
 1

EEFFFFIICCIIEENNTT TTAAIINNTT AANNAALLYYSSIISS

UUSSIINNGG MMUULLTTIICCOORREE MMAACCHHIINNEESS

by

Mr. Milind Mohan Chabbi

A Thesis Submitted to the Faculty of the

DEPARTMENT OF COMPUTER SCIENCE

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

In the Graduate College

THE UNIVERSITY OF ARIZONA

2007

 2

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements of an advanced degree
at The University of Arizona and is deposited in the University Library to be made available
to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission, provided that
accurate acknowledgement of source is made. Requests for permission for extended
quotation from or reproduction of this manuscript in whole or on part may be granted by
the head of the major department or the Dean of the Graduate College when in his or her
judgment the proposed use of the material is in the interests of scholarship. In all other
instance, however, permission must be obtained from the author.

 SIGNED: _______________________________

APPROVED BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

_______________________ ________________________
 Dr. Gregory R. Andrews Date

Professor

 3

ACKNOWLEDGEMENTS

I would like to convey my gratitude to my thesis advisors Dr. Gregory Andrews and Dr.
Saumya Debray for their continuous support and invaluable advice during the past one
and half years. They have always appreciated my work and set goals for me that are of
very high standards but at the same time realistic and reachable with constant effort. I
would also like to thank them for excellent compiler and concurrent programming theory
they have taught me in their classes.

I appreciate willingness of Dr. John Hartman and Dr. Chris Gniady to serve on my thesis
committee, and to make time in their busy schedules. I am also very thankful to Dr. John
Hartman for the excellent operating system background that he setup in his class.

I thank all members of SOLAR research group for their encouragement and support. My
special thanks to Somasundaram Perianayagam and Haifeng He for helping me with
implementation details.

Last but not the least I would like to thank my father Mr. Mohan Chabbi, mother Mrs.
Shaila Chabbi and brother Mr. Mayur Chabbi for their constant support in every endeavors
of my life. They have always stood besides me in my good and bad times, provided moral
and financial support and helped me grow in every respect.

 4

TABLE OF CONTENTS

LIST OF FIGURES ... 6

LIST OF TABLES... 7

ABSTRACT... 8

1 INTRODUCTION ... 9

1.1 Background .. 9

1.1.1 What is a vulnerable program? .. 9

1.1.2 Classification of vulnerable programs ... 10

1.2 Related work .. 12

1.2.1 Vulnerability detection methodologies .. 12

1.3 Our contribution... 15

2 SYSTEM OVERVIEW ... 16

2.1 Characteristics of our approach ... 16

2.1.1 Practical usability due to better performance... 16

2.1.2 Reliable security... 16

2.1.3 Source code independence... 16

2.1.4 Language independence... 16

2.1.5 Hardware independence... 16

2.1.6 Operating system independence .. 17

2.2 Schematic diagram... 17

3 DESIGN AND IMPLEMENTATION .. 19

3.1 Disassembling the program.. 19

3.2 Creating shadow memory .. 19

3.3 Building the shadow thread ... 20

3.3.1 Cloning the program to produce the shadow thread .. 20

3.3.2 Control flow imitation in shadow using synchronization.. 22

3.3.3 Spawning the Shadow thread... 25

3.4 Marking the taint sources... 27

3.5 Tracking taint propagation... 29

3.6 Exploit detection .. 31

3.6.1 Guarding function returns .. 31

3.6.2 Guarding indirect jumps .. 32

3.6.3 Guarding format string handlers .. 32

3.6.4 Guarding sensitive system calls ... 33

3.7 Reducing synchronization via static analysis and optimization 34

3.7.1 Not monitoring all function return addresses... 34

3.7.2 Not tracing some functions .. 34

3.7.3 Optimizing high frequency loops... 35

3.8 Packaging the self-protecting binary ... 37

3.9 Prototype limitations.. 37

4 SECURITY EVALUATION... 39

4.1 Analysis of false negatives... 39

4.2 Analysis of false positives ... 40

 5

4.3 Security evaluation... 40

4.3.1 Security evaluation on synthetic micro-benchmarks ... 40

4.3.2 Security evaluation on commodity software.. 41

5 PERFORMACE EVALUATION.. 45

5.1 Experimental setup... 45

5.2 Performance results.. 45

5.2.1 Atphttpd server... 45

5.2.2 Passlogd daemon.. 47

5.2.3 Gzip application ... 47

5.2.4 Libtiff library ... 49

5.2.5 Cfinger Daemon... 50

6 CONCLUSIONS AND FUTURE WORK .. 52

6.1 Performance enhancement ... 52

6.2 Security enhancement .. 53

APPENDIX A: Sample code ... 54

REFERENCES .. 59

 6

LIST OF FIGURES

1 Figure 1: Increase of vulnerabilities in the last decade………………………………….. 9

2 Figure 2: Stack-based vulnerability……………………………………………………… 10

3 Figure 3: Heap-based vulnerability……………………………………………………… 11

4 Figure 4: Schematic diagram ……………………………………………………………. 18

5 Figure 5(a): Original program…………………………………………………………… 20

6 Figure 5(b): Program with shadow memory…………………………………………….. 20

7 Figure 6: Cloned functions………………………………………………………………. 21

8 Figure 7: Cloned functions with one-to-one mapping…………………………………... 21

9 Figure 8: Thread synchronization for simple blocks ……………………………………. 22

10 Figure 9: Thread synchronization for conditional branches …………………………….. 24

11 Figure 10: Thread synchronization for indirect jumps…………………………………... 25

12 Figure 11: Shadow-thread spawning…………………………………………………….. 26

13 Figure 12: Stack-balanced Poriginal and Pshadow……………………………………… 27

14 Figure 13: Tainted command-line arguments and environment variables………………. 28

15 Figure 14: Shared buffer between original and shadow threads………………………… 30

16 Figure 15: Catching return address overwrite…………………………………………… 31

17 Figure 16: Catching function pointer overwrite…………………………………………. 32

18 Figure 17: Catching format string attack………………………………………………... 33

19 Figure 18: Array initialization loop……………………………………………………… 35

20 Figure 19: Optimized original and shadow array initializes…………………………….. 36

21 Figure 20: File reader loop………………………………………………………………. 36

22 Figure 21: Optimized original and shadow file readers…………………………………. 37

23 Figure 22: Performance of original Vs. instrumented ATPHttpd server………………... 46

24 Figure 23: Effect of individual optimization on ATPHttpd for 30K page………………. 47

25 Figure 24: Performance of original Vs. instrumented Gzip……………………………... 48

26 Figure 25: Performance of original Vs. instrumented Libtiff…………………………… 50

27 Figure 26(a): Effect of our taint analyzer on the performance of short-lived applications 51

28
Figure 26(b): Effect of our taint analyzer on the performance of long-running

applications……………………………………………………………………………….
51

 7

LIST OF TABLES

1 Table 1: Mapping of original instructions to shadow instructions………………………. 29

2 Table 2: Various kinds of vulnerabilities detected by our taint analyzer………………... 44

3 Table 3: Performance comparison of original and instrumented ATPHttpd server……... 45

4 Table 4: Effect of individual optimization on ATPHttpd for 30K page………………… 46

5 Table 5: Performance comparison of original and instrumented Gzip………………….. 48

6 Table 6: Performance comparison of original and instrumented Libtiff………………… 49

7 Table 7: Effect of our taint analyzer on the performance of different applications……... 50

 8

ABSTRACT

Time and again data privacy and computer security are severely threatened by software
vulnerabilities. With more and more computing devices getting network connectivity, the
exploitation of vulnerable programs by remote users has become a ubiquitous issue. While
tremendous effort is carried out to counter software exploitation, no single approach
developed so far has been able to satisfactorily provide solid security along with efficient
performance. Taint analysis, which is one of the approaches to track information flow to
counter program exploits, has shown a promise. In this thesis work, we propose a novel
implementation of fine-grained dynamic vulnerability detection by parallelizing the actual
computation and taint computation and tapping the power of idle cores on multicore
machines to mitigate performance overheads. We propose a paradigm of secure and
efficient computing using many cores and use binary rewriting to empower a program with
parallelized taint monitoring capability. The challenge lies in minimizing the thread
synchronization. We demonstrate the effectiveness of our approach in protecting against
various attacks while offering an order of magnitude performance improvement compared
to state of the art approaches.

 9

CHAPTER 1

1 INTRODUCTION

1.1 Background

For a layman software user or a system administrator, the security advisory news from
their trusted software vendor is often painful. In recent times it has become the norm to get
such security advisories on a monthly basis. Most commonly used software, including a
seemly innocuous text reader like Acrobat, is known to have been compromised [1].
According to statistics from Carnegie Mellon University's CERT (Computer Emergency
Response Team), the number of reported vulnerabilities in software has increased nearly
500% in two years (1999- 2001) [2] as shown in Figure 1. Hence it is imperative to find a
trustable and efficient solution to this problem.

Vulnerabilities

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

year

V
u

ln
e

ra
b

il
it

ie
s

 r
e

p
o

rt
e

d

Vulnerabilities

1.1.1 What is a vulnerable program?

A vulnerable program is the one that has programming defect in it that can be exploited by
an external entity or a malicious user. A vulnerable program is different from a virus or a
malicious program in that the program by itself is not compromised. Program
vulnerabilities arise at various stages of software development from requirement analysis,

Figure 1: Increase of vulnerabilities in the last decade

 10

design, and coding to maintenance and upgrades. Because of the complexity of software,
complete elimination of program vulnerabilities is nearly impossible.

1.1.2 Classification of vulnerable programs

While violation of security policies that would constitute an intrusion can happen in various
ways [15], over 50% of the vulnerabilities arise from buffer overflows and another 40%
arise from input validation error [15]. A common characteristic of all successful attacks is
the ability to change the flow of control, which lets the attacker execute arbitrary code.
Buffer overflow vulnerability arises because of the failure to properly check the length of
data against the size of a data storage object. Buffer overflow vulnerability can be
classified as stack-based or heap-based depending on the location of the vulnerability.
Input validation error happens because of the failure to verify the contents of user-given
data. Due to input validation error a malicious user-input can be passed to sensitive
functions or system calls thereby opening a back door for an attacker. Below we discuss
each one of them in detail.

1.1.2.1 Stack-based vulnerability

In a stack-based attack, user-given data is read into a local buffer allocated on the stack. If
too much data is written into the buffer, it can overwrite the return address. Well-crafted
data can overwrite the function return address with the address of injected code and divert
execution to malicious code on function return.

A common buffer overflow attack is shown in Figure 2. A local buffer allocated on the stack
is overwritten with ‘A’s and eventually the return address is overwritten, in this case with
the return address 0xbdfec0e0. Similar techniques can be used to divert program
execution by overwriting the old base pointer, a function pointer present as a local
variable, a function pointer present as a parameter, a long jump buffer present as a local
variable, and a long jump buffer present as a function parameter.

Arguments

Return address

Old base

pointer

Local variables

Arguments

0xbdfec0e0

AAAAAAAA

AAAAAA

AAAAAAAA

AAAAAAA

Figure 2: Stack-based vulnerability

 11

1.1.2.2 Heap-based vulnerability

In a heap-based attack, user given data is read into a local buffer allocated on the
heap/BSS (Block Started Symbol)/data section. If too much data is written into the buffer
without proper bounds check, it can possibly overwrite some function pointer present in
the heap/BSS/data section. A well-crafted attack can overwrite a function pointer with the
address of injected code and divert execution to malicious code.

A common heap buffer overflow attack is shown in Figure 3. A buffer allocated on the
heap is overwritten with ‘A’s and eventually a function pointer is overwritten, in this case
with the address 0xbfef00e0. Similar techniques can be used to divert program execution
by overwriting a long jump buffer present on the heap.

1.1.2.3 Input validation error

A classic example of an input validation error is a Format String attack. The use of user
input as a format string parameter to the printf class of functions can incur security
problems [9]. Sensitive data from memory regions can be read by %s and %x format
specifiers and %n can be used to write data to memory locations. Similarly, passing user
input data to system calls like popen() and execve() can execute any arbitrary
command.

Buffer on heap

Function

pointer on heap

AAAAAAAA

AAAAAAAA

0xbfef00e0

Figure 3: Heap-based vulnerability

 12

Wrong usage:

int func (char *user)
{

printf (user);
}

 Correct usage:

int func (char *user)
{

printf ("%s", user);
}

1.2 Related work

Vulnerability analysis is the process of determining if a system contains defects that could
be exploited by an attacker to compromise the security of the system or that of the
platform the system runs on. Numerous approaches have been tried and tested for taint
analysis which we briefly discuss below.

1.2.1 Vulnerability detection methodologies

Based on the accuracy with which vulnerability analysis is carried out, we can classify
them as coarse-gained analyses and fine-grained analyses. Alerting a non-exploit as an
exploit is regarded as a false positive. Failure to alert an exploit is regarded as a false
negative.

1.2.1.1 Coarse-grained taint analysis

One of the common approaches taken to prevent intrusion is to block network ports or
filter network packets [6]. These approaches do not cause any overhead on the program,
but they suffer from high numbers of false positives as well as false negatives.

Another approach in the coarse-grained class is to add function prologue and epilogue
(see Chiueh et al. [8]). In this approach, the boundary of every function in the input
program is identified, and a sequence of protection instructions is inserted. Similarly,
StackGuard [25] places a “canary” word next to (prior to) the return address on the stack.
Once the function is done, the new code from compiler first checks to make sure that the
canary word is unmodified and intact before jumping to the return address. However,
these approaches address only a small class of vulnerabilities and also they require
program recompilation. IBM’s GCC (GNU Compiler Collection) extension [10] reorders
local variables to place buffers after pointers to protect function pointers from stack-
smashing attacks. This approach however cannot catch any heap-based attacks.

Another approach is to carry out static analysis on the source code to detect
vulnerabilities. This, however, necessitates availability of source code, which is not
commonly available for commodity software. Also assembly code generated from source

 13

can be significantly different compared to the actual source due to compiler optimizations
like instruction reordering. This opens up a space where vulnerabilities not present in the
original source code may appear in the optimized binary and vice versa, leading to higher
false positives and false negatives. Thus source code analysis may not provide as much
security guarantees as binary analysis.

1.2.1.2 Fine-grained taint analysis

The discussion above clearly indicates the need for more accurate and reliable
techniques. In fine-grained taint analysis approach, essentially every operation performed
by the program is tracked and is inspected for malicious behavior. In this approach, data
originating from user, file, and network ports is marked as untrusted (tainted). The
untrusted data is tracked from its point of origin to the point of possible exploit. Any
anomalous usage of untrusted data, for example as an argument to a sensitive system
call, the address of an indirect call, etc, is flagged as an error. Because the fine-grained
approach makes no assumptions about the runtime behavior of program, it has fewer false
negatives and false positives. However, it is expensive because potentially every
instruction has to be tracked, because doing so would require being able to solve the
halting problem.

Fine-grained analysis can be carried out in two ways:

Static analysis: In this case the binary is disassembled and symbolic execution is
performed to detect the class of vulnerabilities consisting of the use of tainted data in
sensitive operations [11]. However this approach faces difficulties involved in getting
correct disassembly, obtaining correct flow graphs, pointer analysis, resolving indirect
jump targets, and symbolic execution of loops. Also, static analysis cannot possibly handle
all programs.

Dynamic or Runtime analysis: Dynamic taint analysis involves tracking the use of
untrusted data during program execution. Currently there are three ways to track taint
information [24].

i) Interpreter-based approach: Some of the interpreted languages like Perl
have a built-in facility to track untrusted data. While in this mode, Perl takes
special precautions called taint checks to prevent both obvious and subtle
traps. Some of these checks are reasonably simple, such as verifying that
path directories aren't writable by others. Complex ones involve not
allowing a program to use data derived from outside the program to affect
something else outside the program. All command line arguments,
environment variables, locale information, results of certain system calls
(readdir(), readlink(), the variable of shmread(), the messages

returned by msgrcv(), the password, and shell fields returned by the

getpwxxx() calls), and all file input are marked as "tainted". Tainted data
may not be used directly or indirectly in any command that invokes a sub-
shell, or in any command that modify files, directories, or processes.

 14

TaintCheck [17] runs a compiled program in interpreted fashion to track
tainted data. In their paper [17], Newsome and Song perform binary
rewriting at runtime and run a program in an emulated environment. This
allows them to monitor and control program’s execution at fine-gained level.
On reaching each basic block, TaintCheck translates the block of x86 code
into its own RISC (Reduced Instruction Set Computers) like instruction set
called UCode. TaintCheck, then instruments Ucode block to incorporate
taint analysis code. It then converts Ucode back to x86 and executes the
block. This approach shows a slowdown of about 30 times.

ii) Architecture-based approach: With custom hardware support, the

processor can carry out taint computation for every instruction it executes.
In their paper [23] Edward Suh et al. let the operating system identify a set
of input channels as spurious, and make processor track all information
flows from those inputs. If spurious values are used for an operation, a
checker generates a security trap. When the processor generates a
security trap, a handler checks if the trapped operation is allowed or not.
This approach shows a slowdown of 5.5 times.

iii) Instrumentation-based approach: In this approach, the program is

instrumented to dynamically trace the propagation of taint data. In their
paper [13], Cheng et al. propose a frame work consisting of a configuration
file to specify a security policy, a shadow memory to maintain taint
information, and a program monitor to perform instrumentation and to
intercept system calls. The program monitor inserts additional code for
maintaining, propagating, and checking taint status before executing the
code.

In their paper [19], Qin et al. propose a Low-Overhead Practical Information
Flow Tracking System (LIFT). LIFT minimizes run-time overhead by
exploiting dynamic binary instrumentation. LIFT aggressively eliminates
unnecessary dynamic information flow tracking, coalesces information
checks, and efficiently switches between target programs and instrumented
information flow tracking code. LIFT exploits the fact that for most server
applications, the majority of tag propagations are from safe data sources to
safe destinations.

These approaches have various drawbacks. The interpreter-based approach works only
on some languages. TaintCheck [17] takes a little different approach of converting a
program written for x86 to RISC, but, it incurs significant overhead due to interpretive
execution and runtime instrumentation. Also, runtime analysis leaves less scope for
optimizations. The 30-40 times slowdown reported by TaintCheck [17] means it cannot be
deployed in production.

The architecture-based approach needs processor support, which is currently not
available from any vendor, and further it needs significant operating system support and
has less flexibility in security configurations. This means we cannot expect architecture-
based approaches any time soon, and also users are unlikely to adopt this approach if
they cannot have application-specific security configurations.

 15

The instrumentation-based approach incurs one-time instrumentation overhead and a
much higher runtime tracing overhead on each run. However, instrumentation-based
approach shows a promising future since there is a wide scope for static analysis. Also,
contemporary research on instrumentation [16] proposes low overhead instrumentation
techniques. Our technique falls in to this category but has a different approach to the
implementation.

1.3 Our contribution

In this thesis, we propose a novel approach to detect program exploitation without
prohibitive performance overheads. The key idea is to delegate to a separate concurrently
executing thread (which we call a shadow thread), the work of tracking untrusted data from
its point of origin to the point of exploit in a program. Since we don’t run the original
program in interpretive fashion or make it keep track of taint information, the original
program does not have the runtime overheads seen in other approaches. Further, since
more and more processors are equipped with multicores and most of the software is not
written to fully utilize the computing power of multicore machines, we are likely to have
some idle cores. Also, in view of the hardware trends showing addition of just not tens, or
hundreds but thousands of cores, our idea to utilize some idle cores for vulnerability
detection goes a long way to shaping the future of computing. In addition to this, the
shadow thread performs fine-grained taint tracking and hence provides high security
guarantees. Because of runtime taint tracking, our approach has few false positives.

Our approach uses already established facts like shadow memory, memory tagging, and
taint propagation [16, 23, and 17] for vulnerability detection. However, we do so in a
completely new way by means of a shadow execution running on an idle core. We use
static binary rewriting, which enables us do optimizations (see Section 3.7) that are hard if
not impossible with dynamic instrumentation. Because of taint checking by a concurrent
thread and the static optimizations, we incur low runtime overhead.

We demonstrate the effective usage of our approach for buffer overflow and format string
attack detection on real applications. The preliminary performance results show that there
is an order of magnitude performance improvement compared to TaintCheck [17] and we
better LIFT [19] in some cases. The rest of this document is organized in the following
manner: Chapter 2 provides an overview of the entire system; Chapter 3 describes the
design and implementation details; Chapter 4 presents the security assurances that we
can make; Chapter 5 evaluates performance and finally Chapter 6 presents conclusions
and discusses future work.

 16

CHAPTER 2

2 SYSTEM OVERVIEW

In this chapter, we discuss the key characteristics of our system and provide an overview
of the components that make our system. We have developed a proof of concept tool to
establish the practical usability and reliability of our approach. Our approach of taint
analysis has the characteristics described below, some of which are also seen in other
state of the art taint analyzers like TaintCheck [17], and TaintTrace [24].

2.1 Characteristics of our approach

2.1.1 Practical usability due to better performance

Unlike other instrumentation based approaches, our tool does not require the original
program itself to compute the taint values for each operation. Instead we spawn a new
thread, which runs on an idle core, to perform taint computation. Hence our approach
offers better performance.

2.1.2 Reliable security

Like some of the others, our approach computes and propagates the trustworthiness of
data through every instruction executed by the program at run time. This fine-grained
analysis offers high security guarantees in detecting all kinds of buffer overflow attacks
that lead to change of control, format string attacks, input validation errors, etc. Because of
the flexible and configurable security, extending the current system to handle other kinds
of attacks is simple.

2.1.3 Source code independence

Our approach works by disassembling a binary program. We do not need source code,
and we do not need any special compilation for our analysis. This offers a great practical
benefit on current and legacy software.

2.1.4 Language independence

Our approach currently works by disassembling the ELF (Executable Linkable Format) x86
binaries. Hence the approach is independent of the source programming language.
Further we can extend the current tool to support other architectures.

2.1.5 Hardware independence

Our project is motivated by the fact that many, if not all, applications are finding it difficult
to leverage the full advantage of multicore processors because most applications are

 17

interactive and they inherently have some sequential components. Currently most of the
processors are dual core and the hardware trend shows processors getting 8 or 16 cores
in near future and 1000s of cores not in the too distant future. Hence we should be able to
schedule our shadow thread on an idle core. Other than multicore, we do not require any
hardware support (unlike [10, 11], which heavily depend an architectural support for taint
analysis).

2.1.6 Operating system independence

We do not require any support from or modifications to the operating system. We mark the
origin of taint data by identifying system calls like read(), recvfrom(), etc.

2.2 Schematic diagram

Figure 4 presents the architecture of our taint analyzer. Given an input binary Pinput, we do
the following:

1. The memory area M of Pinput is augmented with an additional memory region M’ such

that for each original memory byte Mw ∈ , there is a corresponding tag word

')(Mw ∈τ . This is straightforward to do by rewriting the binary to incorporate a new

data section. The tag word)(wτ contains the taint value associated with w. More

specifically if w is either copied or arithmetically computed from an untrusted input,

then 1)(=wτ , otherwise 0)(=wτ .

2. The program Pinput is rewritten to consist of two interacting threads: Poriginal, which
carries out the actual computations of the original program, and Pshadow which shadows
the computation of Poriginal but computes the trust values instead of actual data values.
Both threads share the same address space; this allows them to communicate via
shared memory. The shadow thread should be always behind the original thread so
that shadow thread can perform the taint computations on behalf of original program.
However, shadow program cannot remain too far behind the original program since
before it computes the taint and asserts an exploit, the original program might have
already been exploited. In the current configuration we decided to keep the shadow
thread one basic block behind the original program (see Chapter 3 for exceptions).
However this is a configurable option and we can trade off security vs. performance.

3. We create Pshadow from Pinput by replacing the actual computation with equivalent taint-
computing instructions. We regard the program points that originate untrusted data as
“Taint Sources” and the program points beyond which the attacker has complete
control over the program as “Taint Sinks”. The shadow has code to mark the tainted
memory regions at taint sources and it has guards that check whether the system is
about to be compromised around the potential taint sinks like return address, function
pointers, sensitive system call arguments, format string handling functions, etc. We
add code to Poriginal and Pshadow to synchronize at conditional branches and indirect
control transfers so that Poriginal can communicate the transfer targets to Pshadow. This is
required since Pshadow does not compute values and hence it does not have the

 18

information it needs to follow Poriginal’s control behavior. If we want to audit return
instruction or indirect jumps etc, we also add code to delay Poriginal at these points until
Pshadow completes the security checks.

4. Finally, we optimize Poriginal and Pshadow to remove unnecessary computation and
synchronization overheads and the two threads are packaged as a single executable
that is invoked in the same way as the original program.

5.

Statically

linked x86

relocatable

Disassembler

Disassembled

program with

Control Flow

Graph.

Program Cloner

Original

program

= P

Cloned

program

= Q

Thread

Synchronizer

Thread

synchronized P

= P’

Thread

synchronized Q

= Q’

Program Analyzer and

Instrumenter

Self-protecting x86

executable.

Instrumented P’
= P’’

Taint marker,

taint tracker, and

exploit detector.

= Q’’

 Optimizer

 Optimally

synchronized P’’
Optimally

synchronized Q’’

Program Assembler

Figure 4: Schematic diagram

 19

CHAPTER 3

3 DESIGN AND IMPLEMENTATION

We use the PLTO1 binary rewriting system to implement our prototype taint checker. Input
to PLTO is a statically linked x86 relocatable in ELF format. We assume that the
relocatable has information about procedures, symbols, and relocations as per ELF
format. We consider this to be a reasonable assumption since we are not trying to deal
with virus code, but instead trying to catch vulnerabilities that exist in commodity software.

The components of our taint analyzer are shown in Figure 4. Below we describe the steps
in creating a self-protecting binary from the original program’s binary.

3.1 Disassembling the program

An ELF format statically linked relocatable is fed to PLTO (Pentium Link Time Optimizer)
[21] to carry out accurate program disassembly. PLTO is a binary rewriting system that
modifies an object program to improve some aspect of its behavior, such as execution
time, code size, or security. PLTO is developed for the Intel IA-32 architecture to handle
complexities like large number of op-codes, addressing modes, and variable-length
instructions. PLTO first disassembles all segments containing code, creates a single
instruction stream, and constructs an interprocedural control flow graph for the entire
program. It uses relocation information and knowledge about instruction semantics to
guide these steps. The output of the disassembly stage is a control flow graph with
information about functions, basic blocks, and control transfer edges.

3.2 Creating shadow memory

The next step is to augment the program with a shadow memory as described in Chapter
2. To do this we create a new section called “.shadow” in ELF with size |M|/2, where M
is the total addressable virtual memory. Also during program assembly we allocate a new
segment for the shadow section. With this configuration, for every memory

location Mw∈ , we can compute the corresponding shadow memory location ')(Mw ∈τ

in the shadow region by subtracting a constant offset from w. In other words,

Kww −=)(τ , where K is a constant during execution of a program. Typically K = |M|/2.

Figure 5(a) below shows the memory layout of a standard ELF format executable in Linux
and Figure 5(b) shows the program after augmenting it with a shadow memory region.

1
 PLTO (Pentium Link Time Optimizer) requires statically linked relocatable binaries in order to have all relocation

information.

 20

3.3 Building the shadow thread

Following the creation of shadow section, we need to create a shadow thread that carries
out the task of taint analysis.

3.3.1 Cloning the program to produce the shadow thread

The first step toward building a shadow program is whole program cloning. Given the
original program Poriginal, , we build Pshadow. The program cloner is built using the facilities
provided by PLTO to clone functions. A linear sweep over all functions in Poriginal creates
clone functions. With this scheme, inter-procedural edges point back to the functions in
Poriginal (as shown in Figure 6). However, by maintaining a one–to–one mapping between
each function to its clone and each block to its clone, we can redirect the control edges to
the corresponding shadow blocks (as shown in Figure 7).

SHADOW MEMORY

TEXT

BSS

HEAP

KERNEL

STACK

DATA

TEXT

BSS

HEAP

KERNEL

STACK

DATA

Figure 5(a): Original program Figure 5(b): Program with shadow memory

K

K

 21

FUNCTION A

FUNCTION A’

FUNCTION B

FUNCTION B’

Figure 7: Cloned functions with one-to-one mapping

FUNCTION A

FUNCTION A’

FUNCTION B

FUNCTION B’

Figure 6: Cloned functions

 22

3.3.2 Control flow imitation in shadow using synchronization

As discussed previously, we need to keep Pshadow behind Poriginal. Remember that the
shadow program has no information to imitate the control flow of the original program
since it does not do actual computation. The thread synchronizer component of our tool
handles this task. We use a global flag TARGET to achieve signaling between two threads.
We do not use any system calls for synchronization since system calls are inherently
expensive.

BASIC BLOCK A

BASIC BLOCK A’

BASIC BLOCK B

BASIC BLOCK B’

Global TARGET

Set(TARGET)

while(TARGET);

while(!TARGET);

Reset(TARGET)

while(!TARGET);

Reset(TARGET)

Figure 8: Thread synchronization for simple blocks

1

2

3

4

 23

Let us assume that basic block A is the program entry point. The shadow program will
have A’ as its entry point. We augment Pshadow and Poriginal as shown in Figure 8. Originally
TARGET is set to zero. Following is the sequence of steps that happen at runtime:

1. Poriginal finishes executing basic block A during which Pshadow is spinning waiting for the

TARGET to be set.
2. Poriginal sets TARGET and waits for it to be reset. (Arrow 1 in Figure 8)
3. Pshadow observes TARGET being set (Arrow 2 in Figure 8), stops waiting and resets

TARGET (Arrow 3 in Figure 8)
4. Pshadow starts executing basic block A’.
5. Poroginal observes TARGET being reset (Arrow 4 in Figure 8), stops waiting and starts

executing basic block B.

During step 4 and 5, the two threads are executing concurrently. Though the above
example shows the basic case of synchronization, we need to handle more complex
scenarios like conditional branches, jump tables, indirect jumps and indirect function calls.

Handling branches:

To handle conditional branches we augment Pshadow and Poriginal as shown in Figure 9.
Assume that each basic block has a unique identifier. For example, the address of the first
instruction of each block can serve as its unique identifier. The following sequence of
steps happens at run time:

1. Poriginal executes basic block A and branches to basic block C or B.
2. If Poriginal branches to C, it sets TARGET = C’. If Poriginal branches to B, it sets TARGET

= B’. In either case Poriginal waits for TARGET be reset.
3. On entering A’, Pshadow copies TARGET to LocalTarget and resets TARGET so that

Poriginal can proceed.
4. After executing A’, Pshadow determines its next basic block by comparing the

LocalTarget with C’. If they are same, it executes block C’; otherwise it executes
block B’, thus imitating Poriginal ‘s execution.

Because of the one-to-one mapping between the basic blocks in the original and shadow
programs, we can statically determine the TARGET values to be set during program
instrumentation.

 24

Handling indirect jumps:

To handle conditional branches we augment Pshadow and Poriginal as shown in Figure 10.
Assume Poriginal has an indirect jump after basic block A. The following sequence of steps
happens at run time:

1. Poriginal executes basic block A and jumps to basic block B via an indirect jump.
2. On entering basic block B, Poriginal sets TARGET to the first instruction of basic block B’.
3. On entering basic block A’, Pshadow makes a local copy of the TARGET into

LocalTarget and resets TARGET so that Poriginal can proceed.
4. At the end of basic block A. Pshadow simply jumps to the address present in

LocalTarget, which lands it in B’.

Basic Block A

 if (cond)
 jmp BasicBlock C

 while(!TARGET);
 LocalTarget = TARGET
 Reset(TARGET)

Basic Block A’

 if (LocalTarget == C’)
 jmp BasicBlock C’

Global TARGET

 TARGET = B’
 while(TARGET);

Basic Block B

 while(!TARGET);
 LocalTarget = TARGET
 Reset(TARGET);

Basic Block B’

 TARGET = C’
 while(TARGET);

Basic Block C

 while(!TARGET);
 LocalTarget = TARGET
 Reset(TARGET);

Basic Block C’

Figure 9: Thread synchronization for conditional branches

 25

Because of the one-to-one mapping between instructions, we can statically determine the
TARGET values to be set during program instrumentation.

We use the same technique for indirect function calls and jumps via jump tables.

3.3.3 Spawning the Shadow thread

Once the two synchronized threads are created, we need to add code to spawn two
threads. We use the Pthreads (Portable Operating System Interface (POSIX) threads)
library. However, before threads can be spawned, we need the program to set up some
initial data structures. Hence we should not have Poriginal expect Pshadow to be behind it
during this phase. Further, because these initialization routines may call some common
functions like malloc(), we need these common routines to be available in
nonsynchronized mode during program initialization and in synchronized mode after

Basic Block A

jmp [EAX]

 while(!TARGET);
 LocalTarget = TARGET
 Reset(TARGET)

Basic Block A’

 jmp [LocalTarget]

Global TARGET

 TARGET = address of B’s
 first instruction
 while(TARGET);

Basic Block B

 while(!TARGET);
 LocalTarget = TARGET
 Reset(TARGET);

Basic Block B’

Figure 10: Thread synchronization for indirect jumps

 26

initialization. We break this chicken and egg problem by maintaining one more copy of the
program that does not have any synchronization code. Initially we run the
nonsynchronized copy from the point of program entry until the program’s data structures
are set (_start, _init etc in Linux context). Once the initial data structures are set up,
Poriginal spawns Pshadow. Poriginal then calls the main routine in the original program, and
Pshadow calls the main routine in the shadow program. This is illustrated in Figure 11.

_start

_init

Spawn(
main_clone_clone)
Call main_clone()

main()

main_clone() main_clone_clone()

Nonsynchronized Poriginal Synchronized Poriginal Pshadow

Figure 11: Shadow-thread spawning

 27

A key aspect of shadow thread creation is setting up its stack space. We spawn Pshadow

particularly taking care that its stack is set up in the shadow memory section as shown in
Figure 12:

Once we have created two synchronized threads, we use the program analyzer and instrumenter
components of our tool to build taint marking, tracking, and security checking into the shadow
thread as discussed below.

3.4 Marking the taint sources

In our taint analyzer, we regard any data coming into program address space from an
external source as untrusted. The default policy is to regard data read from system calls
like read(), and recvfrom() as untrusted. The policy can be easily extended to other
system calls. In Linux the system calls work using a software interrupt like int 0x80.
The accumulator holds the interrupt number and other registers contain the arguments to
system call. Consider the case of read() system call which appears as shown below in
x86 disassembly.

TEXT

HEAP

KERNEL

STACK of Poriginal

DATA

STACK of Pshadow

BSS

SHADOW MEMORY

Figure 12: Stack-balanced Poriginal and Pshadow

 28

push %ebx
mov 0x10(%esp),%edx
mov 0xc(%esp),%ecx
mov 0x8(%esp),%ebx
mov $0x3,%eax
int $0x80

Immediately after the system call, the following can be inferred:

1. Register EAX contains the number of bytes read (say N)
2. Register ECX contains the pointer to the buffer in user space (say P).

With this information, it is fairly simple to augment the shadow thread to set N bytes of

shadow memory starting at location KPP −=)(τ , as tainted. Note however that Pshadow

does not make any system call by itself. The approach is extendable to fast system calls
that use instructions like SYSENTER/SYSEXIT.

Another source of taint input to a program is command line arguments and environment
variables, which are set up during program loading. The environment variables and
arguments to the main() function are stored below the kernel stack (as shown in Figure
13). Since we treat command line arguments and environment variables as untrusted, we
mark the corresponding shadow region as tainted. This helps us catch exploits that are
possible via malicious command line parameters or environment variables (see Section
4.3.2.4).

Figure 13: Tainted command-line arguments and environment variables

TEXT

HEAP

KERNEL

STACK of Poriginal

DATA

STACK of Pshadow

BSS

SHADOW MEMORY

Environment Variables and

Command Line Arguments

TAINTED

 29

3.5 Tracking taint propagation

Once injected, untrusted data can flow to other parts of memory in various ways.
Newsome and Song have categorized them in to 4 possible ways [17]:

Copy dependency: Copying of a tainted value to a different location taints the new
location.

Arithmetic dependency: If tainted data is used as a source operand of a computation,
the results of the computation are tainted.

Address dependency: If a tainted value is used to specify the address for a load/store
operation, the loaded/stored value depends on the tainted value.

Control dependency: A structure of the form
if (x == 0)

y = 0;

else if (x == 1)

y = 1;

….

is the same as x = y and hence a method of taint propagation.

We classify each instruction as either taint causing (e.g. mov, add etc) or as innocuous
(e.g. inc, dec). Each taint causing instruction of the form c = a Φ b (where Φ is an
operation that takes a, b as source operands and c as destination operand) in Pshadow is

replaced by an operation)(cτ =)(aτ LOGICAL_OR)(bτ . Each innocuous instruction is

simply destroyed. The Table 1 below gives a mapping of some instructions in Poriginal to
Pshadow.

Original Computation Shadow Computation Instruction Class

mov %eax, %ebx mov %eax, %ebx Copy Propagation

mov %eax, 0x8(%ebp) mov %eax, 0x8(%ebp) Copy Propagation

add %eax, %ebx or %eax, %ebx Arithmetic Propagation

shl %eax, 0x8(%ebp) or %eax, 0x8(%ebp) Arithmetic Propagation

push %eax push %eax Copy Propagation

lea (%eax), %edx mov %eax, %edx Address Propagation

inc %eax None Innocuous

Table 1: Mapping of original instructions to shadow instructions

 30

Any instruction that affects the stack frame (e.g. push, pop, call, leave, ret etc)
in Poriginal also appears in Pshadow so that the stacks of Poriginal and Pshadow are always
balanced. Hence any memory operand in Poriginal that is relative to the stack pointer or
frame pointer can be replicated in Pshadow. For example, 0x8(%ebp) is the same in both
Poriginal and Pshadow. However, memory operands that are not relative to the current stack
frame cannot be replicated in Pshadow. To address this problem, we use a shared buffer
between Poriginal and Pshadow to pass the required information. As an example consider an
instruction of the form:

mov %eax, 0x8(%ebx)

The augmented Poriginal and Pshadow to handle this instruction are as shown in Figure 14.

 At runtime the following two steps happen:

1. The original computation enqueues the value %ebx and proceeds.
2. The shadow computation dequeues the value, subtracts a constant OFFSET to

compute the shadow memory address, and then stores the taint flag.

We use a large shared circular buffer and do not use any locking because we always
know that the shadow is behind the original by one basic block. Poriginal only needs to
update the tail of the shared buffer, and Pshadow only needs to update the head of the
shared buffer. Because of the large buffer size, the wrap around does not cause the
original program to overwrite an unread value. Thus we ensure fast and efficient use of the
shared buffer. (The size of the shared buffer can be set to twice the maximum number of
enqueues caused by basic blocks in the program. In our current prototype we use a
shared buffer of size 1024).

With this scheme, we can track taint propagation due to copy dependency, arithmetic
dependency, and address dependency. However, like [17] and most of other taint analysis
techniques, we cannot detect control based taint propagation. (See Chapter 6 for ideas).

Original Computation

Enque(%ebx)
mov %eax, 0x8(%ebx)

Shadow Computation

push %ebx
Deque(%ebx)
sub $OFFSET, %ebx
mov %eax, 0x8(%ebx)
pop %ebx

1
2

Figure 14: Shared buffer between original and shadow threads

 31

3.6 Exploit detection

In order to obtain full control of the victim process, every attack has to change the
program’s control flow in order to execute malicious code. There are only a few ways to
change a program’s control flow. Attacks may change a code pointer for indirect jumps
(e.g. return address overwrite), or inject malicious code at a place that will be executed
without malevolent control transfer (e.g. arguments to sensitive system calls). We use the
following defense mechanisms to protect against these exploits.

3.6.1 Guarding function returns

Before returning from callee to the caller (x86 instructions leave and ret), Poriginal waits
for Pshadow to make sure that the return address or old base pointer is not tainted. The
Figure 15 shows a scenario where Pshadow detects a return address overwrite.

KERNEL

<_libc_start_main + offset>

BP, SP

100

<main + offset>

<BP>

array[1]

array[0]

<main_clone’s caller >

100

TAINTED

TAINTED

TAINTED

TAINTED

BP, SP

foo(int x){
 int array[2];
 read(1,array,16)
 return;
}

main(){
 foo(100);
}

 Wait for
Shadow to
check the
taintedness

<BPointer of _libc_start_main >

Figure 15: Catching return address overwrite

 32

3.6.2 Guarding indirect jumps

Before making an indirect jump, Poriginal waits for Pshadow to make sure that the jump target
address as well as the contents of jump target location are untainted. Figure 16 shows a
scenario where Pshadow detects a function pointer overwrite attack.

3.6.3 Guarding format string handlers

The format string handling functions are sprintf(), snprintf(), fprintf(),
vprintf(), vsprintf(), vsnprintf(), vfprintf(), syslog() and
vsyslog(). Among them vfprintf() is the basic function on which the other functions
are based. To detect format string attacks, we guard vfprintf(). Below are the steps to
catch a format string attack:

KERNEL

STACK of Poriginal

struct heap{
 void (*fptr)();
}
main(){
 int * iPtr = malloc(10);
 struct heap * h =
 malloc(sizeof(Struct heap));
 h->fprt = bar;
 read(1, iPtr , 14);
 h->fptr();
}

bar(){
}

fPtr = Bar

iPtr

STACK of Pshadow

TAINTED

TAINTED

Wait for
Shadow to
check the
taintedness

Figure 16: Catching function pointer overwrite

 33

1. On entering vfprintf(), Poriginal waits for Pshadow to enter its counterpart

shadow function.
2. The second argument to vfprintf() is the format string. Pshadow examines the

entire format string looking for occurrence of format specifiers like %n, %x etc.
3. If step 2 finds any format specifier in memory location w, we examine memory

location)(wτ . If)(wτ is marked as tainted, then we flag a format string attack

alert.

Figure 17 shows the scenario where we detect a format string attack.

H e l l o % N W o r l d
Tainted Tainted Tainted Tainted Tainted Tainted Tainted Tainted Tainted Tainted Tainted Tainted

3.6.4 Guarding sensitive system calls

We can detect whether particular arguments to sensitive system calls like execve() are
tainted using a combination of the taint-marking technique and the format string exploit
detection technique discussed previously. This in combination with authenticated system
calls [19] gives a strong security guarantee for making system calls. We track the x86
software interrupts that cause system calls and check for the taintedness of the strings
passed as arguments to the system calls. However by default we do not enable this option
in our prototype implementation since some applications may use user given data as
argument to sensitive system calls like execve(). Users can decide whether to permit a
tainted string as system call argument or not.

vfprintf(File * fp, char * fmt, …){

 if(fmt contains a “%n” that is tainted) then
 Flag Warning

}

Foo(){
 char * buffer[256];
 read(1,buffer,256);
 printf(buffer);

}

Figure 17: Catching format string attack

 34

3.7 Reducing synchronization via static analysis and optimization

Since block by block synchronization between two threads has high overhead, we perform
the optimizations below to reduce synchronization. For the following discussion we define
a set of functions descendents(F) for a function F as follows:

Let F� G denote function F (directly or indirectly) calls function G.
Let �* denote the reflexive transitive closure of the relation�.

Then, set of descendents of function F is defined as:

3.7.1 Not monitoring all function return addresses

By default, we synchronized the two threads at each function call return. However if a
function F has following two properties, we do not need to monitor the function return
address:

1. The function F by itself has no local variables, and
2. No member of the set descendents(F) has local variables.

Functions that exhibit above two properties are assured not to overwrite the return address
on their stack frame. They may overwrite return addresses deeper in the stack frame, but
that would be caught by the owner function of that stack frame.

3.7.2 Not tracing some functions

The shadow thread need not trace instructions in some of the function calls. To run a
function A without synchronizing when called from function B, we need to have the
following properties:

1. Function A by itself should not have any store operations.
2. Function A by itself is not a taint originating function.
3. No member of the set descendents(A) has store operations.
4. No member of the set descendents(A) is a taint originating function.
5. Function B should not use the return value from function A for any store

operation.

G | F �* G descendents(F) =

 35

Functions with these properties are assured to neither originate taint nor propagate taint.
They are definitely innocuous functions (e.g. strcmp()). Such functions can be run at full
speed without synchronization in the original program and need not be called by the
shadow program at all. As mentioned earlier (see Section 3.3.3) we have a copy of the
program without synchronization, hence we can easily do this.

3.7.3 Optimizing high frequency loops

One of the most commonly occurring loop patterns is sweeping through an array,
assigning to array elements with either a constant value or with some user input. In the
former case all that shadow thread should do is to set every element of the corresponding
shadow memory region as untainted; in the latter case it should mark every element as
tainted. To achieve this, the shadow program obtains the array base address, stride, and
the number of iterations from the original program, and runs in parallel with the original
program, but keeps itself just behind the original program. At the end of the loop both
threads synchronize and then proceed as normal.

Figure 18 illustrates a program that sweeps an array to initialize values. Figure 19 shows
the modified original program along with its shadow counter part.

Figure 18: Array initialization loop

for(int i = 0; i < n ; i += k){

 array[i] = 0;

}

 36

Global * arrayBase;

Global stride;

Global iterations = 0;

Global done = false;

Original Program Shadow Program

arrayBase = array;

stride = k;

for(int i = 0; i < n ; i +=k){

 array[i] = 0;

 iterations++;

}

done = true;

while(done);

shadowIterations = 0;

for(;;){

 shadowIterations++;

 while(shadowIterations

 >= iterations){

 if(done)

 break;

 }

 if(shadowIterations >

 iterations){

 shadowIterations = 0;

 iterations = 0;

 done = false;

 break;

 }

 index = (shadowIterations – 1)

 * stride

 arrayBase[index + OFFSET]

 = UNTAINTED;

}

The figure 20 illustrates a program reading user input into a buffer. Figure 21 shows the
modified original program along with its shadow counter part.

Figure 19: Optimized original and shadow array initializes

for(int I = 0; read(fd,&ch,1); i++) {

 buffer [i] = ch;

}

Figure 20: File reader loop

 37

3.8 Packaging the self-protecting binary

After being modified as described above, a program is packaged into a single program,
and assembled back into x86-executable using PLTO’s binary-rewriter. The modified
program can be loaded and executed in just the same way as the original program.

3.9 Prototype limitations

In our current implementation, if the main process forks a child (using a system call like
Unix fork()), we cannot track taint in the child process. This is because the child process

Global * arrayBase;

Global stride;

Global iterations = 0;

Global done = false;

Original Program Shadow Program

arrayBase = buffer;

stride = 1;

for(int i = 0; read(fd,&ch,1); i++){

 buffer[i] = ch;

 iterations++;

}

done = true;

while(done);

shadowIterations = 0;

for(;;){

 shadowIterations++;

 while(shadowIterations

 >= iterations){

 if(done)

 break;

 }

 if(shadowIterations >

 iterations){

 shadowIterations = 0;

 iterations = 0;

 done = false;

 break;

 }

 index = (shadowIterations – 1)

 * stride

 arrayBase[OFFSET + index]

 = TAINTED;

}

Figure 21: Optimized original and shadow file readers

 38

will not have the shadow thread spawned. This is more a limitation of the pthread library
than our implementation. With a different thread library we can solve this problem.
Alternatively, with the pthread library, we can spawn a shadow thread by carefully setting
up its stack in the child process.

We don’t support multi-threaded applications in our prototype implementation; we can
extend it to support multi-threaded applications by having a shadow thread for each thread
in the original program and a global TARGET variable for each pair of original and shadow
thread. We would also need more synchronization to ensure that taint tags are accurate
when potential vulnerabilities are checked.

 39

CHAPTER 4

4 SECURITY EVALUATION

In this chapter we discuss implications of our approach with respect to vulnerability
detection. There are two aspects to the security guaranties. First, our approach should
catch vulnerabilities; second, it should not trigger false alarms.

4.1 Analysis of false negatives

An exploit that goes undetected is regarded as a false negative. While, a false negative
rate of 0% is desirable, in practice a false negative rate should be as small as possible.
Under our scheme, we mark all data external to the program as tainted. We track copy
propagation, arithmetic propagation, and address propagation of tainted data from source
to destination. We guard every indirect control transfer, i.e, control transfer through return
address, function pointers, and indirect jumps. With these policies, we catch all attacks
that alter jump targets. Most attacks are control attacks, namely hijacking the control flow
of victim programs. This is the final step that attackers follow to break into system and this
is also the final line of defense before a system is compromised. Because we guard the
control flow, we are assured to defend all control hijacks that happen either due to stack
smash or heap smash. Further, we check the function call arguments of format string
handling functions and never let a user-given string contain format specifiers. Thus we
assure catching format string attacks. We can detect tainted arguments to sensitive
system calls in the same way.

A less frequent type of attack is a non-control-data attack [7]. Non-control-data attacks
corrupt a variety of application data including user identity data, configuration data, user
input data, and decision-making data. Examples include random memory bit-flips in
applications that can lead to serious security compromises in network servers, and
hardware faults that can subvert an RSA (Ron Rivest, Adi Shamir and Len Adleman)
implementation. We cannot detect such an attack in our current scheme. Also we do not
track control-based taint propagation, but we are unaware of any program exploiting this
kind of vulnerability. An attacker can exploit a non control vulnerability to generate a
segmentation fault and crash the system. We cannot detect such denial of service attacks.

One more critical issue is the protection of shadow memory. Since both the original thread
and the shadow thread are in the same virtual address space, the original program can
possibly read from or write to shadow memory by generating a random address in the
shadow memory region. In the unlikely event of the original program writing to shadow
memory, we could lose the taint values. Again, see the future work section for suggested
solutions.

While in our default policy we guard the printf class of functions to catch format string
vulnerabilities, we cannot catch a format string vulnerability if the user writes a custom
format string handler. In such cases we have provided a provision for the user to register
all format string handling functions, so that our taint analyzer can guard all user written
format string handlers too.

 40

4.2 Analysis of false positives

While our scheme has not shown any false positives in the applications we have tested,
we claim the possibility of false positives in the following scenarios:

i) Intentionally passing user format specifiers to format string handlers: If a
program is written to pass a user-specified formats to a format string handling
function, the best option is to modify the program since it is definitely
vulnerable. However if that is the design of the program, we have flexibility to
configure our tool to not track the format handling functions.

ii) Intentionally passing user strings to sensitive system calls: A user given

input may become an argument to sensitive system calls like execve(),
which our taint analyzer flags as error. If it is intended by the programmer to
pass user argument to such functions we have flexibility in our tool to configure
it. Default option is to not taint check any system call arguments.

iii) Intentionally executing user injected code: We do not allow a program to

execute user injected code even if it is by design. We do not expect any
commodity software to give its user a privilege to execute arbitrary code.

4.3 Security evaluation

To corroborate our claims, we show a wide variety of exploits that our taint analyzer can
detect both in synthetic and commodity software.

4.3.1 Security evaluation on synthetic micro-benchmarks

We carried out various buffer overwrite and format string attack experiments by writing
small programs with vulnerabilities. The important ones are listed below

4.3.1.1 Detecting old base pointer overwrite

We wrote a small program that reads data from a file into a buffer on the stack. The data
overwrites the old stack base pointer. Just before function return, the original program
waits for the shadow thread, and the shadow thread confirms overwrite and flags an error.

4.3.1.2 Detecting return address overwrite

Similarly, we wrote a small program that reads data from a file into a buffer on the stack.
The data overwrites the return address. Just before function return, the original program
waits for the shadow thread, and the shadow thread confirms overwrite and flags an error.

 41

4.3.1.3 Detecting function pointer overwrites on stack

To confirm detection of function pointer overwrites on the stack, we wrote a program that
reads data from a file and overwrites a stack buffer resulting in overwriting a function
pointer located on the stack. When the program called a function using the function pointer
present on the stack, it waits for the shadow thread to verify the sanity of the target
address, at which time the shadow thread flagged an error due to a tainted function
pointer.

4.3.1.4 Detecting function pointer overwrites on heap

To confirm the detection of function pointer overwrites on the heap, we wrote a program
that reads data from a file into a buffer on the heap. However, the data overwrote the
allocated memory on heap, and overran a function pointer present on the heap. When the
program called a function using the function pointer present on heap, it waited for the
shadow thread to verify the sanity of the target address, at which time the shadow thread
flagged an error due to a tainted function pointer.

4.3.1.5 Detecting format string attacks

To check format string vulnerability, we wrote a program with vulnerable use of
printf(). The program read user input and passed it to printf(). Our taint analyzer
promptly detected the exploit.

Further, we generalized all the above examples by propagating the tainted data by copy
and by arithmetic and logic operations. In all cases, we were able to detect exploits of the
above mentioned types.

4.3.2 Security evaluation on commodity software

To confirm the efficacy of our approach, we ran a number of programs with known
vulnerabilities using our taint analyzer, and we were able to catch the vulnerabilities
without incurring any false positives. The following six sub-sections discuss each of them
in detail.

4.3.2.1 ATPhttpd server

ATPhttpd is a small web server designed for high-performance. The ATPhttpd web
server version 0.4b has well known buffer overflow vulnerabilities. The problem occurs due
to insufficient bounds checking when handling GET requests. As a result, an attacker can
issue a GET request with an extremely long file name and can overrun the bounds of an
internal memory buffer and overwrite the return address of the function
http_send_error(). When the function http_send_error() returns, the attacker
effectively controls the flow of execution. With our taint analyzer we detected the return

 42

address overwrite and prevented the attack. For other normal requests, we did not
generate any false alarms.

4.3.2.2 Passlogd daemon

Passlogd is a sniffer tool for capturing syslog messages in transit. Version 0.1c of
passlogd has a buffer overflow vulnerability in function sl_parse(). The vulnerability is
caused by multiple boundary errors in the parser. This can be exploited to execute
arbitrary code with root privileges on a vulnerable system by constructing a specially
crafted network packet. The exploit program sends a packet that causes the passlogd
parser to overwrite the return address of function sl_parse(). On return from this
function, control jumps to an injected shell code. When this program was run with our taint
analyzer, we correctly detected the return address overwrite attack. For other innocuous
packets we did not generate any false positives.

4.3.2.3 BSD Talkd daemon

Talkd is a client-server application shipped with many Unix variants that is used for user
communication between hosts on a network. The version of talkd that ships with
OpenBSD 2.7 and older has a format string vulnerability. When a talk client connects to a
talk server and requests communication with a user, talkd (the server program) will
check to see whether the user is accepting messages. If so, it will print a message to the
user’s terminal telling them that "username@hostname" wants to chat with them. This is
done via a fprintf() function, which happens to have passed to it client-supplied data
as part of the format string. The fprintf() call, in announce.c, uses as its format
string argument the caller's username and the remote host. The caller's username is
provided in the datagram sent by the client. It is thus possible for an attacker to modify a
talk client so that a username value containing a malicious format specifier(s) is sent and
overwrites memory on the remote server process' stack. It is thus possible to execute
arbitrary code remotely, leading to a root compromise. We wrote a talk client program that
exploits this vulnerability by passing a username containing the %n format specifier. When
we ran talkd with our taint analyzer and communicated with it using the exploit program,
talkd detected the tainted format string and stopped the exploit. For all other valid inputs,
talkd daemon did not cause any false positives.

4.3.2.4 Chpass application using Libutil

The BSD libutil that ships with OpenBSD 2.7 or earlier contains a format string
vulnerability in the pw_error() function, which is used in the setuid chpass utility. In
pw_error(), user input is passed as the only argument to a printf() function, making
it possible for an attacker to corrupt the stack. If format specifiers are deliberately inserted
into the environment variable EDITOR, it causes part of string that is passed to the
printf() function to be tainted. The tainted string will cause the printf() function to
reference locations deeper into the stack than it should, expecting to see variables that
would normally be there. This, combined with the fact that you can write to memory with

 43

format specifiers, allows an attacker to, for example, reconstruct the return address of the
function so that it points to user-supplied (in the format string) shell code. When the
function returns, it will begin executing the shell code on the stack.

A unique feature of this vulnerability is that the tainted string does not originate from
external data, but instead from the environmental variables that are set up during program
startup.

We set the environmental variable EDITOR to contain format specifier %n to exploit this
vulnerability. When run under our taint analyzer we were able to detect the format string
vulnerability and stop the exploit.

4.3.2.5 Libtiff library

LibTIFF is a library used to encode and decode images in Tag Image File Format (TIFF).
Multiple LibTIFF routines in version 3.5.4 contain heap buffer overflow vulnerabilities in
the following functions:

• NeXTDecode (in libtiff/tif_next.c)
• ThunderDecode (in libtiff/tif_thunder.c)
• LogL16Decode (in libtiff/tif_luv.c)

These issues are the result of insufficient validation of user-supplied data. Consequently, a
remote attacker may be able to exploit these vulnerabilities by supplying an application
using LibTIFF with a specially crafted TIFF image.

To detect the vulnerability in libtiff, we wrote an application to use the NeXTDecode()
function to decode a strip of a TIFF image. The application passed a heap allocated buffer
to NeXTDecode(). We also allocated a function pointer on the heap. To this application,
we passed a buffer read from a specially crafted TIFF image that wrongly specified the
size of the strip, thereby making NeXTDecode() overflow the heap buffer and overwrite
the heap allocated function pointer. Later, when the program tried to call the function using
the tainted function pointer, it was detected as an exploit by our taint analyzer. For other
non-malicious inputs, NeXTDecode() was able to decode without any false positives.

4.3.2.6 Cfinger Daemon

Cfingerd is a configurable Finger daemon. Cfingerd version 1.4.3 (and earlier) has
format string vulnerabilities that allow remote users to attain root privileges and execute
arbitrary code. Cfingerd queries and logs the remote username of users of the service. If
an attacker sets up a remote machine that returns specific format strings instead of a valid
username, and connects to cfingerd from that machine, he can exploit the format string
vulnerability. Because Cfingerd runs as root, attacker can gain full control of the
Cfingerd host. We were able to successfully detect an exploit that tried to send a tainted
username to syslog function of Cfingerd.

 44

 Table 2, shows different vulnerabilities detected by our taint analyzer.

Application Version Vulnerability Detected False positives

ATPHttpd 0.4b
Stack-based

buffer overflow
YES None

Passlogd 0.1c
Stack-based

buffer overflow
YES None

BSD Talkd BSD 2.7 Format String YES None

BSD Chpass BSD 2.7 Format String YES None

LibTiff library 3.5.4
Heap-based

buffer overflow
YES None

Cfingerd 1.4.3 Format String YES None

Table 2: Various kinds of vulnerabilities detected by our taint analyzer

 45

CHAPTER 5

5 PERFORMACE EVALUATION

5.1 Experimental setup

We conducted a number of performance tests on real applications to evaluate the
slowdown caused by taint checking. We conducted all our experiments on a 32-bit Intel
x86 T2050 dual core machine with a 1.60 GHz clock and, 1GB of memory running Linux
Fedora Core 5. We built the applications by linking them statically. All the comparisons
given in the next section are on statically linked binaries. We evaluated the performance of
the programs discussed in Section 4.3.2. However, we do not report the performance of
talkd and chpass, because they are interactive applications involving multiple
processes and user interactions. We have also evaluated Gzip, which is one of the CPU
SPEC (Standard Performance Evaluation Corporation)’s integer benchmarks to evaluate
performance in the case of CPU-bound applications.

5.2 Performance results

5.2.1 Atphttpd server

We evaluate the performance of the ATPhttpd server to measure the time to serve
requests for varying file files. Our results are shown in Table 3 and Figure 22. The results
show that the server runs about only 50% slower than when the server is run without
instrumentation. We observe performance enhancement with the increased file size. This
is attributed to the fact that for larger files, the program spends more time in a file reading
loop that gets optimized by our optimization techniques discussed in Section 3.7.3. One
more reason for better performance for large files is due to the fact that the server spends
more time in a system call, writing data to the client socket.

HTML PAGE SIZE 1KB 10KB 20KB 30KB

Time in original execution (in sec) 0.01 0.033333 0.04275 0.0678

Time in instrumented program (in sec) 0.040333 0.0594 0.0765 0.101

Slowdown (number of times) 4.033333 1.782 1.789474 1.489676

Table 3: Performance comparison of original and instrumented ATPHttpd server

 46

Peformance Comparison of ATPhttpd

0

0.02

0.04

0.06

0.08

0.1

0.12

1KB 10KB 20KB 30KB

Page Size in KB

T
im

e
 i

n
 S

e
c

Time in original execution

Time in instrumented program

We also tested the effectiveness of our before-mentioned optimizations (see Section 3.7)
on ATPHttpd server for a 30K page fetch. Table 4 and Figure 23 show the effectiveness of
each optimization. Not tracing functions that exhibit the properties discussed in Section
3.7.2 reduces the slowdown from 6.3 times to 5.2 times. Relaxing return address check as
discussed in Section 3.7.1 brings down the slowdown from 6.3 times to 4.7 times.
Optimizing a high frequency file reading loop reduces the slowdown from 6.7 to 2.7 times.
When we apply all these optimizations we see a slowdown of just 48%.

Type of computation Time in sec Slowdown

Original computation 0.0678 1

Taint analyzer with no optimization 0.4273333 6.302852

Taint analyzer with some functions not traced 0.3536667 5.216323

Taint analyzer with relaxed return address checks 0.3196667 4.714848

Taint analyzer with optimized high frequency loop 0.1866667 2.753196

Taint analyzer with all optimizations 0.101 1.489676

Figure 22: Performance of original Vs. instrumented ATPHttpd server

Table 4: Effect of individual optimization on ATPHttpd for 30K page

 47

Performace comparison for 30K page

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Original

computation

Taint analyser

with no

optimization

Taint analyser

with some

functions not

traced

Taint analyse

with relaxed

retrun address

checks

Taint analyzer

with optimized

high frequency

loop

Taint analyzer

with all

optimizations

T
im

e
 i
n
 s

e
c

5.2.2 Passlogd daemon

We ran the Passlogd sniffer tool during an ftp download of size 1.25K that generated 14
packets on the monitored network interface. For each of them we measured the
processing time taken by Passlogd when run under our taint analyzer. We obtained a
slow down of about 1.75 times compared to the non-instrumented original application.

5.2.3 Gzip application

We instrumented the widely used compression tool Gzip and evaluated the performance
overhead on several file sizes. Table 5 shows the slowdown due to our taint analyzer.
Gzip, which is also one of the CPU SPEC2000 benchmarks, shows better performance on
large files. While the worst performance is 2.6 times slowdown for 400KB file, the best is
less than 5% slowdown for a 65MB file. The average slowdown is less than 40%. Figure
24 shows the graphical comparison of performance in original Gzip versus the taint
analyzer version.

As in the case of ATPHttpd, with the increased file size we see better performance, which
we attribute to the fact that for larger files, longer time is spent in file reading and writing
system calls. Also, code of Poriginal and Pshadow are not clustered in the program memory, i.e,
a function Foriginal ∈ Poriginal is not located close to Fshadow ∈ Pshadow. But, every time when the
original program is executing Foriginal, the shadow thread is executing Fshadow. This lack of

Figure 23: Effect of individual optimization on ATPHttpd for 30K page

 48

spatial locality leads to higher amount of page faults for the short-lived programs.
However, for programs, which run for longer time, the temporal locality overshadows
slowdown due to lack of spatial locality and the performance is improved. See Chapter 6
for optimizations.

Input file size 400KB 1.2MB 2.4MB 13.6MB 65.4MB

Time in original Gzip program
(in sec) 0.042 0.08425 0.153333 2.166 8.012333

Time in instrumented Gzip program
(in sec) 0.111429 0.138833 0.216 2.289167 8.3155

Slowdown (number of times) 2.653061 1.647873 1.408696 1.056864 1.037838

Performance Comparison for Gzip

0

0.5

1

1.5

2

2.5

400KB 1.2MB 2.4MB 13.6MB

File size

T
im

e
 i

n
 S

e
c

Time in original Gzip program

Time in instrumented Gzip program

Figure 24: Performance of original Vs. instrumented Gzip

Table 5: Performance comparison of original and instrumented Gzip

 49

5.2.4 Libtiff library

We evaluated the performance on Libtiff library by measuring the time taken for
DecodeNext() function discussed in Section 4.3.2.5. For an input containing 10 strips of
10KB size each (100KB total), we incurred a performance slowdown of 15 times. This is a
higher overhead compared to other benchmarks, however it is explainable by the fact that
in the entire program that we wrote, we just call DecodeNext() which spends most of its
time copying data from one buffer to the other. This leaves us with little scope for
optimizations. However, with the increase in the file size we started to see performance
improvements. It is attributed to the fact that the function DecodeNext()has an
innocuous loop as shown below that gets optimized.

 for (op = buf, cc = occ; cc-- > 0;)
 *op++ = 0xff;

For a 100K file, the above loop gets executed 102400 times and the data-copy loop gets
executed 10 times (100K file / 10K strip = 10 times). Hence the overhead is in the
initialization loop.

Once we optimize this loop, the next bottleneck is the data-copying loop. For a 2MB file,
the copy-loop gets executed 205 times. For a 10MB file , the copy loop gets executed
1024 times. However we cannot optimize the data-copying loop since it is a taint
propagating part of the program. Table 6 and Figure 25 show the performance of
Libtiff.

Image file size 100KB 2MB 10MB

Original program 0.002 0.0218 0.07

Instrumented Program 0.0306 0.2016 0.7378

Slowdown (number of times) 15.3 9.247706 10.54

Table 6: Performance comparison of original and instrumented Libtiff

 50

Performance of TIF decoder

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100KB 2MB 10MB

File size

ti
m

e
 i

n
 s

e
c

Original program

Instrumented Program

5.2.5 Cfinger Daemon

Finally, we evaluated the performance on Cfingerd. Cfingerd runs under inetd and
hence it is invoked on each finger call. When run without any instrumentation, a finger
request was completed in 0.011 seconds. However, when we ran it with our taint analyzer,
it took 0.103 seconds to complete. Thus we observed a slowdown of 9.26 times. On
applying loop optimization to a string copying loop, the execution time reduced to 0.061
seconds, which is a slowdown of 5.5 times.

Table 7 shows performance of 30K page on ATPHttpd server, Cfinger daemon, 1.25K page
sniffer on Passlogd, 13.6MB file compression with Gzip and 2M file with Libtiff on
instrumented applications in comparison with the original applications.

Application
30KB page in
ATPHTTPD

Cfinger
daemon

Libtiff on
2MB file

Passlogd
with 1.25KB
download

Gzip with
13.6MB file

Original program 0.0678 0.011 0.0218 2.45 2.166

Instrumented program 0.101 0.061 0.2016 4.301133333 2.289167

Slowdown
(number of times)

1.489675516 5.54 9.247706422 1.755564626 1.056864

Table 7: Effect of our taint analyzer on the performance of different applications

Figure 25: Performance of original Vs. instrumented Libtiff

 51

Figure 26(a) shows performance comparisons for the short-lived applications: ATPHttpd,
Cfingerd and Libtiff. Figure 26(b) shows performance comparisons for the long-running
applications: Gzip and Passlogd.

Performance comparison for applications

0

0.05

0.1

0.15

0.2

0.25

30KB page in

ATPHTTPD

Cfinger daemon Libtiff on 2MB file

Application

T
im

e
 i

n
 s

e
c

Original program

Instrumeneted program

Performance comparison for applications

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Gzip with 13.6MB file Passlogd with 1.25KB

download

Application

T
im

e
 i

n
 s

e
c

Original program

Instrumeneted program

Effect of our taint analyzer on the performance of different applications

Figure 26(a): Short-lived applications Figure 26(b): Long-running applications

 52

CHAPTER 6

6 CONCLUSIONS AND FUTURE WORK

In this thesis we have shown that vulnerability detection using multicore machines has a
promising future. We have made a successful effort to gather static program analysis to
get better performance in dynamic taint analysis on the future hardware. With many cores
being the future of hardware, we can always afford to dedicate some cores for taint
analysis. This brings a new paradigm of secure and efficient computing. In our work we
have shown that taint analysis with multithreading using multicore machines overshadows
many state-of-art dynamic taint analysis techniques in terms of performance and at the
same time provides as much if not more concrete security guarantees as any other. On
some benchmarks (like Gzip) our performance is better than LIFT [19], the best performing
taint analyzer at the time of writing this thesis.

Our experiments on real world applications including a web server, a chat server, an
image decoder, and a password changing application show effectiveness in detecting
exploits. Also our performance analyses on an I/O-bound web server and CPU-bound
compression tool show that we incur significantly less overhead in comparison with the
current state-of-art taint analyzers.

We plan to extend and improve our work in two major directions: improving runtime
performance and making more security guarantees.

6.1 Performance enhancement

In the current work we do loop optimization using manual techniques. Also we can
optimize only simple loops, i.e loops without nested control flow structure. In our future
work we intend to do automatic loop optimization using data and control flow analysis.
Also we will optimize many more loops including the ones that involve nested control
structures. With most programs spending about 80% of their time in loops, loop
optimization has high performance impact.

Currently we do not guard function returns in special cases (see Section 3.7.1). We can
improve this by extending to functions that do not have any arrays on the stack. Also,
currently we do not trace some functions (see Section 3.7.2). We can safely extend this to
functions that only do store operations on local variables (non-pointer) on the current stack
frame.

Currently we synchronize the two threads at each basic block. We plan to reduce this
synchronization by using a circular buffer of targets, so that threads synchronize only at
program exploit points.

In our current implementation, we layout all code belonging to Poriginal in one contiguous
memory and all code belonging to Pshadow in the other. However, when the original program
is executing a function Foriginal ∈ Poriginal, the shadow thread is executing Fshadow ∈ Pshadow.

We can utilize this spatial locality and layout code such that Foriginal is always adjacent to

 53

Fshadow. This optimization reduces page faults and improves performance for short-lived
programs.

6.2 Security enhancement

In the current work, we have a problem if the original program generates an address that
accesses the shadow memory. With kernel level thread support, we could solve this
problem by guarding the address range accessed by each thread.

We plan to handle control based taint propagation by means of a tainted program counter
[17]. Currently we do not handle denial of service attacks; we intend to tackle this issue as
well in our future work.

 54

APPENDIX A: Sample code

1. Sample x86 code for fall-through block:

Input code:

8804a116 <__pthread_setschedparam$$z0515>:
8804a116: 83 c4 10 add $0x10,%esp

8804a119 <__pthread_setschedparam$$z26747>:
8804a119: 31 c0 xor %eax,%eax
8804a11b: eb a9 jmp 8804a0c6
<__pthread_setschedparam$$z26748>

Original + Instrumented:

880a78c2 <__pthread_setschedparam_clone$$z32031>:
880a78c2: 9c pushf
880a78c3: c7 05 c4 80 04 08 fa movl $0x881ef7fa,0x80480c4
880a78ca: f7 1e 88

880a78cd <__pthread_setschedparam_clone$$z153978>:
880a78cd: 81 3d c4 80 04 08 00 cmpl $0x0,0x80480c4
880a78d4: 00 00 00
880a78d7: 75 f4 jne 880a78cd
<__pthread_setschedparam_clone$$z153978>

880a78d9 <__pthread_setschedparam_clone$$z153977>:
880a78d9: 9d popf
880a78da: 83 c4 10 add $0x10,%esp

880a78dd <__pthread_setschedparam_clone$$z32032>:
880a78dd: 9c pushf
880a78de: c7 05 c4 80 04 08 23 movl $0x881ef823,0x80480c4
880a78e5: f8 1e 88

880a78e8 <__pthread_setschedparam_clone$$z153980>:
880a78e8: 81 3d c4 80 04 08 00 cmpl $0x0,0x80480c4
880a78ef: 00 00 00
880a78f2: 75 f4 jne 880a78e8
<__pthread_setschedparam_clone$$z153980>

880a78f4 <__pthread_setschedparam_clone$$z153979>:
880a78f4: 9d popf
880a78f5: 31 c0 xor %eax,%eax
880a78f7: e9 7e fe ff ff jmp 880a777a
<__pthread_setschedparam_clone$$z32023>

Shadow code:

881ef7fa <__pthread_setschedparam_clone_clone$$z63387>:
881ef7fa: 9c pushf

881ef7fb <__pthread_setschedparam_clone_clone$$z95168>:
881ef7fb: 81 3d c4 80 04 08 00 cmpl $0x0,0x80480c4
881ef802: 00 00 00
881ef805: 74 f4 je 881ef7fb
<__pthread_setschedparam_clone_clone$$z95168>

881ef807 <__pthread_setschedparam_clone_clone$$z95167>:

 55

881ef807: 50 push %eax
881ef808: 8b 05 c4 80 04 08 mov 0x80480c4,%eax
881ef80e: 89 05 c8 80 04 08 mov %eax,0x80480c8
881ef814: 58 pop %eax
881ef815: c7 05 c4 80 04 08 00 movl $0x0,0x80480c4
881ef81c: 00 00 00
881ef81f: 9d popf
881ef820: 83 c4 10 add $0x10,%esp

881ef823 <__pthread_setschedparam_clone_clone$$z63388>:
881ef823: 9c pushf

881ef824 <__pthread_setschedparam_clone_clone$$z95170>:
881ef824: 81 3d c4 80 04 08 00 cmpl $0x0,0x80480c4
881ef82b: 00 00 00
881ef82e: 74 f4 je 881ef824
<__pthread_setschedparam_clone_clone$$z95170>

881ef830 <__pthread_setschedparam_clone_clone$$z95169>:
881ef830: 50 push %eax
881ef831: 8b 05 c4 80 04 08 mov 0x80480c4,%eax
881ef837: 89 05 c8 80 04 08 mov %eax,0x80480c8
881ef83d: 58 pop %eax
881ef83e: c7 05 c4 80 04 08 00 movl $0x0,0x80480c4
881ef845: 00 00 00
881ef848: 9d popf
881ef849: 09 c0 or %eax,%eax
881ef84b: e9 8c fd ff ff jmp 881ef5dc
<__pthread_setschedparam_clone_clone$$z63379>

2. Sample x86 code for conditional branch block:

Input code:

88048598 <http_send_file$$z0071>:
88048598: 83 c4 10 add $0x10,%esp
8804859b: 89 45 ec mov %eax,0xffffffec(%ebp)
8804859e: 85 c0 test %eax,%eax
880485a0: 0f 88 59 01 00 00 js 880486ff <http_send_file$$z0088>

880485a6 <http_send_file$$z0072>:
880485a6: 50 push %eax
880485a7: ff 75 08 pushl 0x8(%ebp)
880485aa: ff 75 0c pushl 0xc(%ebp)
880485ad: 6a ff push $0xffffffff
 …………………

880486ff <http_send_file$$z0088>:
880486ff: 83 ec 0c sub $0xc,%esp
88048702: ff 75 08 pushl 0x8(%ebp)
88048705: 68 48 c7 42 88 push $0x8842c748
8804870a: 6a 00 push $0x0
8804870c: 68 5b c7 42 88 push $0x8842c75b
88048711: 68 93 01 00 00 push $0x193
88048716: eb da jmp 880486f2 <http_send_file$$z26704>

Original + Instrumented:

880a358f <http_send_file_clone$$z31556>:
880a358f: 9c pushf
880a3590: c7 05 c4 80 04 08 51 movl $0x881e9351,0x80480c4
880a3597: 93 1e 88

 56

880a359a <http_send_file_clone$$z153150>:
880a359a: 81 3d c4 80 04 08 00 cmpl $0x0,0x80480c4
880a35a1: 00 00 00
880a35a4: 75 f4 jne 880a359a
<http_send_file_clone$$z153150>

880a35a6 <http_send_file_clone$$z153149>:
880a35a6: 9d popf
880a35a7: 83 c4 10 add $0x10,%esp
880a35aa: 89 45 ec mov %eax,0xffffffec(%ebp)
880a35ad: 85 c0 test %eax,%eax
880a35af: 0f 88 d6 03 00 00 js 880a398b
<http_send_file_clone$$z31576>

880a35b5 <http_send_file_clone$$z31557>:
880a35b5: 9c pushf
880a35b6: c7 05 c4 80 04 08 8d movl $0x881e938d,0x80480c4
880a35bd: 93 1e 88

880a35c0 <http_send_file_clone$$z153152>:
880a35c0: 81 3d c4 80 04 08 00 cmpl $0x0,0x80480c4
880a35c7: 00 00 00
880a35ca: 75 f4 jne 880a35c0
<http_send_file_clone$$z153152>

880a35cc <http_send_file_clone$$z153151>:
880a35cc: 9d popf
880a35cd: 50 push %eax
880a35ce: ff 75 08 pushl 0x8(%ebp)
880a35d1: ff 75 0c pushl 0xc(%ebp)
880a35d4: 6a ff push $0xffffffff

………………

880a398b <http_send_file_clone$$z31576>:
880a398b: 9c pushf
880a398c: c7 05 c4 80 04 08 4f movl $0x881e994f,0x80480c4
880a3993: 99 1e 88

880a3996 <http_send_file_clone$$z153190>:
880a3996: 81 3d c4 80 04 08 00 cmpl $0x0,0x80480c4
880a399d: 00 00 00
880a39a0: 75 f4 jne 880a3996
<http_send_file_clone$$z153190>

880a39a2 <http_send_file_clone$$z153189>:
880a39a2: 9d popf
880a39a3: 83 ec 0c sub $0xc,%esp
880a39a6: ff 75 08 pushl 0x8(%ebp)
880a39a9: 68 48 c7 42 88 push $0x8842c748
880a39ae: 6a 00 push $0x0
880a39b0: 68 5b c7 42 88 push $0x8842c75b
880a39b5: 68 93 01 00 00 push $0x193
880a39ba: eb 92 jmp 880a394e
<http_send_file_clone$$z31574>

Shadow code:

881e9351 <http_send_file_clone_clone$$z62912>:
881e9351: 9c pushf

881e9352 <http_send_file_clone_clone$$z94338>:

 57

881e9352: 81 3d c4 80 04 08 00 cmpl $0x0,0x80480c4
881e9359: 00 00 00
881e935c: 74 f4 je 881e9352
<http_send_file_clone_clone$$z94338>

881e935e <http_send_file_clone_clone$$z94337>:
881e935e: 50 push %eax
881e935f: 8b 05 c4 80 04 08 mov 0x80480c4,%eax
881e9365: 89 05 c8 80 04 08 mov %eax,0x80480c8
881e936b: 58 pop %eax
881e936c: c7 05 c4 80 04 08 00 movl $0x0,0x80480c4
881e9373: 00 00 00
881e9376: 9d popf
881e9377: 83 c4 10 add $0x10,%esp
881e937a: 89 45 ec mov %eax,0xffffffec(%ebp)
881e937d: 81 3d c8 80 04 08 4f cmpl $0x881e994f,0x80480c8
881e9384: 99 1e 88
881e9387: 0f 84 c2 05 00 00 je 881e994f
<http_send_file_clone_clone$$z62932>

881e938d <http_send_file_clone_clone$$z62913>:
881e938d: 9c pushf

881e938e <http_send_file_clone_clone$$z94340>:
881e938e: 81 3d c4 80 04 08 00 cmpl $0x0,0x80480c4
881e9395: 00 00 00
881e9398: 74 f4 je 881e938e
<http_send_file_clone_clone$$z94340>

881e939a <http_send_file_clone_clone$$z94339>:
881e939a: 50 push %eax
881e939b: 8b 05 c4 80 04 08 mov 0x80480c4,%eax
881e93a1: 89 05 c8 80 04 08 mov %eax,0x80480c8
881e93a7: 58 pop %eax
881e93a8: c7 05 c4 80 04 08 00 movl $0x0,0x80480c4
881e93af: 00 00 00
881e93b2: 9d popf
881e93b3: 50 push %eax
881e93b4: ff 75 08 pushl 0x8(%ebp)
881e93b7: ff 75 0c pushl 0xc(%ebp)
881e93ba: 6a 00 push $0x0

………………………

881e994f <http_send_file_clone_clone$$z62932>:
881e994f: 9c pushf

881e9950 <http_send_file_clone_clone$$z94378>:
881e9950: 81 3d c4 80 04 08 00 cmpl $0x0,0x80480c4
881e9957: 00 00 00
881e995a: 74 f4 je 881e9950
<http_send_file_clone_clone$$z94378>

881e995c <http_send_file_clone_clone$$z94377>:
881e995c: 50 push %eax
881e995d: 8b 05 c4 80 04 08 mov 0x80480c4,%eax
881e9963: 89 05 c8 80 04 08 mov %eax,0x80480c8
881e9969: 58 pop %eax
881e996a: c7 05 c4 80 04 08 00 movl $0x0,0x80480c4
881e9971: 00 00 00
881e9974: 9d popf
881e9975: 83 ec 0c sub $0xc,%esp
881e9978: ff 75 08 pushl 0x8(%ebp)
881e997b: 68 00 00 00 00 push $0x0

 58

881e9980: 6a 00 push $0x0
881e9982: 68 00 00 00 00 push $0x0
881e9987: 68 00 00 00 00 push $0x0
881e998c: e9 68 ff ff ff jmp 881e98f9
<http_send_file_clone_clone$$z62930>

 59

REFERENCES
[1] Adobe Security Advisory: Acrobat and Adobe Reader plug-in buffer overflow, August 16th,

2005. http://www.adobe.com/cfusion/knowledgebase/index.cfm?id=321644
[2] CERT/CC Statistics 1988-2006, http://www.cert.org/stats/
[3] http://www.pcworld.com/article/id,131049-c,gpsreceivers/article.html
[4] Arash Baratloo, Navjot Singh, and Timothy Tsai. “Transparent Run-Time Defense Against Stack

Smashing Attacks”, in Proceedings of 2000 USENIX Annual Technical Conference, San Diego,
California, 2000.

[5] Walter Chang and Calvin Lin. “Guarding Programs against Attacks with Dynamic Data Flow Analysis”,
in 7th Annual Austin CAS International Conference, February, 2005.

[6] D. Brent Chapman. “Network (In)Security Through IP Packet Filtering”, in Proceedings of the Third
USENIX UNIX Security Symposium, pages 14-16, Baltimore, MD, September 1992.

[7] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. “Non-Control-Data
Attacks Are realistic Threats”, in USENIX Security Symposium, Baltimore, MD, August 2005.

[8] Tzi-Cker Chiueh and Fu-Hau Hsu. “RAD: A Compile-Time Solution to Buffer Overflow Attacks”, in
Proceedings of the 21th International Conference on Distributed Computing Systems (ICDCS),
Phoenix, Arizona, April 2001.

[9] Crispin Cowan, Matt Barringer, Steve Beattie, and Greg Kroah-Hartman. “FormatGuard: Automatic
Protection From printf Format String”, in Proceedings of the10th USENIX Security Symposium,
Washington, D.C., August 2001.

[10] Hiroaki Etoh and Kunikazu Yoda. “Protecting from stack-smashing attacks”, IBM Research

Division, Tokyo Research Laboratory, June 2000.[http://www.trl.ibm.com/projects/security/ssp/]

[11] Cova M Felmetsger, V Banks, and G Vigna. “Static Detection of Vulnerabilities in x86 Executables”, in
22nd Annual Computer Security Applications Conference (ACSAC'06), Shanghai, September 2006.

[12] Alex Ho, Michael Fetterman , Christopher Clark , Andrew Warfield , Steven Hand. “Practical taint-based
protection using demand emulation”, in Proceedings of the 2006 EuroSys conference, Leuven,
Belgium, April 2006.

[13] Jingfei Kong, Cliff C Zou, and Huiyang Zhou. “Improving software security via runtime instruction-level
taint checking”, in proceedings of the 1st workshop on Architectural and system support for improving
software dependability, San Jose, California, pages 18-24, 2006 .

[14] Zhenkai Liang , R. Sekar. “Automatic Generation of Buffer Overflow Attack Signatures: An Approach
Based on Program Behavior Models”, In Proceedings of the 21st Annual Computer Security
Applications Conference, p.215-224, December 2005.

[15] Stuart Moore and SecurityGlobal.net. “Security Vulnerabilities”, in NCC-AIIM Seminar 2004
Presentations. http://www.nccaiim.org/Education/Proceedings/2004/7-Moore-vulnerabilities.ppt

[16] Tipp Moseley, Alex Shye, Vijay Janapa Reddi, and Dirk Grunwald. “Shadow Profiling: Hiding
Instrumentation Costs with Parallelism”, in Proceedings of the International Symposium on Code
Generation and Optimization (CGO), March 2007.

[17] James Newsome and Dawn Song. “Dynamic Taint Analysis: Automatic Detection, Analysis, and
Signature Generation of Exploit Attacks on Commodity Software”, in Proceedings of the 12th Annual
Network and Distributed System Security Symposium (NDSS ’05), San Diego, California, February
2005.

[18] Manish Prasad, and Tzi-cker Chiueh. “A Binary Rewriting Defense against Stack Based Overflow
attacks”, in Proceedings of the USENIX. Annual Technical Conference, San Antonio, TX, June 2003.

[19] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou and Youfeng Wu. “LIFT: A Low-
Overhead Practical Information Flow Tracking System for Detecting Security Attacks”, in Proceedings
of the 39th Annual IEEE/ACM International Symposium on Microarchitecture, pages: 135-148, 2006.

[20] Mohan Rajagopalan, Matti A Hiltunen, Trevor Jim and Richard D Schlichting. “Authenticated System
Calls”, in IEEE International Symposium on Dependable Systems and Networks, June 2005.

[21] Benjamin Schwarz, Saumya Debray, Gregory Andrews, and Matthew Legendre. “PLTO: A Link-Time
Optimizer for the Intel IA-32 Architecture”, in Proceedings of 2001 Workshop on Binary Rewriting (WBT-
2001), September 2001.

 60

[22] Weidong Shi, Hsien-Hsin S. Lee, Laura Falk and Mrinmoy Ghosh. “An Integrated Framework for
Dependable and Revivable Architectures Using Multicore Processors”, in Proceedings of the 33rd
International Symposium on Computer Architecture, pages 102-113, Boston, MA, June 2006.

[23] G. Edward Suh, Jae W. Lee , David Zhang , Srinivas Devadas. “Secure program execution via dynamic
information flow tracking”. In Proceedings of the 11th international conference on Architectural support
for programming languages and operating systems, Boston, MA, October 2004.

[24] Cheng W, Qin Zhao, Bei Yu, and Hiroshige.S. “TaintTrace: Efficient Flow Tracing with Dynamic Binary
Rewriting”, in 11th IEEE Symposium on Computers and Communications (ISCC'06), Pula-Cagliari,
Sardinia, Italy, June 2006.

[25] P Wagle, and C Cowan. “Stackguard: Simple stack smash protection for GCC”, in Proceedings of the
GCC Developers Summit, pages 243–256, 2003.

