Optimizing and Reverse Engineering Itanium Binaries

Noah Snavely

EPIC (Explicitly Parallel Instruction Computing) architectures, such as the Intel IA-64 (Itanium), address common
bottlenecks in modern architectures by supporting novel features such as explicit instruction-level parallelism, predi-
cated instructions, and control and data speculation. While these features promise to make code more efficient, the fact
that these new architectural features are visible to the programmer means that EPIC code is more difficult to generate
and analyze than code for more traditional architectures. In this paper we discuss methods for dealing with Itanium
code in a way that is less tied to the specific features of the Itanium architecture, using a system we have developed
called the Itanium Link-Time Optimizer (ILTO). We also present new algorithms for generating efficient Iltanium code
and for reverse-engineering Itanium programs in the context of ILTO.
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1 Introduction

There has been a great deal of recent interest in EPIC (Explicitly Parallel Instruction Computing) architectures, such
as the Intel 1A-64 (Itanium), that boast features such as predicated instructions, explicit instruction-level parallelism,
and control and data speculation. A predicated instruction is guarded by a Boolean source operand; the instruction
is executed only if this guard evaluates to true. In addition, instruction-level parallelism is explicit: the compiler

is responsible for collecting instructions into groups that will be executed in parallel. Control and data speculation
refer to the existence of special instructions that have more freedom of movement during scheduling than normal
instructions.

These features are intended to improve performance by increasing the number of instructions that can be executed
in each cycle, in the case of predication and instruction-level parallelism, or by decreasing the amount of time the
CPU spends waiting for memory fetches, in the case of speculation, but there are costs associated with these features.
First, since these features are visible to the user, the burden is on the compiler to make effective use of them, and
therefore new algorithms and techniques must be developed to generate good code. Second, heavily optimized EPIC
code is difficult to analyze and transform with traditional algorithms, because these algorithms are typically unaware
of features such as predication, and may produce incorrect or over-conservative results when applied to predicated
code. Third, to someone who is trying to read and comprehend a program, optimized EPIC code may be inscrutable,
because predication and speculation—particularly when combined with traditional optimizations such as instruction
scheduling—tend to severely obfuscate the original program logic. In this paper we address, and present solutions to,
each of these problems.

With regards to the first problem, predication is one of the most important features for the compiler to be aware
of. In order to generate efficient code, a compiler must selectively eliminate conditional jumps in favor of predicated
instructions that are conditionally executed. This process, knowfrcasiversion must be carried out judiciously: if
it is too aggressive, it leads to contention for system resources and a concomitant degradation in performance; if it is
not aggressive enough, it results in insufficient instruction-level parallelism, which also leads to a loss in performance.
An important question that must be addressed in this regard is: when in the compilation process should if-conversion
be carried out? One option is to do if-conversion early in the code generation process, with subsequent analyses
and optimizations working on predicated code. This is the approach taken by Aetgaist [3], who carry out
aggressive if-conversion early, and subsequently perform partial reverse if-conversion during instruction scheduling.
The advantage of such an approach is that the compiler can take full advantage of instruction predication in a variety
of low-level optimizations. A disadvantage is that this exacerbates the second problem mentioned above: analyses and
optimizations in the compiler backend may have to be reimplemented to cope with predication.

In this paper we describe a system we have developed, called the Itanium Link-Time Optimizer (ILTO), that
uses the opposite strategy: machine dependent optimizations such as if-conversion are delayed until after most other
optimizations have been carried out. The advantage here is that other analyses and optimizations do not have to be
made predicate-aware. Our systemligraary-rewriter, so its input is a program that may already be heavily optimized.
Therefore in addition to presenting a new algorithm for if-conversion, we also present algorithms for the dual problem
of unpredicationorreverse if-conversigrihat is, removing predication from code. In the context of both if-conversion
and reverse if-conversion, it is useful to have knowledge of certain relationships between predicate registers to perform
these tasks effectively. Therefore we also describe a simple algorithm for analyzing predicated code and computing
these relationships.

With respect the third problem, that of program comprehension, we address the problems associated with spec-
ulation. Optimizations based on speculation can significantly change the structure of programs, speculation tends to
make low-level code difficult to understand and analyze. In this paper we present a technique for undoing low-level
optimizations based on speculation in order to expose the original structure of speculative programs.

The remainder of the paper is organized as follows. Section 2 gives background information on the Itanium
architecture and on ILTO, our experimental optimization system. Section 3 describes how we analyze the use of
predicate registers to compute what we call predicate disjointness and dominance sets. Section 4 describes the front-
end of ILTO, which transforms raw Itanium code into an intermediate form. Section 5 describes the back-end of ILTO,
in which the intermediate code is transformed back into efficient Itanium code using new algorithms, and shows the
effectiveness of these algorithms experimentally. Section 6 discusses reverse engineering issues on the Itanium, in
particular those related to speculation, and describes how we have used ILTO to reverse engineer Itanium binaries.
Finally, Section 7 discusses related work, and Section 8 gives concluding remarks.



2 Overview

The work reported in this paper was carried out in the context of ILTO, a link-time optimizer we have developed for
the Intel Itanium processor. This section summarizes relevant aspects of the Itanium architecture, including predicated
instructions, instructions groups, bundles, and templates. We then give an overview of the organization of ILTO.

2.1 The Itanium Architecture
2.1.1 Explicit Parallelism and Predication

The Itanium contains multiple functional units and uses programmer specified instruction-level parallelism. Moreover,
every instruction igpredicated It specifies a one-bit predicate register, and if the value of that register is true (1), then
the instruction is executed; otherwise, the instruction usually has no effect. The Itanium has 64 predicate registers;
registerp0 has constant value true (assignments to it are ignored). Many instructions in prograp® ase¢heir
predicate; these are said tolmeguardedand by convention the predicate register is not specified in assembly code (as
shown below). Instructions that specify a predicate register othempihame said to bguarded

Predicate registers are set by compare instructions. There are three broad classes of compares: normal, uncondi-
tional, and parallel. A normal compare has four operands: two data operands that are compared, and two predicate
registers that are assigned the result and its complement. An unconditional compare is like a normal compare, ex-
cept that it clears both predicate-register operands before doing the data comparison and setting the results; moreover,
the predicate registers are cleared even if the instruction is not executed because its guard is false. A parallel-OR
compare sets both predicate-register operands if the data comparison is true; otherwise neither predicate register is
changed. A parallel-AND compare clears both predicate-register operands if the data comparison is false; otherwise
neither predicate register is changed. Parallel compares are used to compute sequences of logical OR and logical AND
operations.

The compiler writer or assembly programmer expresses parallelism by forming what arercshection groups
Each group is a sequence of instructions that do not contain register dependencies and hence that can potentially be
issued in parallel. In particular, instructions in a group cannot in general contain read-after-write (RAW) or write-
after-write (WAW) register dependencies. (Write-after-read dependencies are allowed in a group since the processor
will ensure that the read occurs before the data is overwritten.) The programmer indicates the end of an instruction
group by means of what are callstbp bits

Following is an example of a sequence of predicated instructions:

cmp.eq p6,p7=r10,r11
(p6) 1d8 r15=[r32]
(p7) 1d8 r16=[r33] ;;
(p6) add r15=r15,1
(p7) add rl6=r16,1 ;;
(p6) st8 [r32],r15
(p7) st8 [r33],r16

The first instruction is unguarded and always executed. It compares the contents of general régistad
r1l ; if they are the same, predicate regigiéris set to true and registe7 is set to false; otherwisg? is set to true
andp6 is set to false. Because the valuegp6fandp7 are complements of each other, exactly one set of load, add,
store instructions will execute, depending on whiclp6for p7 is true. There are register dependencies between the
add and load instructions, and between the store and add instructions, so stop bits—indicated by double semicolons
;; —are placed after the pair of loads and the pair of adds.

The Itanium processor fetches instructimmndlesthat are 128 bits long (two words). Each bundle consists of
three 41-bit instructioslotsand a 5-bitemplate The template specifies the kind of functional unit needed by each
instruction—integer, memory, branch, etc.—and where stop bits are located. The processor views up to two bundles
(six instructions) at a time and attemptsdisperseall of them to functional units in parallel. An instruction can be
dispersed when a functional unit is available; up to six instructions can be dispersed at the same time, but instructions
are never dispersed out of order.

An instructionissueswhen it can be dispersed and when all the resources it requires (e.g., source registers) are
available. Asplit issueoccurs whenever an instruction does not issue at the same time as the previous instruction.



(Splitissue leads to a delay of at least one clock cycle.) Stop bits always cause a split issue, because they indicate the
presence of register dependencies. On the other hand, predication never causes a split issue.

2.1.2 Speculation

In addition to predication, the Itanium suppasfeculation Speculation refers to the execution of instructions before it

is known that it is necessary, or possibly even safe, to execute them, and is intended to give the compiler more freedom
when scheduling instructions. On the Itanium speculation is expressed with two special types of load instructions:
control speculative andata speculative loads. Control speculative loads may be moved past branch instructions on
which they are dependent, while data speculative loads may be moved past potentially dependent store instructions.
Speculation checks are also provided to either verify the success of a speculative load, or branch to recovery code in
case of a failed speculative load. The benefit to using speculation is that potentially high-latency load instructions,
when speculative, can be executed earlier than is otherwise possible. Speculation is discussed in more detail in Section
6.

To summarize, Itanium instructions are predicated, and they have to be placed into groups (demarcated by stop
bits) and bundles (with associated templates). Using predicates wisely and scheduling instructions efficiently are thus
keys to producing efficient code. The Itanium also supports speculative loads, which can be used to reduce the time
the CPU spends waiting on memory.

2.2 ILTO: The Itanium Link-Time Optimizer

Our experimental infrastructure is a software system called ILTO (Itanium Link-Time Optimizer). ILTO has the
same basic structure as PLTO, a link-time optimizer we have developed for the Intel IA-32 (Pentium) architecture
[18]. In particular, ILTO reads in a binary object file, disassembles the code, carries out numerous analyses and code
optimizations, performs if-conversion and code scheduling, and finally lays out code blocks and assembles a new
binary. The place occupied by ILTO in the compilation process is illustrated in Figure 2.2.

For code analysis and optimization purposes, ILTO constructs a control flow graph (CFG) for each function in a
program [1]. Control flow across function boundaries is represented usingeaprocedural control flow grapfe.g.,
see [15]). It consists of the control flow graphs of all the functions in the program, together with edges representing
calls and returns that connect the flow graphs of different functions. As shown in Figure 2, a function call is represented
using a pair of blocks, aall blockand areturn block There is acall edgefrom a call block to the entry block of
the callee, with a correspondimgturn edgefrom the exit block of the callee to the return block. Indirect function
calls are modeled using a special pseudo-fundtigrthat represents worst-case behaviors; e.g., it uses and defines all
registers, writes to all memory locations, etc.

Disassembly and assembly are obviously architecture dependent. However, the representation of basic blocks,
structure of the CFG, and—most importantly—the various analyses and optimizations are essentially the same as in
PLTO. The special characteristics of the Itanium—such as predication, instruction groups, and bundles—are thrown
away as the control flow graph is created. This lessened the time it took to develop ILTO, and more importantly it
permits existing architecture-independent analyses and optimizations to be employed. However, it means that we have
to deal with predication, stop bits, and bundling when scheduling and laying out code.

The transformation of the input binary executable into a normalized intermediate form constitutes the front-end
of ILTO. The front-end prepares the binary to be analyzed and transformed in the optimization stage. Finally, in the
back-end of ILTO normalized code is transformed back into an efficient stream of Itanium instructions, and the file is
written back to disk. These stages are briefly described below:

1. Front-end

(a) Build Control Flow Graph.Disassemble instruction bundles and build a control flow graph (CFG) with
individual instructions. Eliminate dead code by doing a depth-first search from the entry point to mark
reachable code.

(b) Predicate AnalysisCompute predicate register relation sets, as described in Section 3.
(c) Unschedule Instruction&roup together related instructions.
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Figure 1: Compilation Model for Link-Time Optimization with ILTO

(d) Unpredicate the CF@QRemove predication from the instructions in the CFG by constructing explicit deci-
sion nodes.

2. Optimization stage

(&) Code OptimizationsAnalyze and optimize the code: liveness analysis, function inlining, constant propa-
gation, etc. For this paper, this phase is not used, as discussed in the results section.

3. Back-end

(a) Scheduling and If-Conversiofrorm a schedule for each basic block and convert decision nodes to predi-
cated instructions where possible. Group instructions into bundles.

(b) Predicate AnalysidRecompute predicate register relation sets.

(c) Code LayoutlLayout and align the basic blocks, using edge profiles as a guide. (Edge profiles are gener-
ated during a training run on an instrumented version of the unpredicated CFG.)

(d) Global Bundle Check and Patchterate through the basic blocks to check the validity of instruction
bundles and to repair them when needed.

Predicate analysis, used in both the front- and back-ends of ILTO, is described in the next section. After the
discussion of predicate analysis, the front- and back-ends themselves are described in detail.
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Figure 2: Representing function calls in the interprocedural control flow graph

3 Predicate Analysis

As mentioned in Section 2, predicate registers on the Itanium are written to by comparison instructions. Relationships

that exist between predicate registers can be inferred at every point in the program by taking the semantics of these
special instructions into account. In this section we will first discuss the predicate relationships that are of interest

because of their use in analyzing predicate code. Next, we will describe the predicate analysis algorithm that we use
to compute these relationships.

3.1 Predicate Relations

Given Boolean® andq, ‘p = ¢’ denotes logical implication, i.ep = ¢ = (—p) V ¢, while ‘p & ¢’ denotes logical
equivalence, i.ep < q = (p = ¢) A (¢ = p). We define the following notions of disjointness:

3.1.1 Disjointness

Definition 3.1 Booleansp andq are said to beveakly disjointif p = —¢. They are said to bstrongly disjoint(or
complementanyif p < —q. ]

Note that both weak and strong disjointness are symmetric—eg=if—q, thenqg = —p—so it is not necessary to
specify directionality for either of them.

As an example, the following instruction sets predicate regigt@randp7 to complementary values, depending
on whether general registes is less than registeb :

cmp.lt p6,p7=r5,r6

Immediately after this instructiom6 andp7 are strongly disjoint, independent of their actual values. They remain
strongly disjoint until some instruction (on some path) invalidates the relationship.
Suppose the next instruction that altp6sor p7 is

(p8) cmp.eq p6,p7=r10,r11

This instruction is executed conditionally, depending on whatBes true. Howevernp6 andp7 will still be strongly
disjoint, even though their values might have changedplfandp7 were weakly disjoint before this instruction,
they would also be weakly disjoint after it; if we knew nothing about their relation before the instruction, we would
still know nothing.)

The weakly disjoint relationship most often arises due to instances of unconditional compare instructions. An
example is

(p8) cmp.unc.eq p6,p7=r10,ril

If p8 is true, the semantics of this instruction are the same as a normal compare. However, an unconditional compare
first clears both predicate operangd$, andp7 above, and these remain cleared if the guard predicate is false. Thus,
after this instructionp6 andp7 are weakly disjoint: they cannot both be true but they might both be false.



initialize weakIN(B) , strongIN(B) , anddomIN(B) as described in the text;
weakOUT (B) = weakIN(B) ;
strongOUT (B) = strongIN(B) ;
domOUT(B) =domIN(B) ;
for each instructior in basic blockB in their order of occurrence i do
if I is nota compare instructidchen continue
[* Assume I has the form: (pG) compare-opcode pA,pB=data-operands */
if I is a normal compare instructidhen
if I is unguarded, i.epG == p0then
remove all pairs containingA or pB from weakOUT (B) , strongOUT(B) , anddomOUT (B) ;
add pA, pB) to weakOUT(B) andstrongOUT(B) ;
else
setwasIn Weak to true if (pA, pB) is in weakOUT(B) and to false otherwise;
setwasInStrong to true if (pA, pB) is in strongOUT(B) and to false otherwise;
remove all pairs containingA or pB from weakOUT (B) , strongOUT(B) , anddomOUT(B) ;
if wasInStrong then
add pA,pB) to weakOUT(B) andstrongOUT(B) ;
else ifwasIn Weak or pG == pA or pG == pB then
add pA,pB) to weakOUT(B) ;
else
[* now no relations between pA and pB */
end if
end if
else if I is an unconditional compare instructitren
remove all pairs containingA or pB from weakOUT (B) , strongOUT(B) , anddomOUT(B) ;
add pA, pB) to weakOUT(B) ;
add pG, pA) and pG, pB) to domOUT(B) ;
for all (p, pG) that are inweakOUT(B) do
add @, pA) and p, pB) to weakOUT(B) ;
end for
for all (p, pG) that are indomOUT(B) do
add @, pA) and @, pB) to domOUT(B) ;
end for
else/* I is a parallel AND or OR compare instruction */
remove all pairs containingA or pB from weakOUT (B) , strongOUT(B) , anddomOUT(B) ;
end if
end for

Figure 3: Computing Predicate Relation Sets for a Basic Block

3.1.2 Dominance

Another important predicate relationship that arises from the use of unconditional compares is dominance.
Definition 3.2 A boolearnp is said todominatea booleary if ¢ = p, i.e. if p must be true whenevaeris true. ]
For instance, after execution of the compare instruction
(p8) cmp.eq p6,p7=r10,r11

p8 dominates botp6 andp7, because the semantics of the unconditional compares guaranteepthé false,
bothp6 andp7 will also be false. Note that while the disjointness relations are symmetric, dominance is not. In fact,
the dominance relation creates a partial-ordering of predicate registers at every program point. For each, r&gister
any given program point there is a unique maximal dominance ¢hathp,; = p» = ... = p;. Recall that on



the Itanium registep0 is hardwired tarue , sopO dominates every predicate register. Therefuliderminates any
maximal dominance chain. Dominance chains are used during unpredication of the control flow graph, described in
Section 4.

3.2 Predicate Analysis Algorithm

In order to do effective unpredication, if-conversion, and instruction scheduling (see Sections 4 and 5), we need
to know—at each instruction—how predicate registers are related to each other. In particular, for a given register,
which other register is strongly disjoint from it, which other registers are weakly disjoint from it, and which registers
dominate or are dominated by it? (There can be at most one register that is strongly disjoint, but there could be several
that are weakly disjoint, as well as several that dominate.) The predicate analysis phases in the ILTO system compute
this information for the start and end of each basic block in a program, as described below. (It is straightforward to
propagate information from the start of a basic block to instructions in the block.)

Our predicate analysis is a forward dataflow analysis that propagates sets of pairs of prégicateser the
control flow graph of a function. We consider three kinds of such sets at each basidhlock

Definition 3.3 SetweakIN(B) is the set of pairs of weakly disjoint predicates at the entry to bidckndweakOUT (B)
is the set of pairs of weakly disjoint predicates at the exit from blBckSimilarly, strongIN(B) is the set of pairs
of strongly disjoint predicates at the entry to bloBk and strongOUT(B) is the set of pairs of strongly disjoint
predicates at the exit frol®. Finally, domIN(B) is the set of “dominance” pairf®, ¢), wherep dominatesg;, at the
entry to blockB, anddomOUT (B) is the set of dominance pairs at the exit frén ]

Let By denote the entry block of the function under consideration. The following dataflow equations specify how
the above six sets are computed.

1. The dataflow information at the exit from a basic bld¢ks obtained, as usual, by taking the dataflow informa-
tion enteringB and propagating it througB. In particular,weakOUT(B) is a function ofweakIN(B) and the
instructions inB, and similarlystrongOUT(B) is a function ofstrongIN(B) and the instructions if3, and
domOUT(B) is afunction ofdomIN(B) and the instructions if.

2. Determining predicate relationships at the entry to a bidékvolves three cases:

(a) Forintraprocedural analysis we assume that nothing is known at the entrymjdcka function:
weakIN(By) = strongIN(By) = domIN(By) = 0.

(b) If Bisthe return block for a call to a functighfrom a blockB ', then the dataflow information enteririgy
is obtained by taking the predicate relations that hold at exit fBoin.e., just before control is transferred
to f, and filtering this through the summary information known about the behavior of the callee function
I
weakIN(B) = FnOut;(weakOUT(B’) ),
strongIN(B) = FnOut(strongOUT(B') ), and

domIN(B) = FnOut;(domOUT(B') ).

(c) Otherwise, it consists of the predicate relations that hold at the exit from ed¢’h pfedecessors, and so
are guaranteed to hold at entryfo

weakIN(B) = () weakOUT(P),
Pepreds(B)
strongIN(B) = ﬂ strongOUT(P) , and
Pepreds(B)
domIN(B) = (|  domOUT(P).
Pepreds(B)

Figure 3 gives the algorithm for computingakOUT(B) , strongOUT(B) , anddomOUT (B) from weakIN(B) ,
strongIN(B) , anddomIN(B) . There are several cases to consider, but the details are straightforward applications of
the kinds of reasoning illustrated in the examples at the start of this section. For example, a normal comparison makes



its predicate-register operands strongly disjoint and hence also weakly disjoint; thus, the pair of operands gets added to
both the strong and weak output sets. The unconditional compare instruction has the most complex effect, because it
clears both predicate-register operands before conditionally setting one of them. A parallel compare instruction has the
simplest effect with respect to predicate disjointness because it either does nothing or modifies both predicate-register
operands, and hence it destroys any disjointness relationship that might have existed for either predicate register.

We solve the dataflow equations given above by starting with the initial values

weakIN(B) = strongIN(B) = domIN(B) =0

weakOUT(B) = strongOUT(B) = domOUT(B) =0

for all basic blocksB in a function, and then computing a fixpoint by iteratively applying the equations above until
there is no change to any of these sets.

In case 2(b) of the dataflow equations abdueQut ;(.S) denotes the effect of the function cdllon the predicate
relations at the call site. A simple conservative estimate for intra-procedural analyses is to assume that nothing is
known about predicate relationships at the return from a function call. We can do better, however, by identifying for
each functionf, the setUnchg(f) of predicate registers whose values will not be affected by a cdll We proceed
as follows:

1. DefineSaveRestore( f) to be the set of predicate registers that are saved at enfrigefore any use, and restored
prior to leavingf. These sets can be determined by inspecting the prolog and epifégcdde.

2. LetUnchg(B) be the set of predicate registers whose values will not be changed during the execition of

Unchg(B) = 0 if B ends in a function call
& | {p|pnotassignedtoimB} otherwise
Then, the set of predicate registers that are unaffected by a gaistgiven by

Unchg(f) = SaveRestore(f) U ( ﬂ Unchg(B) ).

Beblocks(f)

Note that the selinchg(f) can be computed in a single pass over the instructiorfs @fe can then define the effect
of a call to a functionf on predicate relationships as follows:

FnOut;(S) = {(p,q) € S | {p.q} C Unchg(f) }.

This is a pessimistic estimate of the effects of a function call, because when comiputing( B) for a basic block
B, we assume that all predicate registers may be overwrittéh ¢bntains a function call. A better approach is
to propagateéUnchg(f) values over the call graph of the program and iterate to a fixpoint. This is what we have
implemented.

It is relatively straightforward to extend these equations to do inter-procedural analysis. At this time, we have
extended the analysis described above into a simple context-insensitive inter-procedural algorithm, and we are looking
into a context-sensitive inter-procedural version.

4 The Front-end of ILTO

The first purpose of the front-end is to first read in an Itanium executable, disassemble it, and construct the CFG
to represent the control flow of the input program. This results in a stream of Itanium instructions in which special
features of the Itanium are still visible. In particular, instructions are still grouped into bundles and instruction groups,
and are still predicated. The second purpose of the front-end is to remove the traces of these features from the code.
First we unbundle and ungroup instructions by removing stop bits. We then remove predication from the code by
replacing guard predicates by decision nodes and adding new basic blocks and edges to the CFG. This process is
known asunpredicationor reverse if-conversian

One way to unpredicate the instruction stream is to create a new basic block for every predicated (non-branch)
instruction in the program. While correct and simple, this method would create huge number of basic blocks. The

10



problem is that it ignores any relationships that exist between the predicates of nearby instructions, which can help to
group instructions together during unpredication. Therefore, instead of making single instructions the basic units of un-
predication, we can often take account of predicate relations to simplify the resulting CFG. Having a less-complicated
CFG simplifies later analyses and makes it easier to produce efficient code later on. However, before we can take ad-
vantage of relationships between predicate registers during unpredication, there are two problems that must be solved.
First, predicate relations are not explicit in Itanium code; they are implicitly created by a stream of one or more in-
structions that write to predicate registers. These relationships must be computed using predicate analysis, which was
described in the previous section. Second, instructions with related guard predicates may not be adjacent, and so it may
be difficult to combine related instructions into the same CFG node during unpredication. To alleviate this problem,
prior to unpredication related instructions are physically grouped together in a phaseucatbeduling

4.1 Unscheduling

Aggressive scheduling permutes instructions within basic blocks. Assuming that the scheduler is semantics-preserving,
the permutation it produces has the same meaning as the original code, but it may be more difficult to analyze because
scheduling can destroy the correspondence between physical relations and semantic relations that often exist in un-
optimized code. In particular, predicate groups created early on during compilation may be split up by unrelated
instructions during scheduling. Consider the code

mov r4 = r5

(p6) mov rl = r2
(p6) add r2 = 8,r2
sub r3 = 8,r1

This fragment contains two instructions predicatedpén Since they are adjacent, it is easy to see that they can be
combined into a single node during unpredication as follows:

mov r4 = r5
(p6) br.cond Labell
br Label2

Labell:
/* Grouped instructions */
mov rl = r2
add r2 = 8,r2

Label2:
sub r3 = 8,r1

However, suppose that the dependencies between these instructions are such that the compiler could have separated
the two predicated instructions during scheduling, for instance:

(p6) mov rl = r2
sub r3 = 8,r1

(p6) add r2 = 8,r2
mov r4 =15

In this case it is not as clear that thestr2 ~ andInstr3  can be grouped in the same block during unpredication. If
we fail to recognize the relationship between these two instructions, the unpredicated fragment will look like this:

(p6) br.cond Labell
br Label2

Labell:

[* First predicated instruction */
mov rl = r2
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Label2:
sub r3 = 8,r1
(p6) br.cond Label3
br.cond Label4

Label3:
[* Second predicated instruction */
add r2 = 8,r2

Label4:
mov r4 = r5

This unpredicated fragment contains twice as many blocks (four) as the unpredicated fragment for which the two
predicated instructions were originally adjacent, and contains two paths that are impossible to execute. This may
impact analyses that occur later on in ILTO.

The goal of unscheduling is to group together related instructions that may have been separated during the com-
piler's instruction scheduling phase. To make this notion precise, we first define the basic unit of unpredication:

Definition 4.1 A predicate groups a maximal sequence of consecutive predicated instrudtons;, (p2)Is, - - -, (Pn)In,
all in the same basic block, such that ... | p, are related predicates. |

(The precise relations between predicates in a predicate group will be described in the next section.) Note that predicate
groups are not necessarily sequences of guarded instructions. A sequence of unguarded instructions (instructions
whose guard predicate ) also form a predicate group, since each instruction in the sequence is guarded by the
same predicate.

The unscheduling algorithm we present seeks to permute instructions within a basic block so as to minimize the
number of predicate groups in that block. It does sart®rgingpredicate groups whenever possible. Two predicate
groupsA andB can be merged if:

1. Each of the predicates that appeadiirs related to each of the predicates that appedt.in

2. A andB can be moved next to each other.

A predicate group has some freedom of movement: a predicate groap move past an adjacent gra@as long
as no dependencies exist between the instructiodsand the instructions if8. Assuming all other groups remain in
place, an instruction group can occupy a range of positions whose boundaries are either dependent instruction groups
or the boundaries of the basic block containing that group. This range extends both forwards (with the direction
of control-flow) and backwards (against the direction of control-flow). Our unscheduling algorithm consists of two
stages: first it finds the forward range of each predicate group, and attempts to find another group in that range with
which the first can be merged. It then does the same for the backward range. The forward range scanning algorithm is
described in more detail in figure 4; the backward range scan is completely analogous.

The scan must be done in both directions because the process of merging two groups is sometimes asymmetric;
that is, it is possible that a grodp cannot be moved forward to another grakip, but thatG’ can be moved backward
to meetG, or vice-versa. Recall the fragment

(p6) mov rl = r2
sub r3 = 8r1

(p6) add r2 = 8,r2
mov r4 =15

The first predicate group (made up of the first instruction) cannot be moved down to meet and merge with the
second predicate group (made up of the third instruction), since there is a dependent instruction in the way. However,
nothing prevents the second group from being moved up to meet the first.
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/* Scan of forward range of predicate groups */
for each basic bloclB do
for each predicate grouf (in reverse orderjlo
if G is the last group i3 then
continue
endif
for each predicate group’ following G do
if G andG' can be mergethen
disconnecty
insertG immediately before’
mergeGG andG' into a single predicate group
break
else ifsome instruction ii7’ is dependent on an instruction betwe&g@mandG’ then
break
else ifG' is the last predicate group then
break
endif
endfor
endfor
endfor

Figure 4: The Basic Unscheduling Algorithm (Forward Pass)

4.2 Unpredication

Unpredication, also called reverse if-conversion, is the process of replacing guard predicates with decision nodes and
supporting control-flow structure. The basic algorithm we present to do this operates on predicate groups, and has two
major steps:(i) find the predicate groups and:) for each predicate grou@, disconnect each instruction @ from

the CFG and insert it into a new block; afterwards adjust edges between blocks as needed. We defined predicate groups
in the previous section, but did not specify exactly what relations constitute a predicate group. The core algorithm is
independent of this definition, but the details are highly dependent. We will now give three definitions of a predicate
group and show how the unpredication algorithm must change in response. Also, the effectiveness of unpredication is
related to how rich the predicate group definition is — the relationships that are conserved upon unpredication are the
same as the relationships captured by a predicate group. We will use a running example,

cmp.eq p,g = x0
(p) cmp.eq r,s = y,0
() mov z
(s) mov z

1
2
(@ mov z = 3

to demonstrate this.

The simplest way to define a predicate group is as a consecutive sequence of instructions guarded by the same
predicate; we will call this asimple predicate group Finding all the simple predicate groups in the program is
straightforward, as is creating the control flow necessary to remove the predication. However, using this definition
as the basis for our algorithm means that all relations implicit in the guard predicates of instructions—except for
the identity relation—will be lost upon unpredication. This can be seen in Figure 5(a), which shows the results of
unpredicating our example using simple predicate groups.

A smarter way to define a predicate group uses the complementary relatompéementary predicate group
a consecutive sequence of instructions each guarded by pittrey, wherep andq are complementary predicates.
Finding complementary predicate groups is also easy, since predicate relation analysis gives us complementarity in-
formation at every program point. To unpredicate a complementary predicate group, we create two new blocks: a
true block for the instructions predicated pnand afalseblock for the instructions predicated gn Notice that in
our running example andq are complementary after the first instruction, but instructions predicatpdaodq are
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cmp.eq P,Q = x,0 ‘

(P) br.cond cmp.eq P,Q =x,0

F (P) br.cond

Cli

p.eqR,S=y,0

C

(a) Simple algorithm (b) Complement-aware algorithm

Figure 5: CFG After Unpredication

not adjacent. However, unscheduling will merge them into a single complementary predicate group. The resulting
control-flow graph resulting from unpredicating our example using complementary predicate groups is shown in Fig-
ure 5(b). This algorithm preserves the complementary relationship between predicate registers by expressing it with
an if-then-else control-flow structure, dominance information is lost. In this case, the fact that the instmatiorzs
= landmov z = 2 canonly be executed f is true is not reflected in the structure of the control-flow graph.

Including the dominance relation in the definition of a predicate group makes the definition more complex. While
a predicate typically has at most one complementary predicate at any given time, a predicate can be dominated by
(or dominate) many other predicates. Recall that dominance defines a partial ordering of the predicate registers,
so for a registep, there is a unigue maximal dominance chain= p; = ps = ... = px. This suggests a
generalization of the model of predication used on the Itanium. Suppose we allow instructions to be guarded by
several predicate registers, designateddiy ps, - . ., pn), Which are conjunctive; i.e., an instruction is executed if and
only if each of its guard predicates is true. Then if an instrucfidras guard predicate and the dominance chain
P = p1 = p2 = ... = px €Xists at/, we can make dominance explicit by changing the instruatnI to the
equivalent instructiortp, p1, - - ., px) I. We will call this new model thenulti-predicatemodel. For instance, under
the multi-predicate model our example would look like this:

cmp.eq p,q = x,0
(p) cmp.eq r,s = y,0
(rpp) mov z = 1
(s,p) mov z = 2
(qQ mov z = 3

Note that if we use the multi-predicate model then we no longer need to make the second compare instruction
unconditional—the same effect is achieved by guarding two of the move instructions with multiple predicates.

Now we can construct a definition of predicate group that takes both dominance and complementarity into account:
afull predicate group is a sequence of consecutive instructions whosedominanguard predicate is eith@ror q,
wherep andq are complementary predicates.

If each instruction is predicated on a single guard predicate then a full predicate group reduces to a complementary
predicate group, for we have already described the unpredication algorithm. How then must the unpredication algo-
rithm change to take advantage full predicate groups? We simply apply the algorithm multiple times. Each time the
most dominant predicate guarding an instruction is removed, until none remain.

To see how this works, let us run the algorithm on the multi-predicate version of our example, and see how the code
is changed after each pass. At first, there is a single predicate group in the block consisting of the three instructions
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cmp.eq P,Q =x,0

cmp.eq P,Q =x,0
(@ rond
T F T
:
cmp.eq _R,S =y,0 (R) br.cond
(Rymovz=1 T E

(S)movz=2

\ [movz=1 | mpvz=2 |
| | Nﬁ

(a) CFG after first pass (b) CFG after second pass
Figure 6: Two Passes of the Iterative Unpredication Algorithm

predicated o and the one predicated s complementg. The first pass, will split these four instructions into two
blocks as shown in figure 6(a).

The three instructions that had been predicateg diave been put in ththen block, andp has been removed
from their predicate lists. The instruction that had been predicateghas been moved into thedse block, andq
has been removed from its predicate list. Before this pass, predicateds had beerconditionally complementary
onp; that is, ifp is true, therr ands must be complementary predicates. After the pass, the instructions predicated
onr ands exist in their own specialized path where the relation between them is stronger. In otherpvorasst, be
true when these instructions are executed, because the block containing them is only reacheis whenhence the
condition on whichr ands are complementary is always satisfied.

On the next pass of the unpredication algorithm, the newly complementary instructions are separated into disjoint
paths, as shown in figure 6(b). At this point, only conditional branches are predicated, so the algorithm terminates.
The final control-flow graph explicitly expresses all the important information latent in the code containing predicated
lists. The only remaining question is how to convert singly-predicated code into code that uses predicate lists. This can
be done by computing dominance chains at each program point using predicate analysis. Note that the implementation
omitspO from the end of computed dominance chains, since it is useful to consider instructions predigafetbon
be unpredicated (otherwise an iterative unpredication algorithm will never terminate!).

4.3 Edge simplification

So far we have concentrated on preserving predicate relationships within a basic block; relationships that extend across
basic-block boundaries are not necessarily exploited. For instance, consider the code:

Begin:
cmp.eq p,q = x0
(p) movy =1
(q) br.cond After
Fallthrough:
(p) mov z = 1
After:
(@ mov z = 2

This fragment consists of three blocks, each of which will be unpredicated separately. Unpredication produces the
control-flow graph shown in Figure 7(a).

In this control-flow graph there are multiple paths that can never be taken. For instance, it is impossible that blocks
B2, B4, B6 are executed in that order, becal®can only be reached ff is true — hence, iB4 is reached fronB2,
the branch irB4 must always be taken. So, nothing prevents us from redirecting the edg&fdonB4 to instead
point to B5. We call such a redirection agdge simplification When is it possible to do such edge simplification?
More formally, given a path from blocK to block B to blockC, under what conditions is it safe to replace the edge
A — B be with the edgel — C?

The conditions are twofold:
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B1
‘ cmp.eq P,Q = x,0

(P) br.cond

‘ cmp.eq P,Q = x,0

(P) br.cond

T

B2

movy=1 B4

p

(a) Unpredicated CFG before edge
simplification

(b) Unpredicated CFG after edge simplification

Figure 7: An example of edge simplification

1. ExecutingB does not change the value of any register or memory location; therefore the only program state that
B can possibly change is the program counter.

2. Whenever control flows from to B, the edgeB — C must be taken (as opposed to any other edge D).

If a block B contains a single instruction, and that instruction is a branch, thaatisfies the first condition.
Checking that a block satisfies the second requires more analysis. To prove that control must flow in a certain direction
along an execution path we must show that it is impossible for control to flow any other way. Our method for showing
that a path is impossible is to find some predicate register that must be both true and false at some point along the path.

4.3.1 Dominating Predicates

Definition 4.2 A predicatep pre-dominatesa basic blockB if p must be true on entry t@. Similarly, p post-
dominatesB if p must be true at the end &f. |

Definition 4.3 A predicatep pre-antidominates basic blockB if p must be false on entry tB8. Similarly, p post-
antidominates3 if p must be false at the end &*. ]

These relationships usually arise from the guard predicates on branch instructions. Suppose that a block ends
with a branch predicated gn (with complementy), and letA be the target of the branch aftibe the fall-through
block. Thenp pre-dominates blockl and pre-antidominates blodk; converselyg pre-antidominates block and
pre-dominates block. If no instruction inA writes top or g then the relations are preserved through the bldek:
will post-dominated and@ will post-antidominated. To compute dominator sets we use a simple dataflow analysis.
Using the pre- and post- dominance, we can replace the second of the pair of edge-simplification conditions with
a weaker condition:

2(a). There exists a predicatesuch thap post-dominatest and pre-antidominates each Bfs successors except
C.

If p post-dominatest then when control flows froml to B, p must be true at the beginning &f. If condition 1 is
satisfied, therB does not change the valuemfsop must be also be true at the beginning of the block that is branched
to from B. Among B’s successorg can only be true on entry t6, so control must flow t@'. Therefore condition
2(a) implies condition 2.

Edge simplification of our example CFG produces the CFG shown in Figure 7(b). While the number of blocks and
edges is unchanged, the number of paths fBinto B8 has decreased from six to two.
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5 The Back-end of ILTO

The back-end of ILTO is the complement to the front-end: its purpose is to transform the code from its intermediate
form to a form that makes use of the special features of the Itanium in order improve efficiency. The most important
stages of the back-end anstruction schedulingn which we attempt to order Itanium instructions in an efficient way,
andif-conversion in which selected control flow structures are partially or fully replaced by predicated code. These
two stages take place in parallel, as described below. After scheduling and if-conversion takes place, the code is laid
out and reassembled, and the binary is written to disk. These steps are described below, with particular emphasis on
scheduling and if-conversion. Afterwards we show the results of experimentally evaluating the performance impact of
the transformations described in this section, and conclude that our approach does not degrade the performance of the
input binary.

5.1 Instruction Scheduling

When scheduling instructions on the Itanium, there are two primary concerns. The first concern is to hide the latencies
of instructions as much as possible. The latency of an instruction is the number of cycles that elapse between the
time an instruction is executed and the time its results are ready. For instance, while addition of two integers takes a
single cycle on the Itanium, adding two floating point numbers can take up to five cycles. Similarly, a load instruction
can take anywhere from two to twenty-one cycles (depending on which level of cache is hit). If during execution an
instruction attempts to use a register that is not yet available because a high-latency instruction has just written to it,
then the processor stalls until the result is ready. Therefore, our scheduler attempts to schedule instructions so as to
minimize the time that the processor needs to stall while awaiting the completion of a computation. To achieve this
goal, we use a conventional list scheduling algorithm developed by Gibbons and Muchnick [7].

The second concern of our instruction scheduler is to exploit the instruction-level parallelism capabilities of the
Itanium architecture by bundling instructions intelligently. As mentioned in Section 2, the Itanium can execute up
to six instructions at once, but has only two arithmetic units, two memory units, two floating point units, and three
branch units. Therefore in long sequences of code with no branches, instructions must be carefully bundled in order
to maximize the throughput of a program. In order to make the most effective use of resources when bundling instruc-
tions, predicate analysis must be used to accurately compute dependencies between instructions. The reason for this
is that two instructions may appear to be dependent (for instance they might write to the same register), but may in
fact be independent if their predicates cannot both be true at the same time. For instance, consider the following code
fragment:

cmp.eq p6,p7=x,0 ;;
(p6) cmp.eqg.unc p8,p9=y,0 ;;
(p7) mov z=2
(p8) mov z=0
(p9) mov z=1

Notice that even though the last three instructions all write to the same varghtlee two compare instructions
guarantee that exactly one register oup@f p8, andp9 will be true when the three moves are executed. We can
determine this using predicate analysis, and therefore our bundler can schedule these three instructions in the same
instruction group. Our instruction bundling algorithm is similar to one described in [9], but we augmented it to handle
several special cases.

5.2 If-Conversion

If-conversion is the process of replacing explicit control transfers in code by predicated instructions that are executed
conditionally depending on the value of a Boolean source operand [2]. It can improve performance in a number of
different ways. First, it can eliminate difficult-to-predict branches and reduce branch misprediction rates [4]. Second,
it can increase instruction-level parallelism. Finally, by allowing the producer of a value to be moved to an earlier
point in the instruction stream, if-conversion can be used to hide instruction latencies.

Figure 8 gives an outline of our if-conversion algorithm. The basic idea is simple: For each basic block in a
function, we first schedule the instructions in the block, then we try to use if-conversion to improve the code for that
block. This employs the predicate disjointness sets described in the previous section and is done as follows:
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for each basic block in the functiondo
1. scheduleB as described above;
2. sort the successors Bfin decreasing order of execution frequency;
3. for each successar of B do
if S has more than one predecessontinue;
for each nopV in Bdo  /* Eliminate no-ops in B if possible */
if there is an instructiodi in S that can replacé& without affecting any
dependencies or adding stop lLitien
removel from S;
replaceN with an appropriately predicated versioniof
endif
end for
[* Eliminate branch instructions in B if possible and profitable */
if (a) S is if-convertible intoB; and (b) there is a branch instructiohin B that
can be eliminated by fully if-converting into B; and (c¢) the number of
groups inS is less than a fixed [architecture-dependent] threstind
replace each instructioli in S by an appropriately predicated version/ofin B;
delete the branch instructioh
delete the basic block
end if
end for
end for

Figure 8: The Basic If-Conversion Algorithm

1. We attempt to replaagop s in the block by useful instructions from its successor blocks.

2. Ifa block ends in a conditional branch, and it is profitable and possible to eliminate this branch, we replace the
conditional branch by appropriately predicated instructions from the block’s successors.

In this context, given a basic block and a successaB’ of B, we say thatB’ is if-convertible intoB if every
instruction inB’ can be if-converted into a predicated version that can then be inserted at the Bndrar to any
branch instruction at the end &, without altering any use-definition relationships between any pair of instructions.

A few aspects of this algorithm that deserve comment. First, when processing a basi@tdockconsidering
a successor block from which to if-convert instructions iBtpwe do not consider any successbthat has more
than one predecessor. The reason for this is th&thids multiple predecessors, then each instruction moved d¢ut of
would have to be replicated in the predecessorS.ofhis would result in code growth, and it would complicate the
if-conversion algorithm because it would be necessary to ensure that such code replication preserves correctness. In
principle we could clone the block in such circumstances to create a block with a single predecessor, which can then
be processed as described; however, our implementation does not currently do this.

Second, when considering whether to use if-conversion to eliminate a branch instruction at the end of block
we want to make sure that this does not introduce so many predicated instructiofsthebthe cost of executing
these instructions exceeds the cost of the original branch instruction they replaced. We do this using an architecture-
dependent threshold that models the cost of executing a branch instruction: if the number of predicated instruction
groups being introduced intB is less than this threshold, it is deemed profitable to eliminate the branch instruction.
The reason we first attempt to use instructions fHmo eliminate no-ops iB before attempting to eliminate branch
instructions inB is that the number of instructions K hmay initially exceed this threshold, but by pulling out instruc-
tions fromS to replace no-ops if3, we may be able to reduce the number of instructions ia below the threshold,
thereby allowing the branch instruction #to be eliminated.

Finally, an aspect of the overall if-conversion process that is not discussed in Figure 8 is that it is sometimes
necessary to find a free predicate register. Consider the following code fragment:

cmp.eq p6,p0=r14,15 ;;
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(p6) br.cond L1

mov rl14=0

brfew L2 ;;
L1: mov rl4=1 ;;
L2: add r15=r14,2

We would like to convert this to a single predicated block, e.g.:

cmp.eq p6,p7=r14,r15 ;;
(p6) mov ri14=0
(p7) mov r14=1 ;;

add r15=r14,2

However, since the compare instruction that sets regigten the original code discards the complemenp6f * we

must find a predicate register to hold the complement. This registerst be free at the compare instruction and must

not be defined on any path from the compare to the instruction(s) whose predicated version would use the complement
of p6. If there are multiple compare instructions that set the guard predicate of the branch register (i.e., different paths
to the branch contain different compare instructions), thenst not be defined on any path from any of the compares

to the instructions that would uge Our implementation currently uses a simple conservative approximation for this:

If a predicate registep is not defined or used by a functighor any function reachable frorh, and ifp is saved and
restored at entry to and exit froif) thenp can safely be used for this purpose wittfin

5.3 Code Layout

Before the binary is reassembled, code layout is performed. The goal of goal layout is to place basic blocks in memory
in an order that minimizetz) the number of taken branches executgd,the number of instruction cache misses,
and(c) the number of page faults incurred, and involves moving frequently executed blocks to one end of the address
space and infrequently executed blocks to the other. The layout algorithm used in ILTO is described by Pettis and
Hansen in [16]. Since basic blocks are moved during layout, branch instructions may be deleted, added, or may need
to have their sense switched. If a block could be entered by means of a fall-through edge, then we have to insert an
explicit branch if the block is moved. If we move a block so that its entry point immediately follows what had been a
branch to the block, then we want to delete the branch to the block.

As a (somewhat artificial) example of code motion, consider the following C program fragment:

if x>0)

{ statementsl; }
else

{ statements2; }

Straightforward Itanium code for this would be

cmp.gt p6,p7 = x,0 ;;
(p7) br.cond Else

code for statementsl

br.cond Done
Else: code for statements2
Done:

If we decide to switch the positions of the code blocksstatementsl andstatements2 |, the only other change
we need to make is to ug to guard the predicate on the branch instruction. This is a safe transformation because
p6 andp7 are strongly disjoint. This illustrates another use of predicate analysis.

5.4 Experimental Results

We evaluated our ideas using a set of seven programs from the SPECint-2000 benchmaltbzgtezip, mcf,
parser, twolf, vortex andvpr. The programs were run on an HP i2000 workstation with a 733 MHz Intel Itanium

1The compare instruction actually assigns the complemep @b predicate registgs0. However, sincg0 is hard-wired to the valutue, the
effect is to discard the complement.
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Program Code Density S1/So
Original (So) | Optimized 1)
bzip2 0.7011 0.7134 1.0175
gzip 0.7031 0.7127 1.0136
mcf 0.7012 0.7128 1.0165
parser 0.6985 0.7130 1.0208
twolf 0.6985 0.7121 1.0195
vortex 0.7300 0.7367 1.0091
vpr 0.6994 0.7134 1.0201
| GEOMETRICMEAN | 1.017 |

(a) Code Density

Program Execution Timesec) T /To
Original (Iv) | Optimized ()
bzip2 1155.04 1002.59 0.868
gzip 1041.97 984.34 0.945
mcf 1506.34 1491.62 0.990
parser 1305.39 1266.66 0.970
twolf 1483.17 1405.97 0.948
vortex 1072.89 1001.57 0.934
vpr 1057.34 991.74 0.938
| GEOMETRIC MEAN | 0.941 |

(b) Execution time

Table 1: Performanceycccompiled programs

processor running Redhat Linux 7.1, kernel 2.4.3-12. The memory configuration of the system was as follows: split
L1 instruction and data caches, each consisting of 16 KB of 4-way set associative cache memory with 32-byte lines;
a 96 KB unified L2 cache; a 2 MB unified L3 cache; and 1 GB of main memory and 2 GB of swap space. Execution
times for these programs were obtained as follows: Each binary was run five times on an unloaded machine and
its runtime was measured using the Utime command; the largest and smallest of the resulting run times were
discarded; then the arithmetic mean of the remaining three execution times was computed and taken as the running
time for that binary. We used statically linked binaries for our experiments, compiled with additional flags to instruct
the linker to retain relocation informatich.

Static code density figures, expressing the ratio of useful (i.e.nopninstructions to the total number of instruc-
tions, were obtained as follows. For the input binaries, we measured code densities after first discarding unreachable
code (in order to exclude code brought in by the linker from libraries that is not referenced by the program). Code
densities after optimization were obtained just before the executables were written out and hence after all optimiza-
tions had been carried out. For these experiments, ILTO did not use any optimizations other than those described here,
so the data presented reflectly the effects of if-conversion and predicate analysis.

Recall that, unlike Augustt al. [3], we postpone if-conversion until the end of the compilation process in order
to keep our analyses and optimizations architecture-independent as far as possible. When evaluating our algorithm,
therefore, there are two independent questions of interest: First, how effective is our algorithm at improving the
performance of an unpredicated instruction stream, e.g., such as that produced by a conventional optimizing compiler
that does not have specialized support for predication? Second, how effective is the algorithm in actually identifying
available opportunities for if-conversion? The difference between the two is that it is possible, in principle, that we
could obtain performance improvements from our if-conversion algorithm (the first question) even if it had weaknesses
that caused it to miss a lot of optimization opportunities (the second question).

To address the first question, we evaluate our algorithm on programs compiled usjieg ¢henpiler, which does
not have very sophisticated facilities for dealing with predication; we gsedersion 2.96, at optimization level03.

2The requirement for statically linked executables is a result of the factlffiétrelies on the presence of relocation information to distinguish
addresses from data. The Unix linkdr refuses to retain relocation information for executables that are not statically linked.
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Program Code Density S1/So
Original (So) | Optimized 1)
bzip2 0.7023 0.7165 1.0203
gzip 0.7047 0.7191 1.0205
mcf 0.7010 0.7140 1.0186
parser 0.7042 0.7203 1.0229
twolf 0.7041 0.7200 1.0225
vortex 0.7220 0.7391 1.0236
vpr 0.7010 0.7150 1.0200
| GEOMETRICMEAN | 1.021 |

(a) Code Density

Program Execution Timesec) T /To
Original (I) | Optimized (1)
bzip2 843.65 820.16| 0.972
gzip 633.15 648.86| 1.025
mcf 1409.94 1419.79| 1.007
parser 1190.45 1190.30| 1.000
twolf 1267.49 1261.49| 0.995
vortex 835.32 824.86| 0.987
vpr 906.85 925.15| 1.020
| GEOMETRIC MEAN | 1.001 ]

(b) Execution time

Table 2: Performancecccompiled programs

Table 1 gives performance results for this case. Table 1(a) shows code densities before and after optimization. It can
be seen that our algorithm yields a slight improvement in code density of about 1.5%. Code density is improved by
the if-conversion process, which replaces useless instructions, and by predicate analysis, which makes scheduling (and
bundling) less constrained.

Table 1(b) shows the effect of our optimization on execution speed. The column labelled “Original” refers to the
executable produced lmecg while that labelled “Optimized” refers to the executable obtained using our if-conversion
algorithm on the input binaries. The biggest speedup is obtained fozth2program, which improves by over 13%.

On average, we see a speed improvement of 5.8%.

For the second question, we consider binaries obtained using letelsompiler version 5.0.1, at optimization
level - O3 together with profile feedback, i.e.: the programs were compiled with the optid@® - pr of gen,
then executed on the SPEC training inputs to generate profiles, and finally recompiled with the opii®ns
pr of _use, Here we take input binaries that have already been heavily optimized by an industrial-strength, predicate-
aware optimizing compiler using profile feedback; remove all predication using reverse if-conversion; then if-convert
back using our algorithm. If there are significant weaknesses or imprecision in our algorithm, the quality of the code
produced by our optimizer would be inferior to that of the input file, so we would see a performance degradation
relative to the input binary. If, on the other hand, our approach is effective in identifying if-conversion opportunities,
the performance of the code generated by ILTO should be comparable to that of the input binaries. Table 2 shows
the performance numbers in this case. As shown in Table 2(a), our algorithm is actually able to improve static code
densities by 2% on average compared to the origioalgenerated code. With respect to execution speed, as shown
in Table 2(b), it can be seen that our algorithm produces code whose performance is essentially the same as that of
the inputeccoptimized binaries. On three progranhzjp2 vortex andtwolf, our algorithm produces slightly faster
binaries; on three othergzip, vpr, andmcf we get a slight slowdown. On average, the code obtained from ILTO
is 0.1% slower than the original binaries. This indicates that in general, our predicate analysis and if-conversion
algorithms are able to identify and recover pretty much all of the opportunities for if-conversion that were present in
the input program but that were obfuscated during the initial reverse if-conversion phase.
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6 Reverse Engineering Issues

As we described ILTO’s organization in section 2, sandwiched between the front-end and the back-end of ILTO is
the machine-independent optimization stage (which is not discussed in this paper). We have shown in the previous
section that ILTO provides a solid foundation for implementing additional optimizations, since the algorithms used in
the framework of ILTO do not have a large negative impact on performance, even when run on highly optimized code.
However, because Itanium code is converted to an intermediate representation, the middle stage of ILTO may include
any analyses and transformations, not just ones aimed at improving performance, without the those analyses and
transformations needing to be predicate-sensitive. Therefore, we have also used ILTO as a platform for investigating
reverse-engineering issues on the Itanium.

In a sense, unscheduling and unpredication, described in Section 4, can be classified as reverse-engineering trans-
formations, since they result in code that is less tied to specific features of the Itanium (i.e. predication) and less
mangled by compiler optimizations (i.e. scheduling), and is therefore easier to understand and analyze. But predica-
tion and scheduling are by no means the only contributors to program obfuscation. In this section, we describe how,
using ILTO, we applied reverse-engineering techniques to speculation, another feature of the Itanium.

6.1 Speculation

It is well known that processor speeds are growing faster than memory speeds, which means that the performance gap
between the processors and memory is also growing steadily. One effect of this is that high-performance processors
may be hamstrung because the memory system cannot deliver data as fast as the CPU would like. beyond what is pos-
sible using conventional instruction scheduling techniques, advanced architectures such as the Intel IA-64 (Itanium)
have offered an innovative architectural featigpeculation The idea is to allow (long-latency) instructions to be ex-
ecuted much earlier than would be possible in traditional architectures—possibly before it is even known whether the
results of the computation will be used—in the hopes that initiating such expensive computations early will result in
their results being available if and when they are needed. Judicious use of speculation can lead to significant improve-
ments in performance [12]. However, speculation adds structure to generated code that does not reflect any logic in the
original source, and can significantly change the placement of instructions relative to unoptimized code. As a result,
speculation tends to make low-level code obscure and difficult to understand, analyze, and reverse engineer. This can
complicate the task of maintaining or understanding software for which the original source code is unavailable.

In this section we present a technique for undoing low-level optimizations based on speculation in order to expose
the original structure of speculative programs and thereby render them more amenable to the application of higher-
level reverse engineering tools. We explain speculation in some detail, discuss how speculated code can be more
difficult to understand than normal code, and describe a method for undoing optimizations based on speculation. The
model for speculation we use follows that of the Intel Itanium, but the techniques we present are general enough to be
applied to any model that supports the same speculative operations as the Itanium.

6.1.1 Background

In order to generate efficient code, optimizing compilers attempt to hide the latencies of expensive operations by
scheduling them as far apart as is necessary. However, instruction scheduling is constrained by dependencies between
instructions: in particular, an instructianthat is control dependentn a conditional branci—i.e., .J determines
whetherI is executed—cannot, in general, be scheduled earlier than the branch instrlciidiis is illustrated in
Figure 9(a), where basic block BO tests whether registerontains a non-NULL value; the load instruction in block
B1 is control dependent on the branch in BO. Moving the load above the branch in this case would be incorrect: the
resulting code would generate an errardfhas a NULL value. Such control dependencies limit our ability to hide the
latencies of expensive operations such as loads from memory.

To address this problem, next-generation architectures, notably the Intel Itanium, have introduced an architectural
feature calledcontrol speculationwhose essential feature is the speculative load instruction, denoted by the opcode
‘l oad. s.’ The behavior of a speculative load is similar to those of a normal load, but with one important difference:
if the instruction generates an exception, such as segmentation or page fault, the exception is not handled immediately;
instead, a special bit associated with the destination register of the load, cllégd(&Not a Thing”) bit, is turned on.
Later when the program reaches a point where the result of the load is needed, a special speculation check instruction
(with the opcodechk. s’) is issued on the destination register of the load. If the register haaitshit set, then
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BO

p:=cmp.eq r2, #0
rl:=load.s [r2]
BO if p goto B2
p:=cmp.eq r2, #0
if p goto B2 Bl
\ r3:=addrl, r3
Bl chk.s r3, B3
rl :=load [r2]
r3:=addri, r3 B3 recovery cod
rl :=load [r2]
B2 / r3:=addri, r3
‘ r4 :=addr3, r5 ‘
B2
r4 :=add r3, 15
(a) Original unspeculated code (b) Code with speculation

Figure 9: An example of control speculation

execution branches to recovery code provided by the compiler; otherwise, execution continues asNaiéts
can propagate from one register to another. That is, if a source register of an instructionNsE liii$ set, then the
NaT bit of its destination register will become set. This means that a string of dependent instructions can follow a
speculative load, and in general these instructions will all have to be reissued in recovery code.

Using control speculation to the example shown above, we can move the load instruction above the preceding
branch, in the process turning it into a speculative load. The resulting code, shown in

Figure 9(b)3

is considerably harder to understand than the original, for two reasons. First, there are more instructions, more
execution paths, and more convoluted program structure to consider in the speculated code. Second, the speculative
load has moved farther from its use, with intervening recovery code whose behavior has to be taken into account,
thereby obscuring the original program logic. The problem is exacerbated even further in larger programs where the
speculation is more aggressive, causing the speculative load to have moved across several conditional branches rather
than the single branch in the example above, and where the recovery code may, for example, itself contain other
speculative or check instructions, thereby resulting in significantly more convoluted control flow. The next section
describes a method of unspeculating code that essentially reverses the process of speculation, and hence makes the
code easier to understand.

6.2 Unspeculation

Unspeculation refers to the process of transforming a program containing speculative loads to a semantically equivalent
program where some or all of the speculative instructions have been replaced by “ordinary” load operations. Our
approach to unspeculation consists of two distinct phases. First, we move each speculative load to one or more points
in the code stream where it can potentially be replaced by an unspeculative load operation. Second, we verify that the
speculative instruction can be safely replaced by an unspeculative load. Each of these steps is semantics-preserving.
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12 := add #8, r4 12 := sub #8, 15 ‘ r2 = add #8, r4 ‘ r2 :=sub #8, 15 ‘

rl :=load.s [r2] rl :=load.s [r2]
r2 := add #4, r2 r2 ;= add #4, r2
r3:=add #1, r1 r3:=add #1, r1

rl :=load.s [r2]
r2 := add #4, r2
r3:=add #1, r1

chk.s r3, Recover chk.s r3, Recover

(a) Before load sinking (b) After load sinking

Figure 10: An example of load sinking

6.2.1 Load Sinking

The main difference between “ordinary” and speculative load operations is that exceptions raised by the latter are
deferred via theNaT bits. It follows that, when a speculative load is encountered in a program, the very fact that

a speculative load has been used—rather than an “ordinary” one—indicates that it cannot be guaranteed to execute
without any exceptions. In general, therefore, we cannot simply replace a speculative load by an unspeculative one
and expect to preserve program semantics. Instead, the speculative load must be moved to some appropriate later point
in the code stream as part of unspeculation.

In this connection, the check instruction(s) associated with a speculative load indicates where a legal result for that
load is expected, and suggests a natural placement for such loads, immediately before such a check instruction. In
effect, this pushes the speculative load down into the basic block containing the corresponding check instruction, past
any intervening conditional branches. We refer to this process of moving speculative loads “down” towards their check
instructions, illustrated in Figure 10, &sad sinking Note that when a speculative lodds sunk, other instructions
that depend froni must be sunk as well. To make this notion of “dependence” precise, define two instrucéinds
J to bedirectly dependentwritten I = J) if:

1. I may write to any register or memory location that may be read;yr
2. I may read from any register or memory location that may be written td; oy
3. I and.J may write to the same register or memory location.

Let =* denote the reflexive transitive closure of therelation. We say that and.J aredependenif I <=* .J.

I1 load.s 12 load.s I3 load.s

N

Jichks J2chks Jchks %chks & chks

Figure 11: General structure of speculative computations

SFor simplicity, we depart from the syntax of Itanium assembly instructions (which tend to be quite different from those of more familiar
architectures) and write our instructions as follows, whepedenotes the operationlst is the destination, andrq, srco, ...are the source
operands:

dst:= opsre; srea ...

A memory load instruction is expressed as a simple indirect access through a register, with any necessary address computations, displacements, etc.,
being carried out explicitly:

dst:= load[r].
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Load sinking is complicated by the fact that there may not be a one-to-one correspondence between speculative
load and check instructions: a speculative load may be checked by several different check instructions, and a check
instruction may check several different speculative loads. This is illustrated in Figure 11. Moreover, we have to
contend with the possibility that a speculation check may be associated with several different speculative loads, which
may have different sets of dependent instructions associated with them. The remainder of this section addresses these
issues in greater detalil.

Finding relationships between instructions Our first goal is to identify, for a given speculative load, the set of
associated check instructions that test whether that load succeeded or failed. As mentioned in Section 6.1.1, however,
a computation can propagai&T bits from one register to another. For this reason, a speculation check associated
with a speculative load into a registemay not check the registeritself, but possibly some other registerwhose

value has been computed from that-ofThis is illustrated in Figure 9(b), where the speculation check (in basic block

B1) checks register; even though the speculative load (in block BO) loads into registet hus, to determine whether

a given check is associated with a given speculative load, we need to know whether or not the check’s source register
may be a\aT as a result of the failure of that load. To this end, given an instrudtierir : = | oad.s ...’ that

defines a register and a check instructiofi = ‘chk. s/, ...’, say that/ checkdl if either of the following hold:

1. ' = r, and the definitiod of » reachesJ;* or

2. there is an instructiof’ that uses: and which propagatesaT bits from its source operands to its destination,
such thaf(i) the definition/ of » reached’, and(ii) J checksI'.

The set of speculation check&k (1) associated with a speculative loAdan then be defined as
Chk(I) 2 {J | Jis aspeculation check antichecksI }.

In Figure 9(b), for example, sinaedd instructions propagataT bits, the chain of reaching definitions along the
execution path

rl :=1load.s [r2] # Block BO
r3 :=add rl, r3 # Block B1
chk.s r3, B3 # Block B1

allows us to infer that the check instruction in block B1 is associated with the speculative load in block BO.
Given a speculative loaf] the setChk(I) can be determined via a depth-first traversal of the control flow graph
starting at/. At each point, we keep track of the setspleculative registerat that point, i.e., the registers whasaT
bits may be set. Initially, this contains only the destination register of the speculative load. It is updated during the
traversal using information about instructions that propay&e bits. The traversal stops whenever the speculative
register set becomes empty. The &t (1) then consists of the speculation checks that can be reached in this traversal.
Analogous to the sefhk (1) for a speculative loadl, we can consider the séti(.7) of speculative loads associated
with a check instruction’:

Ld(J) = {I'| Iis aspeculative load anfie Chk(I)}.

This set can be derived from ti@hk sets computed for the speculative loads in the program.

Speculative regions Intuitively, in order to carry out load sinking to a speculation chédclthe set of instructions

sunk to.J must be well defined, i.e., must be the same for all speculative badd(.J). To see the reason for this,

consider the speculative loadis and,, and the speculation chedk, in Figure 11. LetS; be the set of instructions

dependent on the speculative loAd and S, the set dependent oiy. When sinkingl; we want to move all the

instructions inS; down to the check instruction; when sinkitig, similarly, we want to move all of5. If S; # S, it

is not clear what instructions ought to be moved down to the check; if this happens, load sinking is said to fail.
To make these ideas precise, we define a speculative region as follows:

4A definition I of a variable or registet is said toreacha program poinp if there exists an execution path frofrto p along whichz is not
redefined, i.e., along which the value assigned by / may survive [1].
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Definition 6.1 The speculative regiomf a speculative load is a pair(L,C) whereL is a set of speculative loads
andC is a set of speculation checks, such thandC are the smallest sets satisfying) I € L; (ii) if x € L and
y € Chk(x) theny € C; and(iii) if x € C'andy € Ld(x) theny € L. 1

A speculative region is unspeculated as a single unit. This means that for each such region, either load sinking succeeds
and all speculative code in the region is moved at once, or that it fails and no instructions are moved. To make this
notion precise, consider an execution patliom a speculative load to a checkC' € Chk(L). Let Dep ;. () denote

the set of instructions along that are dependent ab. We can now make precise the conditions under which load
sinking can be carried out for a speculative region:

Definition 6.2 A speculative regior{L, C') of a speculative load is said to Ipath-independeni, for any pair of
speculative load$; , I, € L and check/ € C, and any two paths; between/; andJ andr, between/; andJ, itis
the case thabep (m1) = Depy, (). 1

As an example, Figure 11 shows a total of eight distinct paths between the speculative loads and associated checks.
Path independence requires that the instructions dependent on the speculative loads along each such pair of paths be
the same.

If a speculative regioQL, C) is path-independent, load sinking becomes straightforward:

1. Letw be an arbitrary path from some load into some check i’ andS = Dep , (7) the instructions onr
dependent ofiL..

2. For each speculative lodde I delete the instructionS between/ and any check i@

3. For each check € C, copy the instructions' to the top of.J’s basic block. Additionally, if there are any
non-speculative instructiors' in .S that compute a value that is live along a path that leaves the region without
going through a speculation check, capyonto this path.

The code structure resulting from load sinking is illustrated in Figure 12.

Behk

‘ r:=load.s addr .
) ... speculative instructions..| |
pass path ' chk.s r', Brge \ fail path

Thass / N Tail

- <
, Brathru m N .

/ \
I recovery code \
l ...fall-through code... +

\ ...fall-through code... 1
1 /!

\ /
N -
TTte-—- Bmerge P
a ”

#

Figure 12: Code structure after load sinking

6.2.2 Recovery Code Verification

In the code resulting from sinking, shown in Figure 12, there are two possible outcomes for the speculation check in
block B, If the speculative load completes successfully without settind\&Tybits, execution takes thgass path

Tpass = Benk = Biaitthru — Bmerge. OF €lse the speculative load may fail and Nafl bits, in which case control

goes through the recovery code along thiépath 7 s,y = Bewt — Bree = Bmerge. The effect of unspeculation

is twofold. First, the speculation check instruction and the fail patf are eliminated. Second, the speculative
instructions inB,,.. are converted to unspeculative ones, which means that exceptions deferred by the speculative
code are no longer deferred after unspeculation. In order for this to be correct, the code must satisfy two conditions:
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Bo

(1) ri1:=load.s[r2]
(2) r2:=add#4,r2
(3) r3:=add#1,r1
(4) chk.sr3, Brec

B rec

(5) r2:=sub#4,r2
(6) r1:=load[r2]

(7) r2:=add#4,r2
(8) r3:=add#1,rl

B, /

Figure 13: An Example of Recovery Code Verification

1. [Path EquivalenckThe execution paths ,..; andms,; must be equivalent, in the sense that for every register

and memory location, the value of: at the entry ta3 ,,.,,. must be the same when execution goes along,
as when it goes alongy,;; .

2. [Load Equivalencé For every memory locatiop from which there is a speculative loadih,, there must be
an unspeculative load fromin B, ...

The need for the first criterion is obvious:if,,ss andr,; can produce different values for some register or memory
location, then eliminating s, in the course of unspeculation can potentially change the behavior of the program. The
second criterion is motivated by the need to ensure that the exception behavior of the code after unspeculation is the

same as that of the original code before unspeculation. The following example illustrates a situation where the load
equivalence condition is not satisfied:

rl := NULL
r2 := load.s [rl]
chk.s r2, Rec

R =0 /[ fall-through */
br End

Rec: r2 :=0 /* recovery */
br End

Itis easy to see that this code fragment satisfies the path equivalence criterion. In this case, the speculative load results
in a deferred exception that causes the check to branch to the recovery code, whererredgstasigned the value
0. However, if we replace the speculative load by an unspeculative load, the result will be an exception that is not
deferred, thereby changing the behavior of the program.

The remainder of this section discusses how we verify these criteria. Our current implementation is able to reason
about path equivalence only when each of the pass pgth and the fail pathrs,; is a single straight-line path
with no branches. It can sometimes happen that the pass and/or fail path may contain other speculation checks that
introduce branching structure into the code, but this gets eliminated during the course of unspeculation. To catch such
situations, we iterate the unspeculation process until no more speculative code can be eliminated. As the experimental
results reported in Section 6.3 indicate, this suffices for most instances of speculation encountered in practice.

Verifying Path Equivalence The simplest case of path equivalence is when the recovery code is identical to the
speculated code, except for the speculative load that is replaced with an unspeculative load. In general, however, the
contents of registers may change between a speculative load through a regiietex check on that load, as illustrated
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in basic block B3 in Figure 10(b). To recover if the load fails, the correct address has to recomputed before reissuing
the load, and so the recovery code needs extra instructions to fix the program state appropriately. This is illustrated in
Figure 13 (which shows the speculation and recovery code corresponding to Figure 10(b)); the parenthetical numbers
to the left of instructions are provided for convenience in referring to them. The first instruction in the recovery
code sequence, instruction 5, undoes the changes to regisédter the speculative load, restoring its value to that

at the speculative load. After this the load is reissued, this time unspeculatively. The remainder of the recovery code
recomputes values that were computed using the result of the speculative load. As this example illustrates, both the
speculative code and the recovery code may contain address and register computations, which have to be taken into
account when reasoning about path equivalence.

To prove path equivalence for the code at a speculation check, we specif$ alsstribing values of the initial
program state at the speculative load for which path equivalence does not hold—i.e., for some register or memory
locationz, the value ofr along the pass path differs from its value along the fail path. We then attempt to show that
® = () using constraint solving techniques. If we are able to do so, we conclude that there are no program states that
can cause path equivalence to be violated, and hence that path equivalence holds.

Given a formulad and a set of variablels, let

(Fp)A

denote the formula where the existential quantification is over all of the variablésktept for those ir. Using
this notation, we can write the specification of the &ets:

@ = {& | Ga)¥,(@) A T (2) A A@)]}

wherez is a tuple representing (the relevant portion of) the program siajéz) and¥ ;(z) are formulae expressing

the values of locations at the end of the pass path and the fail path, respectively, in terms of the initiat)vahees

A(z) states that there is some location whose value at the end of the pass path is different from that at the end of the
fail path, i.e., path equivalence does not hold.

In constructing these formulae, relationships between the values of registers can be expressed straightforwardly,
but indirect memory accesses make it harder to reason about the contents of memory locations. Our current imple-
mentation is conservative in its treatment of memory: our treatment of memory aliasing is discussed in more detail in
Section 6.2.3. This is not a significant problem in practice, however, since changes to mensioyeiiastructions
tend to be rare in recovery code. The discussion below focuses on reasoning about register values.

Assume that each instruction in the program is given a unique identifying number: the instruction with aRumber
is written /. We describe the construction of the formulg, corresponding to the pass path, as a conjunction of the
constraints specified below; the constructioniof, corresponding to the fail path, is exactly analogous. The value of
aregister at the beginning and the end of the pass path are denotefl &ydr? respectively. At intermediate points
along the pass path, the value of registémmediately after instructiori, is denoted by-}. For each instructiod,
along the pass patli;, contains a conjuna?’, that captures the effect éf.. These are defined as follows:

1. I =‘'r:=1oad[s]. Inthis caseC}, = r} = mem(sf) where/; is the most recent instruction that defines
registers (j = 0if s has not yet been defined along the pass path)paerds an uninterpreted function symbol.

2. I, ='r:=s @t for some operations, and registers andt. There are two cases, depending on whether the
analyzer knows the semantics of tiseoperation.

If the semantics ofe is known to the analyzer, thefi, = r; = fg(s],t}) wherel; is the most recent
instruction that defines register(: = 0 if s has not yet been defined along the pass péthjs the most recent
instruction that defines registefj = 0 if ¢ has not yet been defined along the pass path)fanit a function
that expresses the semantics of the operationrOur analyzer knows about the semantics of some common
arithmetic instructions: e.g., ib = add thenf, is the binary function ‘+,’ signifying addition; if- = sub then

fo is ‘=, signifying subtraction; etc.

If the semantics of the operatian is not known to the analyzer, then we cannot specify thebsetnd path
independence cannot be verified.

Finally, for each register, ¥, contains a conjunct expressing the final value-ofet the last instruction along the
pass path that definese I (k = 0 if » is not defined along the pass path), then this conjunct is given by
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P
P =1,

As mentioned above, the constructiondof, corresponding to the fail path, is exactly analogous.
The formulaA expresses that some register has a final value that is different along the pass and fail paths:

A= \/ rP #rl.

r aregister

In the actual implementation, we refine this process to reduce the size of constraints and the cost of checking satisfi-
ability of constraints. First, it suffices to restrict our attention to the (usually small) set of registers that are actually
modified along at least one of the pass and fail paths. Second, we reduce the number of instructions that we have to
consider by walking backwards on each path from the merge point, marking instructions that are identical on both
paths, until we reach two non-identical instructions or the top of the check block. If we happen to hit the top of the
check block, then the relation becomes vacuously empty, so there is nothing to check. Our implementation uses the
Omega calculator [17] to determine the satisfiability of the constraints defining tke set
The algorithm can be illustrated using the recovery code shown in Figure 13. We have

= {2 | () [¥p(2) A Wp(2) A A@)]}.
where the tuples are triples(r1y, 72q,730). We have:

U,= rl1] = mem(r2o)
ANr2h =129 +4
Ardh =rlf +1
Arlk =r1¥
A 120 =28
Ar3P =r3h.

U, = r1f = mem(r2y)
A2l =120 +4
A2l =r2] —4
A r3§ = rl{ -1
A1l = mem(r2])
A2l =72 +4
A r3£ = rlg +1

A rlg = rlg
Ar2f = 7"2;
Ar3f = r3£.

A= 712 £ 71l v 2P # 20 v r3? £ r3f
The reader may verify that these constraints simplify in a straightforward way to give
r1? = mem(r2o) Ar2P =120 + 4 Ar30 = mem(r2g) + 1

1 = mem(r20) A2 =120 + 4 A3 = mem(r2) + 1

whence the\ constraints are falsified, which implies thaidefines the empty set. This, in turn, implies path equiva-
lence for the code in Figure 13.

Verifying Load Equivalence Load equivalence can be determined using an approach very similar to that described
above for path equivalence. The idea is to pair up speculative loads with unspeculative loads in the recovery code, and
use a constraint-based test analogous to that above to determine whether the address registers being used in the two
loads could have different values.
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6.2.3 Memory Disambiguation

Memory disambiguation involves knowing enough about the contents of registers at a given program point to decide
if two registers can contain overlapping addresses at any time during execution. This is a difficult problem in general
(e.g., see[11, 14]), exacerbated by the lack of semantic structure at the machine code level. Our currentimplementation
generalizes a simple analysis technique knowimasuction inspectiorf5, 20]. The general idea here is that two
memory references can be inferred to be non-conflicting if eithethey point to disjoint regions of memory, e.g.,

the stack and the global data areaja) they use distinct offsets from the same base registetith no intervening
definitions ofr.

Our implementation considers four mutually disjoint memory regions: the procedure stack, the heap, the static
global data section, and the global offset table. The last of these deserves some explanation. In Itanium programs
64-bit constants (e.g., addresses) usually do not appear directly as immediate operands, but are loaded from a special
region of memory called the global offset tal5ido fetch an address from this table, an offset is added to a particular
register ( 1) designated as the global data pointer, which contains the address of the first entry in the table. There are
two components to our analysis:

1. Region Analysis. We use a simple iterative dataflow analysis to associate, with memory reference in the pro-
gram, a subset of these regions that the reference may access.

2. Offset Computation. For memory accesses that cannot be guaranteed to be in disjoint memory regions based
on this analysis, we use a simple backward offset computation to determine whether they involve accesses at
difference offsets from the same base address.

These are discussed in more detail in the following sections.

Region Analysis Region analysis is a dataflow analysis whose goal is to identify the memory region(s) that a register
may point at. We start with the set of regions

D = {heap, stack, global, GOT, num}

whereheap refers to heap locationstack to stack locationsglobal to globals,GOT to the global offset table, and
num to numerical constants. The analysis domain then is the powerset of tHi¥ Bat,ordered by subset inclusion;
(P(D), C) forms a complete lattice, with least elem@rdenoting an unreachable reference, and greatest elénent
denoting an unknown value. Instructions within a basic block are handled as follows:

1. Register 1, and addresses computed by adding numerical constanis fmint into the global offset table.
2. If aregister points into the global offset table, then an indirect load thraugbints to a global.
3. The stack pointesp, and addresses computed by adding numerical constasis fmint into the stack.
4. load{ global, heap, stack) = unknown
5. malloc(), alloc(), calloc(}= heap
6. location+ number=- location
Set union is used as the meet operator to propagate information across basic blocks. Values are propagated iteratively

until a fixpoint is attained, i.e., until there is no change to the set computed for any register.

Offset Computation Given a memory access from registgerand another from register, we can reason that these
accesses do not overlap if the absolute value of the difference betwesrdr., |11 — 72|, is at least as large as the

size of the memory being accessed (for instance, if both access four-byte words, then to guarantee that they do not
overlap we must show that; — ro| > 4). A simple way to determine the difference between two registers is to find
another register such that the values of, andr, can be both be expressed as constant offsets off the valyé.ef

r1 =1 + ¢ andre = r + ¢o, wherec; andc, are known. Then the difference is simply — ¢»|. In order to findr

we use the backwards computation shown in Figure 14.

50ther 64-bit architectures where the instruction width is smaller than 64 bits, e.g., the Compag Alpha, use a similar approach for handling
64-bit constants.
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Let I; and I, be two instructions in the same basic block B (such that I, is one or more instruc-
tions after 1), which read from the memory locations stored in registers r; and r,, respectively.
Also, let w; and w, be the number of bytes of memory accessed by I; and I, respectively. The
following algorithm returns TRUE if the two accesses might alias, and FALSE if they cannot.

letr] =r,7h =ro,c1 =co =0
/* Stage 1: analyze code backwards from I, to I; */
for each instructiod from I, to I; do
if 1is of the formr} =1 + ¢
letr] :=randc; :=¢; + ¢
else ifI writes tor|
return TRUE;/* r; cannot be expressed as an offset */
end if
end for

/* Stage 2: analyze code backwards from [; */
for each instructiord from I, to the top ofB do
if I is ofthe formr; =r +¢
letr] :=randc; := ¢ + ¢
else ifI is of the formr, = r + ¢
letr} :=randcy := ¢y + ¢
else ifI writes tor] orr}
return TRUE;/* The registers cannot be expressed as offsets */
end if

[* Check to see if the registers can now be expressed as offsets from the same register */
if i =7}
if cp < co N\ ‘C] — C2| > w; return FALSE;
elseifcl > 2 A|er — ¢2| > wo return FALSE;
else return TRUE; /* The accesses overlap */
end if
end if
end for

Figure 14: The Offset Computation Algorithm

6.3 Experimental Results

To evaluate our ideas, we first created Itanium binaries that contained a large amount of speculated code. We compiled
a set of benchmarks from the SPECint-2000 sWitdap2 gzip, mcf, parser, twolf, vortex andvpr) with Intel's ecc

compiler version 5.0.1, at optimization leveO3 together with profile feedback, i.e.: the programs were compiled

with the options - O3 - pr of _gen, then executed on the SPEC training inputs to generate profiles, and finally
recompiled with the options ‘3 - pr of _use.’ This process produces binaries with a significant amount of control
speculation.

The effectiveness of our unspeculation algorithm can be measured both quantitatively and qualitatively. First, there
are situations—such as when the path independence condition is not met—where our algorithm will fail to unspeculate
aregion of code. Therefore we want to know how often our unspeculation algorithm succeeds in converting speculated
code to non-speculated code. Second, since the goal of unspeculation is to make programs easier to understand, we
need some way to gauge how successful our algorithm is in this respect.

To address the first question, we compare the number of speculative loads and speculation checks in the program
before unspeculation to the number after unspeculation. In general, the more often our algorithm can untangle a
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Program SPECULATIVE LOADS SPECULATION CHECKS
Orig. | Unspec.| Improvement (%)| Orig. | Unspec.| Improvement (%)
(Lo) (L1) (Lo — L1)/Lo) | (Co) (C1) | ((Co—C1)/Co)
bzip2 130 31 0.762 124 42 0.661
gzip 224 62 0.723 181 54 0.702
mcf 94 31 0.670 97 34 0.649
parser 483 85 0.824 451 75 0.834
twolf 1542 385 0.750 1399 354 0.747
vortex 5339 451 0.916 5217 352 0.933
vpr 608 152 0.750 614 145 0.764
| GEOM. MEAN: | 0.767 | 0.750 |

Table 3: Amount of speculated code before and after unspeculation

BAsIC BLOCKS EDGES INSTRUCTIONS
PROGRAM Orig. | Unspec. Change (%)| Orig. | Unspec. Change (%) Orig. | Unspec.| Change (%)
(Bo) (B1) | (Bo—B1)/Bo | (Eo) (Br) | (Bo—E1)/Eo | (Io) (I1) | Ho—1Ii)/Io

bzip2 2509 2299 8.7 4188 3867 7.7 9259 8881 4.1
gzip 3189 2845 10.8 5297 4767 10.0 12957 12345 4.7
mcf 1118 956 145 1774 1533 13.6 4000 3715 7.1
parser 8866 7838 11.6 15891 14243 104 29779 27939 6.8
twolf 20543 17916 12.8 33083 29022 12.3 79469 74571 6.2
vortex 43641 30932 29.1 79658 59251 25.6 165189| 141245 145
vpr 10570 9425 10.3 18805 16997 9.6 44319 42143 4.9

| GEOM. MEAN: | 12.9 | 11.9 | 6.3 |

Key: Orig: Original speculated code;  Unspec: Unspeculated code

Table 4: Effects of unspeculation on program size

speculative region, the higher this ratio will be. Table 3 shows the results of counting the number of (a) speculative
loads and (b) speculation checks before and after speculation. It can be seen that our algorithm reduces the number of
speculative loads by about 79.5% and the number of speculation checks by about 78.2% on average.

For the second question, we use the idea that a simpler control-flow graph is usually easier to analyze and under-
stand than a more complicated one, and therefore one measure of how much our algorithm contributes to compre-
hension is the relative complexity of the CFG before and after unspeculation. To estimate complexity, we count the
number of instructions, basic blocks, and edges between blocks in the program. The results of this experiment are
shown in Table 4. This table shows that, on average, the number of instructions decreased by about 6.8%, the number
of basic blocks decreased by about 14%, and the number of edges decreased by about 12.7% after unspeculation. For
one benchmark, vortex, we saw a significantly larger decrease in the number of instructions, blocks, and edges —
about 14.5%, 29.1%, and 25.6% respectively.

We are also interested in the effect that unspeculation has on performance: since unspeculation attempts to undo a
compiler optimization, we expect that unspeculation results in less efficient code. To test this, we ran the same timings
tests as described in Section 5.4 on the original binaries and on the binaries after unspeculation. The results of these
tests are shown in Table 5. This table shows that the unspeculated binaries suffer a performance hit of about 6% on
average.

7 Related Work

If-conversion has been investigated by Mahékel., who discuss the formation and use of hyperblocks—single entry
multiple-exit collections of basic blocks [13]. The focus of their work, by contrast with that described here, is in

32



Program Execution Timgsec) T /To
Original (Ty) | UnspeculatedT(:)
bzip2 843.65 843.17| 0.999
gzip 633.15 675.51| 1.067
mcf 1409.94 1434.44| 1.017
parser 1190.45 1227.04| 1.031
twolf 1267.49 1336.75| 1.055
vortex 835.32 1009.82| 1.209
vpr 906.85 969.03| 1.069
| GEOMETRIC MEAN | 1.062 |

Table 5: Performance

identifying which set of blocks should be included in a hyperblock. Once a hyperblock has been formed, if-conversion
is used to transform it into a single basic block containing predicated instructions, which is very different from what
we do. Auguset al. discuss the tradeoffs associated with the timing of if-conversion in the overall compilation process
[3]. They advocate an approach dual to ours, namely, carrying out aggressive if-conversion early in the compilation
process, using compiler analyses and optimizations that understand predicated code, and then selectively reverse-if-
convert during scheduling where appropriate. We have shown that it is possible to get excellent performance without
requiring analysis and optimization phases to understand predicated code.

Mahlke et al. use the notion opredicate hierarchy graphso keep track of relationships between predicates
[13]. Their analysis is based on keeping track of which predicates guard the definition of other predicates, and so
does not work well when predicate relationships are not hierarchical. Eichenberger and Davis describe an analysis
that collects logical expressions expressing relationships between predicates [6]. A more precise approach, based on
keeping track of logical partitions between predicate expressions, is described by Gillies et al. [8] and Johnson and
Schlansker [10]. None of these analyses extend across join blocks, i.e., where multiple control flow paths merge.
Sias, Hwu and August discuss the efficient implementation of predicate analyses using binary decision diagrams, and
extend prior work to handle general control flow [19]. The analysis described here, by contrast, takes a very different
approach. Itis formulated within the framework of a traditional meet-over-all-paths dataflow analysis, which makes it
relatively straightforward to understand, implement, and extend in various ways, e.g., to inter-procedural analysis. We
have already extended our analysis to a context-insensitive inter-procedural predicate disjointness analysis, and we are
currently investigating the question of context-sensitive inter-procedural disjointness analysis.

8 Conclusions and Future Work

In this paper we have presented new approaches for optimizing, analyzing, and reverse-engineering Itanium code, and
have described a system, ILTO, that implements our ideas. We have shown that ILTO— which removes traces of
machine-dependent optimizations such as predication from the input binary in order to render the code more amenable
to traditional analysis, and which delays if-conversion until the tail-end of the rewriting process—can nonetheless gen-
erate efficient code (about 6% faster than code generatgddiyver the SPECint-2000 benchmark suite). Therefore

the organization of and algorithms used by ILTO provide a good starting point for implementing further optimizations.

In addition, we used ILTO as a platform for investigating unspeculation, and developed algorithms that effectively
perform this reverse-engineering transformation.

Much work remains to be done on the core optimization stage of ILTO. Though ILTO provides an intermediate
form of Itanium code free of predication, some existing optimization algorithms must need be tweaked to deal with the
particular instruction and register set of the Itanium. Others are more difficult to port: for instance, function inlining is
complicated by the existence of register windows on the Itanium, and implementing this optimization would involve
complicated analysis. Finally, there are Itanium-specific optimizations that would be interesting to evaluate, such as
optimizations involving the global offset table, which heavily used by the Itanium but absent in other architectures.
On the other hand, it would also be interesting to use ILTO as a framework for investigating other Itanium-specific
“unoptimizations,” such as converting software-pipelined loops to conventional loops.
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