Obfuscation of Executable Code to Improve Resistance to
Static Disassembly °

Cullen Linn

Saumya Debray

Department of Computer Science
University of Arizona
Tucson, AZ 85721.

{linnc, debray}@cs.arizona.edu

ABSTRACT

A great deal of software is distributed in the form of executable
code. The ability to reverse engineer such executables can create
opportunities for theft of intellectual property via software piracy,
as well as security breaches by allowing attackers to discover vul-
nerabilities in an application. The process of reverse engineering
an executable program typically begins with disassembly, which
translates machine code to assembly code. This is then followed
by various decompilation steps that aim to recover higher-level ab-
stractions from the assembly code. Most of the work to date on
code obfuscation has focused on disrupting or confusing the de-
compilation phase. This paper, by contrast, focuses on the initial
disassembly phase. Our goal is to disrupt the static disassembly
process so as to make programs harder to disassemble correctly.
We describe two widely used static disassembly algorithms, and
discuss techniques to thwart each of them. Experimental results
indicate that significant portions of executables that have been ob-
fuscated using our techniques are disassembled incorrectly, thereby
showing the efficacy of our methods.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:
Security and Protection—unauthorized access

General Terms

Security

Keywords

disassembly, code obfuscation

1. INTRODUCTION

Advances in program analysis and software engineering technol-
ogy in recent years have led to significant improvements in tools for
program analysis and software development. Unfortunately, this
same technology can, in many cases, be subverted to reverse engi-
neer software systems with the goal of discovering vulnerabilities,

*This work was supported in part by the National Science Founda-
tion under grants EIA-0080123 and CCR-0113633.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCS’03, October 27-30, 2003, Washington, DC, USA

Copyright 2003 ACM 1-58113-738-9/03/0010 ...$5.00.

Source Code

parsing

Syntax tree

intermediate
code gen. and
control flow

decompilation
analysis

! Reverse

Compilation { Engineering

Control flow graph
final code gen.

Assembly code

assembly disassembly

Machine code

Figure 1: The processes of compilation and reverse engineering

making unauthorized modifications, or stealing intellectual prop-
erty. These all require an ability to take an executable program and
reconstruct its high-level structure to some extent. For example, to
identify vulnerabilities in a software system, a hacker has to be able
to figure out how it works and where it may be attacked. Similarly,
to steal a piece of software with an embedded copyright notice or
software watermark, a pirate must reconstruct enough of its inter-
nal structure to be able to identify and delete the copyright notice
or watermark without affecting the functionality of the program.

The problem can be addressed by maintaining the software in
encrypted form and decrypting it as needed during execution [1], or
using specialized hardware (e.g., see [16]). While effective, such
approaches have the disadvantages of high performance overhead
or loss of flexibility because the software can no longer be run on
stock hardware. An alternative approach, which we focus on, is
to use code obfuscation techniques to enhance software security
[9, 10, 11, 12, 28]. The goal is to deter attackers by making the
cost of the reconstructing the high-level structure of the program
prohibitively high.

The processes of compilation and reverse engineering are illus-
trated in Figure 1. Compilation refers to the translation of a source-
language program to machine code; it consists of a series of steps,
each producing successively lower-level program representations.
Reverse engineering is the dual process of recovering higher-level
structure and semantics from a machine code program. Broadly
speaking, we can divide the reverse engineering process into two
parts: disassembly, which produces assembly code from machine
code; and decompilation, which reconstructs the higher-level se-
mantic structure of the program from the assembly code. Most
of the prior work on code obfuscation and tamper-proofing focus

program entry point

header —
text section size

sections text section

Figure 2: The structure of an executable file

on various aspects of decompilation. For example, a number of
researchers suggest relying on the use of difficult static analysis
problems, e.g., involving complex Boolean expressions, pointers,
or indirect control flow, to make it harder to construct a precise
control flow graph for a program [3, 12, 20, 26, 27].

The work described in this paper, by contrast, focuses on the
disassembly process. Our goal is to increase the difficulty of stat-
ically disassembling a program. This is independent of, and com-
plementary to, current approaches to code obfuscation. It is inde-
pendent of them because our techniques can be applied regardless
of whether or not any of these other obfuscating transformations are
being used. It is complementary to them because, by making a pro-
gram harder to disassemble accurately, we add yet another barrier
to recovering high-level semantic information about a program.

2. BACKGROUND: DISASSEMBLY

A machine code file typically consists of a number of different
sections, e.g., text, read-only data, etc., that contain various sorts
of information about the program, together with a header describ-
ing these sections. Among other things, the header contains infor-
mation about the program entry point, i.e., the location in the file
where the machine instructions begin (and where program execu-
tion begins), and the total size or extent of these instructions! (see
Figure 2) [15]. Disassembly refers to the process of recovering a
sequence of assembly code instructions from such a file, e.g., in a
textual format readable by a human being.

Broadly speaking, there are two approaches to disassembly:
static disassembly, where the file being disassembled is examined
by the disassembler but is not itself executed during the course of
disassembly; and dynamic disassembly, where the file is executed
on some input and this execution is monitored by an external tool
(e.g., a debugger) to identify the instructions that are being exe-
cuted. Static disassembly has the advantage of being able to pro-
cess the entire file all at once, while dynamic disassembly only dis-
assembles a “slice” of the program, i.e., those instructions that were
executed for the particular input that was used. Another advantage
of static disassembly is that it takes time proportional to the size of
the program, while the time taken by dynamic disassembly is typ-
ically proportional to the number of instructions executed by the
program at runtime—the former tends to be considerably less than
the latter (often by several orders of magnitude), making static dis-
assembly considerably more efficient than dynamic disassembly.

IThis applies to most file formats commonly encountered in prac-
tice, including Unix a.out, ELF, COFF, and DOS EXE files. The
information about the entry point and code section size is implicit
in DOS COM files.

This paper focuses on static disassembly. There are two gener-
ally used techniques for this: linear sweep and recursive traversal
[22]. The remainder of this section sketches each of them.

2.1 Linear Sweep

The linear sweep algorithm begins disassembly at the input pro-
gram’s first executable byte, and simply sweeps through the entire
text section disassembling each instruction as it is encountered:

global startAddr, endAddr;
proc DisasmLinear(addr)
begin
while (startAddr < addr < endAddr) do
I := decode instruction at address addr;
addr += length(I);
od
end

proc main()

begin
startAddr = address of the first executable byte;
endAddr = startAddr + text section size;
DisasmLinear(ep);

end

This method is used by programs such as the GNU utility objdump
[19] as well as a number of link-time optimization tools [8, 18, 24].

The main weakness of this algorithm is that it is prone to dis-
assembly errors resulting from the misinterpretation of data that is
embedded in the instruction stream. Only under special circum-
stances, e.g., when an invalid opcode is encountered, can the disas-
sembler become aware of such disassembly errors.

2.2 Recursive Traversal

The problem with the linear sweep algorithm is that, because it
does not take into account the control flow behavior of the program,
it cannot “go around” data (e.g., alignment bytes, jump tables, etc.)
embedded in the instruction stream, and mistakenly interprets them
as executable code. An obvious fix would be to take into account
the control flow behavior of the program being disassembled in or-
der to determine what to disassemble. Intuitively, whenever we en-
counter a branch instruction during disassembly, we determine the
possible control flow successors of that instruction, i.e., addresses
where execution could continue, and proceed with disassembly at
those addresses (e.g., for a conditional branch instruction we would
consider the branch target and the fall-through address):

global startAddr, endAddr;
proc DisasmRec(addr)
begin
while (startAddr < addr < endAddr) do
if (addr has been visited already) return;
I := decode instruction at address addr;
mark addr as visited;
if (1 is a branch or function call)
for each possible target ¢ of do
DisasmRec();

od
return;
else addr += length(I);
od
end

proc main()
begin

switch (i) {
case 0 : ... (1) «r :=
case 1

code for accessing the jump table

evaluate i
(2) if r >L¢<\bf29°t° default

e %o - ,
case N-1 (:) i += BaseAddr R Jump table code for case 0
default: S r - \\fa—s?,<.—r"rn“:x—”f{‘BaseAd r/ e i

) (5) dmp *r ‘ B |

|1 —t—> codeforcase 1
SN
]rN-l\\,

(a) Source code

code for case N—-1

(b) Implementation using a jump table

Figure 3: A example of a C switch statement and its implementation using a jump table

startAddr = program entry point;
endAddr = startAddr + text section size;
DisasmRec(startAddr);

end

Variations on this basic approach to disassembly, which we term
recursive traversal, are used by a number of binary translation and
optimization systems [4, 23, 25].

A virtue of this algorithm is that, by following the control flow
behavior of the program being processed, it is able to “go around”
and thus avoid disassembly of data embedded in the text section.
Its main weakness is that its key assumption, that we can precisely
identify the set of control flow successors of each control transfer
operation in the program, may not always hold in the case of indi-
rect jumps. Imprecision in determining the set of possible targets
of such a jump will result either in a failure to disassemble some
reachable code (if the set of targets is underestimated) or erroneous
disassembly of data (if the set of targets is overestimated).

Some researchers have proposed ad hoc extensions to the ba-
sic algorithm outlined above to handle common cases of indirect
jumps. As an example, one of the most common uses of indirect
jumps involves jump tables, a construct used by compilers to imple-
ment C-style switch statements [2]. This is illustrated in Figure
3. The jump table itself is a contiguous array of N code addresses,
corresponding to the N cases in the switch statement. The code
to access the jump table evaluates the index expression i; checks
to see whether this expression falls within the bounds of the table,
i.e., whether 0 < i < N; adds the scaled value of the index expres-
sion to the base address of the table to obtain the address of the i
entry in the table; then jumps indirectly through this location. The
check of whether the index expression falls within the table bounds
can be accomplished using a single unsigned comparison (denoted
by >, in instruction (2) in Figure 3(b)) [2]. To determine the pos-
sible target addresses of an indirect jump through a jump table, a
disassembler needs to know the base address of the table and its
extent, i.e., the values of BaseAddr and N in Figure 3(b). This
can be done by scanning back from the indirect jump instruction to
find the instruction that adds the scaled index to the base address
(instruction (4) in Figure 3(b)), whence the base address can be ex-
tracted; and the unsigned compare of the index (instruction (2) in
Figure 3(b)), whence the table size can be determined. Once this
has been done, disassembly can continue at each target identified
from the N table entries starting at location BaseAddr [6].

Code that is reachable only through indirect control transfers
may not be found using the basic algorithm above. To handle
this problem, some systems, e.g., the UQBT binary translation sys-
tem [5], resort to “speculative disassembly.” The idea is to process

undisassembled portions of the text segment that appear to be code,
in the expectation that they might be the targets of indirect function
calls; a “speculative bit” is set when this is done, and speculative
disassembly of a particular region of memory is abandoned if an
invalid instruction is encountered.

3. THWARTING DISASSEMBLY

In order to thwart a disassembler, we have to somehow confuse,
as much as possible, its notion of where the instruction boundaries
in a program lie. This section discusses some ways in which this
can be achieved. We first discuss a phenomenon that we had not ex-
pected: that of disassembly errors that “repair” themselves within
a relatively short distance. This is followed by a discussion of a
general technique we use to inject “junk bytes” into the instruction
stream to introduce disassembly errors. After this we discuss spe-
cific details of the way in which this is done to confuse the two
disassembly algorithms discussed in the previous section.

3.1 Self-Repairing Disassembly

On some instruction sets—most notably, that of the Intel IA-
32 architecture—the instruction structure is such that, very often,
the disassembly process is self-repairing: even when a disassembly
error occurs (e.g., due to the disassembly of data), the disassem-
bler eventually ends up re-synchronizing with the actual instruc-
tion stream. This is illustrated by the example in Figure 4, which
shows a typical byte sequence in memory, together with the actual
disassembly (on the left), and the disassemblies we obtain if the
disassembler is off by 1, 2, or 3 bytes, on the right. When the dis-
assembly is initially off by a single byte, the disassembler produces
two erroneous instructions but is back in synchrony with the origi-
nal disassembly by the second instruction in the actual disassembly
sequence. A similar phenomenon occurs when the disassembler is
initially off by two bytes: it resynchronizes with the second instruc-
tion in the actual disassembly after producing a single incorrectly
disassembled instruction. If the disassembler is initially off by three
bytes, it generates three incorrectly disassembled instructions but
resynchronizes by the third instruction in the actual disassembly.

Obviously, the actual resynchronization behavior on a particular
program will depend on its particular distribution of instructions.
In practice, however, we have found that disassembly errors usually
resynchronize quite quickly—often within just one or two instruc-
tions beyond the point at which the disassembly error occurred. Ef-
forts to confuse disassembly have to take this self-repairing aspect
of disassembly into account.

3.2 Junk Insertion

memory

actual disassembly bytes (hex) I byte off

(synchronizes in 2 instrs.)

8b
44 inc %esp

mov 4(%esp), %eax

24
04
03
44 -

add 12(%esp), Y%eax
24

Oc
83

sub $6, %eax e8

06

,,,,, > and $4, %al -~
> add $3, %al

3 bytes off

(synchronizes in 3 instrs.)

2 bytes off

(synchronizes in 1 instr.)

inc %esp

> and $12, %al

Figure 4: An example of self-repairing disassembly

We can introduce disassembly errors by inserting “junk” bytes at
selected locations in the instruction stream where the disassembler
is likely to expect code. (An alternative approach involves partially
or fully overlapping instructions, e.g., see [7]: this is discussed in
Section 5.) It is not difficult to see that any such junk bytes must
satisfy two properties. First, in order to actually confuse the disas-
sembler, the junk bytes must be partial instructions, not complete
instructions. Second, in order to preserve program semantics, such
partial instructions must be inserted in such a way that they are
unreachable at runtime. To this end, define a basic block as a can-
didate block if it can have such junk bytes inserted before it. In
order to ensure that any junk so inserted is unreachable during exe-
cution, a candidate basic block cannot have execution fall through
into it. In other words, the basic block immediately before a can-
didate block must end in an unconditional control transfer, e.g., an
unconditional jump or a return from a function. Candidate blocks
can be identified in a straightforward way by scanning the basic
blocks of the program after their final memory layout has been de-
termined.

As mentioned in Section 3.1, the static disassembly process very
often manages to “re-synchronize” itself after a disassembly error.
Once a candidate block B has been identified, we have to determine
what junk bytes to insert before it so as to confuse the disassembler
as much as possible, i.e., delay this re-synchronization for as long
as possible. To do this, we take a particular n-byte instruction / (our
current implementation considers a 6-byte bitwise-OR instruction,
but it is easy to extend this to other instructions), and determine how
far away this re-synchronization would occur if the first k bytes of
I were to be inserted immediately before the candidate block B, for
each k, 0 < k < n. To determine the re-synchronization point, for
each such k we simulate disassembly for the candidate block, as-
suming that the disassembler encounters the first k£ bytes of [at the
beginning of B, then continuing with the byte sequence comprising
the machine-level encodings of the instructions actually in B. Us-
ing this approach we determine the value k;,,, of k for which the
re-synchronization distance is maximized, and insert the first k. x
bytes of / immediately before block B.

3.3 Thwarting Linear Sweep

As observed in Section 2.1, linear sweep disassembly is gener-
ally unable to distinguish data embedded in the text section. We
can exploit this weakness by inserting “junk” bytes at selected lo-
cations in the instruction stream, as discussed in Section 3.2. One

point to note here is that since the simulation of disassembly scans
forward from each candidate to determine the number of “junk”
bytes to be inserted there, it is important to ensure that such deci-
sions made for one candidate are not subsequently invalidated by
the insertion of junk into subsequent candidates. To avoid such ef-
fects, we consider candidate blocks in reverse order when inserting
junk.

With the approach described thus far, we find that we are typi-
cally able to attain a “confusion factor” of about 15% on average—
i.e., 15% of the instructions in a program are incorrectly disassem-
bled (confusion factors are discussed in more detail in Section 4).
The reason that it is not higher is that candidates for the insertion of
junk bytes cannot have execution fall through into them: the pre-
ceding block has to end in an unconditional control transfer. We
have found that, in programs obtained from a typical optimizing
compiler, candidate blocks tend to be around 30 instructions apart
on average.> This distance, combined with the self-repairing na-
ture of disassembly, means that when disassembly goes wrong af-
ter the insertion of junk before a candidate, it typically manages
to re-synchronize before the next candidate is encountered. We in-
crease the number of candidates by a transformation called branch
flipping. The idea is to invert the sense of conditional jumps, by
converting code of the form

bee Addr
where cc represents a condition, e.g., ‘eq’ or ‘ne’, to

bee L'
Jmp Addr
L

where cc is the complementary condition to cc, e.g., a ‘beq ’
is converted to a ‘bne The basic block at L’ now becomes
a candidate. With this transformation, the distance between can-
didate blocks drops to about 12 instructions on average, and the
confusion factor rises to about 37%. Yet another measure that can
be taken to increase candidates for junk insertions is call conver-
sion which raises instruction confusion to about 42%. This method
is discussed in more detail in section 3.4.2.

2These data reflect the SPECint-95 benchmark suite compiled us-
ing gcc at optimization level —03. The averages given here were
computed as geometric means.

3.4 Thwarting Recursive Traversal

The main strength of the recursive disassembly algorithm—its
ability to deal intelligently with control flow and thereby disassem-
ble around data embedded in the text segment—also turns out to be
a weakness that we can take advantage of to confuse the disassem-
bly process. There are two (related) aspects of recursive traversal
that we can exploit. The first is that when it encounters a control
transfer, disassembly continues at those locations that are deemed
to be the possible control transfer targets. In this context, disassem-
blers typically assume that commonly encountered control trans-
fers, such as conditional branches and function calls, behave “rea-
sonably.” For example, a conditional branch is assumed to have
two possible targets: the branch target and the fall through to the
next instruction. Similarly, a function call is assumed to return to
the instruction immediately following the call instruction.

The second aspect of recursive traversal is that identifying the
set of possible targets of indirect control transfers is difficult. Re-
cursive traversal disassemblers therefore generally resort to ad hoc
techniques, such as examining bounds checks associated with jump
tables, or disassembling speculatively, to handle commonly en-
countered situations involving indirect jumps.

Below we discuss different ways in which these characteristics
can be exploited to confuse recursive traversal disassembly.

3.4.1 Branch Functions

The assumption that a function returns to the instruction follow-
ing the call instruction can be exploited using what we term branch
functions. The idea is illustrated in Figure 5. Given a finite map ¢
over locations in a program

o={a — by,...,an— by}

a branch function f is a function that, whenever it is called from
one of the locations ¢;, causes control to be transferred to the cor-
responding location b;, 1 <i <n. Given such a branch function f,
we can replace n unconditional branches in a program,

ay : jmp by
az:gﬁpbz
ap : jmp by

by calls to the branch function:
aj:call fp
a: .cléll fo
an:;éllf¢

The code for the branch function is responsible for determining the
target location b; based on the location g; it was called from, then
branching to the appropriate b;. Moreover, it has to do this in such
a way that the program state is that which would have been en-
countered at the location b; in the original code with unconditional
branches. Note that a branch function does not behave like “nor-
mal” functions, in that it typically does not return to the instruction
following the call instruction, but instead branches to some other
location in the program that depends, in general, on where it was
called from.3

Branch functions serve two distinct purposes. The first is to ob-
scure the flow of control in the program: by sufficiently obscuring

3This can, however, have adverse performance implications on
some architectures, e.g., the Intel Pentium, by interfering with the
branch prediction and/or return stack buffer mechanisms.

the computation of the target address b; within the branch function,
we can make it difficult for an attacker to reconstruct the original
map ¢ it realizes. The second is to create opportunities for mis-
leading a disassembler: since a disassembler will typically continue
disassembly at the instruction following the call instruction, we can
introduce errors in the disassembly by inserting junk bytes at the
point immediately after each ‘call f,’ instruction in a manner
similar to that discussed in Section 3.3.

Branch functions can be implemented in a number of ways. For
example, a straightforward implementation might use the return ad-
dress to look up a table, via a simple linear or binary search, to de-
termine the target address. The disadvantage with such schemes is
that they relatively straightforward to reverse engineer.

A more sophisticated implementation of branch functions has the
callee pass, as an argument to the branch function, the offset from
the instruction immediately after it (whose address is passed to the
branch function as the return address) to the target b;. The branch
function simply adds the value of its argument to the return address,
so that the return address becomes the address of the original target
bi. The code for this, on the Intel IA-32 architecture, might be as
follows:*

xchg %eax, 0(%esp) # Il
add %eax, 8 (%eax) # I2
pop %eax # I3
ret # I4

Instruction I1 exchanges the contents of register $eax with the
word at the top of the stack, effectively saving the contents of $eax
and at the same time loading the displacement to the target (passed
to the branch function as an argument on the stack) into $eax.
Instruction 12 then has the effect of adding this displacement to the
return address. 13 restores the previously saved value of $eax, and
14 then has the effect of branching to the address computed by the
function.

Our current implementation uses a variation on this idea that uses
perfect hashing [14, 17] and is, we believe, harder to reverse engi-
neer. Once the final code layout has been determined and we know
the mapping @ = {a; + by,...,a, > b, } we want the branch func-
tion to implement, we create a perfect hash function hg:

he :{a1,...,a,} — {1,...,n}

We then construct a table 7 in the data section of the binary, that
lists offsets for each (a;,b;) pair, as follows:

T[he(a;)] < b; —a; [for each i].
Upon invocation the branch function proceeds as follows:

(i) apply the perfect hash function hg to its return address a to
compute a perfect hash value ¢ (a);

ii) use the table T to obtain the offset a)] to the target;
i he table T to obtain the offset T'|hg he targ
(#ii) add this offset to the return address;

(iv) return.

Since the resulting code is quite a bit more expensive, in execution
cost, than the single branch instruction in the original program, we
use execution profile information to apply the transformation only
to code that is not “hot,” i.e., that is not frequently executed; the
details are discussed in Section 4.

4If any of the condition code flags is live at the call point, they
have to be saved by the caller just before the call, and restored at
the target.

a,: jmp by b,

a: jmp b, by

an: Jmp b"t bn
(a) Original code

by

a: callf\f
a: call f——

"

a,: call f

7

— > b

IS

n

(b) Code using a branch function

Figure 5: Branch functions

The complexity of a branch function’s implementation, and the
way in which it is accessed, offer an interesting tradeoff between
execution speed, on the one hand, and difficulty of reverse engi-
neering, on the other. For example, we can choose different branch
function implementations for jump instructions depending on their
execution frequencies: frequently executed jump instructions might
be directed to a lightweight branch function, less frequently exe-
cuted ones to a more complex branch function, and so on.

3.4.2 Call Conversion

A variation of the branch function scheme described in section
3.4.1 can be used to extend the candidates for junk insertions to
include those basic blocks directly following call instructions as
well. Recall that the reason junk bytes can typically not be inserted
after call instructions is that control returns to the address directly
after the last byte of a call instruction upon completion of an in-
voked function. This being the case, if junk bytes were inserted
after a “well-behaved” call instruction then it would be possible for
control to reach the junk bytes and therefore violate the constraints
of junk insertions described in section 3.2.

One solution to this problem is to reroute call instructions
through a specialized branch function that branches to the intended
target function via perfect hashing, as in the standard branch func-
tion, but then returns to some predetermined offset from the origi-
nal call instruction (i.e., the offset to the real successor instruction
that lies beyond some number of junk bytes). Using this method
we are able to obscure control flow information by making func-
tion entry points more difficult to decipher while also increasing
the potential to mislead the disassembler.

3.4.3 Opaque Predicates

The assumption that a conditional branch has two possible tar-
gets can be exploited by disguising an unconditional branch as a
conditional branch that happens, at runtime, to always go in one
direction—i.e., either it is always taken, and never falls through; or
it is never taken, and always falls through. This technique relies
on using predicates that always evaluate to either the constant true
or the constant false, regardless of the values of their inputs: such
predicates are known as opaque predicates [12]. Other researchers
have discussed techniques for synthesizing opaque predicates; their
ideas translate in a straightforward way to our context, so we do not
discuss this issue further.

Once an unconditional branch has been replaced by a conditional
branch that uses an opaque predicate, we have a location—either
the branch target or the fall through, depending on whether the
opaque predicate is always false or always true—that appears to be
a legitimate continuation for execution from the conditional branch
but, in fact, is not. We can then insert junk bytes at this point, as
discussed earlier, to mislead the disassembly.

3.4.4 Jump Table Spoofing

In addition to simply inserting junk bytes at the fake target of an
opaquely directed conditional branch, we can also insert artificial
jump tables to mislead recursive traversal disassembly. We refer to
this technique as jump table spoofing.

Recall that, as discussed in Section 2.2, recursive traversal dis-
assemblers may attempt to use the bounds check for a jump table
to identify its size, and thereby determine the set of possible targets
of an indirect jump through a jump table. We can exploit this to
mislead a disassembler by introducing a jump table that is unreach-
able at runtime. The jump table code can be made unreachable ei-
ther by using a conditional branch that uses an opaque predicate to
jump around it, or by using an opaque expression—which is very
similar to an opaque predicate, expect that the value need not be
simply a truth value—whose value is guaranteed to fail the bounds
check. The code addresses in this jump table can now be set to
“junk addresses”—text segment addresses that do not correspond
to actual instructions—and thereby cause disassembly errors.

A variation on this idea is to take an unconditional jump to an
address £ and convert it to an indirect jump through a jump table
where the address £ appears as the k™ table entry. The table is
indexed by the value of an opaque expression that always evalu-
ates to k. However, the bounds check for the table uses a table
size m > k, leading the disassembler to believe that the jump table
contains m entries. Only one of these m entries—namely, the k™
entry—contains a real code address: the other entries contain junk
addresses.

3.5 Implementation Status

We have implemented our ideas using PLTO, a binary rewrit-
ing system developed for Intel IA-32 executables [21]. The system
reads in statically linked executables,? disassembles the input bi-
nary, and constructs a control flow graph. This control flow graph
is then processed in one of two ways. If the user specifies that
profiling is to be carried out, instrumentation code is inserted to
generate an edge profile when the resulting binary is executed. If,
on the other hand, the user requests obfuscating transformations to
be carried out, the system reads in edge profile information if avail-
able, carries out branch flipping to increase the number of candidate
blocks (Section 3.3), applies various obfuscating transformations,
and writes out the resulting executable.

The transformations currently implemented in the system are
junk insertion (Section 3.2) and transformation of unconditional
jumps and call instructions to the respective branch function calls

5The requirement for statically linked executables is a result of the
fact that PLTO relies on the presence of relocation information to
distinguish addresses from data. The Unix linker 1d refuses to
retain relocation information for executables that are not statically
linked.

g
-
E 1.00 — — — = = Thresholds
=]
S 0953 L_Jo70
3] 0.80
5 0.90 4 [0.90
=] B 0.95
§ 0.85 _:7 - 1.00
S]
S 0.80 4
=]
2]
T 075 L . -
8 compress gcc go ijpeg li m88ksim perl vortex ~ Mean
= Program
(a) Fraction of jumps converted to branch function calls
6.0 Thresholds
y - [Joo
5 50
b5 M 080
€ 40 M = 0.9
E i M M I 0.95
S 30 Il 1.00
E M u -
" b 1] | || [
compress gcc go ijpeg li m88ksim perl vortex Mean
Program

(b) Slowdown in execution speed

Figure 6: Effect of “hot code threshold” on branch function conversion and execution speed

(Sections 3.4.1 and 3.4.2). We expect to have additional transfor-
mations, such as jump table spoofing (Section 3.4.4), implemented
in the near future.

4. EXPERIMENTAL EVALUATION

We evaluated the efficacy of our techniques using the SPECint-
95 benchmark suite. Our experiments were run on an otherwise
unloaded 2.4 GHz Pentium IV system with 1 GB of main memory
running RedHat Linux 8.0. The programs were compiled with gcc
version egcs-2.91.66 at optimization level —~03. The programs were
profiled using the SPEC training inputs and these profiles were used
to identify any hot spots during our transformations. The final per-
formance of the transformed programs were then evaluated using
the SPEC reference inputs. Each execution time reported was de-
rived by running seven trials, removing the highest and lowest times
from the sampling, and averaging the remaining five.

We experimented with three different “attack disassemblers” to
evaluate our techniques. The first of these is the GNU objdump util-
ity which employs a straight-forward linear sweep algorithm. The
second, which we wrote ourselves, is a recursive disassembler that
incorporates a variation of speculative disassembly (see Section 2).
In addition we also provide the recursive disassembler with extra
information about the address and size of each jump table in the
program as well as the start and end address of each function. The
results obtained from this disassembler therefore serve as a lower
bound estimate of the extent of obfuscation achieved. Our third dis-
assembler is IDA Pro [13], a commercially available disassembly
tool that is generally regarded to be among the best disassemblers
available.

For each of these, the efficacy of obfuscation was measured by
computing “confusion factors” for the instructions, basic blocks,

and functions. Intuitively, the confusion factor measures the frac-
tion of program units (instructions, basic blocks, or functions) in
the obfuscated code that were incorrectly identified by a disassem-
bler. More formally, let A be the set of all actual instruction ad-
dresses, i.e., those that would be encountered when the program
is executed, and P the set of all perceived instruction addresses,
i.e., those addresses produced by a static disassembly. A — P is the
set of addresses that are not correctly identified as instruction ad-
dresses by the disassembler. We define the confusion factor CF to
be the fraction of instruction addresses that the disassembler fails
to identify correctly:®

CF =|A—P|/|A|.

Confusion factors for functions and basic blocks are calculated
anologously: a basic block or function is counted as being “in-
correctly disassembled” if any of the instructions in it is incorrectly
disassembled. The reason for computing confusion factors for ba-
sic blocks and functions as well as for instructions is to determine
whether the errors in disassembling instructions are clustered in a
small region of the code, or whether they are distributed over sig-
nificant portions of the program.

As mentioned in Section 3.4. I, we transform jumps to branch
function calls only if the jump does not occur in a “hot” basic block.
The first questions we have to address, therefore, are: how are hot
basic blocks identified, and what is the effect of different choices of
what constitutes a “hot” block on the extent of obfuscation achieved
and the performance of the resulting code? To identify the “hot,” or

5We also considered taking into account the set P — A of addresses
that are erroneously identified as instruction addresses by the disas-
sembler, but rejected this approach because it “double counts” the
effects of disassembly errors.

Confusion factor (%)
PROGRAM LINEAR SWEEP (OBJDUMP) RECURSIVE TRAVERSAL COMMERCIAL (IDA PRrO)
Instructions | Basic blocks | Functions || Instructions | Basic blocks | Functions || Instructions | Basic blocks | Functions
compress95 43.93 63.68 100.00 30.04 40.42 75.98 75.81 91.53 87.37
gcc 34.46 53.34 99.53 17.82 26.73 72.80 54.91 68.78 82.87
go 33.92 51.73 99.76 21.88 30.98 60.56 56.99 70.94 75.12
ijpeg 39.18 60.83 99.75 25.77 38.04 69.99 68.54 85.77 83.94
li 43.35 63.69 99.88 27.22 38.23 76.77 70.93 87.88 84.91
m88ksim 41.58 62.87 99.73 24.34 35.72 77.16 70.44 87.16 87.16
perl 42.34 63.43 99.75 27.99 39.82 76.18 68.64 84.62 87.13
vortex 33.98 55.16 99.65 23.03 35.61 86.00 57.35 74.55 91.29
[Geo.mean || 3909 | 5934 | 9975 | 246 3560 | 7443 || 6545 | 8140 | 8497 |

Figure 7: Efficacy of obfuscation: confusion factors (6 = 1.0)

“frequently executed,” basic blocks, we start with a (user-defined)
fraction 6 (0.0 < 6 < 1.0) that specifies what fraction of the total
number of instructions executed at runtime should be accounted for
by “hot” basic blocks. For example, 6 = 0.8 means that hot blocks
should account for at least 80% of all the instructions executed by
the program. More formally, let the weight of a basic block be
the number of instructions in the block multiplied by its execution
frequency, i.e., the block’s contribution to the total number of in-
structions executed at runtime. Let tot_instr_ct be the total number
of instructions executed by the program, as given by its execution
profile. Given a value of 6, we consider the basic blocks b in the
program in decreasing order of execution frequency, and determine
the largest execution frequency N such that

Z weight(b) >
bifreq(b)>N

0 - tot_instr_ct.

Any basic block whose execution frequency is at least N is consid-
ered to be hot.

The effect of varying the hot code threshold 6 on performance
(both obfuscation and speed) is shown in Figure 6. Figure 6(a)
shows the fraction of candidates that are converted to branch func-
tion calls at different thresholds; this closely tracks the overall con-
fusion factors achieved. Figure 6(b) shows the concomitant degra-
dation in performance. It can be seen, from Figure 6(a), that most
programs have a small and well-defined hot spot, and as a result
varying the threshold from a modest 0.70 to a value as high as 1.0
does not dramatically affect the number of candidates converted.
The benchmark that is affected the most is gcc, and even here over
79% of the candidates are converted at = 1.0. On average, about
91% of the candidates are converted at 6 = 1.0. However, as il-
lustrated in Figure 6(b), varying the hot code threshold has a sig-
nificant effect on execution speed. For example, at 6 = 0.70 the
programs slow down by a factor of 3.67 on average, with the /i
benchmark experiencing the largest slowdown, by a factor of 5.14.
However, as 6 is increased the slowdown drops off quickly, to a fac-
tor of 3.14 at 6 = 0.9 and 1.62 at 8 = 1.0. In summary, choosing a
threshold 0 of 1.0 still results in most of the candidate blocks in the
program being converted to branch function calls without excessive
performance penalty. For the purposes of this paper, therefore, we
give measurements for 6 = 1.0.

Figure 7 shows the efficacy of our obfuscation transformations
for both of the disassembly methods discussed in Section 2. The
confusion factors achieved for linear sweep disassembly are quite
modest: on average, 39% of the instructions, 59% of the basic
blocks, and nearly 100% of the functions are incorrectly disassem-
bled. For recursive traversal, the confusion factors are somewhat
lower because in this case the disassembler can understand and deal
with control flow somewhat better than with linear sweep and as a

EXECUTION TIME (SECS)
PROGRAM | Original | Obfuscated | Slowdown
(To) (1) (1\/To)
compress95 34.49 34.44 1.00
gee 23.27 23.23 1.00
go 53.17 53.08 1.00
ijpeg 40.13 40.15 1.00
li 26.50 4291 1.62
m88ksim 28.18 30.02 1.07
perl 28.62 37.71 1.32
vortex 48.84 49.05 1.00
Geo. mean 1.13

Figure 8: Effect of obfuscation on execution speed (6 = 1.0)

last resort actually reverts to linear sweep for the speculative dis-
assembly of undisassembled code. Nevertheless, we find that, on
average, over 25% of the instructions in the program incur disas-
sembly errors. As a result, over 35% of the basic blocks and close
to 74% of the functions, on average, are incorrectly disassembled
using this disassembly method. This is achieved at the cost of a
13% penalty in execution speed (see Figure 8).

The recursive traversal data reported in Figure 7 are actually
quite conservative since these were gathered using our own recur-
sive disassembler which, as mentioned before, is supplied with ex-
tra information to avoid unduly optimistic results. To evaluate the
efficacy of our techniques in a more realistic situation, we used a
commercial disassembly tool, IDA Pro version 4.3x [13], which is
widely considered to be the most advanced disassembler available.
The results of this experiment are reported in Figure 7. It can be
seen that this tool fails on most of the program: close to 65% of the
instructions, and about 85% of the functions in the program, are
disassembled incorrectly. Part of the reason for this high degree of
failure is that IDA Pro only disassembles addresses that (it believes)
can be guaranteed to be instruction addresses. This has two effects:
first, large portions of the code that are reached by branch function
addresses are simply not disassembled, being presented instead to
the user as a jumble of hex data; and second, the location imme-
diately following a branch function call is treated as an address to
which control returns, and this causes some junk bytes to be erro-
neously disassembled. Overall, this shows that our techniques are
effective even against state-of-the-art disassembly tools.

Finally, Figure 9 shows the impact of obfuscation on code size,
both in terms of the number of instructions (which increases, for
example, due to branch flipping), as well as the number of bytes
occupied by the text section. The latter includes the effects of the
new instructions inserted as well as all junk bytes added to the pro-
gram. Overall, it can be seen that there is a 20% increase in the

NO. OF INSTRUCTIONS TEXT SECTION SIZE (BYTES)
PROGRAM | Original | Obfuscated | Change | Original | Obfuscated | Change
(o)) (h/lo) (So) (1) (S1/S0)
compress95 74787 92137 1.231 265985 311095 1.169
gee 327133 387289 1.183 1128273 1290419 1.143
go 124424 145953 1.173 468537 525232 1.121
ijpeg 105766 127012 1.200 363169 419535 1.155
li 89309 109652 1.227 310301 363801 1.172
m88ksim 104211 127358 1.222 368798 430845 1.168
perl 137947 169054 1.225 484194 566935 1.170
vortex 174960 204230 1.167 592076 672795 1.136
[Geo. mean | 1.204] 1.154

Figure 9: Effect of obfuscation on code size (6 = 1.0)

total number of instructions, and a 15% increase in the size of the
text section of the resulting executables.

The techniques described here apply to a wide variety of archi-
tectures. The insertion of partial instructions to confuse disassem-
bly, as discussed in Section 3.2, is applicable to variable-length
instruction sets, such as those on the widely used Intel Pentium
and Motorola 680x0, as well as the StrongArm (together with the
Thumb 16-bit instruction encoding) and other mixed-mode archi-
tectures such as the MIPS32/MIPS16. Branch functions and jump
table spoofing can be used on any architecture.

S. RELATED WORK

The only work we are aware of that addresses the problem of
making executable programs harder to disassemble is by Cohen,
who proposes overlapping adjacent instructions to fool a disassem-
bler [7]. We are not aware of any actual implementations of this
proposal. We implemented this idea as well as a number of varia-
tions on the basic scheme, but found the results disappointing: the
resulting confusion factors were typically less than 1%. The reason
for this is that in order to overlap two adjacent instructions / and J,
we have to satisfy several conditions, among them:

(i) execution cannot fall through from / to J; and

(ii) the trailing k bytes of / must be identical with the leading k
bytes of J for some k > 0.

There tend to be relatively very few candidates satisfying these cri-
teria (e.g., the largest number of overlaps we achieved was for the
gcc benchmark, where we found only 27 overlaps out of 360,152
instructions; by contrast, our approach can use 11,205 candidates
before branch flipping and call conversion on this program, and
56,925 candidates after branch flipping and call conversion). Vari-
ations on this theme, e.g., by judicious insertion, immediately be-
fore the instruction J, of no-ops or dead code that satisfy the second
condition above, do not seem to help matters significantly either.
This scarcity of candidates for overlapping, together with the self-
repairing property of disassembly errors discussed in Section 3.1,
results in poor confusion factor numbers using this approach.
There is a considerable body of work on code obfuscation that
focuses on making it harder for an attacker to decompile a program
and extract high level semantic information from it [3, 12, 20, 26,
27, 28]. Typically, these authors rely on the use of computationally
difficult static analysis problems, e.g., involving complex Boolean
expressions, pointers, or indirect control flow, to make it harder to
construct a precise control flow graph for a program. Of the ref-
erences cited, only Wroblewski focuses specifically on obfuscation
of executable programs [28]. Our work is orthogonal to these pro-
posals, and complementary to them. We aim to make a program

harder to disassemble correctly, and to thereby sow uncertainty in
an attacker’s mind about which portions of a disassembled program
have been correctly disassembled and which parts may contain dis-
assembly errors. If the program has already been obfuscated using
any of these higher-level obfuscation techniques, our techniques
add an additional layer of protection that makes it even harder to
decipher the actual structure of the program.

Even greater security may be obtained by maintaining the soft-
ware in encrypted form and decrypting it as needed during execu-
tion, as suggested by Aucsmith [1]; or using specialized hardware,
as discussed by Lie et al. [16]. Such approaches have the disad-
vantages of high performance overhead (in the case of runtime de-
cryption in the absence of specialized hardware support) or a loss
of flexibility because the software can no longer be run on stock
hardware.

6. CONCLUSIONS

A great deal of software is distributed in the form of executable
code. Such code is potentially vulnerable to reverse engineering, in
the form of disassembly followed by decompilation. This can al-
low an attacker to discover vulnerabilities in the software, modify
it in unauthorized ways, or steal intellectual property via software
piracy. This paper describes and evaluates techniques to make ex-
ecutable programs harder to disassemble. Our techniques are seen
to be quite effective: applied to the widely used SPECint-95 bench-
mark suite, they result in disassembly errors over much of the pro-
gram; the best commercially available disassembly tool fails to cor-
rectly disassemble over 65% of the instructions, and 85% of the
functions, in the obfuscated binaries.

Acknowledgements

We are grateful to Christian Collberg and Gregg Townsend for very
helpful discussions and comments.

7. REFERENCES

[1] D. Aucsmith. Tamper-resistant software: An
implementation. In Information Hiding: First International
Workshop: Proceedings, volume 1174 of Lecture Notes in
Computer Science, pages 317-333. Springer-Verlag, 1996.

[2] R. L. Bernstein. Producing good code for the case statement.
Software—Practice and Experience, 15(10):1021-1024,
October 1985.

[3] W.Cho, I. Lee, and S. Park. Againt intelligent tampering:
Software tamper resistance by extended control flow
obfuscation. In Proc. World Multiconference on Systems,
Cybernetics, and Informatics. International Institute of
Informatics and Systematics, 2001.

[4] C. Cifuentes and K. J. Gough. Decompilation of binary
programs. Software—Practice and Experience,
25(7):811-829, July 1995.

[5] C. Cifuentes and M. Van Emmerik. UQBT: Adaptable binary
translation at low cost. IEEE Computer, 33(3):60-66, March
2000.

[6] C. Cifuentes and M. Van Emmerik. Recovery of jump table
case statements from binary code. Science of Computer
Programming, 40(2-3):171-188, July 2001.

[7] E. B. Cohen. Operating system protection through program
evolution, 1992.
http://all.net/books/IP/evolve.html.

[8] R.S. Cohn, D. W. Goodwin, and P. G. Lowney. Optimizing

Alpha executables on Windows NT with Spike. Digital

Technical Journal, 9(4):3-20, 1997.

C. Collberg and C. Thomborson. Software watermarking:

Models and dynamic embeddings. In Proc. 26th. ACM

Symposium on Principles of Programming Languages

(POPL 1999), pages 311-324, January 1999.

[10] C. Collberg and C. Thomborson. Watermarking,
tamper-proofing, and obfuscation — tools for software
protection. Technical Report TR00-03, The Department of
Computer Science, University of Arizona, February 2000.

[11] C. Collberg, C. Thomborson, and D. Low. Breaking
abstractions and unstructuring data structures. In Proc. 1998
IEEE International Conference on Computer Languages,
pages 28-38.

[12] C. Collberg, C. Thomborson, and D. Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. In Proc.
25th. ACM Symposium on Principles of Programming
Languages (POPL 1998), pages 184-196, January 1998.

[13] DataRescue sa/nv, Liége, Belgium. IDA Pro.
http://www.datarescue.com/idabase/.

[14] M. L. Fredman, J. Komlés, and E. Szemerédi. Storing a
sparse table with O(1) worst case access time. Journal of the
ACM, 31(3):538-544, July 1984.

[15] J. R. Levine. Linkers and Loaders. Morgan Kaufman
Publishers, San Francisco, CA, 2000.

[16] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,

J. Mitchell, and M. Horowitz. Architectural support for copy
and tamper resistant software. In Proc. 9th. International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IX), pages
168-177, November 2000.

[17] K. Mehlhorn and A. K. Tsakalidis. Data structures. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science, Volume A: Algorithms and Complexity (A), pages
301-341. MIT Press, 1990.

[18] R. Muth, Saumya K. Debray, Scott Watterson, and K. De
Bosschere. alto : A link-time optimizer for the Compaq
Alpha. Software—Practice and Experience, 31:67-101,
January 2001.

[19] Objdump. GNU Manuals Online. GNU Project—Free
Software Foundation.

[9

—

[22] B. Schwarz, Saumya K. Debray, and G. R. Andrews.
Disassembly of executable code revisited. In Proc. IEEE
2002 Working Conference on Reverse Engineering (WCRE),
pages 45-54, October 2002.

[23] R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, and S. G.
Robinson. Binary translation. Communications of the ACM,
36(2):69-81, February 1993.

[24] A. Srivastava and D. W. Wall. A practical system for
intermodule code optimization at link-time. Journal of
Programming Languages, 1(1):1-18, March 1993.

[25] H. Theiling. Extracting safe and precise control flow from
binaries. In Proc. 7th Conference on Real-Time Computing
Systems and Applications, December 2000.

[26] C. Wang, J. Davidson, J. Hill, and J. Knight. Protection of
software-based survivability mechanisms. In Proc.
International Conference of Dependable Systems and
Networks, July 2001.

[27] C. Wang, J. Hill, J. Knight, and J. Davidson. Software
tamper resistance: Obstructing static analysis of programs.
Technical Report CS-2000-12, 12 2000.

[28] G. Wroblewski. General Method of Program Code
Obfuscation. PhD thesis, Wroclaw University of Technology,
Institute of Engineering Cybernetics, 2002.

http://www.gnu.org/manual/binutils-2.10.1/html_chapter/binutils_4.html.

[20] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Software
obfuscation on a theoretical basis and its implementation.
IEEE Trans. Fundamentals, E86-A(1), January 2003.

[21] B. Schwarz, Saumya K. Debray, and G. R. Andrews. Plto: A
link-time optimizer for the Intel IA-32 architecture. In Proc.
2001 Workshop on Binary Translation (WBT-2001), 2001.

