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Abstract

Post link-time optimization of executables has been investigated by several projects in recent years. These opti-
mization systems have targeted RISC architectures like theCompaq Alpha, and have shown that there is considerable
room for improvement in compiler-generated code. Classical compiler optimizations like constant propagation, func-
tion inlining, and dead code elimination have been shown to be relatively effective when applied at link-time. In
addition, other optimizations—such as value specialization, load/store forwarding, and code layout—that are not typ-
ically carried out at compile-time can also be used effectively. Unfortunately, many of the analyses introduced by
other systems are insufficient when carried out on a CISC machine (e.g. the x86). We describe PLTO, a link-time
optimizer for the Intel IA-32 architecture, that addressesthe inherent difficulties in static analysis of binaries compiled
for a CISC architecture. Many of the challenging issues stemfrom intrinsic characteristics of the architecture, such
as the small register set which lends way to a heavy reliance on using the runtime stack. This paper discusses many
analyses and optimizations used by PLTO, and we show the performance gains our system is able to achieve over
compiler-generated, heavily-optimized executables.

�This research was supported by the National Science Foundation through grants ACR-9720738 and CCR-0113633.
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1 Introduction

Modern compilers are good at code optimization; however, the analyses and optimizations they carry out are gener-
ally restricted to individual functions. Even those which perform interprocedural optimizations do not have access to
pre-compiled library routines. As a result, there is considerable room for improvement in the performance of code
generated by conventional compilers, even with a high degree of compile-time optimizations. One solution is to per-
form an additional phase of optimizations after the object modules have been linked. At this stage, the whole program
(now available as machine code) and all statically-linked library code are available for inspection and modification.
Although much semantic information is lost during compilation, there are still many opportunities to generate more
efficient code than what the compiler has produced.

One specific set of applications which has great potential tobenefit from link-time optimization is scientific
distributed-memory applications. It is common for scientific applications to run on large Beowulf clusters (Pentiums
running Linux). These machines are cheap and easy to set up for distributed-memory computations, making them a
favorite among people who run simulations. Often these programs make heavy use of pre-compiled libraries, such
as MPI (the Message Passing Interface), to handle the delicate details of communication across the network. These
message-passing libraries are written with the goal of being applicable to a wide range of programs, ranging from
gravitational N-body simulations to adaptive grid computations. As such, they are very general in their functionality
and implementation, and allow for a good deal of flexibility.This flexibility, however, often comes at the cost of
inefficient code. Unfortunately, traditional link-time optimization systems have targeted RISC (Reduced Instruction
Set Computer) architectures like the Compaq (formerly DEC)Alpha and the Sun SPARC. Little work has been done
for CISC (Complex Instruction Set Computer) machines such as the x86 (e.g., Pentium II, Pentium III, Pentium Pro)
in the post link-time optimization arena.

Our contribution is a post link-time optimizer that operates on x86 executables compiled in the Executable and
Linkable Format (ELF32), which is the binary file format usedby the Linux operating system. Many of the analyses
and optimizations carried out by our system are designed to deal with inherent difficulties of a CISC architecture.
The dearth of registers and the strong reliance—by both compilers and the ISA (Instruction Set Architecture)—on
using memory lend way to analyses that are very different from those designed for RISC machines. In particular, one
cannot expect to see much improvement in performance by carrying out analyses across only registers. On a RISC
architecture, however, it is perfectly feasible to ignore memory since the large register set enables most important
operands to be stored in registers. Other characteristics of a CISC architecture—such as variable length instructions—
complicate disassembly and re-assembly of the machine codeinstructions. The problem is made more challenging by
the presence of data or jump tables embedded in sections of the executable that are typically reserved for code. Much
of the remainder of this paper discusses our approach to overcoming the difficulties associated with the x86.

The rest of the paper is organized as follows: Section 2 describes PLTO, our Pentium Link-Time Optimization
system and discusses some requirements and assumptions made about the input. Section 3 examines the preprocessing
required to deal with abnormalities in ELF binaries, and then explains the novel approach PLTO uses for disassembling
machine code. Analyses used by PLTO are detailed in Section 4. Section 5 explains how the analyses are used to
guide optimizations throughout the system. We take a look atwhat optimizations result in the most performance
improvements, and conclude with performance results in Section 6. Section 7 contains information about work related
to binary rewriting, link-time optimization. Section 8 discusses future work and open problems, and our conclusions
are presented in Section 9.

2 PLTO : A Pentium Link-Time Optimizer

PLTO (Pentium Link-Time Optimizer) is a post link-time optimization system designed to modify IA-32 (i.e., x86)
executables compiled under the Linux operating system. PLTO is a binary-rewriting tool—both its input and output
are machine code. It is closely related toalto, a link-time optimizer for the Compaq Alpha [21]. The goal isto carry
out aggressive whole-program optimization while still producing code that is functionally equivalent to the original.
As such, all transformations performed by PLTO are conservative to ensure that correctness is retained.

Like many highly-optimizing compilers and link-time optimizers, PLTO gathers execution profiles from training
input before carrying out any optimizations. Currently, edge profiles are gathered to discover how many times control
flows along each edge in the interprocedural control flow graph (ICFG). Basic block and instruction weights are
derived from the edge profiles. Section 8 discusses some future directions in profiling of multiprocessor applications
and context-sensitive profiling.
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2.1 Requirements and Assumptions

During the course of optimization and instrumentation, existing instructions inside the executable often change loca-
tions. In addition, new instructions are inserted, and someoriginal ones may be removed. PLTO is a binary rewriting
tool, so both its input and output must be executable programs. The executables need to work without being run
through a linker; as a result, PLTO must be able to resolve relocations and insure that all program addresses are
patched correctly before the binary is rewritten. A consequence of this requirement is that PLTO needs to know which
byte-sequences in the program are addresses (and thus relocatable), and which are simply encodings of an instruction.
The requirement is the same imposed by a linker, and exists for the same reason.

Figure 1: Compilation Model with Post Link-Time Optimization

We prepare binaries and run PLTO on RedHat Linux 7.2 workstations, although there is nothing intrinsic in
the operating system that would prevent it from being used ona different distribution. The only machine-specific
requirement is that a certain library (discussed below) be available. A typical invocation of the compiler isgcc -O3
-Wl,-r program.c. The-Wl,-r flag instructs the compiler to pass the-r flag to the linker. The-r flag tells the linker to not
discard the relocation and symbol information it uses. The output from this command is an object file which serves as
input to PLTO.1 PLTO does not require a symbol table, although having one makes for easier debugging and allows
the user to get a better handle on what is going on. The flags described above also result in the linker retaining symbol
information. We do not feel this imposes an excessive burdenupon the user. It seems likely that a person concerned
enough about performance to use a link-time optimizer wouldbe willing to invoke the compiler with the additional
flags, most likely even at the expense of code growth resulting from libraries being statically-linked. Figure 1 shows a
high level overview of how post link-time optimization fits into the standard compilation model.

To enhance portability we use the GNU Binary File DescriptorLibrary (libbfd) for reading and writing ELF
executables. The library supports many common file formats such as COFF (Common Object File Format), the format
used in Windows executables. In addition, the BFD library handles hairy details, such as updating the section header
table to reflect any changes. Our disassembler is based loosely on the GNU disassembler for x86 executables that is
available in thebinutilssoftware distribution.

PLTO makes certain assumptions about the input executable.We assume that all addresses that are relocatable
are marked as such. If the linker does not correctly retain the relocation information, then addresses may not be
updated appropriately, or we may mistakingly update bit-sequences that are not addresses. Secondly, code sequences

1The object file is not executable due to intricacies with the GNU C Compiler and the native linker, which refuses to patch relocations and also
to retain them. Upon reading the binary, PLTO stores internal representations of the relocations, then invokes the native linker to make the object
file an executable.
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which perform arithmetic on addresses that point into the.textsection of the executable can result in PLTO producing
incorrect programs. An example (in generic assembly code) follows:

Address Instruction Comment
------------- ------------------- ----------------

... ...
0x8048100 mov r1, 0x80481fc Load an address into r1
0x8048104 add r1, r1, 4 Add 4 bytes to the address
0x8048108 call *(r1) Function call to the address

... ... contained in r1
0x80481fc ...
0x8048200 ... Start of some function

... ...

In this piece of code an assumption is made about the address of the function being called. Specifically, the code
assumes that the function falls 4 bytes after the address0x80481fcin the executable. If the two instructions at the
addresses0x80481fcand0x8048200are separated—even by something as simple as adding a NOP—the functional
behavior of the program changes and becomes incorrect. Fortunately, such code fragments rarely exist in practice. On
the IA-32 we have seen several instances of code that performs arithmetic on addresses in the.textsegment. These
examples arise in code that has been compiled to beposition-independent, which is explained in detail in section 3.3.1.
In position-independent code, jump tables are often embedded inside the.textsection of the function containing the
jump through the table. An instruction sequence is used to load the address of an instruction inside the function, and
later a displacement is added to it. The resulting address isthe start of the jump table. PLTO tries to detect situations
where.textaddress arithmetic is performed and treat them accordingly; this usually involves marking the functions
as being problematic, and not disassembling or carrying outoptimizations on them. In all of the SPECint95 and
SPECint2000 benchmarks there are only a handful of such occurrences, so the impact on disassembly is small.

3 Disassembly and Control Flow Analysis

3.1 Phase Flowchart

Figure 2 depicts the important pre-optimization stages in PLTO. They are explained in further detail in the following
sections.

3.2 Pre-processing for ELF Executables

ELF executables can have multiple sections that contain code. In particular, most linkers include the standard sections
.init, .plt, and .fini, which are used for program initialization, procedure linking, and for program termination. PLTO
contains a preprocessing pass in which it combines all sections containing instructions into a single.textsection—we
term the process a “normalization” pass. This normalization stage is performed before anything else is done, and
alleviates some of the work needed to be done by optimizations and analyses to handle intra-section anomalies. The
process is fairly straightforward since virtual addressesare preserved through the addition of NOP instructions. Minor
bookkeeping is needed to adjust relocations, which are typically provided as (section, offset) pairs. When a section is
merged with another, any relocations residing in the mergedsection are rewritten and associated with the section into
which they are merged.

3.3 Disassembly

Precise disassembly is a fundamental requirement for any system which aims to statically analyzes binary code. Un-
fortunately, correct disassembly is a hard problem, especially with the variable-length instruction encodings and the
presence of data in sections of the executable which are typically reserved for code. Although compilers do not usually
generate such code,2 binary rewriting systems must be able to deal with hand-coded assembly routines. These routines
are often designed to be as efficient as possible, and are sometimes non-conforming with regards to the standards used
by the compiler. In particular, a programmer wanting to align a loop may choose to use invalid opcodes instead of
valid NOP instructions, if it can be guaranteed that the bytes are never executed. A disassembler, however, does not
have all the knowledge that the programmer had, and as a result is often unable to determine that a sequence of bytes

2An exception is position-independent code, which is explained in detail later.
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Figure 2: Pre-optimization Stages in PLTO

cannot be executed. Recent work has shown that the problem ofdisassembly is equivalent to the Halting Problem, and
thus it is not always possible to correctly disassemble all code [25]. Moreover, it is not always possible to determine
when a code fragment has been incorrectly disassembled! PLTO uses a novel approach to recovering the instructions
from the byte stream that is a large improvement over other schemes used by binary rewriting systems, and over others
discussed in the literature. It is able to detect position-independent code, jump tables embedded in the instruction
stream, and data inserted for alignment purposes.

3.3.1 Position-Independent Code

Many compilers can be instructed to emit code that does not rely on being bound to any particular position in the
program’s address space. These code sequences are often referred to asposition-independent code(PIC). In particular,
PIC sequences do not contain any relocatable addresses embedded in the instructions. This property enables the code
to work regardless of its memory location at runtime. Furthermore, PIC does not need to be patched by the loader,
enabling it to be mapped as read-only data—which is useful for shared code such as dynamically linked libraries [17].

When a compiler is emitting position-independent code it typically creates jump tables that are also position-
independent. These tables are usually embedded in the text segment of the executable and consist of a sequence of
offsets rather than virtual addresses. A jump that uses the offset table first loads a nearby address,3 then uses this
to index into the table and retrieve an offset. The offset is added to the address that was previously loaded and then
used in an indirect jump to reach the desired destination. The problems posed by position-independent jump tables are
three-fold:(i) the offset tables, which are really no different than data, appear in the instruction stream;(ii) the code

3On the Intel x86 this is done using a “call 0” instruction followed by a “pop %eax” instruction, which has the effect of storing the latter
instruction’s address into register%eax.
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Location Memory Contents Disassembly Results

...
0x809ef45: eb 3c
0x809ef47: 00 00
0x809ef49: 00
0x809ef4a: 83 ee 04 83 ee
0x809ef4f: 04 83

...

0x809efaa: 73 9e
...

jmp 0x809ef83
add %al, (%eax)
add %al,

0xee8304ee(%ebx)
add $0x83, %al

jae 0x809ef4a

���
Figure 3: Code Fragment from the C Library Routinestrrchr

sequences that perform the indirect jumps are often complicated and may not adhere to a single pattern that is easily
recognizable; and(iii ) it is entirely possible that an offset table does not containrelocation entries. Taken together,
these properties make the task of disassembling PIC sequences involving jump tables more difficult than standard
code.

3.3.2 Disassembly with Linear Sweep

The most straightforward approach to disassembly is to start at the first byte in the.textsection and disassemble the
instruction there. The pointer into the section is then advanced by the length (in bytes) of the instruction disassembled,
and the next instruction is recovered. This process continues until the end of the instruction stream is encountered. We
term it alinear sweep, as no backtracking is ever involved and we are always makingforward progress. This scheme
is employed by programs such as GNU’sobjdumputility [13], OM [28], alto [21], and spike [9]. The shortcoming of
this approach is that it disassembles data or alignment bytes if they appear in the instruction stream. This can in turn
lead to erroneous disassembly of valid instructions if the end of the data does not also end what is disassembled as an
instruction encoding. Furthermore, disassembling data can produce bad programs even if we stay “in sync” with what
are real instructions; for example, a liveness analysis mayproduce incorrect results if it determines a register is not
live (because it is overwritten by an instruction decoded from the data) when in fact it may be. The problem of data
embedded in the.textsegment is illustrated by the code fragment in Figure 3.

The code comes from the library routinestrrchr found inside the standard C library (libc). The highlightedboxes
show three 0x00 (NULL) bytes that were inserted by the programmer, presumably to push the header of the loop at
0x809e4fa forward to an address with a more desirable alignment. The code produced in Figure 3 comes from
the objdumputility, and we can see that it interprets the alignment bytes to beadd instructions. The problem is
that it begins decoding the second add instruction, and consumes a number of bytes that were meant to form a valid
instruction at0x809e4fa. Subsequent disassembly is then incorrect, but later gets back “on track”. By0x809efaa,
the end of the loop is encountered and the instruction disassembled is a conditional jump back up to the loop header.
This immediately looks suspicious, as the target of the conditional jump is not the beginning of an instruction, but
rather the middle of theadd instruction that was decoded. The instruction sequence is clearly invalid, but the problem
remains that we cannot always detect such situations. In particular, if the disassembly was still out of sync when the
final instruction in the loop was being decoded then we would never see the conditional jump back up to the loop
header, and thus would not become suspicious. Normally a compiler uses 1-byte NOP instructions for alignment; this
particular routine, however, was written in hand-coded assembly and the programmer was aware that the data would
never be executed, so used a NULL byte instead. The code is perfectly valid, but the linear sweep disassembly scheme
becomes confused.

3.3.3 Disassembly with Recursive Traversal

A second approach—one that is perhaps more intuitive—is to decode instructions in a similar manner to how the
processor does, namely by following the execution of the program. The problem with the linear sweep is that it
does not take into account the control-flow behavior of the program. Instead we consider starting at the program entry
point—an address supplied as part of the program header. Instructions are then decoded linearly until branches, jumps,
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or function calls are encountered. Upon discovering an instruction in which the program counter can be changed to
something other than the next instruction, the algorithm recursively visits all possible control-flow successors; we term
the algorithm a “recursive traversal”. For example, in the case of a conditional jump there are two possible successors:
the next instruction, and the target of the jump that is visited when the condition is true. Function calls have similar
behavior, and unconditional jumps have only one possible successor. Using this scheme the algorithm will visit only
locations in the executable that are actually reachable from the starting point of the program. A high level sketch of
the algorithm follows:

proc Disassemble(Addr, instrList)f
if (Addr has already been visited)

return;
do f

instr = DecodeInstr(Addr);
Addr.visited = true;
add instr to instrList;
if (instr can alter the program counter) f

T = set of possible control flow successors of instr;
for each (target 2 T) f
Disassemble(target, instrList);gg

else Addr += instr.length; /* addr of next instruction */g while Addr is a valid instruction address;g
Re-examining the problem in Figure 3, it becomes evident that the recursive traversal does not try to disassemble

the NULL bytes inserted before the loop header. The unconditional jump at0x809ef45 before the alignment bytes,
in conjunction with the conditional jump at0x809efaa, result in the algorithm disassembling around the padding as
desired.

The key assumption made by this algorithm is that the set of all possible control flow successors for an instruction
can be found. This is a bold supposition at the machine-code level, where dynamic function calls and obscure indirect
jumps are often a reality. Specifically, theswitch in C often results in compilers generating indirect jumps through
jump tables. If static analysis cannot precisely determinethe bounds and starting address of all tables with 100%
accuracy, we risk disassembling data or not disassembling all instructions, either of which is a fatal error. Moreover,
we cannot be sure that the same compiler (or even a compiler atall!) was used to generate the machine code being
analyzed, so simply trying to detect normal forms is not feasible. Another technique that have been proposed is
performing constant propagation during disassembly (which requires a partial CFG to be constructed), which does not
seems straightforward [30]. In addition, it suffers from another flaw which is discussed below.

Presumably any target of an indirect jump is going to be encoded somewhere in the binary as a relocatable address,
otherwise there would be no way to load the address into a register and jump indirectly through it.4 Since we are
equipped with relocation information, one feasible solution would be to start disassembling at all relocatable addresses.
The augmentation to the recursive traversal algorithm is the following procedure which is called at the top level in place
of Disassemble:

proc Disassemble’(Program)f
instrList = NULL;
for each relocation, r, 2 Program.Relocations f

Addr = ReadContentsAtAddress(r.address);
Disassemble(Addr, instrList);g

Disassemble(Program.startAddress, instrList);g
4Address arithmetic could be used, and in practice this can pose serious problems. We discuss it in detail later.
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Location Memory Contents Disassembly Results

...
0x80b1d8b: 8d 84 c0 95 1d 0b 08
0x80b1d92: ff e0
0x80b1d94: 8d
0x80b1d95: 74 26 00
0x80b1d98: 8b 06
0x80b1d9a: 13 02
0x80b1d9c: 89 07

...

lea 0x80b1d95 (%eax,%eax,8),%eax
jmp *%eax
lea

0x0(%esi,1),%esi
mov (%esi),%eax
adc (%edx),%eax
mov %eax,(%edi)

���
Figure 4: Code Fragment from the C Library Routinempn add n

The algorithm seems reasonable in that it will start disassembling at all locations in the program which can have
their addresses taken—which should cover all targets of indirect jumps and function calls. The only problem is that
it may disassemble starting at some address that it not a possible target. For instance, Figure 4 shows a routine,
mpn add n, extracted from the C library on our Redhat 7.2 systems. The colored address in the figure corresponds

to the bytes that are relocatable in the instruction encoding: 0x80b1d8d to 0x80b1d91. The contents at that
address is the program address0x80b1d95. Using the modified algorithm, we treat0x80b1d95 as an address at
which to begin disassembly. The problem is that0x80b1d95 actually points into the middle of an instruction! The
lea instruction which loads0x80b1d95 into a register performs address arithmetic with it. On the IA-32 the lea
instruction “lea baseAddress(r0, r1, m), r2” does:

r2 baseAddress+ contentsOf(r0) + contentsOf(r1) �m

The function of thelea is to load an address located in the middle of a loop, which begins at address0x80b1d98.
The programmer who wrote the function was aware that the register %eax never could contain the value 0, allowing
control to be transferred to the address0x80b1d95—which was where we started disassembling. Unfortunately,this
is specialized knowledge about the program that is not conveyed at the machine code level.5 In general, it is impossible
to determine via static analysis what values may appear in a register during the course of execution. Strange address
arithmetic like this prevents us from being able to rely solely on the recursive algorithm.

3.3.4 Extending Linear Sweep

The first linear algorithm discussed in Section 3.3.2 was fairly primitive, in that it did not use all the information
about relocations that is available at link-time. It is foolish to disassemble starting at addresses that are marked as
containing relocations (e.g.,.text-embedded jump tables), since an instruction encoding starts with an opcode which
cannot be part of any relocation. Using this observation we can improve the algorithm by disassembling around blocks
of addresses marked as relocations. Given some contiguous sequence ofk relocations, the goal is to identify which
ones correspond to a jump table, if any. For instance, whenk = 1 it is likely that the address is simply part of an
instruction encoding (e.g., thelea instruction from Figure 4 contains such an address). However, to simply assume
such a fact is erroneous; although a compiler may not generate 1-entry jump tables, a devious programmer could. The
same reasoning applies whenk= 2. Two contiguous addresses may be embedded as part of an instruction encoding, or
they could be a small jump table. An additional observation is required, which is that architectures have finite lengths
for instruction encodings, and can contain at mostm relocatable addresses within these bit-sequences. On the IA-32
m= 2—that is, 2 addresses can appear adjacent to each other within the machine code for one instruction. Applying
this observation, we can conclude that in sequences ofk relocations,k� 2, the lastk�2 relocations are data. If they
were not data, our observation about having at most 2 adjacent addresses would be invalidated; but we know that to be
fact. The question remains whether or not the first two addresses in the sequence are also part of the jump table. It is
entirely possible that the instruction immediately beforethe jump table is one that ends in 2 addresses, and the jump
table consists of the lastk�2. PLTO uses the following algorithm to decide:

5And not at the “source code” level either, except in a commentabove the code fragment.
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1. [Phase 1: Conservative Marking.] Find k-sequences of relocations and mark the lastk�2 as data so the linear
sweep algorithm disassembles around them.

2. [Phase 2: Linear Sweep.] Begin the linear sweep algorithm as described in Section 3.3.2. Before trying to
decode each instruction, check to see if the current programcounter is positioned at a location that was marked in
Phase 1, or a location that contains a relocatable address. If either is true, check the last instruction disassembled
to see how many relocatable addresses it contained at the end. Assuming the instruction hadn addresses,n� 2,
we now know the jump table following the instruction containsk�n addresses. Advance the current pointer to
the end of the table and resume disassembly there.

The algorithm is capable of handling data, such as jump tables, embedded in the.textsection, but still does not
produce correct results when the data or alignment bytes do not have relocations associated with them. For example,
the improved algorithm produces the same result when applied to the code fragment in Figure 3.

3.3.5 Combining Linear Sweep and Recursive Traversal: A Hybrid Algorithm

Both linear sweep and recursive traversal have merits as well as pitfalls. Unfortunately, either of them applied alone
can always produce undetectable disassembly errors: the improved linear sweep fails when unmarked data resides
in the sections of the executable reserved for instructions; the recursive algorithm fails when a relocatable target is
not the start of an instruction. Both of these failures are fatal and compromise the correctness of the program. The
solution employed in PLTO is to make use of both algorithms. First the improved linear sweep is used across the entire
program. The results of the linear sweep are then verified with the recursive algorithm.6 When the recursive scheme
disassembles an instruction residing at an addressai , it checks to see that the linear algorithm also disassembled an
instruction there. If it did not, the function containing the addressai is marked as problematic,7 and all the instructions
between its start and end that were disassembled by the linear scheme are removed. PLTO then stores the machine
code for that function so that later when the final binary is being generated, it can emit the exact same code. Since
the function and the instructions it contains do not appear in the ICFG, there is no risk of performing transformations
that affect the functionality of the procedure. Worthy of note is that switching the order of the two algorithms does not
produce the same results, due to the recursive algorithm avoiding unreachable code. In particular, the linear algorithm
is likely to find many instructions that the recursive routine does not.8 For this reason, if the linear sweep were used
to verify the results of the recursive traversal, it would issue many queries to see if an address itai was disassembled;
in many cases the answer would be “no”, simply because the instruction was not reachable. However, this does not
imply that disassembly went wrong. For this reason we use therecursive traversal to verify the results of the linear
sweep.

A few challenging implementation issues arise when procedures are not disassembled. Such procedures may
contain relocations which point elsewhere into the executable, and these need to be patched appropriately. A load
from a global.datasection is such an example, as the section’s address changesbetween pre- and post-optimization.
Fortunately, we can use the relocation information to determine which bit-sequences in the chunk of machine code
need to be updated. Another issue is one of escaping PC-relative branches— those in which the target function is not
the same as the function containing the branch. When the machine code for the function is retained and later emitted,
there is an implicit assumption that PC-relative branches do not need to be updated because their relative offsets to
other instructions in the function are the same. This is truefor branches in which the target instruction is also inside
the same procedure, but not true when the branch is interprocedural. Furthermore, function calls on the IA-32 are little
more than interprocedural branches, as they take PC-relative offsets to the target procedure. This poses a problem: the
function has not been disassembled so we do not know where theinterprocedural jumps and function calls are located,
yet we need to update their displacements—which are not marked as being relocatable because they are PC-relative.
An additional degree of complexity arises from the fact thatthe process of updating the displacement for acall or
interprocedural branch may result in the size of the instruction encoding changing! For example, a function call which
was previously located 120 bytes away from its target may be 300 bytes away after optimization, and to encode 300 as
the offset for thecall requires an extra byte than what was needed to encode 120. To make matters worse, extending
the instruction by an extra byte would invalidate every other branch instruction in the non-disassembled procedure,

6Only the results from the first run need to be stored in memory.The second phase which verifies the disassembly does not needto create an
actual representation of an instruction.

7Section 8 discusses improvements to this approach. For instance, one could attempt to discover which algorithm produced the correct results.
8About 10% more; see Section 5.5.
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as the assumption was made that the offsets on intra-procedural branches would remain the same. A PC-relative
branch that was previouslyn bytes away from its target may becomen + 1 bytes away, if thecall that is being
extended happens to fall between the branch and its target. The entire situation is depressing and full of challenging
details. Currently, PLTO makes use of an extra relocation type for relative offsets that is available in ELF32 binaries.
Unfortunately, the relocation is only available in compiler-generated routines, and hand-written assembled procedures
(where the disassembly errors often occur) do not usually contain them. In these cases PLTO uses unsafe heuristics
to try and discover thecall instructions inside the procedure even though it cannot be disassembled. Section 8
discusses atrampoliningmethod that we plan to employ to deal with the problem of procedure calls changing length
when updating their offsets.

3.3.6 Experimental Results

There are two “performance” issues at hand: the actual speedat which the disassembly takes place, and the precision
of the hybrid algorithm. As expected, we see that using both algorithms in conjunction requires about twice as much
processing time. Appendix B shows the disassembly times forthe statically-linked benchmark for the integer subsets
of the SPEC95 and SPEC2000 benchmark suits. We believe that with some careful tinkering, the execution time for
the hybrid algorithm could be improved so that it runs in approximately the same time as the linear sweep. The purpose
of the tables is to show that the disassembly time is not increased drastically by applying our algorithm; moreover,
the total time spent in disassembly is only a small fraction compared to the time spent during optimization. Table 1
shows how well the hybrid algorithm performs for the same benchmarks. There is little to gauge its precision against,
however, since the other approaches (those in Sections 3.3.2 and 3.3.3 we have discussed are not correct. Taken alone,
however, the hybrid algorithm is quite successful. On average over 99.6% of functions, accounting for over 99.8% of
all bytes in the programs can be correctly disassembled.

3.4 Issues in Control Flow Analysis

Following disassembly, PLTO constructs an interprocedural control flow graph (ICFG) over the entire program. Two
interesting issues arise in the analysis of a program’s control flow: jump tables and unknown control flow.

Indirect jumps through a table of addresses are often generated by a compiler for multi-way branches, such as those
arising from theswitchconstruct in C. Several techniques have been proposed in theliterature and implemented in
systems for binary analysis. One method, which is used by PLTO, involves tracing backward through the instruction
stream from the location of an indirect jump. In IA-32 assembly, a jump through a table takes on a fairly normal form:

Address Instruction Comment
---------- ------------------------- ---------------------------------
80481e3: mov 0x8(%ebp),%edx Load index into %edx
80481e6: cmp $0x9,%edx Bounds check against ’9’
80481e9: mov $0x6,%eax
80481ee: ja 8048241 <foo+0x61> Jump to default case
80481f0: jmp *0x808dbf0(,%edx,4) Scale %edx by 4, add base address of
80481f7: nop table, and perform the indirect jump
80481f8: mov $0x2,%eax First case (0) in table
... ...
8048230: mov $0x9,%eax Last case (9) in table

The idea is to try and recover the base address and size of the jump table. Typically the size of the table can be
discovered from the bounds check that is performed against the index of the entry being jumped through. The index is
scaled by the address size on the architecture, and added to the base address of the table. Cifuentes and Van Emerick
propose a technique for detecting several normal forms thatis similar to the scheme employed in PLTO [8]. Theiling
suggests a different approach, in which constant propagation and construction of the CFG is done at the same time
[30]. The hope is that the necessary constants propagate themselves down to location in which in the indirect jump is
issued. One can then recover the possible targets by using all the information which found its way to the jump. We
have found that detecting a few normal forms for indirect jumps enables PLTO to almost always correctly find the
targets of these jumps. Only in a select few hand-coded assembly routines does the algorithm become stumped.
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No. of Functions No. of Text Bytes
Program Nf Pf Pf =Nf (%) Nb Pb Pb=Nb (%)

compress 570 4 0.70 291552 792 0.27
gcc 2418 3 0.12 1146304 736 0.06
go 919 4 0.44 485472 792 0.16
ijpeg 968 4 0.41 403664 800 0.20
li 928 4 0.43 334992 800 0.24
m88ksim 832 4 0.48 394656 800 0.20
perl 887 4 0.45 502768 800 0.16
vortex 1506 4 0.27 671936 792 0.12

GEOMETRICMEAN: 0.38 0.16

(a) SPECint-95

No. of Functions No. of Text Bytes
Program Nf Pf Pf =Nf (%) Nb Pb Pb=Nb (%)

bzip2 634 3 0.47 339216 736 0.22
crafty 673 4 0.59 449632 792 0.18
eon 2288 4 0.17 810256 800 0.10
gcc 2607 3 0.12 1384176 736 0.05
gzip 663 3 0.45 344464 736 0.21
mcf 572 4 0.70 294880 792 0.27
parser 884 4 0.45 385280 792 0.21
twolf 751 4 0.53 457184 792 0.17
vortex 1506 4 0.27 671936 792 0.12
vpr 832 4 0.48 391440 800 0.20

GEOMETRICMEAN: 0.38 0.16

(b) SPECint-2000

Key:
Nf : Total no. of functions
Pf : No. of functions inferred to be “problematic” and not disassembled
Nb: Total no. of bytes in the.textsegment
Pb: No. of bytes in “problematic” functions

Table 1: Precision of Disassembly
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Given that we cannot always glean exact control flow information from the machine code, a means by which
unknown control flow can be modeled is desirable. A special pseudo-node in the ICFG,BHELL , is used to represent
all types of unknown control-flow. For instance, sometimes it is not possible to recover the targets of indirect jumps
or virtual functions calls.9 When a basic block ends with an instruction whose entire set of successors can not be
determined, an edge from that block is added toBHELL . Similarly, when a block is a possible target of a indirect
jump or function call10 we add an edge fromBHELL to that block. BHELL is contained in its own function,FHELL

, and in all of the analyses it is treated conservatively. Forinstance,BHELL is assumed to use all registers upon its
entry and then to define all registers. This ensures that liveness information is computed correctly in the presence of
unknown control-flow, and that constants are not propagatedacross edges leading in or out ofBHELL . Other analyses
and optimizations treatBHELL andFHELL specially; dominator computations, for example, are not performed when a
function has blocks with incomingBHELL edges.

4 Analyses

4.1 Stack Analysis

The scarcity of general purpose registers on the IA-32 results in a large reliance by the compiler on using memory. In
particular, function arguments are placed onto the runtimestack by the caller and retrieved inside the body of the callee.
Thealto project showed that constant propagation across function boundaries can result in a significant performance
improvement [21]. However, these observations were made onan architecture in which function arguments are almost
always passed through registers. As the gap between memory speeds and CPU speeds increases, eliminating loads
and stores to memory becomes increasingly important. For this reason, we would like to be able to reason about
the relationships among stack frames of functions. A simpleexample follows, which illustrates the potential for
optimization that we would like to exploit:

int f(...)
{
...
g(123, 456);

}

void g(int x, int y)
{

...
if (y != 0) ...

}

At the machine code level, the code for these functions resembles the following:

f: ...
push $456 # push arg 2
push $123 # push arg 1
call g
addl $8, %esp # pop args
...

g: push %ebp # save old frame ptr
movl %esp, %ebp # update frame ptr
subl $32, %esp # allocate stack frame
...
movl 8(%ebp), %eax # load y
testl %eax, %eax # y != 0 ?
jne ...
...
leave # deallocate frame
ret

Somehow we would like to take advantage of the fact that the arguments tog are constants, whose values can be
found in the body off. Assumingg has only one call site, the test inside its body could be eliminated if the value of y
was known. The problem is tricky, however, asf pushes the argument into a location on the stack that is determined by
the value of the stack pointer (%esp), andg explicitly pulls the argument off the stack via a load from its frame pointer
(%ebp). It would be nice to know the relationship between these tworegisters. Specifically, a particularly useful piece
of knowledge would be the height of a stack frame at any given program point—the value %ebp�%esp. Given this
bit of information for each function, one could discover that thepush instruction inside the body off is writing to the
same location used by the “movl 8(%ebp), %eax” instruction insideg. Since the value of this location is known
to be 456, the load ofy insideg can be replaced with a simpler instruction: “mov 456, %eax”. It is likely that the
optimization would proceed in a transitive manner and replace some subsequent occurrences of %eaxwith the value
456. Given our knowledge about the contents of %eaxprior totest instruction, we can also determine the outcome of

9In fact, the targets of such calls may not even be defined untilruntime.
10We can find this information by perusing addresses sitting inthe data and read-only data section
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the test and determine which way the conditional branchjne goes. The savings in this particular example are at least
one less memory reference and two less instructions from being able to eliminate thetest andjne.11 Moreover, in
this particular example the propagation also opens the doorfor dead code elimination. After replacing the load ofy
insideg, thepush instruction inf writes to a location that is not ever used by subsequent instructions. Prior to the
transformation, the location was used as a placeholder fory and was thus necessary. Following the transformation,
however, the location is dead and thepush serves no purpose. Thus, a round of dead code elimination is performed
every time constant propagation is carried out. The result is the elimination of even more memory references. The
optimized code follows:

f: ...
push $123 # push arg 1
call g
addl $8, %esp # pop args
...

g: push %ebp # save old frame ptr
movl %esp, %ebp # update frame ptr
subl $32, %esp # allocate stack frame
...
movl 456, %eax # load y
...
leave # deallocate frame
ret

4.1.1 Algorithm and Equations

The analysis is fairly intuitive. Each instruction in the program contributes some number of bytes to the height of
the stack (most instructions contribute nothing). The contribution made by a basic block is simply the sum of all
the instructions it contains. Given the effect that each block has on the stack, we can iteratively propagate these
contributions around the CFG for a function. The equations for dataflow through a basic block,B, that is contained in
a functionf follow:

HeightOut(B) = HeightIn(B)+ jBj
HeightIn(B) =� ? if HeightOut(p)6= HeightOut(p’), for some p and p’2 Predecessors(B) ;

c if 8 p 2 Predecessors(B), HeightOut(p) = c

subject to the initial conditions:

HeightIn(B) =8<: 0 if B =2 Successors(BHELL ) and B2 Successors(Entry(f)) ;> if B =2 Successors(BHELL ) and B=2 Successors( Entry(f) ) ;? if B 2 Successors(BHELL )

The meet operator is defined analogously as it in constant propagation—a block with two incoming edges of
different contributions results in a production of?. Such scenarios occur rarely in code we have inspected, but they
do exist. For instance, a function call may be executed conditionally and the compiler may choose to not deallocate
the arguments it pushes on the stack. This results in two execution paths with different contributions. Usually these
scenarios occur toward the end of functions when no existingreferences to the stack are made, so their presence does
not prevent the stack analysis from being effective.

4.1.2 Interprocedural Considerations

Hand-coded assembly routines may not adhere to conventionsthat we take for granted from the compiler. Interproce-
dural jumps and non-returning function calls are a reality.In some frequently-called routines that are written to be as
fast as possible,12 control often jumps between two functions so that the cost ofprocedure calls is not incurred. There
are also circumstances where functions do not deallocate the stack frame they have set up, but instead leave the job
to the calling function. The code can be considerably fasterwhen only one function has to clean up instead of both.
Furthermore, a smart compiler may also choose to carry out a transformation that generates such code. For this reason
we cannot always be sure that the height of the stack (the value in %esp) is the same after a function call as it was

11This assumes that the PSW bits set by the test instruction arenot used by any subsequent instructions. If they are in fact used, thecmp must
remain in the function to preserve correct behavior.

12We see such situations inmalloc(), thesetjmp()family, and some math routines.
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before. Formulated in terms of our analysis, we cannot be sure the contribution of acall instruction is 0 bytes. This
adds an interesting twist to the problem. To carry out an analysis of the stack inside a function we need to know about
the contribution of any functions that it may call. This requires knowing the height of the stack at the exit points for
these functions, which poses a chicken-and-egg problem. Tocompute the stack frame size inside a function we need
to have computed the stack frame sizes for all the functions that are reachable from it. This is not always possible;
e.g., supposef callsg andg also callsf.

PLTO uses a notion of functionwell-behavednessto address this problem. A functionf is said to be well-behaved if
and only if we can guarantee it leaves the stack as it found it.An initial set of well-behaved functions is constructed by
performing a simple local analysis for each function. One condition that guarantees well-behavedness is the existence
of compiler-generated function prologues and epilogues, which typically push the frame pointer onto the stack upon
procedure entry and pop it off before returning.13 The stack size remains unchanged regardless of any non-zero
contributions that exist before this instruction is executed. Unfortunately not all functions will have a prologue and
epilogue, as these may be optimized away or not generated at all. For the remaining functions in which nothing is
known about their behavior, PLTO makes the optimistic assumption that they are well-behaved. This is later refined
if we discover that the assumption was not true.

The implementation of the stack analysis involves a queue offunctions, which initially contains all the functions
in the program. As stack sizes are computed, a function may befound to be not well-behaved. When this occurs,
all predecessors of this function in the call graph are re-enqueued, and their stack sizes are re-computed with the
knowledge that one of their procedure calls is no longer well-behaved. The entire analysis is thus broken down into
two phases:

1. [Local analysis.] Functions with prologues/epilogues that guarantee stackrestoration are marked as being well-
behaved.

2. [Iterative propagation.] Stack sizes at every program point are computed using information about well-behaved
functions. Functions that are found to be not well-behaved inform their predecessors, and the information
propagates back up the call graph.

We find that between 85% and 95% of all functions contain appropriate prologue and epilogue code, and hence are
well-behaved. About half of the remaining functions are found to be well-behaved due to the net contributions being
0 at all exit points. PLTO is forced to deal conservatively with the other remaining functions and assume they are not
well-behaved.

The stack analysis is used in almost all optimizations throughout the system. Function inlining uses the information
when merging procedures to eliminate instructions that setup a new stack frame inside the callee. It adjusts the callee’s
references to the stack and writes them in terms of the stack for the calling function. Constant propagation uses the
information to propagate constant values put on the stack bypush instructions into the body of the callee. Table 2
shows the effect of using the stack analysis in constant propagation on the SPECint95 benchmark suite. On average,
it enables about 20% more register or memory operands to be replaced by constant values.

Load/Store Forwarding also uses the stack analysis in a similar manner, except it does so to propagate registers in
place of stack locations as opposed to constants in place of registers.14 Without the stack analysis the optimization
would be severely crippled. Our approach to interprocedural stack analysis is novel. Related work includes the Java
bytecode verifier, which performs a similar local analysis to guarantee that functions do not affect the stack size [23].

4.2 Use and Kill-Depth Analyses

Performing analyses across interprocedural boundaries can be extremely time-consuming. But treating interprocedural
edges too conservatively (e.g., assuming that acall instruction defines all registers and stack locations) can severely
impact the effectiveness of an optimization. Often times a balance between the two extremes can achieve acceptable
results and still run in a reasonable amount of time, with theadded benefit of being easier to implement. PLTO
carries out most optimizations across the ICFG with interprocedural considerations. In addition, it can also perform
optimizations local to each function, using summary information about other functions to handle interprocedural
aspects. Use- and kill -depth information falls into this category—it is used in constant propagation and liveness

13On the IA-32 this is usually accomplished with theleave instruction, which has the effect of restoring both the frame pointer and the stack
pointer to their previous states.

14We later refer to this optimization asregister propagation, as it is carried out concurrently with constant propagation
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Program No. of operands replaced Percent Increase
Before After

compress 318 389 22.33
gcc 427 593 38.87
go 423 478 13.00
ijpeg 372 439 18.01
li 330 397 20.30
m88ksim 347 433 24.78
perl 553 640 15.73
vortex 517 701 35.59

Geometric Mean: 22.11

Table 2: Effect of Stack Analysis on Constant Propagation

analyses to provide an improvement when the optimizations are not carried out across procedure boundaries. Finally,
the information is also used in the interprocedural analyses as a solution to some issues concerning representation of
the runtime stack. Section 5.1.3 discusses the stack representation in greater deal and serves as motivation for using
these analyses even in an interprocedural optimizer.

A function’s kill-depth describes the amount of space belowits own stack frame that it may write to. The value
is either positive or∞, meaning some instruction inside the function may write to any location on the stack. Such
instructions are generally stores into the heap, but PLTO isusually unable to infer this information due to the loss
of semantic information accompanied with machine code, where indirect stores may be going to the stack, statically
allocated data regions, or the heap. In intraprocedural constant propagation the kill-depth of a function is used when
a call to some function is seen. Instead of assuming the worst-case—that the function may destroy the entire
contents of the stack—we use kill-depth to limit the extent of the damage. Use-depth is the dual of kill-depth, used in
intraprocedural liveness analyses. PLTO does not have to assume that the function being called reads all locations on
the stack, instead use-depth can be used as an upper bound. The pseudo-functionFHELL is assumed to have a kill-depth
and use-depth of∞. Consequently, any function through whichFHELL is reachable must also have values of∞, since
execution of these functions could result inFHELL being reached. The intuition is that if we do not know where control
ends up (and thus are in the presence ofFHELL or BHELL ), the worst-case assumptions need to be made. The remainder
of this section describes how kill-depth is computed; the case for use-depth is analogous.

The analysis is broken down into two phases: a local computation for each function, and iterative propagation of
the local computations. Iterative propagation is necessary as kill-depths may span multiple stack frames and affect the
kill-depths of other functions;FHELL is such a case. In the local analysis, each instruction in thefunction is analyzed to
determine the extent of the location to which it may store. Indirect stores through registers are treated conservatively
and assumed to have a kill-depth of∞. The “deepest” store to the stack inside a function is then set to be the function’s
kill-depth. The second phase of backwards iterative propagation along the call graph proceeds as follows: consider
some functionf with a current kill-depth ofm. f statically has procedure calls,C1, C2,...,Cn to some other set of
functions in the program,f1, f2, ... fk with kill-depthsg1, g2, ...,gn respectively. From the stack analysis described in
Section 4.1 we know the height of the stack,pi at each call siteCi , 1� i � n. Let di denote the new kill-depth off
after propagation fromgi . di is computed according to the following rules:

– If the stack height at the call siteCi is unknown, that ispi = ?, we cannot determine the size of the stack frame
at the call site. In the worst case the stack has not grown any (e.g.,pi = 0). Consequently, whenfi writes gi

bytes below it stack frame, the write will also begi bytes belowf’s stack frame since the call site was at height
0 in f’s stack. In this case,di = max(m,gi).

– If the stack height at the call site is a known value, that ispi 6= ?, di is computed as max(m, max(0,gi - pi)).
The intuition is that a store to the stackgi bytes belowfi ’s stack frame will write to a locationgi - pi below f’s
stack frame, and thus affect its kill-depth if this value is larger thanf’s current kill-depth.

This proceeds until a fixpoint is achieved, so that extremely“deep” stores (e.g., those that are∞) can progagate
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Program Eliminatable Instructions Percent From Stack
Stack Registers Total

compress 17 879 896 1.89
gcc 9 3057 3066 0.29
go 21 1561 1582 1.33
ijpeg 17 1197 1214 1.40
li 18 1123 1141 1.58
m88ksim 18 1115 1133 1.59
perl 17 1437 1454 1.17
vortex 51 2157 2208 2.31

Geometric Mean: 1.27

Table 3: Effect of Stack Liveness Analysis on Dead Code Elimination

upward to all places from which they are reachable. Unfortunately, when used in the intraprocedural analyses the use-
depth and kill-depth are unnecessarily large at times; in fact, many functions receive∞ because they have reachable
paths toFHELL or indirect stores. In practice the analyses are ineffective at improving the precision of constant
propagation and liveness analyses. However, they are required in the interprocedural analyses as a means to fix a
problem with representation of the stack. Since the stack isrepresented as a large array with a finite upper bound, a
store extremely deep into the stack to a location that is larger than the upper bound on the stack size cannot be modeled
in the interprocedural optimizations. In these cases, the kill-depth and use-depth are used to be sure that the correct
information propagates backwards.

4.3 Liveness Analyses

Liveness analysis is performed to eliminate instructions that store to locations that are not subsequently used. Constant
propagation and function inlining create dead code, so the dead code elimination is run after these are carried out. The
IA-32 has only eight general purpose registers, and as such relies heavily on the runtime stack. Eliminating writes to
stack locations is potentially more fruitful than eliminating writes to registers, since memory operations are expensive.
For this reason PLTO carries out both a register and a stack liveness analysis. In addition a PSW analysis is used by
both these analyses. In order for an instruction to be eliminated, the PSW bits it defines much also be dead.

4.3.1 Stack Liveness Analysis

PLTO carries out a context-insensitive, intraprocedural stack liveness analysis complemented with the use-depth in-
formation presented in Section 4.2. Table 3 shows the numberof eliminatable instructions from using this analysis,
along with their percentage as the number of total eliminatable instructions. Surprisingly, the stack liveness analysis is
relatively ineffective, accounting for only a small percentage of total eliminatable stores in most cases. Indirect loads
play a major factor in hindering the effectiveness of stack liveness analysis; in particular, at any program point that has
a reachable path to an indirect load, all stack locations arelive. Section 8 discusses some future work we have in mind
to combat this problem.

4.3.2 Register Liveness Analysis

Register liveness analysis in PLTO is interprocedural and comes in both the context-insensitive and context-sensitive
flavors. The context-insensitive analysis is a straightforward implementation of what has been described in many
papers [19, 14, 21, 28]. The context-sensitive analysis considers only realizable paths in the ICFG, and has also been
discussed in some deal in recent work [19, 14]. The basic ideais illustrated in Figure 5, which shows how information
can legally propagate in an ICFG through unrealizable pathsby using call and return edges.

The blue path leading up the graph is the path on which the use of x propagates back to the call site from which it is
not reachable. The context-sensitive analysis in PLTO is based on the dataflow equations by Muth [19] and Goodwin
[14]. The context-sensitive analysis computes summary information for each function, which holds only if control
enters from the first block in that function. Some care must betaken in the presence of control flow irregularities like
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Figure 5: Backward Propagation Along an Unrealizable Path

interprocedural jumps and function calls to the middle of procedures. Muth found that on the Compaq Alpha one
could expect about a 70% increase in the number of available registers using the context-sensitive approach.

On the IA-32 we find that the context-sensitive analysis performs better, but only by about 7% on the average; we
see an increase from 1.67 dead registers up to 1.8. Table 4 shows the effectiveness of both approaches with regards to
the number of free registers they find. Section 8 discusses some potential uses for these registers.

Program Free Registers Percent Increase
Insensitive Sensitive

compress 1.735 1.847 6.45
gcc 1.494 1.647 10.24
go 1.886 2.143 13.62
ijpeg 1.642 1.738 5.85
li 1.636 1.753 7.15
m88ksim 1.718 1.825 6.32
perl 1.659 1.799 8.44
vortex 1.580 1.644 4.05

Geometric Mean: 7.31

Table 4: Effectiveness of Context-Sensitive Register Liveness Analysis

The effect that callee-saving register sequences in a function prologues have on liveness is worthy of note. Typi-
cally a function will save the set of callee-saved registers15 upon entry by storing them somewhere in its stack frame.
Since the act of storing them to the stack (usually done with apush) constitutes a use of the register being saved,
liveness information propagates backwards and the callingfunction believes these registers are later used. This is
usually incorrect, as convention (and lack of registers) dictates that function arguments be passed through the stack,
meaning these registers should only be live if later used within the calling function before being defined. Ideally we
would like to discover that although these registers are used, they are later restored in the function epilogue (usuallyvia

15These are typically %ebx, %esi, and %edi on the IA-32
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Program Static Eliminatable Instructions Percent Increase
Standard Analysis Non-conservative Analysis

compress 896 997 11.27
gcc 3066 4335 41.38
go 1582 1871 18.26
ijpeg 1214 1377 13.42
li 1140 1328 16.49
m88ksim 1133 1292 14.03
perl 1454 1852 27.37
vortex 2208 2797 26.68

Geometric Mean: 19.31

Table 5: Potential Benefit from Knowing Callee-Saved Registers Are Not Live

pop instructions) and not subsequently used, meaning their contents are not live. Unfortunately, like in other analyses
throughout PLTO, indirect loads must be treated conservatively—we assume they can come from the locations on the
stack to which the callee-saved registers are stored. Although it is highly unlikely that a function will read from these
locations, it can be a reality in hand-written assembly routines. The potential payoff for knowing that these registers
are not live is rather large. Table 5 shows how the effectiveness of dead-code elimination would improve if we could
assume that the callee-saved registers are not live upon function entry. Section 8 discusses an analysis we are currently
investigating that would limit the range of indirect loads and stores; we hope it will eventually lead to improvements
close to what are seen in Table 5. Although assuming that callee-saved registers are not live is technically incorrect, the
programs in SPECint95 ran correctly for us after testing outthem out with that assumption. These unsafe assumptions
have been made in several systems: Goodwin suggests an approach in which indirect calls to unknown targets obey
the standard calling conventions defined for the architecture [14]. This was implemented in the context of the Spike
optimization system [9]. Muth describes a similar approachin which asaved-register set is constructed for each func-
tion, which contains a representation of all the callee-saved registers in that procedure [19]. It is not clear what sortof
analysis, if any, is used to determine that the locations to which the registers are stored are not read from. The author
also describes a slight modification to computing liveness in the presence of indirect function calls whose targets are
not known, in which calling conventions are assumed to hold [19].

4.4 Analysis of the Optimization Potential of Code Fragments

Many transformations are carried out for the express purpose of creating better opportunities for other optimizations.
Other transformations, such as function inlining, have their own expected payoffs but also enable other optimizations
to perform better. In general, transformations that have their own payoffs do not consider the potential gains they
may enable other optimizations to take advantage of. A novelapproach to optimization is to consider both the im-
mediate payoff and also any future payoff, when deciding where and when to carry out transformations such inlining,
specialization, and cloning.

Value specialization, function inlining, and cloning are three optimizations that are carried out with other optimiza-
tions in mind. Value specialization relies on constant propagation and dead code elimination to create more efficient
code fragments [20, 31]. The transformation involves cloning a region of code to be specialized for a value for a
particular register or stack location,v. Candidates for specialization are gathered from profilingregisters (and perhaps
stack locations) in the program and determining the distribution of their values. A region of code is then duplicated,
and a test for equality tov is inserted before control can enter one region or the other.The constant propagator is then
able to infer that inside one region of code the register provably contains the constantv. The hope is that the constant
propagator can make the cloned region of code much more efficient by knowing this fact.

Function inlining is another transformation that is carried out for two reasons: to eliminate thecall andreturn
overhead associated with procedure calls, and to provide better opportunities for constant propagation by reducing
the number of calling contexts for the inlined procedure. A functionf taking one argument may be called from five
different places in the executable. In every spot the argument may be a different constant, sof cannot be optimized
with respect to any one value. If, however,f is inlined into a call site, the number of calling contexts for f is effectively
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reduced to one, and the inlined procedure can be optimized with respect to one of the values. Finally, cloning is a
transformation much like specialization, but makes use of existing transfers in control-flow rather than introducing
new tests.

The general problem is the following: We would like to compute the expected future payoff of performing trans-
formations like specialization and inlining without actually having to carry out the optimizations themselves. The
problem has previously been addressed in compilers [3] and in thealto link-time optimization system [20], but
characteristics of the IA-32 (and CISC architectures in general) warrant that the problem be revisited. Computations
were carried out in a compiler on the procedure level in work by Ball [3]. Strong and weak dependence sets were
constructed, where the set members were function parameters. Strong sets indicated a variable’s value could be fully
computed from the members of the set; weak sets indicated a variable’s value was influenced by the members of its
set, but they were insufficient to completely determine the value. The sets are then used when a function call with
some constants parameters is seen, and an estimate on the reduction in code size and execution time is made based
on the strong sets. Although this method works well to predict savings from constant propagation and dead code
elimination after function inlining is carried out, the analysis does not completely meet our requirements. We would
like to be able to carry out this analysis at any arbitrary program point for any program variable (in our case, register
or stack location). It is not clear that extending this analysis would be easy or even work well for our needs. The
authors of thealto system showed how to extend such computations for whole-program analysis at the cost of large
memory requirements [20]. In particular, use-definition chains were constructed on top of the ICFG, and the chains
were traversed in an intelligent manner to determine which instructions would become eliminatable from performing
specialization.

The IA-32 poses a new challenge of resource usage. In particular, one cannot expect to gain a realistic estimate
on the expected savings by considering only register usage as was done in work for thealto system [20]. Many
instructions use operands located on the runtime stack and in statically allocated data. Modeling the stack in a similar
manner to what is done for constant propagation and dead codeelimination (Section 5 provides extensive details) is
cumbersome and space intensive, due to the size of use-def chains. We have developed an on-the-fly approach in
PLTO that requires no additional resources over what are already allocated, but at the expense of sacrificing some
precision.

4.4.1 On-Demand Computation

One method to discover the eliminatable instructions is to iteratively propagate information around the CFG until a
fixpoint is achieved. The basic idea is to mark an initial set of operands that are known to take on constant values.
For value specialization one would mark the single operand being considered in order to estimate how profitable
specialization is. In function inlining one would mark the stack locations which contain constant values from “push”
instructions—they are the constant arguments that will enable constant propagation to simplify code. After marking
the necessary registers or stack locations as being known, aphase of iterative propagation takes place. The two values
that are propagated are?—to represent that a location is unknown—andk, or any other arbitrarily chosen symbol—to
represent that the location contains a known value; the exact value is irrelevant. Instructions in which all the source
operands are known are marked as being eliminatable, and their destination operands (if they exist) are also marked
as being known. The meet operation for locations (register,stack slot) is defined in the standard fashion, producing?
when any incoming edge has?.

Some unmarking of eliminatable instructions is required when the meet operation produces? for a location, and
some incoming branch containsk for that location. Figure 6 illustrates the problem.

The left side of the figure shows a hypothetical CFG of 3 blocksin which the potential for knowing that the variable
x contains a known value is being computed. InB1 the value ofx is known, but the variabley does not contain a known
value. As such,z cannot be fully computed and the instruction is not eliminatable. InB2 however,x is added to the
constant 2 and stored inz. Since bothx and 2 (trivially) contain known values, the value ofzcan be computed and the
instruction is perhaps eliminatable. On the right side of the graph is the result after propagating this information toB3.
The red variables indicate ones that were known, and the large red dot indicates the instruction was marked as being
eliminatable. It should be noted that when the meet operation is applied toz, it finds thatz is not known since along the
B1 branch it could not be computed. Sincez is not known at the start ofB3, the use ofz cannot be replaced with the
constant it contains when constant propagation is carried out. Consequently, we must execute both the instruction in
B1and the instruction inB2sozcontains the correct value at the entry toB3. The initial analysis concluded otherwise,
marking the instruction inB2 as one that goes away after subsequent optimizations are performed. Thus, we need to
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Figure 6: Incorrect Marking of Eliminatable Instructions

carry out some form of instruction unmarking when the meet operation produces? and some branch containsk.
Instruction unmarking need not proceed transitively back up the CFG, and iterative propagation is not necessary.

Consider a registerr i that is? coming in along one branch andk along the other. If we walk back up thek branch
and continue until we find the instruction that definesr i , all properties that we think are true at this program point are
in reality true. For all registersr j that contain either a known or an unknown value, they were assigned? or k based
on information that propagated down the graph in a legal manner. If we unmark the instruction that definesr i this
cannot cause other instructions that have been marked to be candidates for unmarking. In particular, consider both an
instruction before the one we unmarked,In, and an instruction after the one we unmarked,Im. If In uses or definesr i ,
it is of no consequence. The properties about the registers which propagated down to theIn still hold, and anything
that is marked should remain marked. The reasoning is similar for Im. SupposeIm usesr i , and we had markedIm as
eliminatable because all the source operands were known. The fact remains thatIm is still eliminatable, despite the
unmarking of the instruction definingr i . This is because the fact remains that we still know the valueof r i inside the
block even though it is unmarked. As a result, any uses ofr i can be replaced during constant propagation by the actual
value of the register. Given that we do not need backward propagation, the complete algorithm is only one phase and
is fairly simple to implement. After a round of propagation produces no changes, a new set of operands are marked,
and a number of instructions are marked as evaluatable. The weights of the eliminatable instructions can be summed
to get an estimate on how beneficial knowing the value of one ormore locations may be.

PLTO implements a slight variation on this scheme in which a list-scheduling algorithm is employed in place of
iterative propagation. Specifically, a block is not evaluated unless all its predecessors have been evaluated. We plan to
integrate the fixpoint approach in the near future. The resource requirements of these algorithms are fairly minimal. No
use-def chains need to be constructed, which saves a great deal of initial overhead time and memory usage. However,
each query may take longer to execute since traversing use-def chains can proceed faster than our algorithm. We find
that in practice the overall time requirements are reduced by using an on-demand approach, and we require no extra
storage that has not already been allocated for optimizations like constant propagation and dead code elimination.

4.5 Instruction-Cache Analysis

Many transformations carried out by compilers and link-time optimizations have effects on the size of the resulting
code. For instance, function inlining creates a duplicate copy of a procedure and merges it in place of a function
call. The code size grows if, after inlining, the function still has other call sites and thus cannot be removed. Profile-
guided value specialization is another optimization that can grow the size the program. Both inlining and value
specialization, as implemented in PLTO and other optimizers likealto, perform cost-benefit analyses to determine
where these optimizations should be carried out. For instance, the value-specialization analysis attempts to determine
which program points are good candidates for specialization. A “good” candidate may be one where the expected
payoff, in terms of the number of cycles saved, is positive. That is, if we look at the cost associated with inserting the
test for the specialized value (typically a compare and a branch instruction), we find that it is less than the number of
cycles that we expect to save in the specialized piece of code. Although this may provide us with a general feel for
which locations are good, it is not a completely accurate model. One would like to account for the side effects that
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code growth may have on the execution behavior of the program.
Code growth can have particularly devastating effects on the behavior of a program with regards to the instruction

cache. The gap between memory access speeds and CPU speeds islarge enough that additional misses in the i-cache
(which ultimately result in memory accesses to read the appropriate block) can offset any gains that one expects from
having specialized code. As the memory/processor gap widens, this problem becomes even more important to address.
Ideally, we would like an oracle to tell us the exact number ofextra i-cache misses the program will incur as a result of
the transformation. One could then estimate the penalty forhaving to read from memory, and compute the number of
extra cycles the i-cache misses are responsible for. This penalty could then be used in conjunction with the cost-benefit
analysis; specifically, it could be added to the cost associated with performing the transformation. Thus, any decision
about inlining or specialization becomes cache-conscious.

B1

B3B2

B4

1000 bytes

1000 bytes1000 bytes

500 bytes

50005000

5000 5000

10000

Figure 7: A simple 4-block loop with block sizes in bytes

Unfortunately, we do not have perfect knowledge about the program. Edge profiling gives no indication of the
temporal relationship between the issuing of instructions. For example, Figure 7 shows a loop that will have an i-
cache footprint of 2500 bytes if the false edge of B1 is taken 5000 times and then the true edge is taken 5000 times.
The code for B2 need not be stored in the i-cache when B1, B3, and B4 are executing in the loop. Similarly, the code
for B3 need not stored in the i-cache when B1, B2, and B4 are executing. The same loop would have a footprint of
3500 bytes if the branch instruction at the end of B1 alternated each time. B1, B2, B3, and B4 would all need to be
resident in the cache at the same time. The edge weights do nothelp us in determining which of the two situations we
might be dealing with.

4.5.1 A Non-conservative model

McFarling, in a paper on instruction cache considerations when merging procedures, proposes a novel technique for
computing the sizes of loops in a program [18]. A probabilistic approach is used to compute an expected cache-
footprint for each loop in the program. Inlining decisions are then made using a heuristic-based cost-benefit analysis.
The problem of choosing the order in which to inline functions is shown to be equivalent to the knapsack-problem,
and thus is NP-hard. The gist of the approach is to compute a frequency for each instruction; this frequency represents
the number of times one expects it to be executed during one iteration of the loop. The frequency is capped at 1.0,
since an instruction executing twice or three times during aloop only finds its way into the cache one time. However,
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for an instruction with a frequency of .1, we can roughly say it takes up only 10% of its total size in the cache. In the
example illustrated in Figure 7, the probabilistic model works well when one path is followed many times, then the
other path is followed. It performs poorly when the paths alternate, and both are resident inside the cache, because
the expected loop size is half of the real size. This propertyof McFarling’s algorithm leads to estimates that are not
conservative; in particular, they can lead to inlining decisions that result in poor i-cache behavior.

The interprocedural considerations of the algorithm makesthe problem more interesting. For a given instructionI
not in the same functionF as the header of the loop, the frequency ofI can be computed in several ways. The most
intuitive method is to compute the frequency ofI in the normal manner (divideI’s execution count by the count of
the loop header) and multiply by a scaling factors. s is computed by examining the percentage of total calls toF that
come from the loop. For example, if the function containingI has 10000 call sites, 1000 of which come from within
the loop, then the scaling factor is .1. The nature of the algorithm leads to a simple two-pass recursive implementation.
In the first pass, frequencies are assigned to each basic block:

proc AssignFrequency(BasicBlock, ScalingFactor)f
BasicBlock.frequency = max(1, (B.weight / LoopHeader.weight) * scalingFactor);

foreach intraprocedural, non-visited successor, s, do
AssignFrequency(s, scalingFactor);

end

foreach interprocedural, non-visited successor, s, do
AssignFrequency(s, scalingFactor * (B.weight / s.weight));

endg
Minor bookkeeping is involved to prevent blocks from being visited more than once. Once frequencies are as-

signed, a second phase—similar to the first, and not shown here—computes the i-cache footprint of a loop by summing
the products of each block’s frequency and size. The interprocedural aspect of the algorithm is not well-described in
McFarling’s work, but this algorithm is a logical extension. A more clever scheme—which would require context-
sensitive profiling or path profiling—would not use the probabilistic assumptions. For example, when a procedure
call to a function is encountered, one could try to discover the real execution paths taken inside that function given
the context of the call site. Currently, our algorithm decides that if the call site accounts for 10% of all calls to the
function, then the function’s total i-cache footprint should be scaled by .1. In practice this is not likely to be the case, as
functions tend to have many paths through them that are oftendetermined by the calling context. This same problem
arises when trying to re-assign edge weights inside functions that have been cloned for inlining.

4.5.2 A Conservative Model

The model described in Section 4.5.1 works best when the pattern of control-flow inside the loop is somewhat regular.
In Figure 7 the loop size is accurately estimated when control flows along one path for a large number of iterations,
then along the other path. The footprint is underestimated when control alternates among the two paths frequently.
PLTO implements, in addition to the model proposed by McFarling, a more conservative algorithm for computing
loop sizes. The basis of the approach stems from the observation that in situations like in Figure 7, it may be the case
that both B2 and B3 are competing for space in the instructioncache. This happens when control switches from the
path B1! B2! B4 to B1! B3! B4 and back, and some of the code in either B2 or B3 is evicted. The conservative
algorithm in PLTO is a trivial extension to the algorithm described above—all blocks with a weight greater than some
threshold,w, receive a frequency of 1. Simply put, we assume they are always competing for space in the cache.
Experiments involving the thresholdw suggest that its value does not matter much, but should be between .001% and
.1% of the weight of the loop header. The threshold is used to exclude blocks with very small execution counts, which
are probably not resident inside the cache for any meaningful duration.

24



4.5.3 Comparison

We have compared both models discussed in Sections 4.5.1 and4.5.2 across the integer subset of the SPEC95 bench-
mark suite. Appendix A contains graphs for each benchmark; these show the speedup obtained as a function of how
much inlining was carried out with each model. The x-axis, labeled “Degree of Inlining”, corresponds to how prof-
itable a call site needed to be in order for inlining to be carried out. As the number rises, the amount of inlining
decreases. Each graph contains three lines: the blue corresponds to PLTO running with the inlining optimization
turned off; it is independent of the “Degree of Inlining”, sothe lines are horizontal. The green line corresponds to
the model discussed in Section 4.5.1, and the red line is the conservative model from Section 4.5.2. In most cases
the two algorithms achieve similar results, and the curves are very close. We have concluded that either model can be
used to make smart inlining decisions, and usually one can expect results better than those obtained when not carrying
out inlining at all. Section 8 discusses future plans for path profiling and context-sensitive profiling, which would
hopefully enable us to develop a more accurate model.

5 Optimizations

PLTO carries out numerous optimizations that make use of theanalyses described in Section 4. Figure 8 is a high
level flowchart of the optimization process. Unreachable code elimination is performed first, so that subsequent
optimizations do not waste time improving code that cannot be executed. Constant propagation is then performed,
followed by function inlining. If value profiling is being carried out it is done after inlining16; if value profiles are
available, then value specialization is performed. Both value specialization and inlining create many opportunitiesfor
constant propagation that were missed during the initial phase, therefore an iterative phase of propagation, dead code
elimination, and unreachable code elimination is carried out. Constant propagation generates dead code, which can
create situations where some branches of execution are optimized away, which in turn affects the precision of constant
propagation as there are fewer paths of execution leading into blocks. For this reason the optimizations are carried out
a few times until one round of them produces no changes. Finally, a profile-guided code layout algorithm is used and
the instructions are run through a scheduler. As depicted inFigure 8, peephole optimizations are invoked from many
places in the optimizer.

The remainder of this section describes how the optimizations are carried out, and the effects that they have
on performance. This section is organized as follows: Section 5.1 describes constant propagation as carried out in
PLTO. Function inlining in PLTO is explained in Section 5.2.Section 5.3 explains a special form of specialization—
intended for indirect jumps through tables of addresses—that is used in PLTO. Section 5.4 describes code layout, and
Section 5.5 contains a few remarks about unreachable code elimination. Section 5.6 gives a glimpse into the peephole
optimizations that are carried out.

5.1 Constant Propagation

Interprocedural constant propagation is perhaps the best motivating factor for doing optimization at link-time. Many
opportunities exist—in both application and library code—to forward constant arguments across procedure and module
boundaries. In thealto system it was shown that interprocedural constant propagation was an important source
for performance improvements; on average the benchmarks were 10% faster as a result of using this optimization
[21]. PLTO performs constant propagation on the general purpose registers and the runtime stack across the entire
program. Propagation of PSW bits is also performed so that conditional jumps may be eliminated when the results
of previous comparisons are known. In thealto system, constant propagation was performed by actually executing
the instructions on the processor and observing the changesto the execution environment. PLTO adopts a different
approach, and emulates the semantics of the machine code instructions in software much like a virtual machine would
do. The IA-32 instruction set consists of over 300 instructions, but we have found that relatively few of these are
used in practice, and it is sufficient to have the constant propagator know the semantics of about 40 frequently used
instructions.17 The few instructions that are not recognized by PLTO are treated conservatively. Our experiments
show that being able to evaluate instructions that are not currently supported is probably not worth the implementation
effort. Table 6 shows the effect of constant propagation in PLTO.

16We are investigating carrying out value profiling/specialization at other points.
17Static and dynamic distributions were gathered to discoverwhich instructions were “important” enough to warrant writing evaluation functions.
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Figure 8: Flowchart for Major Optimizations in PLTO

5.1.1 Register Propagation

Load/store forwarding is an optimization that attempts to find multiple loads from the same location and replace them
by register-to-register moves. The idea is to find two instructions,I andJ, that load into registers from some memory
location. One then attempts to prove that the memory location was unchanged between the execution ofI andJ, and
that the register loaded byI still contains the value when control reachesJ. For memory disambiguation rules, indirect
memory references are assumed to overlap all other memory regions, and absolute memory references are assumed
to overlap everything but the stack. The act of “propagating” the registers in place of memory locations is analogous
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Program Execution Times Percent Speedup
plto w/o propagation plto

compress 144.93 126.12 12.97
gcc 92.91 85.94 7.50
go 149.28 145.36 2.62
ijpeg 158.26 143.46 9.35
li 113.33 110.85 2.18
m88ksim 106.25 104.92 1.25
perl 83.01 80.14 3.45
vortex 171.33 149.64 12.65

Arithmetic Mean: 6.49

Table 6: Speedup: Constant Propagation

to propagating constants in place of registers or memory locations during constant propagation; so close, in fact, that
PLTO carries out load/store forwarding concurrently with constant propagation. The idea is to keep track—inside the
snapshots, using flags—of which stack locations and registers are aliasing each other at each program point. In effect,
we propagate registers (hence the name “register propagation”) around the CFG using the standard meet/join rules for
constant propagation. The propagation automatically handles all the intricate details that load/store forwarding has to
worry about, which are described in several papers [26, 21].

5.1.2 Analysis of Precision

An interesting question to ask is how much do indirect storesdamage the effectiveness of our analyses? To answer
the question, we have run experiments in which indirect stores are not treated as potentially overlapping any memory
region. Table 12 in Appendix C shows the number of additionalconstants and registers that are propagated throughout
the program under these assumptions. Other analyses and optimizations experience similar improvements. Dead code
elimination, for instance, benefits a great deal when liveness analysis is more precise.

5.1.3 Representation Issues

The runtime stack introduces many extra challenges for optimizations. Conceptually, one can envision the stack as
a very large register set, with 4-byte stack slots taking theplace of general purpose registers. In PLTO, each basic
block contains a “snapshot” of what the execution environment for the program looks like before control enters the
block. In particular, it contains storage for the eight general purpose registers, the PSW and the stack among other
things. When constant propagation is carried out for a block, the snapshots are cloned, the instructions in the block are
evaluated, and the cloned snapshot is updated to reflect the changes in the state of the program. The cloned snapshots
are then propagated to the successors of the block and later destroyed when they are no longer needed. Thus, a
block first constructs its snapshot by merging the snapshotsfrom all its predecessors using the standard meet/join
rules for constant propagation. In PLTO, snapshots of the registers are simply an 8-slot array of 32-bit integers. For
implementation ease, and to make the environment homogenous, the stack is also modeled using an array with a large
upper bound. We chose the upper bound to be 10000 bytes, whichallows for 99% of all stack frames in the integer
subset of SPEC95 to be modeled. A simple analysis is carried out in each function to determine the maximum size of
the stack at any program point within the function. Each basic block is then allocated an array large enough so that it
can represent its own stack frame plus the stack frame of the largest predecessor in the call graph. It is important that
a caller’s stack frame be modeled inside the callee so that interprocedural constant propagation can take place. Given
this representation, the instruction evaluator can treat stack locations analogously to registers when storing dataflow
values in them. One down side is that stack references that exceed the upper bound cannot be evaluated. Large
stack frames may be formed when a hot path of functions is inlined consecutively into one giant function, or when a
procedure has large local arrays that result in a big stack frame allocation. Fortunately, we find that this limitation is
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Program Execution Times Percent Speedup
PLTO w/o inlining PLTO

compress 124.38 126.12 -1.39
gcc 86.39 85.94 0.52
go 144.34 145.36 -.70
ijpeg 143.38 143.46 -.06
li 112.78 110.85 1.71
m88ksim 109.21 104.92 3.92
perl 81.23 80.14 1.34
vortex 147.78 149.64 -1.26

Arithmetic Mean: 0.51

Table 7: Speedup: Function Inlining

not that restrictive in practice, and relatively few opportunities for propagation are missed.18

A superior—albeit harder to implement—representation would be to condense the array representation into a list
with intervals. For instance, an array of 8 values: [?, ?, c1, c2, ?, ?, ?, ? ] could be condensed into a list with
4 elements:f ([0-1] : ?), ([2] : c1), ([3] : c2), ([4-7] : ?)g. When procedures have large local arrays, and hence
large stacks frames, the interval approach would be more storage efficient. Indirect stores into arrays can rarely be
disambiguated, so slots in the stack frame that are allocated for an array often (if not always, in PLTO ) contain?.
The compact interval representation is superior in that it allows for unbounded stack frames at a fraction of the storage
cost that arrays use. The down side is that implementation istricky. Merging and updating lists is not a trivial matter.
Eventually we would like to convert to a list-based scheme.

5.2 Function Inlining

Function inlining is an optimization in which a procedure call is replaced by an actual instance of the function. The
goal is to eliminate the overhead associated with issuing call and return instructions and setting up a new stack frame,
and to enable opportunities for constant propagation by reducing the number of calling contexts to one for the inlined
procedure. However, not all the effects of inlining are good. The transformation is usually accompanied by code
growth, and consequently can cause an increase in i-cache misses and page faults. A delicate balance between the two
must be achieved in order to reap the full benefits of inlining. In alto, procedure merging was responsible for only a
small improvement in overall program performance. We have had similar experiences in PLTO, but have seen many
situations where inlining has been terribly detrimental toperformance (e.g., 10-15% slowdowns). The sophisticated
i-cache model described in Section 4.5, the analysis to compute optimization potential described in Section 4.4, and a
large number of heuristics help to guide the optimization and to make smart inlining decisions. Appendix A shows how
various degrees of inlining can affect program performance. The blue line corresponds to PLTO optimizing programs
without inlining turned on, and the other two lines correspond to two different i-cache models that were used to guide
inlining decisions. In most cases there is a significant difference—larger than that seen in a comparable system like
alto —between the peaks for inlining and the non-inlining curve.This suggests there are potentially more payoffs if
one can make intelligent inlining choices. Table 7 shows theperformance gains (and degradations) seen in PLTO as
a result of using inlining compared to not using it. For reference, Table 13 in Appendix D contains more information
about how much inlining was carried out.

The transformation of inlining functions is implemented toproduce much more efficient code. First the procedure
is cloned and thecall andret instructions are eliminated from the caller and callee respectively. Instructions to
set up the stack frame inside the body of the callee are also eliminated, and all references to the stack frame inside
the function are written in terms of the caller’s stack frame. The stack analysis provides the necessary pieces of
information to make this work. If the height of the stack at the call site ishi, thenhi can be added to all the stack frame
references inside the callee. When the frame pointer is useddirectly (e.g.,mov %eax  %ebp), PLTO inserts an
instruction before it that restores the original value, andan instruction after the use that reverses the restoration.We

18Experiments show that the static number of stores and loads that use large offsets into the stack is small.
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find that this happens very infrequently in practice, so it isunlikely to have any significant impact on performance. All
procedure calls are initially candidates to be inlined; those that actually get picked fall into one of three categories:

1. [Functions with one call site.] Inlining a function that is statically called from only oneplace in the program
can never result in code growth since the original function can be removed from the program. In addition, no
extra i-cache misses can be incurred since the procedure wasnot shared by multiple functions or loops. Thus,
procedures that only have one call site in the program are automatically inlined regardless of how profitable or
unprofitable they may be.

2. [“Small” functions.] A small function, as defined in PLTO, is one with five or less instructions. Since inlining
can usually eliminate three or four instructions, there is probably not any code growth associated with merging
the procedure. Small functions are also automatically inlined, regardless of their execution frequency.

3. [Profitable functions.] A profitable candidate for inlining is a procedure where theexpected payoff, in terms of
the number of machine cycles saved, is greater than some user-defined threshold. The expected benefit is the
sum of two numbers: (1) the direct savings from eliminating thecall, ret, and the setup for the stack frame,
which is computed by scaling the weight of the basic block containing thecall by 3.0 – 5.0; (2) the indirect
savings from enabling other optimization opportunities, as described in Section 4.4. We have experimented
with different thresholds, and have found that requiring inlining to be able to eliminate the equivalent of 10–15
hot instructions is a good heuristic. We define ahot instructions to be ones that account for the top 80% of all
instructions executed.19 The termhot instructionreally refers to the weight of the instruction with the smallest
count that is still consideredhot. If this weight iswi , and 10hot instructions are needed to be eliminatable
for inlining to occur, the total expected savings must exceeded 10� wi . Appendix A presents graphs for
various inlining models in which the threshold for the “number of eliminatable instructions needed in order to
inline” was varied. Although some benchmarks benefit from excessive inlining (e.g., when the number ofhot
instructions is very low), the best overall performance occurs between 10 and 15.

5.3 Jump Table Specialization

Indirect jumps through tables of address, such as those arising from switch statements in C, are expensive at the
machine code level. They are typically created by compilersto implement multiway branches and to avoid performing
an excessive number of runtime tests. Unfortunately this flexibility comes at a cost. Branch prediction for such jumps
is difficult due to the large set of possible control flow successors, and mispredicted branches cause the instruction
pipeline to be flushed and hence result in long stalls. Jump table specialization is an optimization in which a test for
the most common index into the jump table is inserted. A conditional jump to the target associated with the index is
also added. The idea is that most of the time the high overheadassociated with indirect jumps through tables can be
avoided at the smaller expense of a test and conditional jump. Such a test can be inserted before the bounds check
and index scaling for the jump table is done; since the boundscheck alone requires a test and a conditional jump,
the extra test inserted by the optimization is—in a sense—“free” when the common case is encountered. The down
side is that all the non-common cases incur the extra cost of the test and conditional branch. The potential benefit
for having the cheaper test is large when the common case is executed very frequently, such as 80%–90% of the
time. Our experiences with this optimization on the IA-32 have been somewhat disappointing, however. We find that
there are relatively few jump tables in the integer subset ofthe SPEC95 benchmarks in which the common case has a
high frequency and thus is worth specializing.20 In those which PLTO does specialize, there has been no noticeable
performance improvement. We are currently investigating if these jumps are executed enough to make a difference,
and trying to estimate what payoff we should expect to see.

5.4 Profile-Guided Code Layout

Pettis and Hansen describe an algorithm for the placement ofbasic blocks within an executable with the goal of
reducing (1) the number of taken branches, (2) the number of misses in the instruction cache through code locality,
and (3) the number of page faults, also through locality [22]. The algorithm has been used in a number of optimization
systems [21, 29] and is also implemented in PLTO. Thealto system found that a slight modification to the algorithm
produced better results. The idea is to partition the set of basic blocks into three disjoint subsets: ahot set, acold

19The 80% threshold is user-defined, but our experiments indicate it is a reasonable number to use.
20There are, on average, 3–4 per benchmark.
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Program Execution Times Percent Speedup
Base PLTO w/ only layout

compress 130.18 125.55 3.55
gcc 96.97 93.12 3.97
go 146.29 147.90 -1.10
ijpeg 144.73 158.77 -9.70
li 113.88 118.01 -3.62
m88ksim 128.76 116.51 9.51
perl 87.08 82.75 4.97
vortex 155.40 164.99 -6.17

Arithmetic Mean: 0.22

Table 8: Speedup: Code Layout

set, and thezeroset. Thehot set is for all blocks with an execution count greater than some user-defined threshold.
Generally, a threshold that allows for 50-95% of the blocks to be consideredhot is desirable. Thezeroset is reserved for
blocks which were not executed at all during the program’s execution with the training input. The other blocks which
are neitherhot nor zeroend up in thecold set. The Pettis-Hansen algorithm is then applied to each setindividually,
disallowing control flow edges in which the source block is not in the same set as the destination block. Thehotset is
then laid out first, followed by thecold set, and finally thezeroset at the end of the.textsection. The motivation for
doing this comes from not wantingzeroor coldblocks to be in the same region as the frequently executed coded.

In PLTO we have experimented with several algorithms, including the two described above. The best performance
improvements come from the straightfoward Pettis-Hansen greedy algorithm applied at the function level. Interpro-
cedural edges are not considered, as they often cause the algorithm to create inefficient code fragments. For instance,
a procedurecall can be laid out directly before the function it calls, but thecall cannot be eliminated due to its
side effects. In addition, thereturn-blockwhich previously followed the block containing thecall can no longer
be laid out directly after it. We have found that allowing interprocedural edges results in a high degree of procedure
intermixing, which is somewhat undesirable from a performance standpoint. Table 8 shows the improvements that
code layout has on speed. An interesting note is that the programs experience a staggering increase in the number
of branch target buffer (BTB) misses. We have investigated the matter and have found that branches only find their
way into the BTB after being taken for the first time. Since thePettis-Hansen algorithm aims to reduce the number of
taken branches, it often takes longer for them to appear in the BTB and there is an increase in misses. In the “worst”
case, a branch is laid out so that it is never taken, and thus never appears in the BTB—causing a miss every time it is
executed! We suspect that for this reason, the payoff from doing code layout is not as large on the IA-32 as what is
seen in systems likealto . The fallout of missing in the BTB is having to make a static prediction, which is generally
less accurate and based on simple heuristics. It is not clearfrom the IA-32 documentation that is available exactly
how expensive the BTB misses are, especially when the branchis statically predicted correctly. Nevertheless, when
static prediction fails and there is a mispredicted branch,there is a large cost associated with flushing the instruction
pipeline. As a side experiment, we tested a variant of Pettis-Hansen that chooses the lowest edge weights first; these
programs experienced a large decrease in the number of BTB misses, but overall they ran slower. In the future we
would like to revisit the problem and perhaps develop a better solution that incorporates these effects in a cost-benefit
model.

5.5 Unreachable Code Elimination

Unreachable code elimination has a number of desirable effects: it (1) improves the precision of dataflow analyses by
reducing the number of execution paths leading into basic blocks, (2) creates a smaller executables, which can lead to
better paging performance, and (3) reduces the time PLTO spends on performing analyses and optimizations, as there
is less code to worry about. Unreachable code elimination isstraightforward, and carried out in a similar manner as
done in thealto system [21]. We notice that in most benchmarks about 10% of the code is unreachable. However, in
a few—such as vortex and li—the improvements are about twicethat. This is consistent with the work done inalto,
but it is more than what was estimated in work done by Srivastava [27].
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Program Execution Times Percent Speedup
PLTO w/o Peephole PLTO

compress 119.42 126.12 -5.21
gcc 86.34 85.94 0.47
go 146.06 145.36 0.48
ijpeg 143.24 143.46 -0.15
li 110.76 110.85 -0.08
m88ksim 109.51 104.92 4.37
perl 80.95 80.14 1.01
vortex 151.70 149.64 1.36

Arithmetic Mean: 0.28

Table 9: Speedup: Peephole Optimizations

5.6 Peephole Optimizations

A number of peephole optimizations are performed to exploitsome opportunities created by PLTO’s optimizations.
Table 9 shows the performance improvements seen from carrying out peephole optimizations. The transformations
that achieve the best results are:

1. Branch Trampolining.If a conditional or unconditional jump leads directly to another unconditional jump, e.g.,
j i ! jk! jm, the middle jump can be eliminated by simply re-routing the target of the first jump to be the third:
j i ! jm.

2. Coalescing Math Operations.PLTO assumes that the compiler did its job with regards to simplifying math
expressions as much as possible, but some optimizations such as inlining introduce code sequences where con-
secutive instructions add or subtract from the same register. For example, two consecutiveadd’s to the stack
frame often occur after inlining, since the inlined function has instructions to deallocate the stack frame, and the
caller also deallocates the arguments right after. PLTO tries to coalesce adjacentadd or sub instructions that
store to the same register, e.g., (1)add %eax  10 and (2)add %eax  16 combine to form (1)add
%eax  26.

3. Effectless Instruction Elision.Some instructions are not technically “dead” as defined by a liveness analysis, but
they have no effect on the program’s execution. An example ismove from a register back to itself:mov %eax %eax. Regardless of whether %eax is subsequently used, the instruction can be eliminated.

4. Conditional Move (CMOV).The IA-32 contains a conditional move instruction,cmovcc ri  l, which con-
ditionally moves (based on the condition codecc, which may be something like�, 6=, etc.) either a register or
a stack location to another register. If the condition is true, the move is executed. If not, the instruction has no
effect. PLTO looks for situation where the effect of a branchis to jump over a move instruction, and converts
three instructions—the comparison, the branch, and the move—to one conditional move. This is an architecture
specific optimization that gcc did not carry out. It is quite effective on them88ksimbenchmark from SPEC95.

6 Experimental Results

6.1 SPECint-95 and SPECint-2000

The total speedup PLTO is able to achieve on the integer subsets of SPEC95 and SPEC2000 can be seen in Table 10.
On average, we observe a speedup of 6.11% on the SPECint95 suite and 2.89% on the SPECint2000 suite. The tests
were run on an otherwise unloaded Pentium III 550 megahertz SMP machine that was running Redhat Linux 7.2. Each
benchmark was run five times; the highest and the lowest runs were discarded, and the remaining times were averaged
to produce the numbers seen in the tables. We also used therabbit tool to monitor the low level execution behavior of
the program. Worthy of note is a reduction in the number of (1)memory operations by about 5%, (2) taken branches
by about 74%, (3) mispredicted branches by around 12%, and (4) instruction fetches by about 5.5%.
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Program Execution Times Percent Speedup
Base Optimized

compress 130.18 126.12 3.11
gcc 96.97 85.94 11.37
go 146.29 145.36 0.64
ijpeg 144.73 143.46 0.88
li 113.88 110.85 2.66
m88ksim 128.76 104.92 18.51
perl 87.08 80.14 7.97
vortex 155.40 149.64 3.71

Arithmetic Mean: 6.11

(a) SPECint-95

Program Execution Times Percent Speedup
Base Optimized

bzip2 1033.97 1061.25 -2.64
crafty 520.78 471.46 9.46
eon 1050.49 961.29 8.49
gcc 574.47 529.88 7.76
gzip 827.19 820.44 0.82
mcf 1820.75 1833.73 -0.71
parser 1271.90 1261.93 0.78
twolf 1897.29 1920.32 -1.21
vortex 915.94 864.08 5.66
vpr 959.80 954.84 0.52

Arithmetic Mean: 2.89

(b) SPECint-2000

Table 10: Total Speedup: SPECint95 and SPECint2000

The integer benchmarks contain many branches, and often many procedure calls as well. There are very few float-
ing point instructions. The applications are representative of many non-scientific “real-world” applications.compress
is an in-memory file compression program,gccis the GNU C compiler (it emits SPARC assembly),go is a program for
playing the game of “go”,ijpeg is an in-memory image compression/decompression program,li is a lisp interpreter,
m88ksimis a simulator for the Motorola 88100 processor,perl is a perl interpreter, andvortex is an object oriented
database. The programs range in static executable size fromless than 100,000 instructions (compress) to over 300,000
instructions (gcc). The mean basic block size is around 4 instructions for these programs.

6.2 Floating Point Benchmarks

We have tested PLTO on the floating point subset of the SPEC95 suite as well, but there is no speedup that is worthy
of note. In particular, the difference between execution times for the original program and our optimized program was
no more than 1% in the best case. These benchmarks have extremely large sequences of floating point instructions,
and it is not uncommon for basic blocks to contain thousands of instructions. In one benchmark, a single basic block
has over 10,000 floating point instructions! Since PLTO doesnot have any optimizations that are specific to floating
point calculations, it is ineffective at improving the performance for these applications. In the future we would like to
look at scheduling of floating point instructions to hide latencies and reduce the number of stalls in the floating point
unit (FPU).
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7 Related Work

Link-time optimization, binary rewriting, binary instrumentation, and whole-program optimization have been explored
by a number of people. PLTO is tied closely toalto, a link-time optimizer for the Compaq Alpha that was very
successful in demonstrating the room for improvement in thequality of compiler-generated code [21]. On average,
altowas able to achieve an 18% performance improvement over the SPECint95 benchmarks, with some benchmarks
experiencing a speedup of over 50%. Like PLTO,alto was fairly ineffective at improving the performance for
the floating point subset of SPEC95—for the same reasons discussed in Section 6. OM [28] and Spike [9], two
earlier optimization systems also targeting the Compaq Alpha, were able to achieve moderate speedup on the same
benchmarks.

Etch is a system that focuses on instrumentation of IA-32 executables for gathering data about the program [24].
For instance, during execution of a program it can gather data about the behavior of that program in the instruction
cache. It performs a profile-guided code layout transformation as its only optimization. It is not clear from this work if
the optimization results in any performance improvements.Other such systems include NT-Atom and HiProf, which
are aimed at instrumentation and analysis of IA-32 executables as well.

Also related to PLTO is UQBT (the University of Queensland Binary Translator), which is able to statically
translate executables across different architectures. Ittargets, among other things, the IA-32, and has faced some of
the same challenges that we describe in this work. The optimizations it performs are less aggressive than those carried
out by PLTO, and it requires that machine code adhere to certain idioms. UQBT is unable to optimize or translate non-
conforming routines that have been written in assembly by a programmer. It is also not clear how much performance
improvement the system is able to achieve on standard benchmark suites. UQDBT is a related system that shifts the
focus from static to dynamic translation. Again, many of theissues we deal with in PLTO have also been considered
by this work.

There also has been much related work in function inlining and procedure cloning—an optimization we would
like to explore in the future as an alternative to function inlining. Cooperet al discuss how procedure cloning can be
used effectively [10]. As mentioned in Section 4.5, McFarling proposes a scheme for modeling the instruction cache
behavior of a program in order to make intelligent inlining decisions [18]. Davidson and Holler address the issue of
inlining creating bloated code which can be detrimental to ademand-paging system [11]. This work also discussed
how inlining can cause degradations in performance, as we have discussed in Section 4.5. Ayerset al suggest an
approach for aggressive inlining of functions; in some benchmarks over 1000 procedures are inlined [2]!

8 Future Work and Open Problems

8.1 Uses for Free Registers

Context-sensitive register liveness analysis finds between 1.5 and 2.0 free general purpose registers per basic block.21

An obvious use of these registers is for the passing of function arguments. Arguments are usually pushed onto the
stack by convention, but at link-time convention can be thrown out the window. If free registers are available before
a procedure call is issued, there is no reason why the arguments cannot be put in registers instead of being pushed
onto the stack. The loading of arguments into registers is a trivial transformation; more difficult is trying to ensure
that subsequent loads inside the body of the callee are replaced by register-to-register moves. Indirect loads, which are
assumed to come from any memory region including the stack, are an obstacle much like they are in a stack liveness
analysis. Realistically we do not expect a compiler to produce indirect loads for function arguments that come from
anywhere except the frame pointer. A clever programmer, however, could easily alias the frame pointer with another
register and load from that. For this reason, one must ensurethat all indirect loads from general purpose registers do
not come from the stack before this optimization is carried out. We expect that this optimization would work best
accompanied with the memory disambiguation analysis described in Section 8.2.

8.2 Memory Disambiguation: Insight into Indirect Loads and Stores

As discussed several times, indirect loads and stores make many analyses and optimizations less precise than we would
like them to be. One solution we have considered is a memory region analysis, in which we try to prove that registers
point into the stack, heap, or statically allocated data. Supplied with this information, optimizations like constant

21The stack and frame pointer are excluded from the definition of “general purpose” here. We consider only %eax, %ebx, %ecx,%edx, %esi,
and %edi.
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propagation would only have to set the entire stack to? when indirect stores through registers that are known to point
somewhere into the stack are found. If the register containsan address that resides in the heap or some other data
region, we would correctly assume that it does not overlap with the stack. We envision a dataflow analysis in which
information about regions is propagated across the ICFG through our stack and register snapshots. A logical extension
to the current snapshots would be a means by which to model theheap. The best—and most precise—solution for
discovering when registers are loaded with heap addresses would be to special case the return value from themalloc
family of routines, or to require the user to specify which functions return pointers into the heap. We suspect that the
majority of indirect loads and stores come from, and go to, either the heap or global arrays residing in data sections of
the executable. The memory disambiguation analysis would limit the extent of “damage” they do, and produce more
precise optimizations. Related work has been done by Debrayet al, who have described amod-kalias analysis used in
thealto system [12]. The analysis is effective at narrowing the scope of loads and stores to smaller sets of targets.

8.3 Profiling

Currently PLTO carries out edge profiling, from which basic block weights are easily extracted. Some optimizations
that carry out transformations on the ICFG often need to re-weight edges and blocks to reflect the changes they make.
For instance, in inlining when a procedure is cloned and substituted in place of a function call, weights must be
assigned to the cloned procedure. With only edge weights available, the logical approach is to retain the same edge
and blocks weights that were present in the original function, and scale them by a factorsf , wheresf corresponds
to the percentage of total calls contributed to the callee bythe calling procedure. Value specialization faces a similar
problem when regions of code are duplicated. The re-weighting process is entirely probabilistic, however, and has
no real justification other than that it is the best we can do given only edge weights. One can imagine a situation in
which a function is called from two places an equal number of times, and has a conditional branch taken 100% of the
time when called from one place and never taken when called from another. When inlined into either of the two call
sites, the edge weights coming out of the basic block that contains the branch will be equal—which is incorrect. One
possible solution would be to gather path profiles in addition to (or in place of) edge profiles [4, 5]. A path profile may
enable one to re-weight the edges in a more intelligent manner, as they often carry information about calling contexts.
A second approach would be to use context-sensitive profiling, in which edge profiles for each function are gathered
for each calling context it has. For example, a function with10 call sites would have 10 sets of edge profiles (one for
each caller). The problem with context-sensitive profilingis that things quickly grow to be large even when profiling
only 1 context; multiple contexts would probably be infeasible. In the future we would like to explore some of these
options to find a better solution than what currently exists.

Profiling of parallel and distributed-memory applicationsis another area of future work. Currently, PLTO will
instrument an executable which can then be run on concurrently on multiple processors to generate a set of execution
profiles. There is no means by which these profiles can all be used as input, however. One approach would be to sum
the edge weights in each profile to generate one large profile that may be representative of each program. Interesting
issues in load-balancing arise from this solution, which are beyond the scope of this paper. An alternative would
be to invoke PLTOn different times if there aren edge profiles available. This would result in an executable being
generated for each processor. PLTO was designed to be used tooptimize distributed-memory scientific applications,
and we intend to pursue the challenging issues that these applications bring to the table.

8.4 Disassembly Revisited

As discussed in Section 3.3.5, the hybrid disassembly algorithm implemented in PLTO fails when either the linear
sweep or the recursive traversal disagree about the results. One could imagine extending our approach to try and
determine which algorithm was correct. For instance, if thefunction contains no indirect jumps and the algorithms
produce different results, we can probably determine that the recursive traversal was correct. The only situations in
which it fails are in those functions containing indirect jumps; Section 3.3.3 provides the details.

One could also imagine extending our algorithm to incorporate additional verification stages. Since it is not always
possible to determine when a function has been incorrectly disassembled, additional heuristic-based algorithms could
be implemented as extra verification steps. The idea would remain the same: if any of the algorithms suspects a
problem, the function is problematic.

Section 3.3.5 mentions an interesting problem; that of updating the offsets in PC-relative functions that have not
been disassembled. We raise the point that the length of these instructions may change as a result of updating the
offsets, and if this happens then other PC-relative jumps inthe function may no longer be correct. A solution to this
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problem isbranch-trampolining, or in this case trampolining of procedure calls. If a function call in the executable,
prior to being run through PLTO, had a displacement ofk bytes, then we can be assured that the instruction length
need not be increased if, after running through PLTO, the displacement changes to a number less thank. It may
require less bytes, but nothing stops us from using an inefficient representation with the same number of bytes as the
original. Knowing this, it is safe—in that the instruction length for the procedure call will not change—to redirect
a call, Ic, to a new target instruction,It—called the trampoline—residing directly after the procedure that was not
disassembled.22 The original displacement wask bytes, and we know that the instruction being targeted resides right
after the procedure, so this displacement is some number less than or equal tok. The instruction,It , which we insert
is an unconditional jump to the original target of the function call, I f . Thus, the flow of control changes fromIc !
I f to Ic ! It ! I f . The purpose of the trampoline,It , is to allow the function call,Ic, to target any location in the
executable without having the length of its encoding change. It should be noted that an additionalreturn-trampoline
is also necessary, to redirect control back to the instruction following Ic; the idea is analogous and not described here.

Trampolining lends way to another problem. Multiple trampolines sitting at the end of a procedure may cause
some procedure call,Ic, to require a displacement that is greater thank, its original offset. We propose a solution that
uses a one master trampoline,IM, that jumps to a second set of trampolines that performs the functions described in
the previous paragraph. Using this implementation, we can be sure that all procedure calls will still use offsets of less
thank bytes. Should we discover cases where our the length of encoding for procedure calls does change, we will
likely implement this solution.

9 Conclusions

Post link-time optimization of executable programs can be auseful process to undergo when one wishes to squeeze
the most performance of a program. Unfortunately, not all programs will experience mind-blowing speedup. Large
applications—such asvortex, gcc, andeonfrom the SPEC95 and SPEC2000 suites—tend to see the most speedup,
since optimizations like function inlining and code layoutare effective for bigger programs. Floating-point intensive
benchmarks are on the opposite end of the spectrum. They are very hard to optimize due to relatively few dynamic
branches and procedure calls. In addition, much of the time is spent issuing floating point instructions.

Our system is not able to achieve results that are comparableto thealto system, which is closely related to
PLTO . The IA-32, and CISC architectures in general, offer upmany challenges—not addressed by systems for RISC
architectures—that must be tackled. The reliance on using of memory is a particularly difficult thing to deal with,
and often lends way to complicated analyses and optimizations. The potential payoffs, however, are more fruitful
as the processor-memory speed gap widens and these payoffs are amplified even more. Every analysis in PLTO is
conservative, in that they expect nasty features from the machine code. Consequently, the results of these analyses
are almost always less precise than we would like them to be. There is much future work to be done in this arena,
particularly with improving the precision of optimizations like constant propagation, register propagation, and liveness
analysis.
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Appendix A Graphs for Inlining Models in SPECint95

Following are eight graphs, one for each integer benchmark in the SPEC95 suite. The graphs show the performance
of McFarling’s i-cache model and that of a more conservativemodel, both described in Section 4.5. In most cases
the two models exhibit similar performance characteristics. The red line is the conservative model, the green line is
McFarling’s i-cache model, and the blue line shows the speedup when not carrying out any inlining at all. The x-axis is
labeled the “Degree of Inlining”, which refers to how profitable an inlining opportunity must be in order for procedure
merging to be carried out. As the degree of inlining increases, the number of functions being inlined decreases.

Figure 9: Inlining Models for compress95
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Figure 10: Inlining Models for gcc

Figure 11: Inlining Models for go
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Figure 12: Inlining Models for ijpeg

Figure 13: Inlining Models for li
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Figure 14: Inlining Models for m88ksim

Figure 15: Inlining Models for perl
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Figure 16: Inlining Models for vortex
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B Disassembly Speeds with Linear, Recursive, and Hybrid

Disassembly Time(sec)
Program TLinear TRecursive THybrid THybrid=TLinear THybrid=TRecursive

compress 1.16 1.02 2.06 1.78 2.02
gcc 10.63 7.47 16.4 1.54 2.20
go 2.64 2.16 4.40 1.67 2.04
ijpeg 1.87 1.54 3.10 1.66 2.01
li 1.61 1.34 2.67 1.66 1.99
m88ksim 1.96 1.63 3.29 1.68 2.02
perl 2.84 2.32 4.73 1.66 2.04
vortex 4.40 3.24 7.07 1.61 2.18

GEOMETRICMEAN: 1.66 2.06

(a) SPECint-95

Disassembly Time(sec)
Program TLinear TRecursive THybrid THybrid=TLinear THybrid=TRecursive

bzip2 1.44 1.18 2.45 1.70 2.08
crafty 2.32 1.88 3.82 1.65 2.03
eon 5.71 4.19 9.28 1.62 2.22
gcc 14.59 10.82 23.94 1.64 2.21
gzip 1.45 1.19 2.41 1.66 2.02
mcf 1.18 1.00 1.98 1.68 1.98
parser 1.71 1.38 2.83 1.66 2.05
twolf 2.10 1.73 3.52 1.68 2.04
vortex 3.91 2.87 6.28 1.61 2.19
vpr 1.72 1.46 2.91 1.69 1.99

GEOMETRICMEAN: 1.66 2.08

(b) SPECint-2000

Key:
TLinear: Disassembly time using the extended linear sweep algorithm
TRecursive: Disassembly time using recursive traversal
THybrid: Disassembly time using the hybrid algorithm

Table 11: Performance: Disassembly Speed
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C Potential Benefit for Disambiguating Indirect Loads and Stores

Program Constants Propagated Percent Increase
Conservative PLTO Non-conservative PLTO

compress 389 412 5.91
gcc 593 659 11.13
go 478 595 24.47
ijpeg 439 460 4.78
li 397 418 5.29
m88ksim 433 465 7.39
perl 640 660 3.13
vortex 701 752 7.27

Arithmetic Mean: 8.67

(a) Constant Propagation in SPECint95

Program Registers Propagated Percent Increase
Conservative PLTO Non-conservative PLTO

compress 622 747 20.01
gcc 1604 1833 14.28
go 881 1031 17.03
ijpeg 720 862 19.72
li 650 781 20.15
m88ksim 786 929 18.19
perl 1132 1315 16.17
vortex 1039 1237 19.06

Arithmetic Mean: 18.08

(b) Register Propagation in SPECint95

Table 12: Effect of Conservative Treatment of Indirect Loads and Stores
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D Inlining: Further Details

Program Function Calls Percent Reduction
Before Inlining After Inlining

compress 922927 888865 3.69
gcc 17699155 16762064 5.29
go 6014400 4133272 31.27
ijpeg 38619336 36458229 5.59
li 5079246 4840814 4.69
m88ksim 352937599 153590549 56.48
perl 779525 682698 12.42
vortex 51675029 15767226 69.48

Arithmetic Mean: 23.61

Table 13: Function Inlining Statistics
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