixed in a given implementation
of branch functions, we know (based on knowledge of the
stack frame sizes for the helper functions f1, . . . , fm—note
that these stack frame sizes can be chosen randomly by the
implementation) how deep in the stack the original return
address is located. The last helper function then “reaches
into” the stack to modify the original return address.

We address the second problem using perfect hashing [7].
Given the control flow mapping ϕ = {a1 7→ b1, . . . , an 7→ bn}
we want the branch function to implement, we create a per-
fect hash function hϕ : {a1, . . . , an} 7→ {1, . . . , n}. We then
construct a table T in the data section of the binary, that
contains the exclusive or of each (ai, bi) pair,1 as follows:

1This is done so that the data section of the binary does
not contain a sequence of text section addresses, since such
a sequence of entries could be conspicuous to an attacker.

pushf # save flags

push %edx # register save

push %ecx # register save

push %eax # register save

mov 0x10(%esp,1),%edx
begin perfect hash computation

mov %edx,%eax
shl $0xc,%eax
and $0x3ff,%edx
shr $0x16,%eax
movzwl 0x80b2c9c(%edx,%edx,1),%ecx
xor %ecx,%eax
end perfect hash computation

imul $0xc,%eax,%eax
mov %eax,%edx
mov 0x80a93c0(%eax),%eax
xor %eax,0x10(%esp,1)
lea 0x80a93c4(%edx),%eax
cmpl $0x0,(%eax)
je 0x80892ca
mov 0x4(%eax),%edx
xor %edx,(%eax)
movl $0x0,0x4(%eax)
pop %eax # register restore

pop %ecx # register restore

pop %edx # register restore

popf # restore flags

ret

Figure 5: An example of branch function code

T [hϕ(ai)]← ai ⊕ bi.

Upon invocation, the branch function proceeds as follows.
It saves the appropriate registers; applies the perfect hash
function hϕ to its return address a to compute a hash value
hϕ(a); uses the table T to obtain the value T [hϕ(a)]; xors
this value into the return address, similarly to the scheme
described earlier; and finally, restores the saved registers and
returns. Figure 5 shows an example of branch function code,
taken from the SPEC-95 benchmark programs compress for
a 512-bit watermark.

4.2 Using Branch Functions for Software Wa-
termarking

In order to use branch functions for software watermark-
ing, we have to specify how they should be used to encode
the bits in the watermark, how a watermark is to be em-
bedded within an executable, and how it can be extracted.
This section discusses these issues in more detail.

4.2.1 Bit Encoding
As discussed above, a branch function implements a con-

trol flow mapping {a1 7→ b1, . . . , an 7→ bn}. We can choose
any subset—not necessarily proper—of the pairs in this map
to encode the watermark: i.e., the branch function imple-
menting the watermark can also be used to obfuscate other
control transfers, elsewhere in the program, that have noth-
ing to do with the watermark itself [9]. For simplicity of
exposition, however, we will assume, in the discussion that
follows, that all of the pairs in the branch function are used
for encoding the watermark.

Each pair of addresses ai 7→ bi in the branch function map
encodes a single bit of the watermark. In principle, we can

f

a 0

a1 a1

a2 a2

a3 a3

a4 a4

lend

01 1 1

bit encodings

a3

a4

a2

a 0

a1

lbegin

lend

call f

. . .
call f

. . .

. . .

. . .

. . .

call f

call f

call f

Figure 6: An example of branch-function-based watermark-
ing (watermark = 1011)

use any property of these pairs that we want: for example,
we could, if we wished, use the parity of ai and bi, using
the predicate ‘parity(ai) = parity(bi).’ Our implementation
uses a forward jump (i.e., ai < bi) to encode a ‘1’ and a
backward jump (i.e., ai > bi) to encode a ‘0.’

4.2.2 Watermark Embedding
To embed a k-bit watermark w = w0w1 · · ·wk−1 into an

executable, we start with an unconditional control flow edge
`begin → `end ; we will split this edge and insert the water-
mark code between `begin and `end . We first construct a list
of k + 1 branch function calls (a0, a1, . . . , ak) such that the
following hold:

1. for each ai, 0 < i ≤ k, the instruction immediately be-
fore ai is an unconditional jump, i.e., execution cannot
fall through to ai; and

2. the addresses of adjacent pairs of instructions (ai, ai+1),
0 ≤ i < k, encode bit wi of the watermark:

addr(ai) < addr(ai+1) if wi = 1
addr(ai) > addr(ai+1) if wi = 0.

To construct the list, a0 is inserted at address `begin . We
then iteratively construct ai+1 from the last instruction ai

added to the list: we use the value of wi, the ith bit of
the watermark w, to scan either forward (if wi = 1, i.e., ai

need to jump forward) or backward (if wi = 0, i.e., we need
to jump backward), until we find a location that satisfies
the first condition above, and insert a call instruction at
that location. This is repeated until all of the instructions
a0, . . . , ak have been constructed. The last branch function
call, ak, has `end as its target.

Once these branch function calls have been inserted into
the instruction stream, the address of each such instruction
is determined. Let �ai denote the address of the instruction
ai, then the control transfer mapping for the branch function

is { �a0 7→ �a1, �a1 7→ �a2, · · · , �ak−1 7→ �ak, �ak 7→ �̀
end}.

Figure 6 illustrates an example of a branch-function-based
embedding of the bitstring 1011 into a program. Starting at
a0, the first bit is 1, and is encoded by the forward branch
a0 → a1, which is realized via a call to the branch function
f(); the next bit, 0, is encoded by the backward branch a1 →
a2; the third bit is a 1, and is encoded by the forward branch
a2 → a3; and the last bit, which is again a 1, is encoded by
another forward branch, a3 → a4. Finally, control returns
from a4 to the end point `end of the watermark.

4.2.3 Watermark Extraction
To extract a watermark, we start with the pair of ad-

dresses (`begin , `end) bracketing the watermark (currently,
these are supplied manually; however, we expect to aug-
ment the implementation in the near future to use a fram-
ing scheme that would allow these addresses to be identified
automatically). We use a tracer tool that uses hardware
single-stepping to obtain a dynamic trace of the instructions
executed between the time control reaches `begin and when
it subsequently reaches `end . This trace is then analyzed
to identify the branch function fw, by observing functions
that do not return to the instruction following the call in-
struction. Once the branch function has been identified, we
obtain, from the trace, the list of locations from which fw

is called, and for each such location ai the corresponding
location bi to which control returns from that call. By com-
paring the values ai and bi, we can determine whether it
corresponds to a forward or backward jump, and thereby
extract the corresponding bit of the watermark. This is
repeated until all instructions in the trace have been pro-
cessed; this corresponds to having execution return to `end .

4.3 Tamper-proofing Branch Functions
An important property of a software watermark is its ro-

bustness under semantics-preserving code transformations.
Since a branch function synthesizes a mapping between pairs
of absolute addresses, any transformation that causes code
addresses to change, but which does not at the same time
update the mapping implemented by the branch function,
will cause the resulting program to break. Moreover, the
perfect hash functions used to compute these mappings tend
to be quite cryptic and difficult to reverse engineer (e.g., see
Figure 5). For this reason, we believe that branch-function-
based watermarks are resilient against code transformations
that cause addresses within the text section to change; in
particular, this includes additive and distortive attacks.

To guard against subtractive attacks, our basic idea is to
have the branch function carry out a computation that is
essential for the subsequent execution of the program. Re-
call that the branch function is entered starting at a location
`begin . We begin by taking an unconditional branch at a lo-
cation `? such that `begin dominates `?. We then transform
the branch instruction at `? to an indirect branch through
a memory location M , such that M contains the correct
target address if and only if the branch function has been
executed. For this, M is initialized to some random text
section address, and code is added within the branch func-
tion to update the contents of M to the correct target ad-
dress. In general, this update can occur incrementally, such
that each time the branch function executes, some set of
bits of the target address are computed. This is done for
multiple jump instructions: in our current implementation,
when embedding a k-bit watermark we attempt to find up
to k candidate branches that can be tamper-proofed in this
manner; each branch function call updates a different such
candidate (a branch is considered to be a candidate if it oc-
curs in an infrequently executed portion of the code and is
not part of a loop; the last requirement is to avoid excessive
performance degradation on inputs that may cause different
execution characteristics than the training inputs). With
this, if the branch function is identified and “snipped out”
of the execution by an attacker, the control flow behavior of
the program will no longer be correct.

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 50 100 150 200 250 300 350 400 450 500

S
lo

w
do

w
n

(F
ra

ct
io

n)

Number of Pieces Inserted

CaffeineMark
Jess

Figure 7: CaffeineMark and Jess slowdown resulting from
the insertion of different numbers of watermark pieces

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350 400 450 500

S
iz

e
In

cr
ea

se
 (

K
)

Number of Pieces Inserted

CaffeineMark
Jess

Figure 8: CaffeineMark and Jess size increases resulting
from the insertion of different numbers of watermark pieces

5. EXPERIMENTAL RESULTS

5.1 Java Bytecode
CaffeineMark is a collection of micro-benchmarks, so a

high percentage of the instructions are executed frequently.
Figure 7 shows that embedding the path-based watermark
in such an application can have dramatic performance con-
sequences. It is likely that performance does not suffer when
few watermark pieces are inserted because the weighted ran-
dom location choice described in Section 3.2 selects infre-
quently executed locations as insertion points. As more
pieces are inserted, the probability that some frequently exe-
cuted location will be chosen increases; when this eventually
occurs, there is a dramatic performance degradation. As
many more pieces are inserted, more are inserted in “hot”
locations, resulting in further performance degradation.

In contrast, Jess contains more code (300KB as opposed to
9KB) and a lower percentage of frequently executed code. It
appears that our random insertion position algorithm suc-
cessfully avoided the frequently executed portions of Jess,
and therefore caused an insignificant slowdown.

Figure 8 shows that the path-based watermark has little
size impact on the input application. Even for a very large
watermark, the equivalent of at least 200 and at most 2000
lines of code are added to the application.

5.1.1 Attacks
One trivially implemented attack against the path-based

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300 350 400 450 500

B
ra

nc
h

In
se

rt
io

n
P

er
ce

nt
ag

e

Number of Pieces Inserted

CaffeineMark
Jess

Figure 9: The path-based watermark can survive the addi-
tion of a percentage of branches that varies with the number
of watermark pieces inserted

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1 2 3 4 5 6 7 8 9

S
lo

w
do

w
n

(F
ra

ct
io

n)

Branch Increase (Fraction)
Figure 10: Adding branches to code causes a slowdown that
varies with the number of branches added

watermark is random branch insertion. If an attacker in-
serts this code at a random place in the program, he may
cause random changes in the decoded bitstring. If he in-
serts many random branches into the program, he is likely to
cause widespread random changes in the decoded bitstring.
Because of the error correcting qualities of our watermark
encoding scheme, our implementation can withstand a level
of random branch insertion that varies with the number of
watermark pieces embedded in the program, as shown in
Figure 9.

The performance penalty associated with this attack is
likely to vary widely based on the code inserted to generate
each branch. We have measured the performance penalty of
this code (where f is initialized to null):

� �

i f (stat ic f i e l d f i s not null)
f = new Object ;

� �

The resulting slowdown is shown in Figure 10. This attack
is likely to be effective against the path-based watermark be-
cause the performance penalty of the attack required to de-
stroy a watermark in the range where the watermark causes
an acceptable performance degradation is only 10-20%.

5.2 Native Code
We evaluated the branch-function-based watermarking scheme,

described in Section 4.2, using an implementation built on
top of PLTO, a binary rewriting system developed for Intel

IA-32 executables [6]. The system reads in statically linked
executables, disassembles the input binary, and constructs a
control flow graph, which can then either be instrumented to
obtain execution profiles, or modified to have a given water-
mark embedded into it. We used the eight programs in the
SPECint-95 benchmark suite for our experiments.2 Our ex-
periments were run on an otherwise unloaded 2.4 GHz Pen-
tium IV system with 1 GB of main memory running RedHat
Linux 8.0. The programs were compiled with gcc version
egcs-2.91.66 at optimization level -O3. The programs were
profiled using the SPEC training inputs and these profiles
were used to identify any hot spots during our transforma-
tions. The final performance of the transformed programs
were then evaluated using the SPEC reference inputs. Each
execution time reported was derived by running five trials,
discarding the highest and lowest run times so obtained, and
computing the average of the remaining three times.

5.2.1 Cost
We evaluated the space and time cost of path-based wa-

termarking using watermarks of three sizes: 128 bits, 256
bits, and 512 bits.

Figure 11 shows the relative increase in total size (text+data
sections) incurred due to watermarking. All in all, the in-
creases are fairly modest, ranging from about 9% for go to
about 14–15% for li, m88ksim, and perl. The rate of growth
in size is also fairly small. The mean increase in size ranges
from 11.9%, for 128-bit watermarks, to 12.7% for 512-bit
watermarks. Interestingly, we find that in several of the pro-
grams, watermarking actually a produces a slight decrease
in the size of the text section, because of reductions in in-
struction operand sizes after watermarking: e.g., in many
cases, 4-byte operands before watermarking are replaced by
2-byte operands after watermarking.

The runtime slowdowns experienced as a result of water-
marking are shown in Figure 12. For most of the programs
tested, the slowdown is quite small (less than 3%), and one
of the programs, compress, actually speeds up by about 2–
3%, presumably due to cache effects. Only two of the pro-
grams, li and perl, suffer significant slowdowns, of around
15–18%. The mean slowdowns range from 3.5%, for 128-bit
watermarks, to 3.8% for 512-bit watermarks.

5.2.2 Resilience
To evaluate the resilience of our watermarks against at-

tacks, we subjected the watermarked programs to a number
of code transformations of the sort that might be encoun-
tered in a standard binary manipulation tool. We tried the
following transformations:

1. No-op insertion. This is intended to simulate a dis-
tortive attack where the attacker tries to inject addi-
tional code into the program, e.g., using a code obfus-
cator.

As discussed in Section 4.3, the use of branch func-
tions gives us a “lock-down” on a range of program
addresses, such that a change to any of these addresses
will cause the program to malfunction. The effect of
such insertions is to change text addresses. Every one
of our test programs breaks when even a single no-op
is added to a watermarked binary.

2We expect to have results for the SPECint-2000 suite
shortly.

compress gcc go ijpeg li m88ksim perl vortex Mean

Program

0.0

5.0

10.0

15.0

20.0

si
ze

 in
cr

ea
se

 (
%

) 128 bits
256 bits
512 bits

Watermark size

Figure 11: Space cost of watermarking native code

compress gcc go ijpeg li m88ksim perl vortex Mean
-5.0

0.0

5.0

10.0

15.0

20.0

sl
ow

do
w

n
(%

)

-5.0

0.0

5.0

10.0

15.0

20.0

sl
ow

do
w

n
(%

)

128 bits
256 bits
512 bits

Watermark size

Figure 12: Time cost of watermarking native code

2. Branch sense inversion. This involves inverting the
sense of conditional branches and rearranging basic
blocks accordingly to maintain program semantics, so
that the roles of the “branch-taken” and “branch-not-
taken” targets get reversed. This is intended to simu-
late a distortive attack of the sort that might occur if
an attacker applies code optimization or binary rewrit-
ing techniques to a watermarked binary. For the same
reason as for no-op insertion, every one of our test pro-
grams breaks when branch senses are inverted.

3. Double watermarking. This involves taking a water-
marked program and running it through the water-
marker again. This simulates an additive attack where
the attacker hopes to overwrite or obscure part or all
of the original watermark by a second round of water-
marking. As for the previous two attacks, this causes
text addresses to change, and causes each of our test
programs to break.

4. Bypassing the branch function. This involves overwrit-
ing some number of calls to the branch function with a
jump instruction of exactly the same size (in bytes), so
that there is no net change to any addresses; the tar-
get of this new jump instruction is the actual address
that the branch function would transfer control to for
that particular call. This has the effect of realizing the
control transfer that the branch function would real-
ize, but bypassing the actual branch function code. It
simulates a subtractive attack.

As discussed in Section 4.3, calls to the branch function
also have the effect of updating the contents of memory
locations that are used for indirect jumps. When the
branch function is bypassed, therefore, some such loca-
tions are not properly updated, and therefore contain
incorrect addresses. This causes execution to break.

6. RELATED WORK
Various other software watermarking schemes have been

proposed. These schemes fall into two categories: static
and dynamic. Static watermarking schemes are those that
do not require the watermarked program or any part of it
to be run or interpreted in order to embed or extract the
watermark. Dynamic watermarking schemes, such as the
one presented in this paper, are those that do require the
watermarked program or some part of it to be executed.

Previously proposed static watermarking schemes include
one by Qu and Potkonjak [10] embedding the watermark in
register interference graphs, one by Venkatesan et al. [13]
embedding the watermark in the control flow structure of
a designated piece of the program, one by Davidson and
Myhrvold [4] embedding the watermark by reordering basic
blocks, and one by Stern et al. [12] that embeds the water-
mark in the relative frequencies of instructions throughout
the entire program using a spread spectrum technique. All
of these schemes are vulnerable to relatively simple auto-
mated transformative attacks that do not have too great an
impact on program performance.

Dynamic software watermarking was first proposed by
Collberg and Thomborson [2]. Their scheme embeds the wa-
termark in the topology of some data structure that is built
on the heap at runtime given some secret input sequence
to the program. This scheme is vulnerable to attacks that
modify the pointer topology of the program’s fundamental
data types, which drastically changes the topology of any
data structures built at runtime.

Another dynamic software watermarking scheme proposed
by Cousot and Cousot [3] embeds the watermark in values
assigned to designated integer local variables during pro-
gram execution. These values can be determined by analyz-
ing the program under the framework of abstract interpre-
tation, enabling the watermark to be detected even if only
part of the watermarked program is present. This scheme
can be attacked by obfuscating the program such that the

local variables representing the watermark cannot be located
or such that the abstract interpreter becomes confused and
cannot say what values are assigned to those local variables.

7. CONCLUSIONS
Software watermarking is an important tool for combating

software piracy. It is important that software watermarks
be resilient against semantics-preserving code transforma-
tions. Unfortunately, most existing proposals for software
watermarking turn out to be vulnerable to fairly straight-
forward code transformations. This paper introduces a new
approach to watermarking, called path-based watermarking,
that embeds the watermark in the dynamic branch structure
of the program, and shows how error-correcting and tamper-
proofing techniques can be used to make path-based water-
marks resilient against a wide variety of attacks.

Experimental results, using both Java bytecode and IA-32
native code, indicate that the cost of watermarking is rel-
atively modest, even for relatively large watermarks (rang-
ing from 128 to 512 bits). For Java bytecode, we see that
if the number of pieces that the watermark is broken into
is kept small, the runtime overhead of watermarking is es-
sentially negligible. As the number of pieces is increased,
thereby making it increasingly difficult for an attacker to
destroy the watermark, there is a concomitant increase in
the runtime overhead. The space cost of watermarking Java
bytecode is independent of the size of the application being
watermarked, and is quite small: it varies roughly linearly
with the size of the watermark, and required about 8 Kbytes
for a 512-bit watermark. Native code watermarking on an
Intel IA-32 platform incurred mean size increases of about
12–13% and mean runtime slowdowns of about 3.5%.

8. REFERENCES
[1] Business Software Alliance. Eighth annual BSA global

software piracy
study: Trends in software piracy 1994–2002, June 2003.
http://global.bsa.org/globalstudy/2003 GSPS.pdf.

[2] C. Collberg and C. Thomborson. Software
watermarking: Models and dynamic embeddings. In
In Conference Record of POPL ’99: The 26th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (Jan. 1999), 1999.

[3] P. Cousot and R. Cousot. An abstract
interpretation-based framework for software
watermarking. In POPL, 2004. To appear.

[4] R. L. Davidson and N. Myhrvold. Method and system
for generating and auditing a signature for a computer
program. US Patent 5,559,884, September 1996.
Assignee: Microsoft Corporation.

[5] S.K. Debray, R. Muth, S. Watterson, and K. De
Bosschere. ALTO: A link-time optimizer for the
Compaq Alpha. Software — Practice and Experience,
31:67–101, January 2001.

[6] S.K. Debray, B. Schwarz, G.R. Andrews, and
M. Legendre. PLTO: A link-time optimizer for the
Intel IA-32 architecture. In Proc. 2001 Workshop on
Binary Rewriting (WBT-2001), September 2001.

[7] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing
a sparse table with O(1) worst case access time.
Journal of the ACM, 31(3):538–544, July 1984.

[8] Donald E. Knuth. Seminumerical Algorithms,
volume 2 of The Art of Computer Programming.

Addison-Wesley, Reading, MA, USA, third edition,
1997.

[9] C.M. Linn and S.K. Debray. Obfuscation of executable
code to improve resistance to static disassembly. In
Proc. 10th. ACM Conference on Computer and
Communications Security (CCS 2003), pages 290–299,
October 2003.

[10] G. Qu and M. Potkonjak. Analysis of watermarking
techniques for graph coloring problem. In IEEE/ACM
International Conference on Computer Aided Design,
pages 190–193, November 1998. http:
//www.cs.ucla.edu/~gangqu/publication/gc.ps.gz.

[11] A. Srivastava and D. W. Wall. A practical system for
intermodule code optimization at link-time. Journal of
Programming Languages, 1(1):1–18, March 1993.

[12] J.P. Stern, G. Hachez, F. Koeune, and J.-J.
Quisquater. Robust object watermarking: Application
to code. In Information Hiding, pages 368–378, 1999.

[13] R. Venkatesan, V. Vazirani, and S. Sinha. A graph
theoretic approach to software watermarking. In 4th
International Information Hiding Workshop,
Pittsburgh, PA, April 2001.

