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ABSTRACT 
 

 

 
Time and again data privacy and computer security are severely threatened by software 
vulnerabilities. With more and more computing devices getting network connectivity, the 
exploitation of vulnerable programs by remote users has become a ubiquitous issue. While 
tremendous effort is carried out to counter software exploitation, no single approach 
developed so far has been able to satisfactorily provide solid security along with efficient 
performance. Taint analysis, which is one of the approaches to track information flow to 
counter program exploits, has shown a promise. In this thesis work, we propose a novel 
implementation of fine-grained dynamic vulnerability detection by parallelizing the actual 
computation and taint computation and tapping the power of idle cores on multicore 
machines to mitigate performance overheads. We propose a paradigm of secure and 
efficient computing using many cores and use binary rewriting to empower a program with 
parallelized taint monitoring capability. The challenge lies in minimizing the thread 
synchronization. We demonstrate the effectiveness of our approach in protecting against 
various attacks while offering an order of magnitude performance improvement compared 
to state of the art approaches.  
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CHAPTER 1 

1 INTRODUCTION 
 

1.1 Background 

 
For a layman software user or a system administrator, the security advisory news from 
their trusted software vendor is often painful. In recent times it has become the norm to get 
such security advisories on a monthly basis. Most commonly used software, including a 
seemly innocuous text reader like Acrobat, is known to have been compromised [1]. 
According to statistics from Carnegie Mellon University's CERT (Computer Emergency 
Response Team), the number of reported vulnerabilities in software has increased nearly 
500% in two years (1999- 2001) [2] as shown in Figure 1. Hence it is imperative to find a 
trustable and efficient solution to this problem. 
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1.1.1 What is a vulnerable program? 

 
A vulnerable program is the one that has programming defect in it that can be exploited by 
an external entity or a malicious user. A vulnerable program is different from a virus or a 
malicious program in that the program by itself is not compromised. Program 
vulnerabilities arise at various stages of software development from requirement analysis, 

Figure 1: Increase of vulnerabilities in the last decade 
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design, and coding to maintenance and upgrades. Because of the complexity of software, 
complete elimination of program vulnerabilities is nearly impossible. 
 

1.1.2 Classification of vulnerable programs 

 
While violation of security policies that would constitute an intrusion can happen in various 
ways [15], over 50% of the vulnerabilities arise from buffer overflows and another 40% 
arise from input validation error [15]. A common characteristic of all successful attacks is 
the ability to change the flow of control, which lets the attacker execute arbitrary code. 
Buffer overflow vulnerability arises because of the failure to properly check the length of 
data against the size of a data storage object. Buffer overflow vulnerability can be 
classified as stack-based or heap-based depending on the location of the vulnerability. 
Input validation error happens because of the failure to verify the contents of user-given 
data. Due to input validation error a malicious user-input can be passed to sensitive 
functions or system calls thereby opening a back door for an attacker. Below we discuss 
each one of them in detail. 
 

1.1.2.1 Stack-based vulnerability  

 
In a stack-based attack, user-given data is read into a local buffer allocated on the stack. If 
too much data is written into the buffer, it can overwrite the return address. Well-crafted 
data can overwrite the function return address with the address of injected code and divert 
execution to malicious code on function return.  
 
A common buffer overflow attack is shown in Figure 2. A local buffer allocated on the stack 
is overwritten with ‘A’s and eventually the return address is overwritten, in this case with 
the return address 0xbdfec0e0. Similar techniques can be used to divert program 
execution by overwriting the old base pointer, a function pointer present as a local 
variable, a function pointer present as a parameter, a long jump buffer present as a local 
variable, and a long jump buffer present as a function parameter. 
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AAAAAA 
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Figure 2: Stack-based vulnerability 
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1.1.2.2 Heap-based vulnerability 

 
In a heap-based attack, user given data is read into a local buffer allocated on the 
heap/BSS (Block Started Symbol)/data section. If too much data is written into the buffer 
without proper bounds check, it can possibly overwrite some function pointer present in 
the heap/BSS/data section. A well-crafted attack can overwrite a function pointer with the 
address of injected code and divert execution to malicious code.  
 
A common heap buffer overflow attack is shown in Figure 3. A buffer allocated on the 
heap is overwritten with ‘A’s and eventually a function pointer is overwritten, in this case 
with the address 0xbfef00e0. Similar techniques can be used to divert program execution 
by overwriting a long jump buffer present on the heap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.2.3 Input validation error 

 
A classic example of an input validation error is a Format String attack. The use of user 
input as a format string parameter to the printf class of functions can incur security 
problems [9]. Sensitive data from memory regions can be read by %s and %x format 
specifiers and %n can be used to write data to memory locations. Similarly, passing user 
input data to system calls like popen() and execve() can execute any arbitrary 
command. 

Buffer on heap 

Function 

pointer on heap 

AAAAAAAA

AAAAAAAA 

0xbfef00e0 

Figure 3: Heap-based vulnerability 
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Wrong usage: 

 

int func (char *user) 
{ 

printf (user); 
} 

 Correct usage: 
 

int func (char *user) 
{ 

printf ("%s", user); 
} 

 

1.2 Related work 

 
Vulnerability analysis is the process of determining if a system contains defects that could 
be exploited by an attacker to compromise the security of the system or that of the 
platform the system runs on. Numerous approaches have been tried and tested for taint 
analysis which we briefly discuss below. 

1.2.1 Vulnerability detection methodologies 

 
Based on the accuracy with which vulnerability analysis is carried out, we can classify 
them as coarse-gained analyses and fine-grained analyses. Alerting a non-exploit as an 
exploit is regarded as a false positive. Failure to alert an exploit is regarded as a false 
negative. 
 

1.2.1.1  Coarse-grained taint analysis 

 
One of the common approaches taken to prevent intrusion is to block network ports or 
filter network packets [6]. These approaches do not cause any overhead on the program, 
but they suffer from high numbers of false positives as well as false negatives.  
 
Another approach in the coarse-grained class is to add function prologue and epilogue 
(see Chiueh et al. [8]). In this approach, the boundary of every function in the input 
program is identified, and a sequence of protection instructions is inserted. Similarly, 
StackGuard [25] places a “canary” word next to (prior to) the return address on the stack. 
Once the function is done, the new code from compiler first checks to make sure that the 
canary word is unmodified and intact before jumping to the return address. However, 
these approaches address only a small class of vulnerabilities and also they require 
program recompilation. IBM’s GCC (GNU Compiler Collection) extension [10] reorders 
local variables to place buffers after pointers to protect function pointers from stack-
smashing attacks. This approach however cannot catch any heap-based attacks. 
 
Another approach is to carry out static analysis on the source code to detect 
vulnerabilities. This, however, necessitates availability of source code, which is not 
commonly available for commodity software. Also assembly code generated from source 
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can be significantly different compared to the actual source due to compiler optimizations 
like instruction reordering. This opens up a space where vulnerabilities not present in the 
original source code may appear in the optimized binary and vice versa, leading to higher 
false positives and false negatives. Thus source code analysis may not provide as much 
security guarantees as binary analysis. 
 

1.2.1.2 Fine-grained taint analysis 

 
The discussion above clearly indicates the need for more accurate and reliable 
techniques. In fine-grained taint analysis approach, essentially every operation performed 
by the program is tracked and is inspected for malicious behavior. In this approach, data 
originating from user, file, and network ports is marked as untrusted (tainted). The 
untrusted data is tracked from its point of origin to the point of possible exploit. Any 
anomalous usage of untrusted data, for example as an argument to a sensitive system 
call, the address of an indirect call, etc, is flagged as an error. Because the fine-grained 
approach makes no assumptions about the runtime behavior of program, it has fewer false 
negatives and false positives. However, it is expensive because potentially every 
instruction has to be tracked, because doing so would require being able to solve the 
halting problem. 
 
Fine-grained analysis can be carried out in two ways: 
 
Static analysis: In this case the binary is disassembled and symbolic execution is 
performed to detect the class of vulnerabilities consisting of the use of tainted data in 
sensitive operations [11]. However this approach faces difficulties involved in getting 
correct disassembly, obtaining correct flow graphs, pointer analysis, resolving indirect 
jump targets, and symbolic execution of loops. Also, static analysis cannot possibly handle 
all programs. 
 
 
Dynamic or Runtime analysis: Dynamic taint analysis involves tracking the use of 
untrusted data during program execution. Currently there are three ways to track taint 
information [24].  
 

i) Interpreter-based approach: Some of the interpreted languages like Perl 
have a built-in facility to track untrusted data. While in this mode, Perl takes 
special precautions called taint checks to prevent both obvious and subtle 
traps. Some of these checks are reasonably simple, such as verifying that 
path directories aren't writable by others. Complex ones involve not 
allowing a program to use data derived from outside the program to affect 
something else outside the program. All command line arguments, 
environment variables, locale information, results of certain system calls 
(readdir(), readlink(), the variable of shmread(), the messages 

returned by msgrcv(), the password, and shell fields returned by the 

getpwxxx() calls), and all file input are marked as "tainted". Tainted data 
may not be used directly or indirectly in any command that invokes a sub-
shell, or in any command that modify files, directories, or processes.  
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TaintCheck [17] runs a compiled program in interpreted fashion to track 
tainted data. In their paper [17], Newsome and Song perform binary 
rewriting at runtime and run a program in an emulated environment. This 
allows them to monitor and control program’s execution at fine-gained level. 
On reaching each basic block, TaintCheck translates the block of x86 code 
into its own RISC (Reduced Instruction Set Computers) like instruction set 
called UCode. TaintCheck, then instruments Ucode block to incorporate 
taint analysis code. It then converts Ucode back to x86 and executes the 
block. This approach shows a slowdown of about 30 times. 

 
ii) Architecture-based approach: With custom hardware support, the 

processor can carry out taint computation for every instruction it executes. 
In their paper [23] Edward Suh et al. let the operating system identify a set 
of input channels as spurious, and make processor track all information 
flows from those inputs. If spurious values are used for an operation, a 
checker generates a security trap. When the processor generates a 
security trap, a handler checks if the trapped operation is allowed or not. 
This approach shows a slowdown of 5.5 times. 

 
iii) Instrumentation-based approach: In this approach, the program is 

instrumented to dynamically trace the propagation of taint data. In their 
paper [13], Cheng et al. propose a frame work consisting of a configuration 
file to specify a security policy, a shadow memory to maintain taint 
information, and a program monitor to perform instrumentation and to 
intercept system calls. The program monitor inserts additional code for 
maintaining, propagating, and checking taint status before executing the 
code.  

 
In their paper [19], Qin et al. propose a Low-Overhead Practical Information 
Flow Tracking System (LIFT). LIFT minimizes run-time overhead by 
exploiting dynamic binary instrumentation. LIFT aggressively eliminates 
unnecessary dynamic information flow tracking, coalesces information 
checks, and efficiently switches between target programs and instrumented 
information flow tracking code. LIFT exploits the fact that for most server 
applications, the majority of tag propagations are from safe data sources to 
safe destinations.  

 

 

These approaches have various drawbacks. The interpreter-based approach works only 
on some languages. TaintCheck [17] takes a little different approach of converting a 
program written for x86 to RISC, but, it incurs significant overhead due to interpretive 
execution and runtime instrumentation. Also, runtime analysis leaves less scope for 
optimizations. The 30-40 times slowdown reported by TaintCheck [17] means it cannot be 
deployed in production.  
 
The architecture-based approach needs processor support, which is currently not 
available from any vendor, and further it needs significant operating system support and 
has less flexibility in security configurations. This means we cannot expect architecture-
based approaches any time soon, and also users are unlikely to adopt this approach if 
they cannot have application-specific security configurations. 
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The instrumentation-based approach incurs one-time instrumentation overhead and a 
much higher runtime tracing overhead on each run. However, instrumentation-based 
approach shows a promising future since there is a wide scope for static analysis. Also, 
contemporary research on instrumentation [16] proposes low overhead instrumentation 
techniques. Our technique falls in to this category but has a different approach to the 
implementation. 
 

1.3 Our contribution 

 
In this thesis, we propose a novel approach to detect program exploitation without 
prohibitive performance overheads. The key idea is to delegate to a separate concurrently 
executing thread (which we call a shadow thread), the work of tracking untrusted data from 
its point of origin to the point of exploit in a program. Since we don’t run the original 
program in interpretive fashion or make it keep track of taint information, the original 
program does not have the runtime overheads seen in other approaches. Further, since 
more and more processors are equipped with multicores and most of the software is not 
written to fully utilize the computing power of multicore machines, we are likely to have 
some idle cores. Also, in view of the hardware trends showing addition of just not tens, or 
hundreds but thousands of cores, our idea to utilize some idle cores for vulnerability 
detection goes a long way to shaping the future of computing. In addition to this, the 
shadow thread performs fine-grained taint tracking and hence provides high security 
guarantees. Because of runtime taint tracking, our approach has few false positives.  
 
Our approach uses already established facts like shadow memory, memory tagging, and 
taint propagation [16, 23, and 17] for vulnerability detection. However, we do so in a 
completely new way by means of a shadow execution running on an idle core. We use 
static binary rewriting, which enables us do optimizations (see Section 3.7) that are hard if 
not impossible with dynamic instrumentation. Because of taint checking by a concurrent 
thread and the static optimizations, we incur low runtime overhead. 
 
We demonstrate the effective usage of our approach for buffer overflow and format string 
attack detection on real applications. The preliminary performance results show that there 
is an order of magnitude performance improvement compared to TaintCheck [17] and we 
better LIFT [19] in some cases. The rest of this document is organized in the following 
manner: Chapter 2 provides an overview of the entire system; Chapter 3 describes the 
design and implementation details; Chapter 4 presents the security assurances that we 
can make; Chapter 5 evaluates performance and finally Chapter 6 presents conclusions 
and discusses future work. 
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CHAPTER 2 

2 SYSTEM OVERVIEW  
 

In this chapter, we discuss the key characteristics of our system and provide an overview 
of the components that make our system. We have developed a proof of concept tool to 
establish the practical usability and reliability of our approach. Our approach of taint 
analysis has the characteristics described below, some of which are also seen in other 
state of the art taint analyzers like TaintCheck [17], and TaintTrace [24]. 

 

2.1 Characteristics of our approach 

 

2.1.1 Practical usability due to better performance 

 
Unlike other instrumentation based approaches, our tool does not require the original 
program itself to compute the taint values for each operation. Instead we spawn a new 
thread, which runs on an idle core, to perform taint computation. Hence our approach 
offers better performance. 

2.1.2 Reliable security  

 
Like some of the others, our approach computes and propagates the trustworthiness of 
data through every instruction executed by the program at run time. This fine-grained 
analysis offers high security guarantees in detecting all kinds of buffer overflow attacks 
that lead to change of control, format string attacks, input validation errors, etc. Because of 
the flexible and configurable security, extending the current system to handle other kinds 
of attacks is simple.  

2.1.3 Source code independence 

 
Our approach works by disassembling a binary program. We do not need source code, 
and we do not need any special compilation for our analysis. This offers a great practical 
benefit on current and legacy software. 

2.1.4 Language independence 

 
Our approach currently works by disassembling the ELF (Executable Linkable Format) x86 
binaries. Hence the approach is independent of the source programming language. 
Further we can extend the current tool to support other architectures. 
 

2.1.5 Hardware independence 
 
Our project is motivated by the fact that many, if not all, applications are finding it difficult 
to leverage the full advantage of multicore processors because most applications are 
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interactive and they inherently have some sequential components. Currently most of the 
processors are dual core and the hardware trend shows processors getting 8 or 16 cores 
in near future and 1000s of cores not in the too distant future. Hence we should be able to 
schedule our shadow thread on an idle core. Other than multicore, we do not require any 
hardware support (unlike [10, 11], which heavily depend an architectural support for taint 
analysis).  

2.1.6 Operating system independence 

 
We do not require any support from or modifications to the operating system. We mark the 
origin of taint data by identifying system calls like read(), recvfrom(), etc.  

 

2.2 Schematic diagram  

 
Figure 4 presents the architecture of our taint analyzer. Given an input binary Pinput, we do 
the following: 
 

1. The memory area M of Pinput is augmented with an additional memory region M’ such 

that for each original memory byte Mw ∈ , there is a corresponding tag word 

')( Mw ∈τ . This is straightforward to do by rewriting the binary to incorporate a new 

data section. The tag word )(wτ  contains the taint value associated with w. More 

specifically if w is either copied or arithmetically computed from an untrusted input, 

then 1)( =wτ , otherwise 0)( =wτ .  

 

2. The program Pinput is rewritten to consist of two interacting threads: Poriginal, which 
carries out the actual computations of the original program, and Pshadow which shadows 
the computation of Poriginal but computes the trust values instead of actual data values. 
Both threads share the same address space; this allows them to communicate via 
shared memory. The shadow thread should be always behind the original thread so 
that shadow thread can perform the taint computations on behalf of original program. 
However, shadow program cannot remain too far behind the original program since 
before it computes the taint and asserts an exploit, the original program might have 
already been exploited. In the current configuration we decided to keep the shadow 
thread one basic block behind the original program (see Chapter 3 for exceptions). 
However this is a configurable option and we can trade off security vs. performance.  

 

3. We create Pshadow from Pinput by replacing the actual computation with equivalent taint-
computing instructions. We regard the program points that originate untrusted data as 
“Taint Sources” and the program points beyond which the attacker has complete 
control over the program as “Taint Sinks”. The shadow has code to mark the tainted 
memory regions at taint sources and it has guards that check whether the system is 
about to be compromised around the potential taint sinks like return address, function 
pointers, sensitive system call arguments, format string handling functions, etc. We 
add code to Poriginal and Pshadow to synchronize at conditional branches and indirect 
control transfers so that Poriginal can communicate the transfer targets to Pshadow. This is 
required since Pshadow does not compute values and hence it does not have the 
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information it needs to follow Poriginal’s control behavior. If we want to audit return 
instruction or indirect jumps etc, we also add code to delay Poriginal at these points until 
Pshadow completes the security checks. 

 

4. Finally, we optimize Poriginal and Pshadow to remove unnecessary computation and 
synchronization overheads and the two threads are packaged as a single executable 
that is invoked in the same way as the original program. 
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CHAPTER 3 

3 DESIGN AND IMPLEMENTATION 
 
We use the PLTO1 binary rewriting system to implement our prototype taint checker. Input 
to PLTO is a statically linked x86 relocatable in ELF format. We assume that the 
relocatable has information about procedures, symbols, and relocations as per ELF 
format. We consider this to be a reasonable assumption since we are not trying to deal 
with virus code, but instead trying to catch vulnerabilities that exist in commodity software. 
 
The components of our taint analyzer are shown in Figure 4. Below we describe the steps 
in creating a self-protecting binary from the original program’s binary. 

3.1 Disassembling the program 

 
An ELF format statically linked relocatable is fed to PLTO (Pentium Link Time Optimizer) 
[21] to carry out accurate program disassembly. PLTO is a binary rewriting system that 
modifies an object program to improve some aspect of its behavior, such as execution 
time, code size, or security. PLTO is developed for the Intel IA-32 architecture to handle 
complexities like large number of op-codes, addressing modes, and variable-length 
instructions. PLTO first disassembles all segments containing code, creates a single 
instruction stream, and constructs an interprocedural control flow graph for the entire 
program. It uses relocation information and knowledge about instruction semantics to 
guide these steps. The output of the disassembly stage is a control flow graph with 
information about functions, basic blocks, and control transfer edges. 

3.2 Creating shadow memory 

 
The next step is to augment the program with a shadow memory as described in Chapter 
2. To do this we create a new section called “.shadow” in ELF with size |M|/2, where M 
is the total addressable virtual memory. Also during program assembly we allocate a new 
segment for the shadow section. With this configuration, for every memory 

location Mw∈ , we can compute the corresponding shadow memory location ')( Mw ∈τ  

in the shadow region by subtracting a constant offset from w. In other words, 

Kww −=)(τ , where K is a constant during execution of a program. Typically K = |M|/2. 

Figure 5(a) below shows the memory layout of a standard ELF format executable in Linux 
and Figure 5(b) shows the program after augmenting it with a shadow memory region.  

                                                 
1
 PLTO (Pentium Link Time Optimizer) requires statically linked relocatable binaries in order to have all relocation 

information. 
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3.3 Building the shadow thread  

 
Following the creation of shadow section, we need to create a shadow thread that carries 
out the task of taint analysis.  

3.3.1 Cloning the program to produce the shadow thread 

 
The first step toward building a shadow program is whole program cloning. Given the 
original program Poriginal, , we build Pshadow. The program cloner is built using the facilities 
provided by PLTO to clone functions. A linear sweep over all functions in Poriginal creates 
clone functions. With this scheme, inter-procedural edges point back to the functions in 
Poriginal (as shown in Figure 6). However, by maintaining a one–to–one mapping between 
each function to its clone and each block to its clone, we can redirect the control edges to 
the corresponding shadow blocks (as shown in Figure 7). 

SHADOW MEMORY 

TEXT 

BSS 

HEAP 

KERNEL 

STACK 

DATA 

TEXT 
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HEAP 

KERNEL 

STACK 

DATA 

Figure 5(a): Original program Figure 5(b): Program with shadow memory 
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FUNCTION A’ 

 

FUNCTION B 

 

FUNCTION B’ 

Figure 7: Cloned functions with one-to-one mapping 

 

FUNCTION A 

 

FUNCTION A’ 

 

FUNCTION B 

 

FUNCTION B’ 

Figure 6: Cloned functions  
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3.3.2 Control flow imitation in shadow using synchronization 

 
As discussed previously, we need to keep Pshadow behind Poriginal. Remember that the 
shadow program has no information to imitate the control flow of the original program 
since it does not do actual computation. The thread synchronizer component of our tool 
handles this task. We use a global flag TARGET to achieve signaling between two threads. 
We do not use any system calls for synchronization since system calls are inherently 
expensive. 

 

 
BASIC BLOCK A 

 
BASIC BLOCK A’ 

 
BASIC BLOCK B 

 
BASIC BLOCK B’ 

Global TARGET 

Set(TARGET) 

while(TARGET); 

while(!TARGET); 

Reset(TARGET) 

while(!TARGET); 

Reset(TARGET) 

Figure 8: Thread synchronization for simple blocks 

1

2

3
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Let us assume that basic block A is the program entry point. The shadow program will 
have A’ as its entry point. We augment Pshadow and Poriginal as shown in Figure 8. Originally 
TARGET is set to zero. Following is the sequence of steps that happen at runtime: 
 
1. Poriginal finishes executing basic block A during which Pshadow is spinning waiting for the 

TARGET to be set. 
2. Poriginal sets TARGET and waits for it to be reset. (Arrow 1 in Figure 8 ) 
3. Pshadow observes TARGET being set (Arrow 2 in Figure 8), stops waiting and resets 

TARGET (Arrow 3 in Figure 8) 
4. Pshadow starts executing basic block A’. 
5. Poroginal observes TARGET being reset (Arrow 4 in Figure 8), stops waiting and starts 

executing basic block B. 
 

During step 4 and 5, the two threads are executing concurrently. Though the above 
example shows the basic case of synchronization, we need to handle more complex 
scenarios like conditional branches, jump tables, indirect jumps and indirect function calls. 
 

Handling branches: 

 
To handle conditional branches we augment Pshadow and Poriginal as shown in Figure 9. 
Assume that each basic block has a unique identifier. For example, the address of the first 
instruction of each block can serve as its unique identifier. The following sequence of 
steps happens at run time: 

 

1. Poriginal executes basic block A and branches to basic block C or B. 
2. If Poriginal branches to C, it sets TARGET = C’. If Poriginal branches to B, it sets TARGET 

= B’. In either case Poriginal waits for TARGET be reset. 
3. On entering A’, Pshadow copies TARGET to LocalTarget and resets TARGET so that 

Poriginal can proceed. 
4. After executing A’, Pshadow determines its next basic block by comparing the 

LocalTarget with C’. If they are same, it executes block C’; otherwise it executes 
block B’, thus imitating Poriginal ‘s execution.  

 
Because of the one-to-one mapping between the basic blocks in the original and shadow 
programs, we can statically determine the TARGET values to be set during program 
instrumentation. 
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Handling indirect jumps: 
 
To handle conditional branches we augment Pshadow and Poriginal as shown in Figure 10. 
Assume Poriginal has an indirect jump after basic block A. The following sequence of steps 
happens at run time: 

 

1. Poriginal executes basic block A and jumps to basic block B via an indirect jump. 
2. On entering basic block B, Poriginal sets TARGET to the first instruction of basic block B’.  
3. On entering basic block A’, Pshadow makes a local copy of the TARGET into 

LocalTarget and resets TARGET so that Poriginal can proceed. 
4. At the end of basic block A. Pshadow simply jumps to the address present in 

LocalTarget, which lands it in B’. 

 
 
 
 
Basic Block A 
 
 if (cond) 
     jmp BasicBlock C  

  while(!TARGET); 
 LocalTarget = TARGET 
 Reset(TARGET) 
 
Basic Block A’ 
 
 if (LocalTarget == C’) 
     jmp BasicBlock C’ 

Global TARGET 

 

 TARGET = B’ 
 while(TARGET); 
 
 
Basic Block B 

 

 while(!TARGET); 
 LocalTarget = TARGET 
 Reset(TARGET); 
 
Basic Block B’ 

 TARGET = C’ 
 while(TARGET); 
 
 
Basic Block C 

 

 while(!TARGET); 
 LocalTarget = TARGET 
 Reset(TARGET); 
 
Basic Block C’ 

 

Figure 9: Thread synchronization for conditional branches 
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Because of the one-to-one mapping between instructions, we can statically determine the 
TARGET values to be set during program instrumentation. 
 
We use the same technique for indirect function calls and jumps via jump tables. 

 

 
 

 

 

 

3.3.3 Spawning the Shadow thread 

 
Once the two synchronized threads are created, we need to add code to spawn two 
threads. We use the Pthreads (Portable Operating System Interface (POSIX) threads) 
library. However, before threads can be spawned, we need the program to set up some 
initial data structures. Hence we should not have Poriginal expect Pshadow to be behind it 
during this phase. Further, because these initialization routines may call some common 
functions like malloc(), we need these common routines to be available in 
nonsynchronized mode during program initialization and in synchronized mode after 

 
 
 
 
Basic Block A 
 
jmp [EAX]  

  while(!TARGET); 
 LocalTarget = TARGET 
 Reset(TARGET) 
 
Basic Block A’ 
 
 jmp [LocalTarget] 

Global TARGET 

 

 TARGET = address of B’s 
          first instruction  
 while(TARGET); 
 
 
Basic Block B 

 

 while(!TARGET); 
 LocalTarget = TARGET 
 Reset(TARGET); 
 
Basic Block B’ 

 

Figure 10: Thread synchronization for indirect jumps 
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initialization. We break this chicken and egg problem by maintaining one more copy of the 
program that does not have any synchronization code. Initially we run the 
nonsynchronized copy from the point of program entry until the program’s data structures 
are set ( _start, _init etc in Linux context). Once the initial data structures are set up, 
Poriginal spawns Pshadow. Poriginal then calls the main routine in the original program, and 
Pshadow calls the main routine in the shadow program. This is illustrated in Figure 11. 
 
 
 
 
 

 

_start 

_init 

Spawn( 
main_clone_clone) 
Call main_clone() 

main() 

main_clone() main_clone_clone() 

Nonsynchronized Poriginal Synchronized Poriginal Pshadow 

Figure 11: Shadow-thread spawning  
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A key aspect of shadow thread creation is setting up its stack space. We spawn Pshadow 

particularly taking care that its stack is set up in the shadow memory section as shown in 
Figure 12: 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Once we have created two synchronized threads, we use the program analyzer and instrumenter 
components of our tool to build taint marking, tracking, and security checking into the shadow 
thread as discussed below. 

 

3.4 Marking the taint sources 

 
In our taint analyzer, we regard any data coming into program address space from an 
external source as untrusted. The default policy is to regard data read from system calls 
like read(), and recvfrom() as untrusted. The policy can be easily extended to other 
system calls. In Linux the system calls work using a software interrupt like int 0x80. 
The accumulator holds the interrupt number and other registers contain the arguments to 
system call. Consider the case of read() system call which appears as shown below in 
x86 disassembly. 

TEXT 

HEAP 

KERNEL 

STACK of Poriginal 

DATA 

STACK of Pshadow 

BSS 

SHADOW MEMORY 

Figure 12: Stack-balanced Poriginal and Pshadow 
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push   %ebx 
mov    0x10(%esp),%edx 
mov    0xc(%esp),%ecx 
mov    0x8(%esp),%ebx 
mov    $0x3,%eax 
int    $0x80 

 
Immediately after the system call, the following can be inferred: 
 
1. Register EAX contains the number of bytes read (say N) 
2. Register ECX contains the pointer to the buffer in user space (say P).  
 
With this information, it is fairly simple to augment the shadow thread to set N bytes of 

shadow memory starting at location KPP −=)(τ , as tainted. Note however that Pshadow 

does not make any system call by itself. The approach is extendable to fast system calls 
that use instructions like SYSENTER/SYSEXIT. 
 
Another source of taint input to a program is command line arguments and environment 
variables, which are set up during program loading. The environment variables and 
arguments to the main() function are stored below the kernel stack ( as shown in Figure 
13). Since we treat command line arguments and environment variables as untrusted, we 
mark the corresponding shadow region as tainted. This helps us catch exploits that are 
possible via malicious command line parameters or environment variables (see Section 
4.3.2.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13: Tainted command-line arguments and environment variables  
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3.5 Tracking taint propagation 

 
Once injected, untrusted data can flow to other parts of memory in various ways. 
Newsome and Song have categorized them in to 4 possible ways [17]: 
 
Copy dependency: Copying of a tainted value to a different location taints the new 
location. 
 
Arithmetic dependency:  If tainted data is used as a source operand of a computation, 
the results of the computation are tainted. 
 
Address dependency: If a tainted value is used to specify the address for a load/store 
operation, the loaded/stored value depends on the tainted value. 

 

Control dependency:  A structure of the form  
if ( x == 0 )  

y = 0; 

else if ( x == 1)  

y = 1; 

…. 

is the same as x = y and hence a method of taint propagation. 

 
We classify each instruction as either taint causing (e.g. mov, add etc) or as innocuous 
(e.g. inc, dec). Each taint causing instruction of the form c = a Φ b (where Φ is an 
operation that takes a, b as source operands and c as destination operand) in Pshadow is 

replaced by an operation )(cτ  = )(aτ  LOGICAL_OR )(bτ . Each innocuous instruction is 

simply destroyed. The Table 1 below gives a mapping of some instructions in Poriginal to 
Pshadow.  
 

Original Computation Shadow Computation Instruction Class 

mov %eax, %ebx mov %eax, %ebx Copy Propagation 

mov %eax, 0x8(%ebp) mov %eax, 0x8(%ebp) Copy Propagation 

add  %eax, %ebx or  %eax, %ebx Arithmetic Propagation 

shl  %eax, 0x8(%ebp) or  %eax, 0x8(%ebp) Arithmetic Propagation 

push %eax push %eax Copy Propagation 

lea (%eax), %edx mov %eax, %edx Address Propagation 

inc %eax None Innocuous 

 

 
 
 

Table 1: Mapping of original instructions to shadow instructions 



 30 

Any instruction that affects the stack frame (e.g. push, pop, call, leave, ret etc) 
in Poriginal also appears in Pshadow so that the stacks of Poriginal and Pshadow are always 
balanced. Hence any memory operand in Poriginal that is relative to the stack pointer or 
frame pointer can be replicated in Pshadow. For example, 0x8(%ebp) is the same in both 
Poriginal and Pshadow. However, memory operands that are not relative to the current stack 
frame cannot be replicated in Pshadow. To address this problem, we use a shared buffer 
between Poriginal and Pshadow to pass the required information. As an example consider an 
instruction of the form: 

 

mov %eax, 0x8(%ebx) 

 

The augmented Poriginal and Pshadow to handle this instruction are as shown in Figure 14.  

 

 
 
 
 At runtime the following two steps happen: 
 

1. The original computation enqueues the value %ebx and proceeds. 
2. The shadow computation dequeues the value, subtracts a constant OFFSET to 

compute the shadow memory address, and then stores the taint flag. 
 
We use a large shared circular buffer and do not use any locking because we always 
know that the shadow is behind the original by one basic block. Poriginal only needs to 
update the tail of the shared buffer, and Pshadow only needs to update the head of the 
shared buffer. Because of the large buffer size, the wrap around does not cause the 
original program to overwrite an unread value. Thus we ensure fast and efficient use of the 
shared buffer. (The size of the shared buffer can be set to twice the maximum number of 
enqueues caused by basic blocks in the program. In our current prototype we use a 
shared buffer of size 1024). 
 
With this scheme, we can track taint propagation due to copy dependency, arithmetic 
dependency, and address dependency. However, like [17] and most of other taint analysis 
techniques, we cannot detect control based taint propagation. (See Chapter 6 for ideas). 

Original Computation 
 
Enque(%ebx) 
mov %eax, 0x8(%ebx) 
 

 

Shadow Computation 
 
push %ebx 
Deque(%ebx) 
sub $OFFSET, %ebx 
mov %eax, 0x8(%ebx) 
pop %ebx 

 

 

1
2

Figure 14: Shared buffer between original and shadow threads 
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3.6 Exploit detection 

 
In order to obtain full control of the victim process, every attack has to change the 
program’s control flow in order to execute malicious code. There are only a few ways to 
change a program’s control flow. Attacks may change a code pointer for indirect jumps 
(e.g. return address overwrite), or inject malicious code at a place that will be executed 
without malevolent control transfer (e.g. arguments to sensitive system calls). We use the 
following defense mechanisms to protect against these exploits. 
 

3.6.1 Guarding function returns  

 
Before returning from callee to the caller (x86 instructions leave and ret), Poriginal waits 
for Pshadow to make sure that the return address or old base pointer is not tainted. The 
Figure 15 shows a scenario where Pshadow detects a return address overwrite. 

 

 
 

 

 

 

 

 

KERNEL 

<_libc_start_main + offset> 

BP, SP 

100 

<main + offset> 

<BP> 

array[1] 

array[0] 

<main_clone’s caller > 

100 

TAINTED 

TAINTED 

TAINTED 

TAINTED 

BP, SP 

foo(int x){ 
    int array[2]; 
    read(1,array,16) 
    return;  
} 
 
main(){ 
   foo(100); 
} 

 Wait for 
Shadow to 
check the 
taintedness 

<BPointer of _libc_start_main > 

Figure 15: Catching return address overwrite 
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3.6.2 Guarding indirect jumps 

 
Before making an indirect jump, Poriginal waits for Pshadow to make sure that the jump target 
address as well as the contents of jump target location are untainted. Figure 16 shows a 
scenario where Pshadow detects a function pointer overwrite attack. 

 

 

 

 
 

 

 

 

 

 

3.6.3 Guarding format string handlers  

 
The format string handling functions are sprintf(), snprintf(), fprintf(), 
vprintf(), vsprintf(), vsnprintf(), vfprintf(), syslog() and 
vsyslog(). Among them vfprintf() is the basic function on which the other functions 
are based. To detect format string attacks, we guard vfprintf(). Below are the steps to 
catch a format string attack: 

 
KERNEL 

STACK of  Poriginal 

struct heap{ 
    void (*fptr)(); 
} 
main(){ 
 int * iPtr =  malloc(10); 
 struct heap * h =  
   malloc(sizeof(Struct heap));  
 h->fprt = bar; 
 read(1, iPtr , 14); 
 h->fptr(); 
} 
 
bar(){ 
} 

fPtr = Bar 

 

iPtr 

 

 

STACK of Pshadow 

TAINTED 

 

TAINTED 

 

 

Wait for 
Shadow to 
check the 
taintedness 
 

Figure 16: Catching function pointer overwrite 



 33 

 
1. On entering vfprintf(), Poriginal waits for Pshadow to enter its counterpart 

shadow function.  
2. The second argument to vfprintf() is the format string. Pshadow examines the 

entire format string looking for occurrence of format specifiers like %n, %x etc.  
3. If step 2 finds any format specifier in memory location w, we examine memory 

location )(wτ . If )(wτ  is marked as tainted, then we flag a format string attack 

alert.  
 

Figure 17 shows the scenario where we detect a format string attack. 
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3.6.4 Guarding sensitive system calls 

 
We can detect whether particular arguments to sensitive system calls like execve() are 
tainted using a combination of the taint-marking technique and the format string exploit 
detection technique discussed previously. This in combination with authenticated system 
calls [19] gives a strong security guarantee for making system calls. We track the x86 
software interrupts that cause system calls and check for the taintedness of the strings 
passed as arguments to the system calls. However by default we do not enable this option 
in our prototype implementation since some applications may use user given data as 
argument to sensitive system calls like execve(). Users can decide whether to permit a 
tainted string as system call argument or not. 

 
vfprintf(File * fp, char * fmt, …){ 

  if(fmt contains a “%n”  that is tainted) then  
   Flag Warning 

}  
 

Foo(){ 
  char * buffer[256]; 
  read(1,buffer,256);   
  printf(buffer); 

} 

Figure 17: Catching format string attack 
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3.7 Reducing synchronization via static analysis and optimization 

 
Since block by block synchronization between two threads has high overhead, we perform 
the optimizations below to reduce synchronization. For the following discussion we define 
a set of functions descendents(F) for a function F as follows: 

 
 
 

Let F� G denote function F (directly or indirectly) calls function G. 
Let �* denote the reflexive transitive closure of the relation�. 
 
Then, set of descendents of function F is defined as: 

 

3.7.1 Not monitoring all function return addresses 

 
By default, we synchronized the two threads at each function call return. However if a 
function F has following two properties, we do not need to monitor the function return 
address: 
 

1. The function F by itself has no local variables, and 
2. No member of the set descendents(F) has local variables. 

 
Functions that exhibit above two properties are assured not to overwrite the return address 
on their stack frame. They may overwrite return addresses deeper in the stack frame, but 
that would be caught by the owner function of that stack frame. 
 

3.7.2 Not tracing some functions 

 
The shadow thread need not trace instructions in some of the function calls. To run a 
function A without synchronizing when called from function B, we need to have the 
following properties: 
 

1. Function A by itself should not have any store operations. 
2. Function A by itself is not a taint originating function. 
3. No member of the set descendents(A) has store operations. 
4. No member of the set descendents(A) is a taint originating function. 
5. Function B should not use the return value from function A for any store 

operation. 
 

G | F �* G  descendents(F) = 
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Functions with these properties are assured to neither originate taint nor propagate taint. 
They are definitely innocuous functions (e.g. strcmp()). Such functions can be run at full 
speed without synchronization in the original program and need not be called by the 
shadow program at all. As mentioned earlier (see Section 3.3.3) we have a copy of the 
program without synchronization, hence we can easily do this. 
 

3.7.3 Optimizing high frequency loops 

 
One of the most commonly occurring loop patterns is sweeping through an array, 
assigning to array elements with either a constant value or with some user input. In the 
former case all that shadow thread should do is to set every element of the corresponding 
shadow memory region as untainted; in the latter case it should mark every element as 
tainted. To achieve this, the shadow program obtains the array base address, stride, and 
the number of iterations from the original program, and runs in parallel with the original 
program, but keeps itself just behind the original program. At the end of the loop both 
threads synchronize and then proceed as normal.  
 
Figure 18 illustrates a program that sweeps an array to initialize values. Figure 19 shows 
the modified original program along with its shadow counter part. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Array initialization loop  

for( int i = 0; i < n ; i += k ){ 

      array[i] = 0; 

} 
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Global * arrayBase; 

Global stride; 

Global iterations = 0; 

Global done = false; 

Original Program Shadow Program 

 

arrayBase = array; 

stride = k;  

for( int i = 0; i < n ; i +=k ){ 

    array[i] = 0; 

    iterations++; 

} 

done = true; 

while(done);     

 

shadowIterations = 0; 

for(;;){ 

 shadowIterations++; 

 while(shadowIterations  

  >= iterations ){ 

   if(done) 

    break; 

 } 

 if(shadowIterations >   

         iterations){ 

  shadowIterations = 0; 

            iterations = 0; 

  done = false; 

  break; 

 } 

      index = (shadowIterations – 1 ) 

               * stride 

 arrayBase[index + OFFSET] 

              = UNTAINTED; 

} 

 

 

 

 

 
 
 
 
 
The figure 20 illustrates a program reading user input into a buffer. Figure 21 shows the 
modified original program along with its shadow counter part. 
 

 

 

 

 
 

 

Figure 19: Optimized original and shadow array initializes 

for(int I = 0; read(fd,&ch,1); i++) { 

      buffer [i] = ch; 

} 

Figure 20: File reader loop  
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3.8 Packaging the self-protecting binary 

 
After being modified as described above, a program is packaged into a single program, 
and assembled back into x86-executable using PLTO’s binary-rewriter. The modified 
program can be loaded and executed in just the same way as the original program. 

 

3.9  Prototype limitations 

 
In our current implementation, if the main process forks a child (using a system call like 
Unix fork()), we cannot track taint in the child process. This is because the child process 

Global * arrayBase; 

Global stride; 

Global iterations = 0; 

Global done = false; 

Original Program Shadow Program 

 

arrayBase = buffer; 

stride = 1;  

for( int i = 0; read(fd,&ch,1); i++ ){ 

    buffer[i] = ch; 

    iterations++; 

} 

done = true; 

while(done);     

 

shadowIterations = 0; 

for(;;){ 

 shadowIterations++; 

 while(shadowIterations  

  >= iterations ){ 

   if(done) 

    break; 

 } 

 if(shadowIterations >   

         iterations){ 

  shadowIterations = 0; 

            iterations = 0; 

  done = false; 

  break; 

 } 

 index = (shadowIterations – 1 ) 

               * stride 

 

      arrayBase[OFFSET + index]  

         = TAINTED; 

} 

 

 

Figure 21: Optimized original and shadow file readers 
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will not have the shadow thread spawned. This is more a limitation of the pthread library 
than our implementation. With a different thread library we can solve this problem. 
Alternatively, with the pthread library, we can spawn a shadow thread by carefully setting 
up its stack in the child process. 

 
We don’t support multi-threaded applications in our prototype implementation; we can 
extend it to support multi-threaded applications by having a shadow thread for each thread 
in the original program and a global TARGET variable for each pair of original and shadow 
thread. We would also need more synchronization to ensure that taint tags are accurate 
when potential vulnerabilities are checked. 
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CHAPTER 4 

4 SECURITY EVALUATION 
 
In this chapter we discuss implications of our approach with respect to vulnerability 
detection. There are two aspects to the security guaranties. First, our approach should 
catch vulnerabilities; second, it should not trigger false alarms.  

 

4.1 Analysis of false negatives 

 
An exploit that goes undetected is regarded as a false negative. While, a false negative 
rate of 0% is desirable, in practice a false negative rate should be as small as possible. 
Under our scheme, we mark all data external to the program as tainted. We track copy 
propagation, arithmetic propagation, and address propagation of tainted data from source 
to destination. We guard every indirect control transfer, i.e, control transfer through return 
address, function pointers, and indirect jumps. With these policies, we catch all attacks 
that alter jump targets. Most attacks are control attacks, namely hijacking the control flow 
of victim programs. This is the final step that attackers follow to break into system and this 
is also the final line of defense before a system is compromised. Because we guard the 
control flow, we are assured to defend all control hijacks that happen either due to stack 
smash or heap smash. Further, we check the function call arguments of format string 
handling functions and never let a user-given string contain format specifiers. Thus we 
assure catching format string attacks. We can detect tainted arguments to sensitive 
system calls in the same way.   
 
A less frequent type of attack is a non-control-data attack [7]. Non-control-data attacks 
corrupt a variety of application data including user identity data, configuration data, user 
input data, and decision-making data. Examples include random memory bit-flips in 
applications that can lead to serious security compromises in network servers, and 
hardware faults that can subvert an RSA (Ron Rivest, Adi Shamir and Len Adleman) 
implementation. We cannot detect such an attack in our current scheme. Also we do not 
track control-based taint propagation, but we are unaware of any program exploiting this 
kind of vulnerability. An attacker can exploit a non control vulnerability to generate a 
segmentation fault and crash the system. We cannot detect such denial of service attacks.  
 
 
One more critical issue is the protection of shadow memory. Since both the original thread 
and the shadow thread are in the same virtual address space, the original program can 
possibly read from or write to shadow memory by generating a random address in the 
shadow memory region. In the unlikely event of the original program writing to shadow 
memory, we could lose the taint values. Again, see the future work section for suggested 
solutions. 
 
While in our default policy we guard the printf class of functions to catch format string 
vulnerabilities, we cannot catch a format string vulnerability if the user writes a custom 
format string handler. In such cases we have provided a provision for the user to register 
all format string handling functions, so that our taint analyzer can guard all user written 
format string handlers too. 
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4.2 Analysis of false positives  

 
While our scheme has not shown any false positives in the applications we have tested, 
we claim the possibility of false positives in the following scenarios: 

 

i) Intentionally passing user format specifiers to format string handlers:  If a 
program is written to pass a user-specified formats to a format string handling 
function, the best option is to modify the program since it is definitely 
vulnerable. However if that is the design of the program, we have flexibility to 
configure our tool to not track the format handling functions. 

 
ii) Intentionally passing user strings to sensitive system calls: A user given 

input may become an argument to sensitive system calls like execve(), 
which our taint analyzer flags as error. If it is intended by the programmer to 
pass user argument to such functions we have flexibility in our tool to configure 
it. Default option is to not taint check any system call arguments. 

 
iii) Intentionally executing user injected code: We do not allow a program to 

execute user injected code even if it is by design. We do not expect any 
commodity software to give its user a privilege to execute arbitrary code. 

 
 

4.3 Security evaluation 
 
To corroborate our claims, we show a wide variety of exploits that our taint analyzer can 
detect both in synthetic and commodity software.  
 

4.3.1 Security evaluation on synthetic micro-benchmarks 

 
We carried out various buffer overwrite and format string attack experiments by writing 
small programs with vulnerabilities. The important ones are listed below 

4.3.1.1 Detecting old base pointer overwrite 

 
We wrote a small program that reads data from a file into a buffer on the stack. The data 
overwrites the old stack base pointer. Just before function return, the original program 
waits for the shadow thread, and the shadow thread confirms overwrite and flags an error. 

4.3.1.2 Detecting return address overwrite 

 
Similarly, we wrote a small program that reads data from a file into a buffer on the stack. 
The data overwrites the return address. Just before function return, the original program 
waits for the shadow thread, and the shadow thread confirms overwrite and flags an error. 
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4.3.1.3 Detecting function pointer overwrites on stack  

 
To confirm detection of function pointer overwrites on the stack, we wrote a program that 
reads data from a file and overwrites a stack buffer resulting in overwriting a function 
pointer located on the stack. When the program called a function using the function pointer 
present on the stack, it waits for the shadow thread to verify the sanity of the target 
address, at which time the shadow thread flagged an error due to a tainted function 
pointer. 

4.3.1.4 Detecting function pointer overwrites on heap 

 
To confirm the detection of function pointer overwrites on the heap, we wrote a program 
that reads data from a file into a buffer on the heap. However, the data overwrote the 
allocated memory on heap, and overran a function pointer present on the heap. When the 
program called a function using the function pointer present on heap, it waited for the 
shadow thread to verify the sanity of the target address, at which time the shadow thread 
flagged an error due to a tainted function pointer. 

 

4.3.1.5 Detecting format string attacks 

 
To check format string vulnerability, we wrote a program with vulnerable use of 
printf(). The program read user input and passed it to printf(). Our taint analyzer 
promptly detected the exploit.  

 

 
Further, we generalized all the above examples by propagating the tainted data by copy 
and by arithmetic and logic operations. In all cases, we were able to detect exploits of the 
above mentioned types.  

 

4.3.2 Security evaluation on commodity software 

 
To confirm the efficacy of our approach, we ran a number of programs with known 
vulnerabilities using our taint analyzer, and we were able to catch the vulnerabilities 
without incurring any false positives. The following six sub-sections discuss each of them 
in detail.   

 

4.3.2.1 ATPhttpd server 

 
ATPhttpd is a small web server designed for high-performance. The ATPhttpd web 
server version 0.4b has well known buffer overflow vulnerabilities. The problem occurs due 
to insufficient bounds checking when handling GET requests. As a result, an attacker can 
issue a GET request with an extremely long file name and can overrun the bounds of an 
internal memory buffer and overwrite the return address of the function 
http_send_error(). When the function http_send_error() returns, the attacker 
effectively controls the flow of execution. With our taint analyzer we detected the return 



 42 

address overwrite and prevented the attack. For other normal requests, we did not 
generate any false alarms. 

 

4.3.2.2 Passlogd daemon 

 
Passlogd is a sniffer tool for capturing syslog messages in transit. Version 0.1c of 
passlogd has a buffer overflow vulnerability in function sl_parse(). The vulnerability is 
caused by multiple boundary errors in the parser. This can be exploited to execute 
arbitrary code with root privileges on a vulnerable system by constructing a specially 
crafted network packet. The exploit program sends a packet that causes the passlogd 
parser to overwrite the return address of function sl_parse(). On return from this 
function, control jumps to an injected shell code. When this program was run with our taint 
analyzer, we correctly detected the return address overwrite attack. For other innocuous 
packets we did not generate any false positives. 
 

 

4.3.2.3 BSD Talkd daemon 

 
Talkd is a client-server application shipped with many Unix variants that is used for user 
communication between hosts on a network. The version of talkd that ships with 
OpenBSD 2.7 and older has a format string vulnerability. When a talk client connects to a 
talk server and requests communication with a user, talkd (the server program) will 
check to see whether the user is accepting messages. If so, it will print a message to the 
user’s terminal telling them that "username@hostname" wants to chat with them. This is 
done via a fprintf() function, which happens to have passed to it client-supplied data 
as part of the format string. The fprintf() call, in announce.c, uses as its format 
string argument the caller's username and the remote host. The caller's username is 
provided in the datagram sent by the client. It is thus possible for an attacker to modify a 
talk client so that a username value containing a malicious format specifier(s) is sent and 
overwrites memory on the remote server process' stack. It is thus possible to execute 
arbitrary code remotely, leading to a root compromise. We wrote a talk client program that 
exploits this vulnerability by passing a username containing the %n format specifier. When 
we ran talkd with our taint analyzer and communicated with it using the exploit program, 
talkd detected the tainted format string and stopped the exploit. For all other valid inputs, 
talkd daemon did not cause any false positives. 
 
 

4.3.2.4 Chpass application using Libutil 

 
The BSD libutil that ships with OpenBSD 2.7 or earlier contains a format string 
vulnerability in the pw_error() function, which is used in the setuid chpass utility. In 
pw_error(), user input is passed as the only argument to a printf() function, making 
it possible for an attacker to corrupt the stack. If format specifiers are deliberately inserted 
into the environment variable EDITOR, it causes part of string that is passed to the 
printf() function to be tainted. The tainted string will cause the printf() function to 
reference locations deeper into the stack than it should, expecting to see variables that 
would normally be there. This, combined with the fact that you can write to memory with 
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format specifiers, allows an attacker to, for example, reconstruct the return address of the 
function so that it points to user-supplied (in the format string) shell code. When the 
function returns, it will begin executing the shell code on the stack.  
 
A unique feature of this vulnerability is that the tainted string does not originate from 
external data, but instead from the environmental variables that are set up during program 
startup.  
 
We set the environmental variable EDITOR to contain format specifier %n to exploit this 
vulnerability. When run under our taint analyzer we were able to detect the format string 
vulnerability and stop the exploit. 
 

4.3.2.5 Libtiff library  

 
LibTIFF is a library used to encode and decode images in Tag Image File Format (TIFF). 
Multiple LibTIFF routines in version 3.5.4 contain heap buffer overflow vulnerabilities in 
the following functions:  

• NeXTDecode (in libtiff/tif_next.c)  
• ThunderDecode (in libtiff/tif_thunder.c)  
• LogL16Decode (in libtiff/tif_luv.c) 

 
These issues are the result of insufficient validation of user-supplied data. Consequently, a 
remote attacker may be able to exploit these vulnerabilities by supplying an application 
using LibTIFF with a specially crafted TIFF image.  
 
To detect the vulnerability in libtiff, we wrote an application to use the NeXTDecode() 
function to decode a strip of a TIFF image. The application passed a heap allocated buffer 
to NeXTDecode(). We also allocated a function pointer on the heap. To this application, 
we passed a buffer read from a specially crafted TIFF image that wrongly specified the 
size of the strip, thereby making NeXTDecode() overflow the heap buffer and overwrite 
the heap allocated function pointer. Later, when the program tried to call the function using 
the tainted function pointer, it was detected as an exploit by our taint analyzer. For other 
non-malicious inputs, NeXTDecode() was able to decode without any false positives. 

 

4.3.2.6 Cfinger Daemon  

 
Cfingerd is a configurable Finger daemon. Cfingerd version 1.4.3 (and earlier) has 
format string vulnerabilities that allow remote users to attain root privileges and execute 
arbitrary code. Cfingerd queries and logs the remote username of users of the service. If 
an attacker sets up a remote machine that returns specific format strings instead of a valid 
username, and connects to cfingerd from that machine, he can exploit the format string 
vulnerability. Because Cfingerd runs as root, attacker can gain full control of the 
Cfingerd host. We were able to successfully detect an exploit that tried to send a tainted 
username to syslog function of Cfingerd. 
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 Table 2, shows different vulnerabilities detected by our taint analyzer. 

 
 

Application Version Vulnerability Detected False positives 

ATPHttpd 0.4b 
Stack-based 

buffer overflow 
YES None 

Passlogd 0.1c 
Stack-based 

buffer overflow 
YES None 

BSD Talkd BSD 2.7 Format String YES None 

BSD Chpass BSD 2.7 Format String YES None 

LibTiff library 3.5.4 
Heap-based 

buffer overflow 
YES None 

Cfingerd 1.4.3 Format String YES None 

Table 2: Various kinds of vulnerabilities detected by our taint analyzer 
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CHAPTER 5 

5 PERFORMACE EVALUATION 

5.1 Experimental setup 

 
We conducted a number of performance tests on real applications to evaluate the 
slowdown caused by taint checking. We conducted all our experiments on a 32-bit Intel 
x86 T2050 dual core machine with a 1.60 GHz clock and, 1GB of memory running Linux 
Fedora Core 5. We built the applications by linking them statically. All the comparisons 
given in the next section are on statically linked binaries. We evaluated the performance of 
the programs discussed in Section 4.3.2. However, we do not report the performance of 
talkd and chpass, because they are interactive applications involving multiple 
processes and user interactions. We have also evaluated Gzip, which is one of the CPU 
SPEC (Standard Performance Evaluation Corporation)’s integer benchmarks to evaluate 
performance in the case of CPU-bound applications.  

 

5.2 Performance results 

5.2.1 Atphttpd server 

 
We evaluate the performance of the ATPhttpd server to measure the time to serve 
requests for varying file files. Our results are shown in Table 3 and Figure 22. The results 
show that the server runs about only 50% slower than when the server is run without 
instrumentation. We observe performance enhancement with the increased file size. This 
is attributed to the fact that for larger files, the program spends more time in a file reading 
loop that gets optimized by our optimization techniques discussed in Section 3.7.3. One 
more reason for better performance for large files is due to the fact that the server spends 
more time in a system call, writing data to the client socket.  

 

HTML PAGE SIZE 1KB 10KB 20KB 30KB 

Time in original execution ( in sec) 0.01 0.033333 0.04275 0.0678 

Time in instrumented program ( in sec) 0.040333 0.0594 0.0765 0.101 

Slowdown ( number of times) 4.033333 1.782 1.789474 1.489676 

Table 3: Performance comparison of original and instrumented ATPHttpd server 



 46 

Peformance Comparison of ATPhttpd

0

0.02

0.04

0.06

0.08

0.1

0.12

1KB 10KB 20KB 30KB

Page Size in KB

T
im

e
 i

n
 S

e
c

Time in original execution 

Time in instrumented program 

 

 

 

 
We also tested the effectiveness of our before-mentioned optimizations (see Section 3.7) 
on ATPHttpd server for a 30K page fetch. Table 4 and Figure 23 show the effectiveness of 
each optimization. Not tracing functions that exhibit the properties discussed in Section 
3.7.2 reduces the slowdown from 6.3 times to 5.2 times. Relaxing return address check as 
discussed in Section 3.7.1 brings down the slowdown from 6.3 times to 4.7 times. 
Optimizing a high frequency file reading loop reduces the slowdown from 6.7 to 2.7 times. 
When we apply all these optimizations we see a slowdown of just 48%. 

 

Type of computation Time in sec Slowdown 

Original computation 0.0678 1 

Taint analyzer with no optimization 0.4273333 6.302852 

Taint analyzer with some functions not traced 0.3536667 5.216323 

Taint analyzer with relaxed return address checks 0.3196667 4.714848 

Taint analyzer with optimized high frequency loop 0.1866667 2.753196 

Taint analyzer with all optimizations 0.101 1.489676 

 

Figure 22: Performance of original Vs. instrumented ATPHttpd server 

Table 4: Effect of individual optimization on ATPHttpd for 30K page 
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5.2.2 Passlogd daemon 

 
We ran the Passlogd sniffer tool during an ftp download of size 1.25K that generated 14 
packets on the monitored network interface. For each of them we measured the 
processing time taken by Passlogd when run under our taint analyzer. We obtained a 
slow down of about 1.75 times compared to the non-instrumented original application. 

5.2.3 Gzip application 

 
We instrumented the widely used compression tool Gzip and evaluated the performance 
overhead on several file sizes. Table 5 shows the slowdown due to our taint analyzer. 
Gzip, which is also one of the CPU SPEC2000 benchmarks, shows better performance on 
large files. While the worst performance is 2.6 times slowdown for 400KB file, the best is 
less than 5% slowdown for a 65MB file. The average slowdown is less than 40%. Figure 
24 shows the graphical comparison of performance in original Gzip versus the taint 
analyzer version.  
 
As in the case of ATPHttpd, with the increased file size we see better performance, which 
we attribute to the fact that for larger files, longer time is spent in file reading and writing 
system calls. Also, code of Poriginal and Pshadow are not clustered in the program memory, i.e, 
a function Foriginal ∈  Poriginal is not located close to Fshadow ∈  Pshadow. But, every time when the 
original program is executing Foriginal, the shadow thread is executing Fshadow. This lack of 

Figure 23: Effect of individual optimization on ATPHttpd for 30K page 
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spatial locality leads to higher amount of page faults for the short-lived programs. 
However, for programs, which run for longer time, the temporal locality overshadows 
slowdown due to lack of spatial locality and the performance is improved. See Chapter 6 
for optimizations. 
 

 

 

Input file size 400KB 1.2MB 2.4MB 13.6MB 65.4MB 

Time in original Gzip program 
(in sec) 0.042 0.08425 0.153333 2.166 8.012333 

Time in instrumented Gzip program 
(in sec) 0.111429 0.138833 0.216 2.289167 8.3155 

Slowdown ( number of times) 2.653061 1.647873 1.408696 1.056864 1.037838 
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Figure 24: Performance of original Vs. instrumented Gzip 

Table 5: Performance comparison of original and instrumented Gzip 
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5.2.4 Libtiff library 

 
We evaluated the performance on Libtiff library by measuring the time taken for 
DecodeNext() function discussed in Section 4.3.2.5. For an input containing 10 strips of 
10KB size each (100KB total), we incurred a performance slowdown of 15 times. This is a 
higher overhead compared to other benchmarks, however it is explainable by the fact that 
in the entire program that we wrote, we just call DecodeNext() which spends most of its 
time copying data from one buffer to the other. This leaves us with little scope for 
optimizations. However, with the increase in the file size we started to see performance 
improvements. It is attributed to the fact that the function DecodeNext()has an 
innocuous loop as shown below that gets optimized.  
 

 
  for (op = buf, cc = occ; cc-- > 0;) 
   *op++ = 0xff; 
 
 

 

For a 100K file, the above loop gets executed 102400 times and the data-copy loop gets 
executed 10 times ( 100K file / 10K strip = 10 times ). Hence the overhead is in the 
initialization loop.  
  
Once we optimize this loop, the next bottleneck is the data-copying loop. For a 2MB file, 
the copy-loop gets executed 205 times. For a 10MB file , the copy loop gets executed 
1024 times. However we cannot optimize the data-copying loop since it is a taint 
propagating part of the program. Table 6 and Figure 25 show the performance of 
Libtiff.  

 

 

Image file size 100KB 2MB 10MB 

Original program 0.002 0.0218 0.07 

Instrumented Program 0.0306 0.2016 0.7378 

Slowdown ( number of times) 15.3 9.247706 10.54 

 

 

 

 

 

Table 6: Performance comparison of original and instrumented Libtiff 

 



 50 

Performance of TIF decoder

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100KB 2MB 10MB

File size

ti
m

e
 i

n
 s

e
c

Original program

Instrumented Program

 
 

 

 

5.2.5 Cfinger Daemon 

 
Finally, we evaluated the performance on Cfingerd. Cfingerd runs under inetd and 
hence it is invoked on each finger call. When run without any instrumentation, a finger 
request was completed in 0.011 seconds. However, when we ran it with our taint analyzer, 
it took 0.103 seconds to complete. Thus we observed a slowdown of 9.26 times. On 
applying loop optimization to a string copying loop, the execution time reduced to 0.061 
seconds, which is a slowdown of 5.5 times. 
 
 
 

Table 7 shows performance of 30K page on ATPHttpd server, Cfinger daemon, 1.25K page 
sniffer on Passlogd, 13.6MB file compression with Gzip and 2M file with Libtiff on 
instrumented applications in comparison with the original applications. 
 
 

Application 
30KB page in 
ATPHTTPD 

Cfinger 
daemon 

Libtiff on 
2MB file 

Passlogd 
with 1.25KB 
download 

Gzip with 
13.6MB file 

Original program 0.0678 0.011 0.0218 2.45 2.166 

Instrumented program 0.101 0.061 0.2016 4.301133333 2.289167 

Slowdown  
( number of times) 

1.489675516 5.54 9.247706422 1.755564626 1.056864 

 

 
Table 7: Effect of our taint analyzer on the performance of different applications 

Figure 25: Performance of original Vs. instrumented Libtiff 
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Figure 26(a) shows performance comparisons for the short-lived applications: ATPHttpd, 
Cfingerd and Libtiff. Figure 26(b) shows performance comparisons for the long-running 
applications: Gzip and Passlogd.  
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Figure 26(a): Short-lived applications Figure 26(b): Long-running applications 
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CHAPTER 6 

6 CONCLUSIONS AND FUTURE WORK 
 
In this thesis we have shown that vulnerability detection using multicore machines has a 
promising future. We have made a successful effort to gather static program analysis to 
get better performance in dynamic taint analysis on the future hardware. With many cores 
being the future of hardware, we can always afford to dedicate some cores for taint 
analysis. This brings a new paradigm of secure and efficient computing. In our work we 
have shown that taint analysis with multithreading using multicore machines overshadows 
many state-of-art dynamic taint analysis techniques in terms of performance and at the 
same time provides as much if not more concrete security guarantees as any other. On 
some benchmarks (like Gzip) our performance is better than LIFT [19], the best performing 
taint analyzer at the time of writing this thesis. 
 
Our experiments on real world applications including a web server, a chat server, an 
image decoder, and a password changing application show effectiveness in detecting 
exploits. Also our performance analyses on an I/O-bound web server and CPU-bound 
compression tool show that we incur significantly less overhead in comparison with the 
current state-of-art taint analyzers. 
 
We plan to extend and improve our work in two major directions: improving runtime 
performance and making more security guarantees.  
 

6.1 Performance enhancement 

 
In the current work we do loop optimization using manual techniques. Also we can 
optimize only simple loops, i.e loops without nested control flow structure. In our future 
work we intend to do automatic loop optimization using data and control flow analysis. 
Also we will optimize many more loops including the ones that involve nested control 
structures. With most programs spending about 80% of their time in loops, loop 
optimization has high performance impact.  
 
Currently we do not guard function returns in special cases (see Section 3.7.1). We can 
improve this by extending to functions that do not have any arrays on the stack. Also, 
currently we do not trace some functions (see Section 3.7.2). We can safely extend this to 
functions that only do store operations on local variables (non-pointer) on the current stack 
frame. 
 
Currently we synchronize the two threads at each basic block. We plan to reduce this 
synchronization by using a circular buffer of targets, so that threads synchronize only at 
program exploit points. 

 
In our current implementation, we layout all code belonging to Poriginal in one contiguous 
memory and all code belonging to Pshadow in the other. However, when the original program 
is executing a function Foriginal ∈  Poriginal, the shadow thread is executing Fshadow ∈  Pshadow. 

We can utilize this spatial locality and layout code such that Foriginal is always adjacent to 
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Fshadow. This optimization reduces page faults and improves performance for short-lived 
programs. 
 

6.2 Security enhancement 
 

In the current work, we have a problem if the original program generates an address that 
accesses the shadow memory. With kernel level thread support, we could solve this 
problem by guarding the address range accessed by each thread. 
 
We plan to handle control based taint propagation by means of a tainted program counter 
[17]. Currently we do not handle denial of service attacks; we intend to tackle this issue as 
well in our future work. 
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APPENDIX A: Sample code 
 
1. Sample x86 code for fall-through block: 

 
Input code: 
 
8804a116 <__pthread_setschedparam$$z0515>: 
8804a116: 83 c4 10              add    $0x10,%esp 
 
8804a119 <__pthread_setschedparam$$z26747>: 
8804a119: 31 c0                 xor    %eax,%eax 
8804a11b: eb a9                 jmp    8804a0c6 
<__pthread_setschedparam$$z26748> 
 
 
Original + Instrumented: 
 
880a78c2 <__pthread_setschedparam_clone$$z32031>: 
880a78c2: 9c                    pushf   
880a78c3: c7 05 c4 80 04 08 fa  movl   $0x881ef7fa,0x80480c4 
880a78ca: f7 1e 88  
 
880a78cd <__pthread_setschedparam_clone$$z153978>: 
880a78cd: 81 3d c4 80 04 08 00  cmpl   $0x0,0x80480c4 
880a78d4: 00 00 00  
880a78d7: 75 f4                 jne    880a78cd 
<__pthread_setschedparam_clone$$z153978> 
 
880a78d9 <__pthread_setschedparam_clone$$z153977>: 
880a78d9: 9d                    popf    
880a78da: 83 c4 10              add    $0x10,%esp 
 
880a78dd <__pthread_setschedparam_clone$$z32032>: 
880a78dd: 9c                    pushf   
880a78de: c7 05 c4 80 04 08 23  movl   $0x881ef823,0x80480c4 
880a78e5: f8 1e 88  
 
880a78e8 <__pthread_setschedparam_clone$$z153980>: 
880a78e8: 81 3d c4 80 04 08 00  cmpl   $0x0,0x80480c4 
880a78ef: 00 00 00  
880a78f2: 75 f4                 jne    880a78e8 
<__pthread_setschedparam_clone$$z153980> 
 
880a78f4 <__pthread_setschedparam_clone$$z153979>: 
880a78f4: 9d                    popf    
880a78f5: 31 c0                 xor    %eax,%eax 
880a78f7: e9 7e fe ff ff        jmp    880a777a 
<__pthread_setschedparam_clone$$z32023> 
 
Shadow code: 
 
881ef7fa <__pthread_setschedparam_clone_clone$$z63387>: 
881ef7fa: 9c                    pushf   
 
881ef7fb <__pthread_setschedparam_clone_clone$$z95168>: 
881ef7fb: 81 3d c4 80 04 08 00  cmpl   $0x0,0x80480c4 
881ef802: 00 00 00  
881ef805: 74 f4                 je     881ef7fb 
<__pthread_setschedparam_clone_clone$$z95168> 
 
881ef807 <__pthread_setschedparam_clone_clone$$z95167>: 
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881ef807: 50                    push   %eax 
881ef808: 8b 05 c4 80 04 08     mov    0x80480c4,%eax 
881ef80e: 89 05 c8 80 04 08     mov    %eax,0x80480c8 
881ef814: 58                    pop    %eax 
881ef815: c7 05 c4 80 04 08 00  movl   $0x0,0x80480c4 
881ef81c: 00 00 00  
881ef81f: 9d                    popf    
881ef820: 83 c4 10              add    $0x10,%esp 
 
881ef823 <__pthread_setschedparam_clone_clone$$z63388>: 
881ef823: 9c                    pushf   
 
881ef824 <__pthread_setschedparam_clone_clone$$z95170>: 
881ef824: 81 3d c4 80 04 08 00  cmpl   $0x0,0x80480c4 
881ef82b: 00 00 00  
881ef82e: 74 f4                 je     881ef824 
<__pthread_setschedparam_clone_clone$$z95170> 
 
881ef830 <__pthread_setschedparam_clone_clone$$z95169>: 
881ef830: 50                    push   %eax 
881ef831: 8b 05 c4 80 04 08     mov    0x80480c4,%eax 
881ef837: 89 05 c8 80 04 08     mov    %eax,0x80480c8 
881ef83d: 58                    pop    %eax 
881ef83e: c7 05 c4 80 04 08 00  movl   $0x0,0x80480c4 
881ef845: 00 00 00  
881ef848: 9d                    popf    
881ef849: 09 c0                 or     %eax,%eax 
881ef84b: e9 8c fd ff ff        jmp    881ef5dc 
<__pthread_setschedparam_clone_clone$$z63379> 
 
 

2. Sample x86 code for conditional branch block: 

 
Input code: 
 
88048598 <http_send_file$$z0071>: 
88048598: 83 c4 10              add    $0x10,%esp 
8804859b: 89 45 ec              mov    %eax,0xffffffec(%ebp) 
8804859e: 85 c0                 test   %eax,%eax 
880485a0: 0f 88 59 01 00 00     js     880486ff <http_send_file$$z0088> 
 
880485a6 <http_send_file$$z0072>: 
880485a6: 50                    push   %eax 
880485a7: ff 75 08              pushl  0x8(%ebp) 
880485aa: ff 75 0c              pushl  0xc(%ebp) 
880485ad: 6a ff                 push   $0xffffffff 
 ………………… 
 
880486ff <http_send_file$$z0088>: 
880486ff: 83 ec 0c              sub    $0xc,%esp 
88048702: ff 75 08              pushl  0x8(%ebp) 
88048705: 68 48 c7 42 88        push   $0x8842c748 
8804870a: 6a 00                 push   $0x0 
8804870c: 68 5b c7 42 88        push   $0x8842c75b 
88048711: 68 93 01 00 00        push   $0x193 
88048716: eb da                 jmp    880486f2 <http_send_file$$z26704> 
 
 
Original + Instrumented: 
 
880a358f <http_send_file_clone$$z31556>: 
880a358f: 9c                    pushf   
880a3590: c7 05 c4 80 04 08 51  movl   $0x881e9351,0x80480c4 
880a3597: 93 1e 88  
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880a359a <http_send_file_clone$$z153150>: 
880a359a: 81 3d c4 80 04 08 00  cmpl   $0x0,0x80480c4 
880a35a1: 00 00 00  
880a35a4: 75 f4                 jne    880a359a 
<http_send_file_clone$$z153150> 
 
880a35a6 <http_send_file_clone$$z153149>: 
880a35a6: 9d                    popf    
880a35a7: 83 c4 10              add    $0x10,%esp 
880a35aa: 89 45 ec              mov    %eax,0xffffffec(%ebp) 
880a35ad: 85 c0                 test   %eax,%eax 
880a35af: 0f 88 d6 03 00 00     js     880a398b 
<http_send_file_clone$$z31576> 
 
880a35b5 <http_send_file_clone$$z31557>: 
880a35b5: 9c                    pushf   
880a35b6: c7 05 c4 80 04 08 8d  movl   $0x881e938d,0x80480c4 
880a35bd: 93 1e 88  
 
880a35c0 <http_send_file_clone$$z153152>: 
880a35c0: 81 3d c4 80 04 08 00  cmpl   $0x0,0x80480c4 
880a35c7: 00 00 00  
880a35ca: 75 f4                 jne    880a35c0 
<http_send_file_clone$$z153152> 
 
880a35cc <http_send_file_clone$$z153151>: 
880a35cc: 9d                    popf    
880a35cd: 50                    push   %eax 
880a35ce: ff 75 08              pushl  0x8(%ebp) 
880a35d1: ff 75 0c              pushl  0xc(%ebp) 
880a35d4: 6a ff                 push   $0xffffffff 
 
……………… 
 
880a398b <http_send_file_clone$$z31576>: 
880a398b: 9c                    pushf   
880a398c: c7 05 c4 80 04 08 4f  movl   $0x881e994f,0x80480c4 
880a3993: 99 1e 88  
 
880a3996 <http_send_file_clone$$z153190>: 
880a3996: 81 3d c4 80 04 08 00  cmpl   $0x0,0x80480c4 
880a399d: 00 00 00  
880a39a0: 75 f4                 jne    880a3996 
<http_send_file_clone$$z153190> 
 
880a39a2 <http_send_file_clone$$z153189>: 
880a39a2: 9d                    popf    
880a39a3: 83 ec 0c              sub    $0xc,%esp 
880a39a6: ff 75 08              pushl  0x8(%ebp) 
880a39a9: 68 48 c7 42 88        push   $0x8842c748 
880a39ae: 6a 00                 push   $0x0 
880a39b0: 68 5b c7 42 88        push   $0x8842c75b 
880a39b5: 68 93 01 00 00        push   $0x193 
880a39ba: eb 92                 jmp    880a394e 
<http_send_file_clone$$z31574> 
 
 
Shadow code: 
 
881e9351 <http_send_file_clone_clone$$z62912>: 
881e9351: 9c                    pushf   
 
881e9352 <http_send_file_clone_clone$$z94338>: 
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881e9352: 81 3d c4 80 04 08 00  cmpl   $0x0,0x80480c4 
881e9359: 00 00 00  
881e935c: 74 f4                 je     881e9352 
<http_send_file_clone_clone$$z94338> 
 
881e935e <http_send_file_clone_clone$$z94337>: 
881e935e: 50                    push   %eax 
881e935f: 8b 05 c4 80 04 08     mov    0x80480c4,%eax 
881e9365: 89 05 c8 80 04 08     mov    %eax,0x80480c8 
881e936b: 58                    pop    %eax 
881e936c: c7 05 c4 80 04 08 00  movl   $0x0,0x80480c4 
881e9373: 00 00 00  
881e9376: 9d                    popf    
881e9377: 83 c4 10              add    $0x10,%esp 
881e937a: 89 45 ec              mov    %eax,0xffffffec(%ebp) 
881e937d: 81 3d c8 80 04 08 4f  cmpl   $0x881e994f,0x80480c8 
881e9384: 99 1e 88  
881e9387: 0f 84 c2 05 00 00     je     881e994f 
<http_send_file_clone_clone$$z62932> 
 
881e938d <http_send_file_clone_clone$$z62913>: 
881e938d: 9c                    pushf   
 
881e938e <http_send_file_clone_clone$$z94340>: 
881e938e: 81 3d c4 80 04 08 00  cmpl   $0x0,0x80480c4 
881e9395: 00 00 00  
881e9398: 74 f4                 je     881e938e 
<http_send_file_clone_clone$$z94340> 
 
881e939a <http_send_file_clone_clone$$z94339>: 
881e939a: 50                    push   %eax 
881e939b: 8b 05 c4 80 04 08     mov    0x80480c4,%eax 
881e93a1: 89 05 c8 80 04 08     mov    %eax,0x80480c8 
881e93a7: 58                    pop    %eax 
881e93a8: c7 05 c4 80 04 08 00  movl   $0x0,0x80480c4 
881e93af: 00 00 00  
881e93b2: 9d                    popf    
881e93b3: 50                    push   %eax 
881e93b4: ff 75 08              pushl  0x8(%ebp) 
881e93b7: ff 75 0c              pushl  0xc(%ebp) 
881e93ba: 6a 00                 push   $0x0 
 
……………………… 
 
881e994f <http_send_file_clone_clone$$z62932>: 
881e994f: 9c                    pushf   
 
881e9950 <http_send_file_clone_clone$$z94378>: 
881e9950: 81 3d c4 80 04 08 00  cmpl   $0x0,0x80480c4 
881e9957: 00 00 00  
881e995a: 74 f4                 je     881e9950 
<http_send_file_clone_clone$$z94378> 
 
881e995c <http_send_file_clone_clone$$z94377>: 
881e995c: 50                    push   %eax 
881e995d: 8b 05 c4 80 04 08     mov    0x80480c4,%eax 
881e9963: 89 05 c8 80 04 08     mov    %eax,0x80480c8 
881e9969: 58                    pop    %eax 
881e996a: c7 05 c4 80 04 08 00  movl   $0x0,0x80480c4 
881e9971: 00 00 00  
881e9974: 9d                    popf    
881e9975: 83 ec 0c              sub    $0xc,%esp 
881e9978: ff 75 08              pushl  0x8(%ebp) 
881e997b: 68 00 00 00 00        push   $0x0 
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881e9980: 6a 00                 push   $0x0 
881e9982: 68 00 00 00 00        push   $0x0 
881e9987: 68 00 00 00 00        push   $0x0 
881e998c: e9 68 ff ff ff        jmp    881e98f9 
<http_send_file_clone_clone$$z62930> 
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