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Abstract

Post link-time optimization of executables has been ingattd by several projects in recent years. These opti-
mization systems have targeted RISC architectures lik€tmpaqg Alpha, and have shown that there is considerable
room for improvement in compiler-generated code. Classmapiler optimizations like constant propagation, func-
tion inlining, and dead code elimination have been shownetodbatively effective when applied at link-time. In
addition, other optimizations—such as value specialiratioad/store forwarding, and code layout—that are not typ
ically carried out at compile-time can also be used effetyivUnfortunately, many of the analyses introduced by
other systems are insufficient when carried out on a CISC mede.g. the x86). We describe PLTO, a link-time
optimizer for the Intel IA-32 architecture, that addresthesinherent difficulties in static analysis of binaries qiled
for a CISC architecture. Many of the challenging issues gtem intrinsic characteristics of the architecture, such
as the small register set which lends way to a heavy relianaesimg the runtime stack. This paper discusses many
analyses and optimizations used by PLTO, and we show therpeafice gains our system is able to achieve over
compiler-generated, heavily-optimized executables.

*This research was supported by the National Science Fdandatough grants ACR-9720738 and CCR-0113633.
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1 Introduction

Modern compilers are good at code optimization; howeveraihalyses and optimizations they carry out are gener-
ally restricted to individual functions. Even those whidrform interprocedural optimizations do not have access to
pre-compiled library routines. As a result, there is coasathle room for improvement in the performance of code
generated by conventional compilers, even with a high gegfeompile-time optimizations. One solution is to per-
form an additional phase of optimizations after the objestioles have been linked. At this stage, the whole program
(now available as machine code) and all statically-linkbchly code are available for inspection and modification.
Although much semantic information is lost during compdat there are still many opportunities to generate more
efficient code than what the compiler has produced.

One specific set of applications which has great potentideoefit from link-time optimization is scientific
distributed-memory applications. It is common for sciotpplications to run on large Beowulf clusters (Pentiums
running Linux). These machines are cheap and easy to set ulisfabuted-memory computations, making them a
favorite among people who run simulations. Often these namog make heavy use of pre-compiled libraries, such
as MPI (the Message Passing Interface), to handle the teeliledails of communication across the network. These
message-passing libraries are written with the goal ofdeajplicable to a wide range of programs, ranging from
gravitational N-body simulations to adaptive grid compiotas. As such, they are very general in their functionality
and implementation, and allow for a good deal of flexibilifijhis flexibility, however, often comes at the cost of
inefficient code. Unfortunately, traditional link-time tipization systems have targeted RISC (Reduced Instmuctio
Set Computer) architectures like the Compaq (formerly DEIpha and the Sun SPARC. Little work has been done
for CISC (Complex Instruction Set Computer) machines swctha x86 (e.g., Pentium Il, Pentium IIl, Pentium Pro)
in the post link-time optimization arena.

Our contribution is a post link-time optimizer that opest x86 executables compiled in the Executable and
Linkable Format (ELF32), which is the binary file format udmdthe Linux operating system. Many of the analyses
and optimizations carried out by our system are designec&b with inherent difficulties of a CISC architecture.
The dearth of registers and the strong reliance—by both derspand the ISA (Instruction Set Architecture)—on
using memory lend way to analyses that are very differembfitvose designed for RISC machines. In particular, one
cannot expect to see much improvement in performance byiogrout analyses across only registers. On a RISC
architecture, however, it is perfectly feasible to ignorenmory since the large register set enables most important
operands to be stored in registers. Other characterigta€5C architecture—such as variable length instructiens
complicate disassembly and re-assembly of the machineiosttactions. The problem is made more challenging by
the presence of data or jump tables embedded in sections ekétutable that are typically reserved for code. Much
of the remainder of this paper discusses our approach teowéng the difficulties associated with the x86.

The rest of the paper is organized as follows: Section 2 descPLTO, our Pentium Link-Time Optimization
system and discusses some requirements and assumptiogsibtad the input. Section 3 examines the preprocessing
required to deal with abnormalities in ELF binaries, anchteeplains the novel approach PLTO uses for disassembling
machine code. Analyses used by PLTO are detailed in Sectid@®edtion 5 explains how the analyses are used to
guide optimizations throughout the system. We take a lookledt optimizations result in the most performance
improvements, and conclude with performance results iti@e6. Section 7 contains information about work related
to binary rewriting, link-time optimization. Section 8 dissses future work and open problems, and our conclusions
are presented in Section 9.

2 PLTO: A Pentium Link-Time Optimizer

PLTO (Pentium Link-Time Optimizer) is a post link-time apization system designed to modify IA-32 (i.e., x86)
executables compiled under the Linux operating system.@PlsTa binary-rewriting tool—both its input and output
are machine code. Itis closely relatedhiot o, a link-time optimizer for the Compagq Alpha [21]. The goalascarry
out aggressive whole-program optimization while still gmoing code that is functionally equivalent to the original
As such, all transformations performed by PLTO are condees/to ensure that correctness is retained.

Like many highly-optimizing compilers and link-time optimers, PLTO gathers execution profiles from training
input before carrying out any optimizations. Currentlygedgrofiles are gathered to discover how many times control
flows along each edge in the interprocedural control flow lgrd@FG). Basic block and instruction weights are
derived from the edge profiles. Section 8 discusses someefdirections in profiling of multiprocessor applications
and context-sensitive profiling.



2.1 Requirements and Assumptions

During the course of optimization and instrumentationsgxg instructions inside the executable often change loca
tions. In addition, new instructions are inserted, and soriggnal ones may be removed. PLTO is a binary rewriting
tool, so both its input and output must be executable prograiihe executables need to work without being run
through a linker; as a result, PLTO must be able to resolv@cations and insure that all program addresses are
patched correctly before the binary is rewritten. A consege of this requirementis that PLTO needs to know which
byte-sequences in the program are addresses (and thuastadli@), and which are simply encodings of an instruction.
The requirement is the same imposed by a linker, and existadossame reason.
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Figure 1: Compilation Model with Post Link-Time Optimizari

We prepare binaries and run PLTO on RedHat Linux 7.2 workstat although there is nothing intrinsic in
the operating system that would prevent it from being usea alifferent distribution. The only machine-specific
requirement is that a certain library (discussed below)Jadable. A typical invocation of the compiler gece -O3
-WI,-r program.c The-WI,-r flag instructs the compiler to pass thidlag to the linker. Ther flag tells the linker to not
discard the relocation and symbol information it uses. Thipwt from this command is an object file which serves as
input to PLTO! PLTO does not require a symbol table, although having oneesik easier debugging and allows
the user to get a better handle on what is going on. The flagsided above also result in the linker retaining symbol
information. We do not feel this imposes an excessive butgem the user. It seems likely that a person concerned
enough about performance to use a link-time optimizer wieadvilling to invoke the compiler with the additional
flags, most likely even at the expense of code growth regufitam libraries being statically-linked. Figure 1 shows a
high level overview of how post link-time optimization fitstd the standard compilation model.

To enhance portability we use the GNU Binary File Descrigtitorary (libbfd) for reading and writing ELF
executables. The library supports many common file formatk as COFF (Common Object File Format), the format
used in Windows executables. In addition, the BFD librangdias hairy details, such as updating the section header
table to reflect any changes. Our disassembler is basedyanséhe GNU disassembler for x86 executables that is
available in theinutils software distribution.

PLTO makes certain assumptions about the input executsltideassume that all addresses that are relocatable
are marked as such. If the linker does not correctly retagnrélocation information, then addresses may not be
updated appropriately, or we may mistakingly update hius®ces that are not addresses. Secondly, code sequences

1The object file is not executable due to intricacies with thU3C Compiler and the native linker, which refuses to patdhaations and also
to retain them. Upon reading the binary, PLTO stores intaem@esentations of the relocations, then invokes thevaditiker to make the object
file an executable.



which perform arithmetic on addresses that point into.tévesection of the executable can result in PLTO producing
incorrect programs. An example (in generic assembly caa)is:

Addr ess I nstruction Comrent

0x8048100 mov rl, 0Ox80481fc Load an address into rl

0x8048104 add r1, r1, 4 Add 4 bytes to the address

0x8048108 call *(r1) Function call to the address
contained inril

0x80481f c -

0x8048200 . Start of sone function

In this piece of code an assumption is made about the addiéss function being called. Specifically, the code
assumes that the function falls 4 bytes after the addie88481fan the executable. If the two instructions at the
addresse®x80481fcand0x8048200are separated—even by something as simple as adding a N@Hurtttional
behavior of the program changes and becomes incorrecuriadly, such code fragments rarely exist in practice. On
the 1A-32 we have seen several instances of code that pesfarithmetic on addresses in thiextsegment. These
examples arise in code that has been compiled mls#@ion-independenivhich is explained in detail in section 3.3.1.
In position-independent code, jump tables are often emdxbdtside thetextsection of the function containing the
jump through the table. An instruction sequence is usedad tbe address of an instruction inside the function, and
later a displacement is added to it. The resulting addretbistart of the jump table. PLTO tries to detect situations
where.textaddress arithmetic is performed and treat them accorditigily usually involves marking the functions
as being problematic, and not disassembling or carryingoptitizations on them. In all of the SPECint95 and
SPECIint2000 benchmarks there are only a handful of suchi@wes, so the impact on disassembly is small.

3 Disassembly and Control Flow Analysis

3.1 Phase Flowchart

Figure 2 depicts the important pre-optimization stagesLif®. They are explained in further detail in the following
sections.

3.2 Pre-processing for ELF Executables

ELF executables can have multiple sections that contaia.dodparticular, most linkers include the standard sestion
.init, .plt, and .finj which are used for program initialization, procedureilimgk and for program termination. PLTO
contains a preprocessing pass in which it combines all@ectiontaining instructions into a singtextsection—we
term the process a “normalization” pass. This normalizatitage is performed before anything else is done, and
alleviates some of the work needed to be done by optimizaiimid analyses to handle intra-section anomalies. The
process is fairly straightforward since virtual addressesreserved through the addition of NOP instructions.avlin
bookkeeping is needed to adjust relocations, which are&jlgiprovided as (section, offset) pairs. When a section is
merged with another, any relocations residing in the mesgetion are rewritten and associated with the section into
which they are merged.

3.3 Disassembly

Precise disassembly is a fundamental requirement for astgrsywhich aims to statically analyzes binary code. Un-
fortunately, correct disassembly is a hard problem, egfigavith the variable-length instruction encodings and th
presence of data in sections of the executable which arealpreserved for code. Although compilers do not usually
generate such codehinary rewriting systems must be able to deal with hand-da@dsembly routines. These routines
are often designed to be as efficient as possible, and ardismesaon-conforming with regards to the standards used
by the compiler. In particular, a programmer wanting to rlggloop may choose to use invalid opcodes instead of
valid NOP instructions, if it can be guaranteed that the $yate never executed. A disassembler, however, does not
have all the knowledge that the programmer had, and as & iesdten unable to determine that a sequence of bytes

2An exception is position-independent code, which is exgldiin detail later.
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Figure 2: Pre-optimization Stages in PLTO

cannot be executed. Recent work has shown that the probldisassembly is equivalent to the Halting Problem, and
thus it is not always possible to correctly disassembleaded25]. Moreover, it is not always possible to determine
when a code fragment has been incorrectly disassembledORISEs a novel approach to recovering the instructions
from the byte stream that is a large improvement over othegrses used by binary rewriting systems, and over others
discussed in the literature. It is able to detect positimaependent code, jump tables embedded in the instruction
stream, and data inserted for alignment purposes.

3.3.1 Position-Independent Code

Many compilers can be instructed to emit code that does myptore being bound to any particular position in the
program’s address space. These code sequences are ofteadéd aposition-independent codPIC). In particular,
PIC sequences do not contain any relocatable addressesl@ethia the instructions. This property enables the code
to work regardless of its memory location at runtime. Fumi@re, PIC does not need to be patched by the loader,
enabling it to be mapped as read-only data—which is usefidifared code such as dynamically linked libraries [17].
When a compiler is emitting position-independent code jiidglly creates jump tables that are also position-
independent. These tables are usually embedded in theegxtent of the executable and consist of a sequence of
offsets rather than virtual addresses. A jump that uses ffisetdable first loads a nearby addréshen uses this
to index into the table and retrieve an offset. The offsetidesl to the address that was previously loaded and then
used in an indirect jump to reach the desired destinatior.pfbblems posed by position-independent jump tables are
three-fold: (i) the offset tables, which are really no different than dapgear in the instruction streartii) the code

30n the Intel x86 this is done using a4l | 0” instruction followed by a pop %eax” instruction, which has the effect of storing the latter
instruction’s address into registéeax.



Location Memory Contents Disassembly Results

0x809ef45: eb 3c j mp 0x809ef 83

0x809ef 47: 00 00 add %l , (%ax)
0x809ef 49: 00 add %al ,

0x809ef4a: 83 ee 04 83 ee Oxee8304ee( %ebx)
0x809ef4f: 04 83 add $0x83, %al
0x809efaa: 73 9e j ae 0x809ef 4a

Figure 3: Code Fragment from the C Library Routster r chr

sequences that perform the indirect jumps are often coatplicand may not adhere to a single pattern that is easily
recognizable; andiii ) it is entirely possible that an offset table does not contalacation entries. Taken together,
these properties make the task of disassembling PIC seesiémmlving jump tables more difficult than standard
code.

3.3.2 Disassembly with Linear Sweep

The most straightforward approach to disassembly is to atdhe first byte in thetextsection and disassemble the
instruction there. The pointer into the section is then aded by the length (in bytes) of the instruction disassethble
and the next instruction is recovered. This process coesinutil the end of the instruction stream is encountered. We
term it alinear sweepas no backtracking is ever involved and we are always mdhirvgard progress. This scheme

is employed by programs such as GNUOIgdumputility [13], OM [28], alto [21], and spike [9]. The shortcdny of

this approach is that it disassembles data or alignmenslifytieey appear in the instruction stream. This can in turn
lead to erroneous disassembly of valid instructions if the & the data does not also end what is disassembled as an
instruction encoding. Furthermore, disassembling datgpcaduce bad programs even if we stay “in sync” with what
are real instructions; for example, a liveness analysis pragluce incorrect results if it determines a register is not
live (because it is overwritten by an instruction decodedfithe data) when in fact it may be. The problem of data
embedded in thdextsegment is illustrated by the code fragment in Figure 3.

The code comes from the library routisgrchr found inside the standard C library (libc). The highlightexkes
show three 0x00 (NULL) bytes that were inserted by the pnognar, presumably to push the header of the loop at
0x809e4f a forward to an address with a more desirable alignment. Tlde guoduced in Figure 3 comes from
the objdumputility, and we can see that it interprets the alignment §ytebeadd instructions. The problem is
that it begins decoding the second add instruction, anduroas a number of bytes that were meant to form a valid
instruction aDx809e4f a. Subsequentdisassembly is then incorrect, but later gets‘on track”. ByOx809ef aa,
the end of the loop is encountered and the instruction disalsked is a conditional jump back up to the loop header.
This immediately looks suspicious, as the target of the itmmal jump is not the beginning of an instruction, but
rather the middle of thadd instruction that was decoded. The instruction sequendeaslg invalid, but the problem
remains that we cannot always detect such situations. licpkar, if the disassembly was still out of sync when the
final instruction in the loop was being decoded then we wowden see the conditional jump back up to the loop
header, and thus would not become suspicious. Normally pitenuses 1-byte NOP instructions for alignment; this
particular routine, however, was written in hand-code@&agsy and the programmer was aware that the data would
never be executed, so used a NULL byte instead. The codefecggvalid, but the linear sweep disassembly scheme
becomes confused.

3.3.3 Disassembly with Recursive Traversal

A second approach—one that is perhaps more intuitive—isstimde instructions in a similar manner to how the
processor does, namely by following the execution of theggm. The problem with the linear sweep is that it
does not take into account the control-flow behavior of tlegpam. Instead we consider starting at the program entry
point—an address supplied as part of the program headé&udtisns are then decoded linearly until branches, jumps,



or function calls are encountered. Upon discovering amuctibn in which the program counter can be changed to
something other than the next instruction, the algorithearsively visits all possible control-flow successors; et

the algorithm a “recursive traversal”. For example, in tagecof a conditional jump there are two possible successors:
the next instruction, and the target of the jump that is @ilvhen the condition is true. Function calls have similar
behavior, and unconditional jumps have only one possildeessor. Using this scheme the algorithm will visit only
locations in the executable that are actually reachabte ftee starting point of the program. A high level sketch of
the algorithm follows:

proc Di sassenbl e( Addr, instrlList)

{
if (Addr has al ready been visited)
return;
do {
instr = Decodel nstr (Addr);
Addr . visited = true
add instr to instrList;
if (instr can alter the programcounter) {
T = set of possible control flow successors of instr;
foreach (target € T) {
Di sassenbl e(target, instrlList);
}
else Addr += instr.!|ength; /* addr of next instruction */
} while Addr is a valid instruction address;
}

Re-examining the problem in Figure 3, it becomes eviderittti@recursive traversal does not try to disassemble
the NULL bytes inserted before the loop header. The uncmmditjump atOx809ef 45 before the alignment bytes,
in conjunction with the conditional jump 8 809ef aa, result in the algorithm disassembling around the padding a
desired.

The key assumption made by this algorithm is that the set piakible control flow successors for an instruction
can be found. This is a bold supposition at the machine-ama,Iwhere dynamic function calls and obscure indirect
jumps are often a reality. Specifically, te@i t ch in C often results in compilers generating indirect jumpstigh
jump tables. If static analysis cannot precisely deterntiiirdebounds and starting address of all tables with 100%
accuracy, we risk disassembling data or not disassemblliimgsructions, either of which is a fatal error. Moreover,
we cannot be sure that the same compiler (or even a compiddit)atvas used to generate the machine code being
analyzed, so simply trying to detect normal forms is notifdas Another technique that have been proposed is
performing constant propagation during disassembly (lwheéquires a partial CFG to be constructed), which does not
seems straightforward [30]. In addition, it suffers frono#rer flaw which is discussed below.

Presumably any target of an indirect jump is going to be eed@®mewhere in the binary as a relocatable address,
otherwise there would be no way to load the address into atezgand jump indirectly through 4. Since we are
equipped with relocation information, one feasible salntivould be to start disassembling at all relocatable addees
The augmentation to the recursive traversal algorithmagdhowing procedure which is called at the top level in gac
of Disassemble

proc Di sassenbl e’ (Program

{
instrList = NULL;

foreach rel ocation, r, € Program Rel ocations {
Addr = ReadCont ent sAt Addr ess(r. address);
Di sassenbl e(Addr, instrlList);

}

Di sassenbl e( Program start Address, instrList);

}

4Address arithmetic could be used, and in practice this cae perious problems. We discuss it in detail later.




Location Memory Contents Disassembly Results

0x80b1d8b: 8d 84 c0 95 1d 0b 08 | ea 0x80b1d95 (%eax, Yeax, 8), Yeax

0x80b1d92: ff el j mp *%ax

0x80b1d94: 8d | ea )
0x80b1d95: 74 26 00 0x0(%esi, 1), Yesi
0x80b1d98: 8b 06 nmov (%esi), Y%eax

0x80bld9a: 1302 adc (%edx), %eax

0x80b1d9c: 89 07 nov %eax, (%edi)

Figure 4: Code Fragment from the C Library Routinepn_add_n

The algorithm seems reasonable in that it will start disasdiag at all locations in the program which can have
their addresses taken—which should cover all targets afdotjumps and function calls. The only problem is that
it may disassemble starting at some address that it not abfms$arget. For instance, Figure 4 shows a routine,
__npn_add_n, extracted from the C library on our Redhat 7.2 systems. Bl@ed address in the figure corresponds
to the bytes that are relocatable in the instruction en@nddx80b1d8d to 0x80b1d91. The contents at that
address is the program addré&s30b1d95. Using the modified algorithm, we tre@k80b1d95 as an address at
which to begin disassembly. The problem is thaB0b1d95 actually points into the middle of an instruction! The
| ea instruction which load9x80b1d95 into a register performs address arithmetic with it. On e3P the lea
instruction 1 ea baseAddregso, r1, m), ry” does:

ro < baseAddress contentsOfi(p) + contentsOfi(3) x m

The function of thé ea is to load an address located in the middle of a loop, whiclirsegf addres8x80b1d98.
The programmer who wrote the function was aware that thestergdoeax never could contain the value 0, allowing
control to be transferred to the addr@s80b1d95—which was where we started disassembling. Unfortunataly,
is specialized knowledge about the program that is not gat/at the machine code leveln general, it is impossible
to determine via static analysis what values may appear égiater during the course of execution. Strange address
arithmetic like this prevents us from being able to rely sote the recursive algorithm.

3.3.4 Extending Linear Sweep

The first linear algorithm discussed in Section 3.3.2 wasyfqirimitive, in that it did not use all the information
about relocations that is available at link-time. It is fisblto disassemble starting at addresses that are marked as
containing relocations (e.gtext-embedded jump tables), since an instruction encodintsstath an opcode which
cannot be part of any relocation. Using this observationaveimprove the algorithm by disassembling around blocks
of addresses marked as relocations. Given some contigequsisce ok relocations, the goal is to identify which
ones correspond to a jump table, if any. For instance, wherl it is likely that the address is simply part of an
instruction encoding (e.g., tHeea instruction from Figure 4 contains such an address). Howéveimply assume
such a fact is erroneous; although a compiler may not gemérantry jump tables, a devious programmer could. The
same reasoning applies whies: 2. Two contiguous addresses may be embedded as part of arctitst encoding, or
they could be a small jump table. An additional observatsoreguired, which is that architectures have finite lengths
for instruction encodings, and can contain at nragtlocatable addresses within these bit-sequences. OAB2 |

m= 2—that is, 2 addresses can appear adjacent to each othar thithmachine code for one instruction. Applying
this observation, we can conclude that in sequenc&selbcationsk > 2, the lask — 2 relocations are data. If they
were not data, our observation about having at most 2 adjadeinesses would be invalidated; but we know that to be
fact. The question remains whether or not the first two ad@semn the sequence are also part of the jump table. Itis
entirely possible that the instruction immediately befiire jump table is one that ends in 2 addresses, and the jump
table consists of the lakt— 2. PLTO uses the following algorithm to decide:

5And not at the “source code” level either, except in a comnadoive the code fragment.
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1. [Phase 1: Conservative Markihdrind k-sequences of relocations and mark the kas2 as data so the linear
sweep algorithm disassembles around them.

2. [Phase 2: Linear SweégpBegin the linear sweep algorithm as described in Secti@23.Before trying to
decode each instruction, check to see if the current progoamter is positioned at a location that was marked in
Phase 1, or a location that contains a relocatable addfesthdr is true, check the last instruction disassembled
to see how many relocatable addresses it contained at thé\esaiming the instruction hadaddresses) < 2,
we now know the jump table following the instruction contalin- n addresses. Advance the current pointer to
the end of the table and resume disassembly there.

The algorithm is capable of handling data, such as jump $alelebedded in thaextsection, but still does not
produce correct results when the data or alignment byteotlbave relocations associated with them. For example,
the improved algorithm produces the same result when apfaithe code fragment in Figure 3.

3.3.5 Combining Linear Sweep and Recursive Traversal: A Hykid Algorithm

Both linear sweep and recursive traversal have merits dsawgitfalls. Unfortunately, either of them applied alone
can always produce undetectable disassembly errors: thewued linear sweep fails when unmarked data resides
in the sections of the executable reserved for instructitmes recursive algorithm fails when a relocatable target is
not the start of an instruction. Both of these failures atalfand compromise the correctness of the program. The
solution employed in PLTO is to make use of both algorithnisthe improved linear sweep is used across the entire
program. The results of the linear sweep are then verifiedl thié recursive algorithifi. When the recursive scheme
disassembles an instruction residing at an addagsschecks to see that the linear algorithm also disassedrdole
instruction there. If it did not, the function containingthddress; is marked as problematicand all the instructions
between its start and end that were disassembled by the Bobame are removed. PLTO then stores the machine
code for that function so that later when the final binary imgeenerated, it can emit the exact same code. Since
the function and the instructions it contains do not appe#ne ICFG, there is no risk of performing transformations
that affect the functionality of the procedure. Worthy ofets that switching the order of the two algorithms does not
produce the same results, due to the recursive algorithidiagaunreachable code. In particular, the linear algamith

is likely to find many instructions that the recursive roetioes nof. For this reason, if the linear sweep were used
to verify the results of the recursive traversal, it woulslis many queries to see if an address Was disassembled;

in many cases the answer would be “no”, simply because thieigi®n was not reachable. However, this does not
imply that disassembly went wrong. For this reason we usedbersive traversal to verify the results of the linear
sweep.

A few challenging implementation issues arise when proeesiare not disassembled. Such procedures may
contain relocations which point elsewhere into the exddataand these need to be patched appropriately. A load
from a global.datasection is such an example, as the section’s address chiaewesen pre- and post-optimization.
Fortunately, we can use the relocation information to daeiee which bit-sequences in the chunk of machine code
need to be updated. Another issue is one of escaping PGregtminches— those in which the target function is not
the same as the function containing the branch. When theinmachde for the function is retained and later emitted,
there is an implicit assumption that PC-relative branchesat need to be updated because their relative offsets to
other instructions in the function are the same. This is toudranches in which the target instruction is also inside
the same procedure, but not true when the branch is intezguval. Furthermore, function calls on the I1A-32 are little
more than interprocedural branches, as they take PCuelaffisets to the target procedure. This poses a problem: the
function has not been disassembled so we do not know wheneténprocedural jumps and function calls are located,
yet we need to update their displacements—which are notedaak being relocatable because they are PC-relative.
An additional degree of complexity arises from the fact thatprocess of updating the displacement faraa | or
interprocedural branch may result in the size of the insimacencoding changing! For example, a function call which
was previously located 120 bytes away from its target maydfeh¥tes away after optimization, and to encode 300 as
the offset for thecal | requires an extra byte than what was needed to encode 120ak@mmatters worse, extending
the instruction by an extra byte would invalidate every ottv@nch instruction in the non-disassembled procedure,

60nly the results from the first run need to be stored in memdhe second phase which verifies the disassembly does notmeeehte an
actual representation of an instruction.

“Section 8 discusses improvements to this approach. Fanicest one could attempt to discover which algorithm prodube correct results.

8About 10% more; see Section 5.5.
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as the assumption was made that the offsets on intra-proaddsianches would remain the same. A PC-relative
branch that was previously bytes away from its target may become+ 1 bytes away, if thecal | that is being
extended happens to fall between the branch and its targeteiftire situation is depressing and full of challenging
details. Currently, PLTO makes use of an extra relocatipe for relative offsets that is available in ELF32 binaries.
Unfortunately, the relocation is only available in compitgenerated routines, and hand-written assembled proesdu
(where the disassembly errors often occur) do not usualyado them. In these cases PLTO uses unsafe heuristics
to try and discover theal | instructions inside the procedure even though it cannotibasdembled. Section 8
discusses &rampoliningmethod that we plan to employ to deal with the problem of pdoce calls changing length
when updating their offsets.

3.3.6 Experimental Results

There are two “performance” issues at hand: the actual spegtlich the disassembly takes place, and the precision
of the hybrid algorithm. As expected, we see that using blgtbrathms in conjunction requires about twice as much
processing time. Appendix B shows the disassembly timethtostatically-linked benchmark for the integer subsets
of the SPEC95 and SPEC2000 benchmark suits. We believe itesome careful tinkering, the execution time for
the hybrid algorithm could be improved so that it runs in apmately the same time as the linear sweep. The purpose
of the tables is to show that the disassembly time is not asmé drastically by applying our algorithm; moreover,
the total time spent in disassembly is only a small fractiompared to the time spent during optimization. Table 1
shows how well the hybrid algorithm performs for the samechemarks. There is little to gauge its precision against,
however, since the other approaches (those in Sectiorséhd.3.3.3 we have discussed are not correct. Taken alone,
however, the hybrid algorithm is quite successful. On ayeer 99.6% of functions, accounting for over 99.8% of
all bytes in the programs can be correctly disassembled.

3.4 Issues in Control Flow Analysis

Following disassembly, PLTO constructs an interproceldumatrol flow graph (ICFG) over the entire program. Two
interesting issues arise in the analysis of a program’srobffbw: jump tables and unknown control flow.

Indirect jumps through a table of addresses are often gttt a compiler for multi-way branches, such as those
arising from theswitch construct in C. Several techniques have been proposed iliteregure and implemented in
systems for binary analysis. One method, which is used by@ lifivolves tracing backward through the instruction
stream from the location of an indirect jump. In IA-32 assémédjump through a table takes on a fairly normal form:

Addr ess Instruction Comment

80481e3:  nov 0x8( %ebp) , %edx Load index into %edx

80481e6: cnmp $0x9, %edx Bounds check against ' 9’

80481e9: nov $0x6, Y%eax

80481ee: ja 8048241 <foo+0x61> Junp to default case

80481f 0: jmp *0x808dbf 0(, %edx, 4) Scal e %&dx by 4, add base address of
80481f 7: nop table, and performthe indirect junp
80481f 8: nov $0x2, Yeax First case (0) in table

8048230: nov $0x9, Yeax Last case (9) in table

The idea is to try and recover the base address and size afrtietpble. Typically the size of the table can be
discovered from the bounds check that is performed agdiashtex of the entry being jumped through. The index is
scaled by the address size on the architecture, and addeel b@$e address of the table. Cifuentes and Van Emerick
propose a technique for detecting several normal formdglsimilar to the scheme employed in PLTO [8]. Theiling
suggests a different approach, in which constant propagatid construction of the CFG is done at the same time
[30]. The hope is that the necessary constants propagateséiees down to location in which in the indirect jump is
issued. One can then recover the possible targets by usittggahformation which found its way to the jump. We
have found that detecting a few normal forms for indirect psnenables PLTO to almost always correctly find the
targets of these jumps. Only in a select few hand-coded ddgeoutines does the algorithm become stumped.
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No. of Functions No. of Text Bytes
Program Nt | Ps | Pt/Nt (%) No | =N | Po/No (%)
compress 570 4 0.70 291552 792 0.27
gce 2418 3 0.12 1146304 736 0.06
go 919 4 0.44 485472 792 0.16
ijpeg 968 4 0.41 403664 800 0.20
li 928 4 0.43 334992 800 0.24
m88ksim 832 4 0.48 394656 800 0.20
perl 887 4 0.45 502768 800 0.16
vortex 1506 4 0.27 671936 792 0.12
| GEOMETRICMEAN: [ 038 ] | 016
(a) SPECint-95
No. of Functions No. of Text Bytes
Program Nt [ P | Pt /Nt (%) Nob [ B [R/MN®
bzip2 634 3 0.47 339216 736 0.22
crafty 673 4 0.59 449632 792 0.18
eon 2288 4 0.17 810256 800 0.10
gce 2607 3 0.12 1384176 736 0.05
gzip 663 3 0.45 344464 736 0.21
mcf 572 4 0.70 294880 792 0.27
parser 884 4 0.45 385280 792 0.21
twolf 751 4 0.53 457184 792 0.17
vortex 1506 4 0.27 671936 792 0.12
vpr 832 4 0.48 391440 800 0.20
| GEOMETRICMEAN: [ 038 ] | 016

(b) SPECint-2000

Key:

Nt : Total no. of functions

Ps: No. of functions inferred to be “problematic” and not disasbled
Np: Total no. of bytes in thetextsegment

Py: No. of bytes in “problematic” functions

Table 1: Precision of Disassembly
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Given that we cannot always glean exact control flow inforamafrom the machine code, a means by which
unknown control flow can be modeled is desirable. A specialige-node in the ICF@yeLL , IS used to represent
all types of unknown control-flow. For instance, sometinids not possible to recover the targets of indirect jumps
or virtual functions calls. When a basic block ends with an instruction whose entire ssticcessors can not be
determined, an edge from that block is addedt@ | . Similarly, when a block is a possible target of a indirect
jump or function cal’® we add an edge froByeLL to that block. Bygy | is contained in its own functiorfe, .

, and in all of the analyses it is treated conservatively. iRstance Byg| | is assumed to use all registers upon its
entry and then to define all registers. This ensures thatéisg information is computed correctly in the presence of
unknown control-flow, and that constants are not propagateass edges leading in or out®fg | . Other analyses
and optimizations tred g | andFye L specially; dominator computations, for example, are notgpmed when a
function has blocks with incominBng | edges.

4 Analyses

4.1 Stack Analysis

The scarcity of general purpose registers on the IA-32 teguh large reliance by the compiler on using memory. In
particular, function arguments are placed onto the runsitaek by the caller and retrieved inside the body of the ealle
Theal t o project showed that constant propagation across functiandiaries can result in a significant performance
improvement [21]. However, these observations were ma@gma@mchitecture in which function arguments are almost
always passed through registers. As the gap between mempeeygs and CPU speeds increases, eliminating loads
and stores to memory becomes increasingly important. Feréason, we would like to be able to reason about
the relationships among stack frames of functions. A sing@mple follows, which illustrates the potential for
optimization that we would like to exploit:

int f(...) void g(int x, int vy)
{ {

9(123, 456); it (y 1= 0)

At the machine code level, the code for these functions relenthe following:

foo.o.. g: push %bp # save old franme ptr

push $456 # push arg 2 novl %esp, Y%bp # update frame ptr
push $123 # push arg 1 subl $32, %esp # al |l ocate stack frame
call g L
addl $8, %esp # pop args movl 8(%bp), %eax # load y

test|l % ax, %ax #yl!l=07?

jne ...

| eave # deal |l ocate frane

ret

Somehow we would like to take advantage of the fact that theraents tqy are constants, whose values can be
found in the body of . Assumingg has only one call site, the test inside its body could be elxt@d if the value of y
was known. The problem is tricky, however fapushes the argumentinto a location on the stack that isrd&ted by
the value of the stack pointer @p, andg explicitly pulls the argument off the stack via a load fromfitame pointer
(%ebp. 1t would be nice to know the relationship between theseregisters. Specifically, a particularly useful piece
of knowledge would be the height of a stack frame at any givegiam point—the value &b p— %esp Given this
bit of information for each function, one could discovertttiee push instruction inside the body df is writing to the
same location used by the®vl 8(%ebp , %eaX instructioninsideg. Since the value of this location is known
to be 456, the load of insideg can be replaced with a simpler instructiomoyv 456, %eaX. Itis likely that the
optimization would proceed in a transitive manner and epkEome subsequent occurrences eb%with the value
456. Given our knowledge about the contents e4prior tot est instruction, we can also determine the outcome of

9In fact, the targets of such calls may not even be defined umtiime.
10we can find this information by perusing addresses sittirthérdata and read-only data section
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the test and determine which way the conditional brgneé goes. The savings in this particular example are at least
one less memory reference and two less instructions fronglale to eliminate theest andj ne.'! Moreover, in

this particular example the propagation also opens the fdoatead code elimination. After replacing the loadyof
insideg, thepush instruction inf writes to a location that is not ever used by subsequentictsbns. Prior to the
transformation, the location was used as a placeholdeyr fond was thus necessary. Following the transformation,
however, the location is dead and thesh serves no purpose. Thus, a round of dead code eliminaticgrisrmed
every time constant propagation is carried out. The resutié elimination of even more memory references. The
optimized code follows:

foo.o.. g: push %bp # save old franme ptr
push $123 # push arg 1 novl %esp, Y%bp # update frame ptr
call g subl $32, %esp # allocate stack franme
addl $8, %esp # pop args -
. movl 456, %ax # load y
| eave # deal | ocate frane
ret

4.1.1 Algorithm and Equations

The analysis is fairly intuitive. Each instruction in theogram contributes some number of bytes to the height of
the stack (most instructions contribute nothing). The dbation made by a basic block is simply the sum of all
the instructions it contains. Given the effect that eacltlblbas on the stack, we can iteratively propagate these
contributions around the CFG for a function. The equationsltaflow through a basic blocR, that is contained in

a functionf follow:

HeightOu(B) = HeightIn(B) + |B|

1 if HeightOut(p)# HeightOut(p’), for some p and & Predecessors(B) ;

Heightin(B) = { c if VY p e Predecessors(B), HeightOut(p) = ¢

subject to the initial conditions:

0 if B ¢ Successor8ueLL ) and Be Successors(Entry(f)) ;
HeightInB)=<¢ T if B ¢ Successor8ueLL ) and B¢ Successors( Entry(f) ) ;
1 ifB € Successor8yeLL )

The meet operator is defined analogously as it in constamagetion—a block with two incoming edges of
different contributions results in a production of Such scenarios occur rarely in code we have inspectedhéyt t
do exist. For instance, a function call may be executed ¢immailly and the compiler may choose to not deallocate
the arguments it pushes on the stack. This results in twougeecpaths with different contributions. Usually these
scenarios occur toward the end of functions when no exiséferences to the stack are made, so their presence does
not prevent the stack analysis from being effective.

4.1.2 Interprocedural Considerations

Hand-coded assembly routines may not adhere to convenktiahwe take for granted from the compiler. Interproce-
dural jumps and non-returning function calls are a realitysome frequently-called routines that are written to be as
fast as possibl& control often jumps between two functions so that the cogprotedure calls is not incurred. There
are also circumstances where functions do not deallocatstéitk frame they have set up, but instead leave the job
to the calling function. The code can be considerably fasteen only one function has to clean up instead of both.
Furthermore, a smart compiler may also choose to carry ganafbormation that generates such code. For this reason
we cannot always be sure that the height of the stack (thevalloesp) is the same after a function call as it was

11This assumes that the PSW bits set by the test instructionairesed by any subsequent instructions. If they are in fset uthecmp must
remain in the function to preserve correct behavior.
12\We see such situations imalloc(), thesetjmp()family, and some math routines.
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before. Formulated in terms of our analysis, we cannot be thér contribution of @al | instruction is 0 bytes. This
adds an interesting twist to the problem. To carry out anyaibf the stack inside a function we need to know about
the contribution of any functions that it may call. This r@gs knowing the height of the stack at the exit points for
these functions, which poses a chicken-and-egg problencoifgpute the stack frame size inside a function we need
to have computed the stack frame sizes for all the functibasdre reachable from it. This is not always possible;
e.g., supposécallsg andg also callsf.

PLTO uses a notion of functiomell-behavednegse address this problem. A functidis said to be well-behaved if
and only if we can guarantee it leaves the stack as it fourkhiinitial set of well-behaved functions is constructed by
performing a simple local analysis for each function. Onedition that guarantees well-behavedness is the existence
of compiler-generated function prologues and epilogudschwtypically push the frame pointer onto the stack upon
procedure entry and pop it off before returniffg.The stack size remains unchanged regardless of any non-zero
contributions that exist before this instruction is executUnfortunately not all functions will have a prologue and
epilogue, as these may be optimized away or not generatdl &oa the remaining functions in which nothing is
known about their behavior, PLTO makes the optimistic aggion that they are well-behaved. This is later refined
if we discover that the assumption was not true.

The implementation of the stack analysis involves a quederaitions, which initially contains all the functions
in the program. As stack sizes are computed, a function mapured to be not well-behaved. When this occurs,
all predecessors of this function in the call graph are muened, and their stack sizes are re-computed with the
knowledge that one of their procedure calls is no longer-velaved. The entire analysis is thus broken down into
two phases:

1. [Local analysig.Functions with prologues/epilogues that guarantee stestoration are marked as being well-
behaved.

2. [Iterative propagatiohStack sizes at every program point are computed usingrimdton about well-behaved
functions. Functions that are found to be not well-behavédrin their predecessors, and the information
propagates back up the call graph.

We find that between 85% and 95% of all functions contain gmaite prologue and epilogue code, and hence are
well-behaved. About half of the remaining functions arerfdtio be well-behaved due to the net contributions being
0 at all exit points. PLTO is forced to deal conservativelyhvithe other remaining functions and assume they are not
well-behaved.

The stack analysis is used in almost all optimizations thauwt the system. Function inlining uses the information
when merging procedures to eliminate instructions thatgetnew stack frame inside the callee. It adjusts the callee’
references to the stack and writes them in terms of the stadké calling function. Constant propagation uses the
information to propagate constant values put on the stagkush instructions into the body of the callee. Table 2
shows the effect of using the stack analysis in constantggation on the SPECint95 benchmark suite. On average,
it enables about 20% more register or memory operands topecesl by constant values.

Load/Store Forwarding also uses the stack analysis in d&simanner, except it does so to propagate registers in
place of stack locations as opposed to constants in placegifterst* Without the stack analysis the optimization
would be severely crippled. Our approach to interprocdduiagk analysis is novel. Related work includes the Java
bytecode verifier, which performs a similar local analysigtiarantee that functions do not affect the stack size [23].

4.2 Use and Kill-Depth Analyses

Performing analyses across interprocedural boundaneseaxtremely time-consuming. But treating interprocatur
edges too conservatively (e.g., assuming thalal instruction defines all registers and stack locations) eaprgly
impact the effectiveness of an optimization. Often timeslatce between the two extremes can achieve acceptable
results and still run in a reasonable amount of time, withatlded benefit of being easier to implement. PLTO
carries out most optimizations across the ICFG with inteecpdural considerations. In addition, it can also perform
optimizations local to each function, using summary infation about other functions to handle interprocedural
aspects. Use-and kill-depth information falls into this category—it is used innstant propagation and liveness

130n the IA-32 this is usually accomplished with theave instruction, which has the effect of restoring both the fegpointer and the stack
pointer to their previous states.
14We later refer to this optimization asgister propagationas it is carried out concurrently with constant propaggtio
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Program No. of operands replaced Percent Increase
Before | After
compress 318 389 22.33
gcc 427 593 38.87
go 423 478 13.00
ijpeg 372 439 18.01
li 330 397 20.30
m88ksim 347 433 24.78
perl 553 640 15.73
vortex 517 701 35.59
| Geometric Mean: | 22.11 |

Table 2: Effect of Stack Analysis on Constant Propagation

analyses to provide an improvement when the optimizatiomsiat carried out across procedure boundaries. Finally,
the information is also used in the interprocedural analygsea solution to some issues concerning representation of
the runtime stack. Section 5.1.3 discusses the stack exged®on in greater deal and serves as motivation for using
these analyses even in an interprocedural optimizer.

A function’s kill-depth describes the amount of space belkswwn stack frame that it may write to. The value
is either positive ore, meaning some instruction inside the function may writertg Ebcation on the stack. Such
instructions are generally stores into the heap, but PLT@siglly unable to infer this information due to the loss
of semantic information accompanied with machine code revivedirect stores may be going to the stack, statically
allocated data regions, or the heap. In intraproceduradteon propagation the kill-depth of a function is used when
acal |l to some function is seen. Instead of assuming the worst-etis®t the function may destroy the entire
contents of the stack—we use kill-depth to limit the exterithe damage. Use-depth is the dual of kill-depth, used in
intraprocedural liveness analyses. PLTO does not havestmmesthat the function being called reads all locations on
the stack, instead use-depth can be used as an upper bounalsdido-functioRye L is assumed to have a kill-depth
and use-depth ab. Consequently, any function through whiEhg| | is reachable must also have values®fince
execution of these functions could resulfge | being reached. The intuition is that if we do not know whenetoa
ends up (and thus are in the presencegf, | or Bugy ), the worst-case assumptions need to be made. The remainder
of this section describes how Kkill-depth is computed; treedar use-depth is analogous.

The analysis is broken down into two phases: a local comipuatédr each function, and iterative propagation of
the local computations. Iterative propagation is necgsssikill-depths may span multiple stack frames and affext th
kill-depths of other functiongg( | is such a case. In the local analysis, each instruction ifutigtion is analyzed to
determine the extent of the location to which it may storelirkect stores through registers are treated conserwativel
and assumed to have a kill-deptheaf The “deepest” store to the stack inside a function is thétodee the function’s
kill-depth. The second phase of backwards iterative prafiag along the call graph proceeds as follows: consider
some functionf with a current kill-depth ofm. f statically has procedure call€, C,,...C, to some other set of
functions in the progranty, fo, ... fx with kill-depthsgs, 92, ..., gn respectively. From the stack analysis described in
Section 4.1 we know the height of the stagk,at each call sit€;, 1 < i < n. Letd; denote the new kill-depth df
after propagation frong;. d; is computed according to the following rules:

— If the stack height at the call si& is unknown, that igp; = L, we cannot determine the size of the stack frame
at the call site. In the worst case the stack has not growneuy, p; = 0). Consequently, whefy writes g;
bytes below it stack frame, the write will also bebytes belowf’'s stack frame since the call site was at height
0in f's stack. In this casea}; = max(m,g;).

— If the stack height at the call site is a known value, thaiigt L, d; is computed as max(m, max(@,- p;)).
The intuition is that a store to the stagkbytes belowf;’s stack frame will write to a locatiog; - p; belowf's
stack frame, and thus affect its kill-depth if this valueagger tharf’s current kill-depth.

This proceeds until a fixpoint is achieved, so that extrerf@dep” stores (e.g., those that avg can progagate
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Program Eliminatable Instructions Percent From Stack
Stack | Registers | Total
compress 17 879 896 1.89
gcc 9 3057 3066 0.29
go 21 1561 1582 1.33
iipeg 17 1197 1214 1.40
li 18 1123 1141 1.58
m88ksim 18 1115 1133 1.59
perl 17 1437 1454 1.17
vortex 51 2157 2208 2.31
| Geometric Mean: | 1.27 |

Table 3: Effect of Stack Liveness Analysis on Dead Code Elation

upward to all places from which they are reachable. Unfately, when used in the intraprocedural analyses the use-
depth and kill-depth are unnecessarily large at times;éty faany functions receive because they have reachable
paths toFye L oOr indirect stores. In practice the analyses are ineffeddivimproving the precision of constant
propagation and liveness analyses. However, they arereghjini the interprocedural analyses as a means to fix a
problem with representation of the stack. Since the staokpeesented as a large array with a finite upper bound, a
store extremely deep into the stack to a location that ielattan the upper bound on the stack size cannot be modeled
in the interprocedural optimizations. In these cases, ilveldépth and use-depth are used to be sure that the correct
information propagates backwards.

4.3 Liveness Analyses

Liveness analysis is performed to eliminate instructibias store to locations that are not subsequently used. &unst
propagation and function inlining create dead code, so #aeldode elimination is run after these are carried out. The
IA-32 has only eight general purpose registers, and as gliels heavily on the runtime stack. Eliminating writes to
stack locations is potentially more fruitful than elimiimag writes to registers, since memory operations are exy&ns
For this reason PLTO carries out both a register and a staehkdss analysis. In addition a PSW analysis is used by
both these analyses. In order for an instruction to be eéiaith, the PSW bits it defines much also be dead.

4.3.1 Stack Liveness Analysis

PLTO carries out a context-insensitive, intraprocedusadls liveness analysis complemented with the use-depth in-
formation presented in Section 4.2. Table 3 shows the numb&iminatable instructions from using this analysis,
along with their percentage as the number of total elimislatanstructions. Surprisingly, the stack liveness arialigs
relatively ineffective, accounting for only a small pertage of total eliminatable stores in most cases. Indirexddo
play a major factor in hindering the effectiveness of stagikless analysis; in particular, at any program point that h
areachable path to an indirect load, all stack locationtaeSection 8 discusses some future work we have in mind
to combat this problem.

4.3.2 Register Liveness Analysis

Register liveness analysis in PLTO is interprocedural amdes in both the context-insensitive and context-sesitiv
flavors. The context-insensitive analysis is a straightéod implementation of what has been described in many
papers [19, 14, 21, 28]. The context-sensitive analysisidens only realizable paths in the ICFG, and has also been
discussed in some deal in recent work [19, 14]. The basicigi#astrated in Figure 5, which shows how information
can legally propagate in an ICFG through unrealizable payhssing call and return edges.

The blue path leading up the graph is the path on which thefuspropagates back to the call site from which it is
not reachable. The context-sensitive analysis in PLTO seth@n the dataflow equations by Muth [19] and Goodwin
[14]. The context-sensitive analysis computes summaigyrinétion for each function, which holds only if control
enters from the first block in that function. Some care mugtken in the presence of control flow irregularities like
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call f

Figure 5: Backward Propagation Along an Unrealizable Path

interprocedural jumps and function calls to the middle afgedures. Muth found that on the Compaq Alpha one
could expect about a 70% increase in the number of availagisters using the context-sensitive approach.

On the IA-32 we find that the context-sensitive analysisqrent better, but only by about 7% on the average; we
see an increase from 1.67 dead registers up to 1.8. Tablewsshe effectiveness of both approaches with regards to
the number of free registers they find. Section 8 discussas gotential uses for these registers.

Program Free Registers Percent Increase
Insensitive | Sensitive
compress 1.735 1.847 6.45
gcc 1.494 1.647 10.24
go 1.886 2.143 13.62
ijpeg 1.642 1.738 5.85
li 1.636 1.753 7.15
m88ksim 1.718 1.825 6.32
perl 1.659 1.799 8.44
vortex 1.580 1.644 4.05
| Geometric Mean: | 7.31 |

Table 4: Effectiveness of Context-Sensitive Register hass Analysis

The effect that callee-saving register sequences in aimptologues have on liveness is worthy of note. Typi-
cally a function will save the set of callee-saved regisfupon entry by storing them somewhere in its stack frame.
Since the act of storing them to the stack (usually done wiplugh) constitutes a use of the register being saved,
liveness information propagates backwards and the caflingtion believes these registers are later used. This is
usually incorrect, as convention (and lack of registersjadés that function arguments be passed through the stack,
meaning these registers should only be live if later usebimihe calling function before being defined. Ideally we
would like to discover that although these registers ard tbey are later restored in the function epilogue (usuadly

15These are typically %ebx, %esi, and %edi on the IA-32
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Program Static Eliminatable Instructions Percent Increase
Standard Analysis | Non-conservative Analysis
compress 896 997 11.27
gcc 3066 4335 41.38
go 1582 1871 18.26
ijpeg 1214 1377 13.42
li 1140 1328 16.49
m88ksim 1133 1292 14.03
perl 1454 1852 27.37
vortex 2208 2797 26.68
| Geometric Mean: | 19.31 |

Table 5: Potential Benefit from Knowing Callee-Saved RegssAre Not Live

pop instructions) and not subsequently used, meaning theteatsare not live. Unfortunately, like in other analyses
throughout PLTO, indirect loads must be treated consemigti—we assume they can come from the locations on the
stack to which the callee-saved registers are stored. Adthdt is highly unlikely that a function will read from these
locations, it can be a reality in hand-written assemblyirag. The potential payoff for knowing that these registers
are not live is rather large. Table 5 shows how the effectgsrof dead-code elimination would improve if we could
assume that the callee-saved registers are not live upatidarentry. Section 8 discusses an analysis we are curentl
investigating that would limit the range of indirect loadwlastores; we hope it will eventually lead to improvements
close to what are seen in Table 5. Although assuming thaesathved registers are not live is technically incorréet, t
programs in SPECint95 ran correctly for us after testingloein out with that assumption. These unsafe assumptions
have been made in several systems: Goodwin suggests araappnovhich indirect calls to unknown targets obey
the standard calling conventions defined for the architedtl4]. This was implemented in the context of the Spike
optimization system [9]. Muth describes a similar appraachhich asavedregister set is constructed for each func-
tion, which contains a representation of all the calleeedaegisters in that procedure [19]. It is not clear what ebrt
analysis, if any, is used to determine that the locationshizkwthe registers are stored are not read from. The author
also describes a slight modification to computing livenaghé presence of indirect function calls whose targets are
not known, in which calling conventions are assumed to hb¥d. [

4.4 Analysis of the Optimization Potential of Code Fragmerg

Many transformations are carried out for the express parpbsreating better opportunities for other optimizations
Other transformations, such as function inlining, havértben expected payoffs but also enable other optimizations
to perform better. In general, transformations that haedér tbwn payoffs do not consider the potential gains they
may enable other optimizations to take advantage of. A napptoach to optimization is to consider both the im-
mediate payoff and also any future payoff, when decidingrelaad when to carry out transformations such inlining,
specialization, and cloning.

Value specialization, function inlining, and cloning anegte optimizations that are carried out with other optimiza
tions in mind. Value specialization relies on constant pgation and dead code elimination to create more efficient
code fragments [20, 31]. The transformation involves aigra region of code to be specialized for a value for a
particular register or stack location, Candidates for specialization are gathered from profilaggsters (and perhaps
stack locations) in the program and determining the digtigim of their values. A region of code is then duplicated,
and a test for equality t@is inserted before control can enter one region or the offter.constant propagator is then
able to infer that inside one region of code the register @lobrcontains the constant The hope is that the constant
propagator can make the cloned region of code much moreeeftioy knowing this fact.

Function inlining is another transformation that is cadroeit for two reasons: to eliminate toal | andr et urn
overhead associated with procedure calls, and to provitterbepportunities for constant propagation by reducing
the number of calling contexts for the inlined procedure.uAdtionf taking one argument may be called from five
different places in the executable. In every spot the arguimrmay be a different constant, §@éannot be optimized
with respect to any one value. If, howeveis inlined into a call site, the number of calling contextsffis effectively
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reduced to one, and the inlined procedure can be optimizédraspect to one of the values. Finally, cloning is a
transformation much like specialization, but makes usexdadtieg transfers in control-flow rather than introducing
new tests.

The general problem is the following: We would like to commttie expected future payoff of performing trans-
formations like specialization and inlining without adiyehaving to carry out the optimizations themselves. The
problem has previously been addressed in compilers [3] arteal t o link-time optimization system [20], but
characteristics of the IA-32 (and CISC architectures inegah) warrant that the problem be revisited. Computations
were carried out in a compiler on the procedure level in workBhll [3]. Strong and weak dependence sets were
constructed, where the set members were function parasn&@tong sets indicated a variable’s value could be fully
computed from the members of the set; weak sets indicatedablels value was influenced by the members of its
set, but they were insufficient to completely determine thiei@. The sets are then used when a function call with
some constants parameters is seen, and an estimate on tictardn code size and execution time is made based
on the strong sets. Although this method works well to presiiwings from constant propagation and dead code
elimination after function inlining is carried out, the dysis does not completely meet our requirements. We would
like to be able to carry out this analysis at any arbitrarygpam point for any program variable (in our case, register
or stack location). It is not clear that extending this as@yould be easy or even work well for our needs. The
authors of thal t o system showed how to extend such computations for wholgrane analysis at the cost of large
memory requirements [20]. In particular, use-definitioaiols were constructed on top of the ICFG, and the chains
were traversed in an intelligent manner to determine whiskructions would become eliminatable from performing
specialization.

The 1A-32 poses a new challenge of resource usage. In pari@ne cannot expect to gain a realistic estimate
on the expected savings by considering only register usageaa done in work for thal t o system [20]. Many
instructions use operands located on the runtime stackestdtically allocated data. Modeling the stack in a similar
manner to what is done for constant propagation and deadedodimation (Section 5 provides extensive details) is
cumbersome and space intensive, due to the size of use-dielschWe have developed an on-the-fly approach in
PLTO that requires no additional resources over what aeadir allocated, but at the expense of sacrificing some
precision.

4.4.1 On-Demand Computation

One method to discover the eliminatable instructions igdmtively propagate information around the CFG until a
fixpoint is achieved. The basic idea is to mark an initial dedmerands that are known to take on constant values.
For value specialization one would mark the single operagidgoconsidered in order to estimate how profitable
specialization is. In function inlining one would mark thteack locations which contain constant values from “push”
instructions—they are the constant arguments that wilbEneonstant propagation to simplify code. After marking
the necessary registers or stack locations as being kngwrase of iterative propagation takes place. The two values
that are propagated ate—to represent that a location is unknown—andr any other arbitrarily chosen symbol—to
represent that the location contains a known value; thetesdige is irrelevant. Instructions in which all the source
operands are known are marked as being eliminatable, airdigstination operands (if they exist) are also marked
as being known. The meet operation for locations (registack slot) is defined in the standard fashion, produding
when any incoming edge hds

Some unmarking of eliminatable instructions is require@mwthe meet operation producedor a location, and
some incoming branch contaikg$or that location. Figure 6 illustrates the problem.

The left side of the figure shows a hypothetical CFG of 3 blaekghich the potential for knowing that the variable
x contains a known value is being computedBlhthe value of is known, but the variablgdoes not contain a known
value. As suchz cannot be fully computed and the instruction is not elimabég. InB2 howeverx is added to the
constant 2 and stored i Since bothx and 2 (trivially) contain known values, the valueazxfan be computed and the
instruction is perhaps eliminatable. On the right side efghaph is the result after propagating this informatioB 30
The red variables indicate ones that were known, and the l&djdot indicates the instruction was marked as being
eliminatable. It should be noted that when the meet operéiapplied te, it finds thatzis not known since along the
B1branch it could not be computed. Sinzes not known at the start @3, the use ok cannot be replaced with the
constant it contains when constant propagation is carti¢d@onsequently, we must execute both the instruction in
Bland the instruction iB2 soz contains the correct value at the entnB@ The initial analysis concluded otherwise,
marking the instruction if82 as one that goes away after subsequent optimizations dmmped. Thus, we need to
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Figure 6: Incorrect Marking of Eliminatable Instructions

carry out some form of instruction unmarking when the meetrafion produces and some branch contaiks

Instruction unmarking need not proceed transitively bageithe CFG, and iterative propagation is not necessary.
Consider a registar that is L coming in along one branch amkdalong the other. If we walk back up thkebranch
and continue until we find the instruction that defingsll properties that we think are true at this program poiat a
in reality true. For all registens; that contain either a known or an unknown value, they werigiagd L or k based
on information that propagated down the graph in a legal reantfi we unmark the instruction that defingsthis
cannot cause other instructions that have been marked tanukdates for unmarking. In particular, consider both an
instruction before the one we unmarkégd,and an instruction after the one we unmarked,|f |, uses or defines,
it is of no consequence. The properties about the registeichwropagated down to tHg still hold, and anything
that is marked should remain marked. The reasoning is gifoitd,. Supposén, usesrj, and we had markel, as
eliminatable because all the source operands were knowe falth remains thalty, is still eliminatable, despite the
unmarking of the instruction defining. This is because the fact remains that we still know the vafuginside the
block even though it is unmarked. As a result, any usesadn be replaced during constant propagation by the actual
value of the register. Given that we do not need backwardggation, the complete algorithm is only one phase and
is fairly simple to implement. After a round of propagatiamguces no changes, a new set of operands are marked,
and a number of instructions are marked as evaluatable. €ightg of the eliminatable instructions can be summed
to get an estimate on how beneficial knowing the value of omeare locations may be.

PLTO implements a slight variation on this scheme in whictstadcheduling algorithm is employed in place of
iterative propagation. Specifically, a block is not evaddlatinless all its predecessors have been evaluated. Weoplan t
integrate the fixpoint approach in the near future. The nesequirements of these algorithms are fairly minimal. No
use-def chains need to be constructed, which saves a gaatfdeitial overhead time and memory usage. However,
each query may take longer to execute since traversing efseheins can proceed faster than our algorithm. We find
that in practice the overall time requirements are redugeasing an on-demand approach, and we require no extra
storage that has not already been allocated for optimizsitike constant propagation and dead code elimination.

4.5 Instruction-Cache Analysis

Many transformations carried out by compilers and linketioptimizations have effects on the size of the resulting
code. For instance, function inlining creates a duplicatgycof a procedure and merges it in place of a function
call. The code size grows if, after inlining, the functioill $tas other call sites and thus cannot be removed. Profile-
guided value specialization is another optimization thert grow the size the program. Both inlining and value
specialization, as implemented in PLTO and other optinsifike al t o, perform cost-benefit analyses to determine
where these optimizations should be carried out. For icstahe value-specialization analysis attempts to determi
which program points are good candidates for specializati®d “good” candidate may be one where the expected
payoff, in terms of the number of cycles saved, is positiveatTis, if we look at the cost associated with inserting the
test for the specialized value (typically a compare and adiranstruction), we find that it is less than the number of
cycles that we expect to save in the specialized piece of.callleough this may provide us with a general feel for
which locations are good, it is not a completely accurate eho®ne would like to account for the side effects that
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code growth may have on the execution behavior of the program

Code growth can have particularly devastating effects erbtthavior of a program with regards to the instruction
cache. The gap between memory access speeds and CPU sgeggisesnough that additional misses in the i-cache
(which ultimately result in memory accesses to read the@pate block) can offset any gains that one expects from
having specialized code. As the memory/processor gap wjdleis problem becomes even more important to address.
Ideally, we would like an oracle to tell us the exact numbesxdfa i-cache misses the program will incur as a result of
the transformation. One could then estimate the penalthidoing to read from memory, and compute the number of
extra cycles the i-cache misses are responsible for. Thislfyecould then be used in conjunction with the cost-benefit
analysis; specifically, it could be added to the cost aststiaith performing the transformation. Thus, any decision
about inlining or specialization becomes cache-conscious

B1

1000 bytes

5000 5000
B2 B3
1000 bytes 1000 bytes

5000 5000

500 bytes

Figure 7: A simple 4-block loop with block sizes in bytes

Unfortunately, we do not have perfect knowledge about tlog@am. Edge profiling gives no indication of the
temporal relationship between the issuing of instructiolRsr example, Figure 7 shows a loop that will have an i-
cache footprint of 2500 bytes if the false edge of B1 is takedbtimes and then the true edge is taken 5000 times.
The code for B2 need not be stored in the i-cache when B1, BBBdrare executing in the loop. Similarly, the code
for B3 need not stored in the i-cache when B1, B2, and B4 arewtxgy. The same loop would have a footprint of
3500 bytes if the branch instruction at the end of B1 alterdh&ach time. B1, B2, B3, and B4 would all need to be
resident in the cache at the same time. The edge weights deehmots in determining which of the two situations we
might be dealing with.

4.5.1 A Non-conservative model

McFarling, in a paper on instruction cache considerationsrwmerging procedures, proposes a novel technique for
computing the sizes of loops in a program [18]. A probaldistoproach is used to compute an expected cache-
footprint for each loop in the program. Inlining decisioms ¢hen made using a heuristic-based cost-benefit analysis.
The problem of choosing the order in which to inline funcias shown to be equivalent to the knapsack-problem,
and thus is NP-hard. The gist of the approach is to computsgaéncy for each instruction; this frequency represents
the number of times one expects it to be executed during enatiibn of the loop. The frequency is capped at 1.0,
since an instruction executing twice or three times durif@pa only finds its way into the cache one time. However,
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for an instruction with a frequency of .1, we can roughly dagkes up only 10% of its total size in the cache. In the
example illustrated in Figure 7, the probabilistic modekkgowell when one path is followed many times, then the
other path is followed. It performs poorly when the pathsralate, and both are resident inside the cache, because
the expected loop size is half of the real size. This propafrtyicFarling’s algorithm leads to estimates that are not
conservative; in particular, they can lead to inlining deanis that result in poor i-cache behavior.

The interprocedural considerations of the algorithm makegroblem more interesting. For a given instruction
not in the same functioR as the header of the loop, the frequency o&n be computed in several ways. The most
intuitive method is to compute the frequencyldh the normal manner (dividés execution count by the count of
the loop header) and multiply by a scaling factos is computed by examining the percentage of total calls tioat
come from the loop. For example, if the function containirigas 10000 call sites, 1000 of which come from within
the loop, then the scaling factor is .1. The nature of therélyn leads to a simple two-pass recursive implementation.
In the first pass, frequencies are assigned to each basic bloc

proc Assi gnFrequency(Basi cBl ock, Scal i ngFactor)

{

Basi cBl ock. frequency = max(1l, (B.weight / LoopHeader.weight) * scalingFactor);

foreach i ntraprocedural, non-visited successor, s, do
AssignFrequency s, scal i ngFactor);
end

foreach i nt erprocedural, non-visited successor, s, do
AssignFrequency's, scal i ngFactor * (B.weight / s.weight));
end

}

Minor bookkeeping is involved to prevent blocks from beirigited more than once. Once frequencies are as-
signed, a second phase—similar to the first, and not shover-hesmputes the i-cache footprint of a loop by summing
the products of each block’s frequency and size. The inbegatural aspect of the algorithm is not well-described in
McFarling’s work, but this algorithm is a logical extensioA more clever scheme—which would require context-
sensitive profiling or path profiling—would not use the prbitistic assumptions. For example, when a procedure
call to a function is encountered, one could try to discolrerrieal execution paths taken inside that function given
the context of the call site. Currently, our algorithm desdhat if the call site accounts for 10% of all calls to the
function, then the function’s total i-cache footprint skbbe scaled by .1. In practice this is not likely to be the case
functions tend to have many paths through them that are dtearmined by the calling context. This same problem
arises when trying to re-assign edge weights inside funstibat have been cloned for inlining.

4.5.2 A Conservative Model

The model described in Section 4.5.1 works best when therpatf control-flow inside the loop is somewhat regular.
In Figure 7 the loop size is accurately estimated when cofitnes along one path for a large number of iterations,
then along the other path. The footprint is underestimateenacontrol alternates among the two paths frequently.
PLTO implements, in addition to the model proposed by MdRgrla more conservative algorithm for computing
loop sizes. The basis of the approach stems from the ob&mT¥hat in situations like in Figure 7, it may be the case
that both B2 and B3 are competing for space in the instruatamie. This happens when control switches from the
path B1— B2 — B4 to B1— B3 — B4 and back, and some of the code in either B2 or B3 is evicthd.cbnservative
algorithm in PLTO is a trivial extension to the algorithm debed above—all blocks with a weight greater than some
threshold,w, receive a frequency of 1. Simply put, we assume they areyal\wampeting for space in the cache.
Experiments involving the thresholdsuggest that its value does not matter much, but should meebat.001% and
.1% of the weight of the loop header. The threshold is useddde blocks with very small execution counts, which
are probably not resident inside the cache for any meanidgfation.
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4.5.3 Comparison

We have compared both models discussed in Sections 4.54.5u2dacross the integer subset of the SPEC95 bench-
mark suite. Appendix A contains graphs for each benchmhbdséd show the speedup obtained as a function of how
much inlining was carried out with each model. The x-axibelad “Degree of Inlining”, corresponds to how prof-
itable a call site needed to be in order for inlining to be iearout. As the number rises, the amount of inlining
decreases. Each graph contains three lines: the blue ponds to PLTO running with the inlining optimization
turned off; it is independent of the “Degree of Inlining”, dte lines are horizontal. The green line corresponds to
the model discussed in Section 4.5.1, and the red line isdheervative model from Section 4.5.2. In most cases
the two algorithms achieve similar results, and the curvevery close. We have concluded that either model can be
used to make smart inlining decisions, and usually one cpaaxesults better than those obtained when not carrying
out inlining at all. Section 8 discusses future plans fohpgatfiling and context-sensitive profiling, which would
hopefully enable us to develop a more accurate model.

5 Optimizations

PLTO carries out numerous optimizations that make use oattadyses described in Section 4. Figure 8 is a high
level flowchart of the optimization process. Unreachabldecelimination is performed first, so that subsequent
optimizations do not waste time improving code that canmoekecuted. Constant propagation is then performed,
followed by function inlining. If value profiling is being caed out it is done after inlinintp; if value profiles are
available, then value specialization is performed. Botheapecialization and inlining create many opportunifies
constant propagation that were missed during the initiasphtherefore an iterative phase of propagation, dead code
elimination, and unreachable code elimination is carrietd €onstant propagation generates dead code, which can
create situations where some branches of execution araiaptl away, which in turn affects the precision of constant
propagation as there are fewer paths of execution leadindplocks. For this reason the optimizations are carried out
a few times until one round of them produces no changes. Iiimaprofile-guided code layout algorithm is used and
the instructions are run through a scheduler. As depicté&dgare 8, peephole optimizations are invoked from many
places in the optimizer.

The remainder of this section describes how the optiminatiare carried out, and the effects that they have
on performance. This section is organized as follows: 8edil describes constant propagation as carried out in
PLTO. Function inlining in PLTO is explained in Section 5&&ction 5.3 explains a special form of specialization—
intended for indirect jumps through tables of addressestisiused in PLTO. Section 5.4 describes code layout, and
Section 5.5 contains a few remarks about unreachable codiaation. Section 5.6 gives a glimpse into the peephole
optimizations that are carried out.

5.1 Constant Propagation

Interprocedural constant propagation is perhaps the bettating factor for doing optimization at link-time. Many
opportunities exist—in both application and library codm-ferward constant arguments across procedure and module
boundaries. In thal t o system it was shown that interprocedural constant proagatas an important source
for performance improvements; on average the benchmarkes W6 faster as a result of using this optimization
[21]. PLTO performs constant propagation on the generghqgme registers and the runtime stack across the entire
program. Propagation of PSW bits is also performed so thadidonal jumps may be eliminated when the results
of previous comparisons are known. In thlet o system, constant propagation was performed by actualigutixg

the instructions on the processor and observing the changhs execution environment. PLTO adopts a different
approach, and emulates the semantics of the machine cddectiens in software much like a virtual machine would
do. The IA-32 instruction set consists of over 300 instiuasi, but we have found that relatively few of these are
used in practice, and it is sufficient to have the constanpggator know the semantics of about 40 frequently used
instructionst’ The few instructions that are not recognized by PLTO areéceaonservatively. Our experiments
show that being able to evaluate instructions that are nmo¢otly supported is probably not worth the implementation
effort. Table 6 shows the effect of constant propagationlin®.

18We are investigating carrying out value profiling/specition at other points.
17static and dynamic distributions were gathered to discawsch instructions were “important” enough to warrant wgtevaluation functions.
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Figure 8: Flowchart for Major Optimizations in PLTO

5.1.1 Register Propagation

Load/store forwarding is an optimization that attemptsnd finultiple loads from the same location and replace them
by register-to-register moves. The idea is to find two ingtams,| andJ, that load into registers from some memory
location. One then attempts to prove that the memory logatias unchanged between the executioharidJ, and

that the register loaded bystill contains the value when control reacldeEor memory disambiguation rules, indirect
memory references are assumed to overlap all other memgignes and absolute memory references are assumed
to overlap everything but the stack. The act of “propagdtihg registers in place of memory locations is analogous
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Program Execution Times Percent Speedup
plto w/o propagation| plto
compress 144.93 126.12 12.97
gcc 92.91 85.94 7.50
go 149.28 145.36 2.62
ijpeg 158.26 143.46 9.35
li 113.33 110.85 2.18
m88ksim 106.25 104.92 1.25
perl 83.01 80.14 3.45
vortex 171.33 149.64 12.65
| Arithmetic Mean: | 6.49 |

Table 6: Speedup: Constant Propagation

to propagating constants in place of registers or memomtioes during constant propagation; so close, in fact, that
PLTO carries out load/store forwarding concurrently witimstant propagation. The idea is to keep track—inside the
snapshots, using flags—of which stack locations and regiate aliasing each other at each program point. In effect,
we propagate registers (hence the name “register propagptiround the CFG using the standard meet/join rules for
constant propagation. The propagation automatically lesrall the intricate details that load/store forwarding ta
worry about, which are described in several papers [26, 21].

5.1.2 Analysis of Precision

An interesting question to ask is how much do indirect stoi@®age the effectiveness of our analyses? To answer
the question, we have run experiments in which indirecestare not treated as potentially overlapping any memory
region. Table 12 in Appendix C shows the number of additicoaktants and registers that are propagated throughout
the program under these assumptions. Other analyses a@mizaions experience similar improvements. Dead code
elimination, for instance, benefits a great deal when ligsramalysis is more precise.

5.1.3 Representation Issues

The runtime stack introduces many extra challenges fonopéitions. Conceptually, one can envision the stack as
a very large register set, with 4-byte stack slots takingplaee of general purpose registers. In PLTO, each basic
block contains a “snapshot” of what the execution environinfier the program looks like before control enters the
block. In particular, it contains storage for the eight gaheurpose registers, the PSW and the stack among other
things. When constant propagation is carried out for a hltteksnapshots are cloned, the instructions in the block are
evaluated, and the cloned snapshot is updated to reflechéimges in the state of the program. The cloned snapshots
are then propagated to the successors of the block and lkeséoged when they are no longer needed. Thus, a
block first constructs its snapshot by merging the snapdhaits all its predecessors using the standard meet/join
rules for constant propagation. In PLTO, snapshots of thisters are simply an 8-slot array of 32-bit integers. For
implementation ease, and to make the environment homogetimustack is also modeled using an array with a large
upper bound. We chose the upper bound to be 10000 bytes, athiers for 99% of all stack frames in the integer
subset of SPEC95 to be modeled. A simple analysis is cartiemth@ach function to determine the maximum size of
the stack at any program point within the function. Eachdbkick is then allocated an array large enough so that it
can represent its own stack frame plus the stack frame oatigest predecessor in the call graph. It is important that
a caller’s stack frame be modeled inside the callee so thagrocedural constant propagation can take place. Given
this representation, the instruction evaluator can trieatkdocations analogously to registers when storing datafl
values in them. One down side is that stack references tltateexthe upper bound cannot be evaluated. Large
stack frames may be formed when a hot path of functions isedliconsecutively into one giant function, or when a
procedure has large local arrays that result in a big stackdrallocation. Fortunately, we find that this limitation is
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Program Execution Times Percent Speedup
PLTO w/oinlining | PLTO
compress 124.38 126.12 -1.39
gcc 86.39 85.94 0.52
go 144.34 145.36 -.70
ijpeg 143.38 143.46 -.06
li 112.78 110.85 1.71
m88ksim 109.21 104.92 3.92
perl 81.23 80.14 1.34
vortex 147.78 149.64 -1.26
| Arithmetic Mean: | 0.51 |

Table 7: Speedup: Function Inlining

not that restrictive in practice, and relatively few oppmities for propagation are missé&tl.

A superior—albeit harder to implement—representationldidne to condense the array representation into a list
with intervals. For instance, an array of 8 valuest [ L, c1, ¢z, L, L, 1, L ] could be condensed into a list with
4 elements{ ([0-1] : 1), ([2] : c1), ([3]: c2), ([4-7]: L)}. When procedures have large local arrays, and hence
large stacks frames, the interval approach would be moraggcefficient. Indirect stores into arrays can rarely be
disambiguated, so slots in the stack frame that are allddatean array often (if not always, in PLTO ) contain
The compact interval representation is superior in thdkatwes for unbounded stack frames at a fraction of the storage
cost that arrays use. The down side is that implementatiticky. Merging and updating lists is not a trivial matter.
Eventually we would like to convert to a list-based scheme.

5.2 Function Inlining

Function inlining is an optimization in which a procedurdl careplaced by an actual instance of the function. The
goal is to eliminate the overhead associated with issuifigind return instructions and setting up a new stack frame,
and to enable opportunities for constant propagation byaied the number of calling contexts to one for the inlined
procedure. However, not all the effects of inlining are goddhe transformation is usually accompanied by code
growth, and consequently can cause an increase in i-cagsesnd page faults. A delicate balance between the two
must be achieved in order to reap the full benefits of inlinimaal t o, procedure merging was responsible for only a
small improvement in overall program performance. We hackdimilar experiences in PLTO, but have seen many
situations where inlining has been terribly detrimentabésformance (e.g., 10-15% slowdowns). The sophisticated
i-cache model described in Section 4.5, the analysis to atengptimization potential described in Section 4.4, and a
large number of heuristics help to guide the optimizatiothtamake smart inlining decisions. Appendix A shows how
various degrees of inlining can affect program performaiibe blue line corresponds to PLTO optimizing programs
without inlining turned on, and the other two lines corraspto two different i-cache models that were used to guide
inlining decisions. In most cases there is a significaned#ice—larger than that seen in a comparable system like
al t o —between the peaks for inlining and the non-inlining cufikis suggests there are potentially more payoffs if
one can make intelligent inlining choices. Table 7 showspdormance gains (and degradations) seen in PLTO as
a result of using inlining compared to not using it. For refere, Table 13 in Appendix D contains more information
about how much inlining was carried out.

The transformation of inlining functions is implementedr@duce much more efficient code. First the procedure
is cloned and theal | andr et instructions are eliminated from the caller and callee eetipely. Instructions to
set up the stack frame inside the body of the callee are alsinelted, and all references to the stack frame inside
the function are written in terms of the caller’s stack franfhe stack analysis provides the necessary pieces of
information to make this work. If the height of the stack a tall site ish;, thenh; can be added to all the stack frame
references inside the callee. When the frame pointer is disectly (e.g.mov %eax <« %bp), PLTO inserts an
instruction before it that restores the original value, andnstruction after the use that reverses the restoraién.

18Experiments show that the static number of stores and |dedsise large offsets into the stack is small.
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find that this happens very infrequently in practice, soirfkely to have any significant impact on performance. All
procedure calls are initially candidates to be inlinedsththat actually get picked fall into one of three categories

1. [Functions with one call site.Inlining a function that is statically called from only om¢ace in the program
can never result in code growth since the original functian be removed from the program. In addition, no
extra i-cache misses can be incurred since the proceduraatahared by multiple functions or loops. Thus,
procedures that only have one call site in the program anaatically inlined regardless of how profitable or
unprofitable they may be.

2. ["Small” functions] A small function, as defined in PLTO, is one with five or lesstinctions. Since inlining
can usually eliminate three or four instructions, therer@bpbly not any code growth associated with merging
the procedure. Small functions are also automatically@di regardless of their execution frequency.

3. [Profitable function$.A profitable candidate for inlining is a procedure where ¢ixpected payoff, in terms of
the number of machine cycles saved, is greater than somalefieed threshold. The expected benefit is the
sum of two numbers: (1) the direct savings from eliminatimgdal | , r et , and the setup for the stack frame,
which is computed by scaling the weight of the basic blocktaiming thecal | by 3.0 — 5.0; (2) the indirect
savings from enabling other optimization opportunities dascribed in Section 4.4. We have experimented
with different thresholds, and have found that requiriflgning to be able to eliminate the equivalent of 10-15
hotinstructions is a good heuristic. We defin@at instructions to be ones that account for the top 80% of all
instructions executet?. The termhot instructionreally refers to the weight of the instruction with the srasl
count that is still consideredot If this weight isw;, and 10hot instructions are needed to be eliminatable
for inlining to occur, the total expected savings must edeeel0x w;. Appendix A presents graphs for
various inlining models in which the threshold for the “nuenlof eliminatable instructions needed in order to
inline” was varied. Although some benchmarks benefit fromessive inlining (e.g., when the numberhait
instructions is very low), the best overall performanceursdetween 10 and 15.

5.3 Jump Table Specialization

Indirect jumps through tables of address, such as those@fiom swi t ch statements in C, are expensive at the
machine code level. They are typically created by compitensiplement multiway branches and to avoid performing
an excessive number of runtime tests. Unfortunately thigdfilily comes at a cost. Branch prediction for such jumps
is difficult due to the large set of possible control flow sigsms, and mispredicted branches cause the instruction
pipeline to be flushed and hence result in long stalls. Juillp &pecialization is an optimization in which a test for
the most common index into the jump table is inserted. A daorthl jump to the target associated with the index is
also added. The idea is that most of the time the high overassatiated with indirect jumps through tables can be
avoided at the smaller expense of a test and conditional .juBygh a test can be inserted before the bounds check
and index scaling for the jump table is done; since the bowhdsk alone requires a test and a conditional jump,
the extra test inserted by the optimization is—in a senseee*fwhen the common case is encountered. The down
side is that all the non-common cases incur the extra costeofest and conditional branch. The potential benefit
for having the cheaper test is large when the common caseemuted very frequently, such as 80%—-90% of the
time. Our experiences with this optimization on the IA-32é&@een somewhat disappointing, however. We find that
there are relatively few jump tables in the integer subs¢h®SPEC95 benchmarks in which the common case has a
high frequency and thus is worth specializ#ffgln those which PLTO does specialize, there has been no ablee
performance improvement. We are currently investigatirigese jumps are executed enough to make a difference,
and trying to estimate what payoff we should expect to see.

5.4 Profile-Guided Code Layout

Pettis and Hansen describe an algorithm for the placemebast blocks within an executable with the goal of

reducing (1) the number of taken branches, (2) the numberiggan in the instruction cache through code locality,
and (3) the number of page faults, also through locality [Z2fe algorithm has been used in a number of optimization
systems [21, 29] and is also implemented in PLTO. @heo system found that a slight modification to the algorithm

produced better results. The idea is to partition the setasichblocks into three disjoint subsetshet set, acold

19The 80% threshold is user-defined, but our experimentsaielit is a reasonable number to use.
20There are, on average, 3—4 per benchmark.
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Program Execution Times Percent Speedup
Base | PLTO w/only layout
compress 130.18 125.55 3.55
gcc 96.97 93.12 3.97
go 146.29 147.90 -1.10
iipeg 144.73 158.77 -9.70
li 113.88 118.01 -3.62
m88ksim 128.76 116.51 9.51
perl 87.08 82.75 4,97
vortex 155.40 164.99 -6.17
| Arithmetic Mean: | 0.22 |

Table 8: Speedup: Code Layout

set, and theeroset. Thehotset is for all blocks with an execution count greater thanesaiser-defined threshold.
Generally, a threshold that allows for 50-95% of the blocKsd consideredotis desirable. Theeroset is reserved for
blocks which were not executed at all during the programéation with the training input. The other blocks which
are neithehot nor zeroend up in thecold set. The Pettis-Hansen algorithm is then applied to eacimdigidually,
disallowing control flow edges in which the source block isindhe same set as the destination block. fibeset is
then laid out first, followed by theold set, and finally theeroset at the end of thgextsection. The motivation for
doing this comes from not wantirmeroor cold blocks to be in the same region as the frequently executeedcod

In PLTO we have experimented with several algorithms, idiclg the two described above. The best performance
improvements come from the straightfoward Pettis-Hanserdy algorithm applied at the function level. Interpro-
cedural edges are not considered, as they often cause tirétaigto create inefficient code fragments. For instance,
a procedureal | can be laid out directly before the function it calls, but te | cannot be eliminated due to its
side effects. In addition, theeturn-blockwhich previously followed the block containing tleeal | can no longer
be laid out directly after it. We have found that allowingergrocedural edges results in a high degree of procedure
intermixing, which is somewhat undesirable from a perfanocestandpoint. Table 8 shows the improvements that
code layout has on speed. An interesting note is that theramugyexperience a staggering increase in the number
of branch target buffer (BTB) misses. We have investigatedmatter and have found that branches only find their
way into the BTB after being taken for the first time. Since Bdtis-Hansen algorithm aims to reduce the number of
taken branches, it often takes longer for them to appeariB¥B and there is an increase in misses. In the “worst”
case, a branch is laid out so that it is never taken, and thues appears in the BTB—causing a miss every time it is
executed! We suspect that for this reason, the payoff fromgdcode layout is not as large on the IA-32 as what is
seen in systems likal t o . The fallout of missing in the BTB is having to make a statiediction, which is generally
less accurate and based on simple heuristics. It is not fiiearthe IA-32 documentation that is available exactly
how expensive the BTB misses are, especially when the briarsthtically predicted correctly. Nevertheless, when
static prediction fails and there is a mispredicted bratiodre is a large cost associated with flushing the instraoctio
pipeline. As a side experiment, we tested a variant of Pelissen that chooses the lowest edge weights first; these
programs experienced a large decrease in the number of B$8esjibut overall they ran slower. In the future we
would like to revisit the problem and perhaps develop a betikition that incorporates these effects in a cost-benefit
model.

5.5 Unreachable Code Elimination

Unreachable code elimination has a number of desirabletsffi (1) improves the precision of dataflow analyses by
reducing the number of execution paths leading into basicksl, (2) creates a smaller executables, which can lead to
better paging performance, and (3) reduces the time PLT@dspen performing analyses and optimizations, as there
is less code to worry about. Unreachable code eliminatiatréghtforward, and carried out in a similar manner as
donein theal t o system [21]. We notice that in most benchmarks about 10%=otdlule is unreachable. However, in

a few—such as vortex and li—the improvements are about tthige This is consistent with the work doneaht o,

but it is more than what was estimated in work done by Srivasia7].
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Program Execution Times Percent Speedup
PLTO w/o Peephole | PLTO
compress 119.42 126.12 -5.21
gcc 86.34 85.94 0.47
go 146.06 145.36 0.48
iipeg 143.24 143.46 -0.15
li 110.76 110.85 -0.08
m88ksim 109.51 104.92 4.37
perl 80.95 80.14 1.01
vortex 151.70 149.64 1.36
| Arithmetic Mean: | 0.28 |

Table 9: Speedup: Peephole Optimizations

5.6 Peephole Optimizations

A number of peephole optimizations are performed to exgloihe opportunities created by PLTO'’s optimizations.
Table 9 shows the performance improvements seen from ogrotit peephole optimizations. The transformations
that achieve the best results are:

1. Branch Trampolininglf a conditional or unconditional jump leads directly to &mer unconditional jump, e.g.,
ji = ik = jm, the middle jump can be eliminated by simply re-routing gmgét of the first jump to be the third:
Ji = jm

2. Coalescing Math Operation®L TO assumes that the compiler did its job with regards tgBfging math
expressions as much as possible, but some optimizatiohsasualining introduce code sequences where con-
secutive instructions add or subtract from the same regita example, two consecutiaald’s to the stack
frame often occur after inlining, since the inlined functiwas instructions to deallocate the stack frame, and the
caller also deallocates the arguments right after. PLT€3 o coalesce adjacesmdid or sub instructions that
store to the same register, e.g., &dd %eax <+ 10 and (2)add %ax <« 16 combine to form (1pdd
Y%eax <« 26.

3. Effectless Instruction ElisiorSome instructions are not technically “dead” as defined liyeaéss analysis, but
they have no effect on the program’s execution. An exampieage from a register back to itseliov %gax
+— Y% ax. Regardless of whether %eax is subsequently used, thadtistr can be eliminated.

4. Conditional Move (CMOV)The IA-32 contains a conditional move instructi@movcc r; « |, which con-
ditionally moves (based on the condition carewhich may be something likg, #, etc.) either a register or
a stack location to another register. If the condition i®frlne move is executed. If not, the instruction has no
effect. PLTO looks for situation where the effect of a brareto jump over a move instruction, and converts
three instructions—the comparison, the branch, and theema® one conditional move. This is an architecture
specific optimization that gcc did not carry out. It is quiteeetive on them88ksimbenchmark from SPEC95.

6 Experimental Results

6.1 SPECint-95 and SPECint-2000

The total speedup PLTO is able to achieve on the integer 81068PEC95 and SPEC2000 can be seen in Table 10.
On average, we observe a speedup of 6.11% on the SPECint®8&rdi2.89% on the SPECint2000 suite. The tests
were run on an otherwise unloaded Pentium Il 550 megah&t2 ®achine that was running Redhat Linux 7.2. Each
benchmark was run five times; the highest and the lowest rens discarded, and the remaining times were averaged
to produce the numbers seen in the tables. We also useadtihitool to monitor the low level execution behavior of
the program. Worthy of note is a reduction in the number ohi&mory operations by about 5%, (2) taken branches
by about 74%, (3) mispredicted branches by around 12%, gridqg#tuction fetches by about 5.5%.
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Program Execution Times Percent Speedup
Base Optimized

compress 130.18 126.12 3.11
gcc 96.97 85.94 11.37
go 146.29 145.36 0.64
ijpeg 144.73 143.46 0.88
li 113.88 110.85 2.66
m88ksim 128.76 104.92 18.51
perl 87.08 80.14 7.97
vortex 155.40 149.64 3.71

| Arithmetic Mean: | 6.11 |

(a) SPECint-95
Program Execution Times Percent Speedup
Base | Optimized

bzip2 1033.97 1061.25 -2.64
crafty 520.78 471.46 9.46
eon 1050.49 961.29 8.49
gcc 574.47 529.88 7.76
gzip 827.19 820.44 0.82
mcf 1820.75 1833.73 -0.71
parser 1271.90 1261.93 0.78
twolf 1897.29 1920.32 -1.21
vortex 915.94 864.08 5.66
vpr 959.80 954.84 0.52

| Arithmetic Mean: | 2.89 |

(b) SPECint-2000

Table 10: Total Speedup: SPECint95 and SPECint2000

The integer benchmarks contain many branches, and oftey pnaaedure calls as well. There are very few float-
ing point instructions. The applications are represergaif many non-scientific “real-world” applicationsompress
is an in-memory file compression progragecis the GNU C compiler (it emits SPARC assembly,is a program for
playing the game of “go”ijpegis an in-memory image compression/decompression prodrasna lisp interpreter,
m88ksimis a simulator for the Motorola 88100 procesguerl is a perl interpreter, andortexis an object oriented
database. The programs range in static executable sizddssithan 100,000 instructions (compress) to over 300,000
instructions (gcc). The mean basic block size is aroundtfuosons for these programs.

6.2 Floating Point Benchmarks

We have tested PLTO on the floating point subset of the SPE@8bas well, but there is no speedup that is worthy
of note. In particular, the difference between executiores for the original program and our optimized program was
no more than 1% in the best case. These benchmarks have eltlange sequences of floating point instructions,
and it is not uncommon for basic blocks to contain thousafdsstructions. In one benchmark, a single basic block
has over 10,000 floating point instructions! Since PLTO duatshave any optimizations that are specific to floating
point calculations, it is ineffective at improving the pamhance for these applications. In the future we would like t
look at scheduling of floating point instructions to hideslaties and reduce the number of stalls in the floating point
unit (FPU).
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7 Related Work

Link-time optimization, binary rewriting, binary instrientation, and whole-program optimization have been egplor

by a number of people. PLTO is tied closelydbt o, a link-time optimizer for the Compaq Alpha that was very
successful in demonstrating the room for improvement inginlity of compiler-generated code [21]. On average,
al t o was able to achieve an 18% performance improvement oveREE®BIt95 benchmarks, with some benchmarks
experiencing a speedup of over 50%. Like PLTaDt o was fairly ineffective at improving the performance for
the floating point subset of SPEC95—for the same reasonsisdied in Section 6. OM [28] and Spike [9], two
earlier optimization systems also targeting the Compadp&dlpvere able to achieve moderate speedup on the same
benchmarks.

Etch is a system that focuses on instrumentation of I1A-3Zetables for gathering data about the program [24].
For instance, during execution of a program it can gathea dhbut the behavior of that program in the instruction
cache. It performs a profile-guided code layout transfoionas its only optimization. Itis not clear from this work if
the optimization results in any performance improvemedtber such systems include NT-Atom and HiProf, which
are aimed at instrumentation and analysis of IA-32 exedesads well.

Also related to PLTO is UQBT (the University of Queenslanah@ly Translator), which is able to statically
translate executables across different architecturdgardets, among other things, the IA-32, and has faced some of
the same challenges that we describe in this work. The opdiioins it performs are less aggressive than those carried
outhy PLTO, and it requires that machine code adhere toinédiams. UQBT is unable to optimize or translate non-
conforming routines that have been written in assembly byogrammer. It is also not clear how much performance
improvement the system is able to achieve on standard bearkrsuites. UQDBT is a related system that shifts the
focus from static to dynamic translation. Again, many ofigsies we deal with in PLTO have also been considered
by this work.

There also has been much related work in function inlinind procedure cloning—an optimization we would
like to explore in the future as an alternative to functioliming. Cooperet al discuss how procedure cloning can be
used effectively [10]. As mentioned in Section 4.5, McHaglproposes a scheme for modeling the instruction cache
behavior of a program in order to make intelligent inliningcdsions [18]. Davidson and Holler address the issue of
inlining creating bloated code which can be detrimental ttemand-paging system [11]. This work also discussed
how inlining can cause degradations in performance, as we Hdiscussed in Section 4.5. Ayeztal suggest an
approach for aggressive inlining of functions; in some lenarks over 1000 procedures are inlined [2]!

8 Future Work and Open Problems

8.1 Uses for Free Registers

Context-sensitive register liveness analysis finds betvte® and 2.0 free general purpose registers per basic Block.
An obvious use of these registers is for the passing of fanarguments. Arguments are usually pushed onto the
stack by convention, but at link-time convention can bewrout the window. If free registers are available before
a procedure call is issued, there is no reason why the argsmannot be put in registers instead of being pushed
onto the stack. The loading of arguments into registers i&lttransformation; more difficult is trying to ensure
that subsequent loads inside the body of the callee arecexplay register-to-register moves. Indirect loads, whieh a
assumed to come from any memory region including the staekamobstacle much like they are in a stack liveness
analysis. Realistically we do not expect a compiler to poedimdirect loads for function arguments that come from
anywhere except the frame pointer. A clever programmerghew could easily alias the frame pointer with another
register and load from that. For this reason, one must ertsatall indirect loads from general purpose registers do
not come from the stack before this optimization is carriatl Ve expect that this optimization would work best
accompanied with the memory disambiguation analysis destin Section 8.2.

8.2 Memory Disambiguation: Insight into Indirect Loads and Stores

As discussed several times, indirect loads and stores makg amalyses and optimizations less precise than we would
like them to be. One solution we have considered is a memgigmenalysis, in which we try to prove that registers
point into the stack, heap, or statically allocated datappBad with this information, optimizations like constant

21The stack and frame pointer are excluded from the definitfdiyeneral purpose” here. We consider only %eax, %ebx, %#®dx, %esi,
and %edi.
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propagation would only have to set the entire stack twhen indirect stores through registers that are known totpoi
somewhere into the stack are found. If the register con@inaddress that resides in the heap or some other data
region, we would correctly assume that it does not overldp thie stack. We envision a dataflow analysis in which
information about regions is propagated across the ICFautiir our stack and register snapshots. A logical extension
to the current snapshots would be a means by which to modélehp. The best—and most precise—solution for
discovering when registers are loaded with heap addressgld We to special case the return value fromrthé | oc
family of routines, or to require the user to specify whichdtions return pointers into the heap. We suspect that the
majority of indirect loads and stores come from, and go thegithe heap or global arrays residing in data sections of
the executable. The memory disambiguation analysis wamlitl the extent of “damage” they do, and produce more
precise optimizations. Related work has been done by Dedtralywho have describedraod-kalias analysis used in
theal t o system [12]. The analysis is effective at narrowing the samidoads and stores to smaller sets of targets.

8.3 Profiling

Currently PLTO carries out edge profiling, from which badicdk weights are easily extracted. Some optimizations
that carry out transformations on the ICFG often need toeaght edges and blocks to reflect the changes they make.
For instance, in inlining when a procedure is cloned and téubsd in place of a function call, weights must be
assigned to the cloned procedure. With only edge weighttall@, the logical approach is to retain the same edge
and blocks weights that were present in the original fumcteind scale them by a factsy, wheres; corresponds

to the percentage of total calls contributed to the callethbycalling procedure. Value specialization faces a simila
problem when regions of code are duplicated. The re-weightrocess is entirely probabilistic, however, and has
no real justification other than that it is the best we can demionly edge weights. One can imagine a situation in
which a function is called from two places an equal numbeinoés, and has a conditional branch taken 100% of the
time when called from one place and never taken when calted &nother. When inlined into either of the two call
sites, the edge weights coming out of the basic block thatadasmthe branch will be equal—which is incorrect. One
possible solution would be to gather path profiles in addita(or in place of) edge profiles [4, 5]. A path profile may
enable one to re-weight the edges in a more intelligent maasg¢hey often carry information about calling contexts.
A second approach would be to use context-sensitive prgfimwhich edge profiles for each function are gathered
for each calling context it has. For example, a function vithcall sites would have 10 sets of edge profiles (one for
each caller). The problem with context-sensitive profiliethat things quickly grow to be large even when profiling
only 1 context; multiple contexts would probably be infééesi In the future we would like to explore some of these
options to find a better solution than what currently exists.

Profiling of parallel and distributed-memory applicatiaasanother area of future work. Currently, PLTO will
instrument an executable which can then be run on conclyr@mmultiple processors to generate a set of execution
profiles. There is no means by which these profiles can all bé as input, however. One approach would be to sum
the edge weights in each profile to generate one large prbéitantay be representative of each program. Interesting
issues in load-balancing arise from this solution, whiod laeyond the scope of this paper. An alternative would
be to invoke PLTOn different times if there are edge profiles available. This would result in an executablad
generated for each processor. PLTO was designed to be usetirtize distributed-memory scientific applications,
and we intend to pursue the challenging issues that thedieapms bring to the table.

8.4 Disassembly Revisited

As discussed in Section 3.3.5, the hybrid disassembly igorimplemented in PLTO fails when either the linear
sweep or the recursive traversal disagree about the reddlie could imagine extending our approach to try and
determine which algorithm was correct. For instance, ifftirection contains no indirect jumps and the algorithms
produce different results, we can probably determine tmatécursive traversal was correct. The only situations in
which it fails are in those functions containing indireatjps; Section 3.3.3 provides the details.

One could also imagine extending our algorithm to incorpoaalditional verification stages. Since it is not always
possible to determine when a function has been incorreithsdembled, additional heuristic-based algorithmsdacoul
be implemented as extra verification steps. The idea wourthire the same: if any of the algorithms suspects a
problem, the function is problematic.

Section 3.3.5 mentions an interesting problem; that of tipdadhe offsets in PC-relative functions that have not
been disassembled. We raise the point that the length of theuctions may change as a result of updating the
offsets, and if this happens then other PC-relative jumpbkerfunction may no longer be correct. A solution to this
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problem isbranch-trampoliningor in this case trampolining of procedure calls. If a fuanttall in the executable,
prior to being run through PLTO, had a displacemenk bfytes, then we can be assured that the instruction length
need not be increased if, after running through PLTO, thplaiement changes to a number less tkart may
require less bytes, but nothing stops us from using an infficepresentation with the same number of bytes as the
original. Knowing this, it is safe—in that the instructioenigth for the procedure call will not change—to redirect
acal |, I, to a new target instructiomy—called the trampoline—residing directly after the prosedthat was not
disassemble@ The original displacement wésbytes, and we know that the instruction being targeted essiight
after the procedure, so this displacement is some numbetias or equal t&. The instruction}:, which we insert
is an unconditional jump to the original target of the fuoatcall, 1. Thus, the flow of control changes frolj—
If tolc — It — I;. The purpose of the trampoling, is to allow the function calll., to target any location in the
executable without having the length of its encoding charigghould be noted that an additiomaturn-trampoline
is also necessary, to redirect control back to the inswadbllowing I¢; the idea is analogous and not described here.
Trampolining lends way to another problem. Multiple traripes sitting at the end of a procedure may cause
some procedure callg, to require a displacement that is greater tkaits original offset. We propose a solution that
uses a one master trampoling, that jumps to a second set of trampolines that performstthetions described in
the previous paragraph. Using this implementation, we easuipe that all procedure calls will still use offsets of less
thank bytes. Should we discover cases where our the length of @argdal procedure calls does change, we will
likely implement this solution.

9 Conclusions

Post link-time optimization of executable programs can liseful process to undergo when one wishes to squeeze
the most performance of a program. Unfortunately, not agpams will experience mind-blowing speedup. Large
applications—such agortex gcc andeonfrom the SPEC95 and SPEC2000 suites—tend to see the mosiugpee
since optimizations like function inlining and code layawé effective for bigger programs. Floating-point inteesi
benchmarks are on the opposite end of the spectrum. Theyeayéard to optimize due to relatively few dynamic
branches and procedure calls. In addition, much of the tinspént issuing floating point instructions.

Our system is not able to achieve results that are compatatife al t o system, which is closely related to
PLTO . The IA-32, and CISC architectures in general, offemgmy challenges—not addressed by systems for RISC
architectures—that must be tackled. The reliance on udimgemory is a particularly difficult thing to deal with,
and often lends way to complicated analyses and optimizaitid he potential payoffs, however, are more fruitful
as the processor-memory speed gap widens and these payofmalified even more. Every analysis in PLTO is
conservative, in that they expect nasty features from thehina code. Consequently, the results of these analyses
are almost always less precise than we would like them to Ierelis much future work to be done in this arena,
particularly with improving the precision of optimizatistike constant propagation, register propagation, arthégs
analysis.
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Appendix A Graphs for Inlining Models in SPECint95

Following are eight graphs, one for each integer benchnmattké SPEC95 suite. The graphs show the performance
of McFarling’s i-cache model and that of a more conservatiagel, both described in Section 4.5. In most cases
the two models exhibit similar performance charactesstithe red line is the conservative model, the green line is
McFarling’s i-cache model, and the blue line shows the spp&then not carrying out any inlining at all. The x-axis is
labeled the “Degree of Inlining”, which refers to how proffitaan inlining opportunity must be in order for procedure
merging to be carried out. As the degree of inlining increade number of functions being inlined decreases.
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B Disassembly Speeds with Linear, Recursive, and Hybrid

Disassembly Timésec)
Program TLinear | TRecursive | Thybrid Thybrid/ TLinear Thiybrid/ TRecursive
compress 1.16 1.02 2.06 1.78 2.02
gcc 10.63 7.47 16.4 1.54 2.20
go 2.64 2.16 4.40 1.67 2.04
iineg 1.87 154 3.10 1.66 2.01
li 1.61 1.34 2.67 1.66 1.99
m88ksim 1.96 1.63 3.29 1.68 2.02
perl 2.84 2.32 4.73 1.66 2.04
vortex 4.40 3.24 7.07 1.61 2.18
| GEOMETRICMEAN: | 1.66 | 2.06 |

(a) SPECint-95

Disassembly Timésec)
Program|  Tiinear | TRecursive | Thybrid Thybrid/ TLinear Thiybrid/ TRecursive
bzip2 1.44 1.18 2.45 1.70 2.08
crafty 2.32 1.88 3.82 1.65 2.03
eon 5.71 4.19 9.28 1.62 2.22
gcc 14.59 10.82 23.94 1.64 2.21
9zip 1.45 1.19 2.41 1.66 2.02
mcf 1.18 1.00 1.98 1.68 1.98
parser 1.71 1.38 2.83 1.66 2.05
twolf 2.10 1.73 3.52 1.68 2.04
vortex 3.91 2.87 6.28 1.61 2.19
vpr 1.72 1.46 2.91 1.69 1.99
| GEOMETRICMEAN: | 1.66 | 2.08 |

(b) SPECint-2000

Key:

TLinear: Disassembly time using the extended linear sweep algorith
Trecursive Disassembly time using recursive traversal

Thybrid: Disassembly time using the hybrid algorithm

Table 11: Performance: Disassembly Speed
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C Potential Benefit for Disambiguating Indirect Loads and Sores

Program Constants Propagated Percent Increase
Conservative PLTO | Non-conservative PLTQ
compress 389 412 5.91
gcc 593 659 11.13
go 478 595 24.47
ijpeg 439 460 4,78
li 397 418 5.29
m88ksim 433 465 7.39
perl 640 660 3.13
vortex 701 752 7.27
| Arithmetic Mean: | 8.67 |

(a) Constant Propagation in SPECint95

Program Registers Propagated Percent Increase
Conservative PLTO | Non-conservative PLTQ
compress 622 747 20.01
gcc 1604 1833 14.28
go 881 1031 17.03
ijpeg 720 862 19.72
li 650 781 20.15
m88ksim 786 929 18.19
perl 1132 1315 16.17
vortex 1039 1237 19.06
| Arithmetic Mean: | 18.08 |

(b) Register Propagation in SPECint95

Table 12: Effect of Conservative Treatment of Indirect Loadd Stores
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D Inlining: Further Details

Program Function Calls Percent Reductior
Before Inlining | After Inlining
compress 922927 888865 3.69
gcc 17699155 16762064 5.29
go 6014400 4133272 31.27
ijpeg 38619336 36458229 5.59
li 5079246 4840814 4.69
m88ksim 352937599 153590549 56.48
perl 779525 682698 12.42
vortex 51675029 15767226 69.48
| Arithmetic Mean: 23.61 |

Table 13: Function Inlining Statistics
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