
Enhancing Software Tamper-Resistance via Stealthy Address
Computations

�

Cullen Linn Saumya Debray John Kececioglu
Department of Computer Science, University of Arizona, Tucson, AZ 85721.�

linnc, debray, kece � @cs.arizona.edu

1 Motivation

A great deal of software is distributed in the form of executable
code. The ability to reverse engineer such executables can cre-
ate opportunities for theft of intellectual property via software
piracy, as well as security breaches by allowing attackers to
discover vulnerabilities in an application [9]. Techniques such
as watermarking and fingerprinting have been developed to
discourage piracy [4, 12], however, if no protective measures
are taken, an attacker may be able to remove and/or destroy
watermarks and fingerprints with relative ease once they have
been identified. For this reason, methods such as source code
obfuscation [4, 11, 3, 15], code encryption [1, 13] and self ver-
ifying code[1, 7] have been developed to help achieve some
measure of tamper-resistance.

It is, of course, necessary for an attacker to gain a reliable
disassembly of some portion of executable code before any
intelligent tampering can take place. In fact, even a reliable
disassembly in the absence of some sort of control flow graph
is not sufficient for serious tampering[15]. Coupled with other
methods [9] we propose one method of obfuscating address
computations in which the targets of control transfers are made
difficult to determine statically. We describe this method in
Section 2.

Assuming an attacker is able to gain a reliable disassembly
of a binary, it is quite possible for a malicious host to com-
promise any and all watermarks and/or fingerprints such that
they no longer serve their intended purpose [5]. Code verifica-
tion schemes that employ techniques such as check-sums have
been introduced to “tamper-proof” code [2]. Such schemes
must, by definition, examine the code in an executable’s text
section. Done in a straightforward manner, the check-sum
code will contain load instructions that reference addresses
that are clearly in the text section, allowing attackers to eas-
ily identify the check-sum code and potentially disable them
([1, 2] propose ways to raise the difficulty involved in doing
so). To counter such attacks we propose one method by which
address computations involving text section references can be
made less obvious. We discuss this in Section 3.

�
This work was supported in part by the National Science Foundation un-

der grants EIA-0080123 and CCR-0113633.

bn

b1

b2

bn

jmp

jmp

jmp

. . .

:

:

:

an

a

a1

2

b

b

1

2

b1

b2

bn

: call fa1

: call fa2

: call fan

. . .
f

(a) Original code (b) Code using a branch function

Figure 1: Branch functions

2 Branch Functions
One application of obfuscating address computations is to hide
from an attacker the true target of some control transfer. This
idea is not new, as others such as [16] propose similar ideas but
instead focus their efforts at the source code level. At the as-
sembly level, however, even such modifications are translated
into unambigous control transfers such as direct and condi-
tional jumps. We propose a method of indirection in which
direct control transfers such as call and jump instructions are
replaced with calls to specialized functions that are responsi-
ble for directing control to the intended targets in some stealthy
manner. The intent is that the successors of each transformed
basic block will be difficult to discover.

The specialized functions, which we have termed branch
functions, are illustrated in Figure 1. Given a finite map

ϕ ��� a1 �� b1 	�
�
�
�	 an �� bn

over locations in a program, a branch function fϕ is a function
such that, whenever it is called from one of the locations ai,
causes control to be transferred to the corresponding location
bi, 1 � i � n. In our current implementation of branch func-
tions, an unconditional branch at a location a that jumps to
an address b is replaced by a call to the branch function that
passes, as an argument, the value b � a,1 giving the offset to
the target b. The branch function simply adds its argument to
the return address stored on the stack and returns, via code (on
the Intel IA-32 architecture) of the form:

1Strictly speaking the argument passed is b � a � 5, to account for the size
of the call instruction.

1

xchg %eax, 0(%esp) #I1
add %eax, 8(%esp) #I2
pop %eax #I3
ret #I4

The effect is to transfer control to the modified return address,
i.e., the original target address b.

While control transfers effected using branch functions are
less obvious than the original unconditional jumps with their
target addresses hard-wired into them (as immediate or PC-
relative operands), the simple scheme sketched above uses
only a single straightforward arithmetic operation, and so is
not as robust against reverse engineering as we would like.
We are currently working on more complex implementations
that use tables and and perfect hashing. We chose to imple-
ment branch functions using perfect hashing, which guaran-
tees O � 1 � access to any element, in order to reduce runtime
overhead and also because of the somewhat cryptic compu-
tations involved in achieving a perfect hash. Space limitations
do not allow for a more detailed description of perfect hashing,
but the interested reader is referred to [10, p.318].

During the final stages of binary rewriting, after final code
layout has been done and all ai’s have been determined, we
create a perfect hash function h using code derived from [8].
We then construct a table t, in the data section of the binary,
that lists offsets for each � ai 	 bi � pair: t is then populated in the
following fashion:

t � h � ai ����� ai � bi, for each i

Next, a function f is created and injected into the binary. f ’s
primary function is the same as the simple branch function, ie
given some ai as a return address on the stack, it adds some
offset to that value, achieving the corresponding bi then trans-
fers control to bi, the original target address. The difference
between the two approaches is the way in which the offset is
computed. Below is a very basic representation of f :

x � h � ai � 2

x � t � x �
x � ai � x
return to x

The binary is then modified such that the control transfer (jump
or call) at each ai is replaced with a call to f (Figure 1).

Since the hash function h is guaranteed to run in O � 1 � time,
f will be some constant number of instructions. Moreover,
evaluating h involves arithmetic operations with large precom-
puted constants, whose results are difficult to follow.

3 Disguising Text Section References
Obfuscating address computations can also be used to conceal
the presence of self-verifying code. For example, given some

2ai can be derived from the return address on the stack by simply subtract-
ing 5 for the length of the call at ai

checksumming operation performed on the text section of a bi-
nary (e.g., see [2]), the fact that the checksum operations load
from an absolute address in the text section, and then carry
out arithmetic on the results, makes it easier for an attacker
to identify such code and, potentially, tamper with it. Along
the same lines as methods proposed by [7] who suggests split-
ting text address references between multiple registers to make
them more obscure, we can camouflage such code by replacing
text section references with appropriate data section (or other
non-text section) references. To do this we must know the final
size of each section in the executable program; this cannot be
done at compile time, but has to be done post-link-time, after
all the program components have been linked together and the
final size of each section in the file has been determined.

Given a load from an absolute text section address, e.g.,

mov 0x80482ff, %eax

we can replace the text section reference by instructions that
instead refer to the data section, e.g.:

mov $0x1ffffde3, %eax #I1
mov 0x8049410(,%eax,8), %eax #I2

In the resulting code we disguise the load from the text sec-
tion as an immediate load of some constant (#I1) and a load
of a large offset from the data section (#I2). The instruction
at #I2 computes 8 times the value in %eax, adds that value to
0x8049410, which is the start address of the data section, and
loads the word that resides at the resulting address into %eax.
After this conversion it appears that some piece of the data sec-
tion has been loaded, although scaling and overflow actually
allow loading from the text section. Obviously there are many
other ways in which the desired address can be computed from
the address of the data section (or any other section) such as
various bit and arithmetic operations.

4 Current Status
We have incorporated the “simple” branch function scheme
described in Section 2 into a binary obfuscation tool based on
PLTO [14]. We currently use this capability to disguise ad-
dress computations in order to mislead static disassemblers.
Our experiments indicate that once the executables obtained
from a compiler have been obfuscated using our techniques,
even state of the art industrial disassemblers such as IDA Pro
[6] are unable to successfully disassemble them. For example,
on the SPECint-95 benchmark suite, IDA Pro is able to cor-
rectly disassemble only about 1.5%–12.7% of the instructions
(mean: 6.2%); the remainder are either incorrectly disassem-
bled, or else simply presented to the user as large blocks of
uninterpreted hex dumps.

We are currently working on extending this tool to enhance
branch function capabilities using perfect hashing techniques
(Section 2) as well as adding support for disguising text ad-
dress computations (Section 3).

2

References
[1] D. Aucsmith. Tamper-resistant software: An imple-

mentation. In Information Hiding: First International
Workshop: Proceedings, volume 1174 of Lecture Notes
in Computer Science, pages 317–333. Springer-Verlag,
1996.

[2] H. Chang and M.J. Atallah. Protecting software code
by guards. In Security and Privacy in Digital Rights
Management, ACM CCS-8 01, Philadelphia, PA, USA,
November 5, 2001, Revised Papers, pages 160–175,
2001.

[3] W. Cho, I. Lee, and S. Park. Againt intelligent tampering:
Software tamper resistance by extended control flow ob-
fuscation. In Proc. World Multiconference on Systems,
Cybernetics, and Informatics. International Institute of
Informatics and Systematics, 2001.

[4] C. Collberg and C. Thomborson. Watermarking, tamper-
proofing, and obfuscation – tools for software protection.
Technical Report TR00-03, The Department of Com-
puter Science, University of Arizona, February 2000.

[5] C. Collberg, C. Thomborson, and D. Low. Manufactur-
ing cheap, resilient, and stealthy opaque constructs. In
Proc. 25th. ACM Symposium on Principles of Program-
ming Languages (POPL 1998), pages 184–196, January
1998.

[6] DataRescue sa/nv, Liége, Belgium. IDA Pro.
http://www.datarescue.com/idabase/.

[7] Bill Horne, Lesley R. Matheson, Casey Sheehan, and
Robert Endre Tarjan. Dynamic self-checking techniques
for improved tamper resistance. In Digital Rights Man-
agement Workshop, pages 141–159, 2001.

[8] Bob Jenkins. Minimal perfect hashing.
http://burtleburtle.net/bob/hash/perfect.html.

[9] Cullen Linn and Saumya K. Debray. Obfuscation of exe-
cutable code to improve resistance to static disassembly.
In Proc. 10th ACM Conference on Computer and Com-
munications Security, pages 290–299. ACM Press, 2003.

[10] K. Mehlhorn and A. K. Tsakalidis. Data structures. In
J. van Leeuwen, editor, Handbook of Theoretical Com-
puter Science, Volume A: Algorithms and Complexity
(A), pages 301–341. MIT Press, 1990.

[11] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Software
obfuscation on a theoretical basis and its implementation.
IEEE Trans. Fundamentals, E86-A(1), January 2003.

[12] Brigit Pfitzmann and Matthias Schunter. Asymmet-
ric fingerprinting. Lecture Notes in Computer Science,
1070:84–??, 1996.

[13] Tomas Sander and Christian F. Tschudin. On software
protection via function hiding. Lecture Notes in Com-
puter Science, 1525:111–123, 1998.

[14] B. Schwarz, Saumya K. Debray, and G. R. Andrews.
Plto: A link-time optimizer for the Intel IA-32 archi-
tecture. In Proc. 2001 Workshop on Binary Translation
(WBT-2001), 2001.

[15] C. Wang, J. Hill, J. Knight, and J. Davidson. Software
tamper resistance: Obstructing static analysis of pro-
grams. Technical Report CS-2000-12, 12 2000.

[16] Chenxi Wang, Jonathan Hill, John Knight, and Jack
Davidson. Software tamper resistance: Obstructing static
analysis of programs. Technical Report CS-2000-12, 12
2000.

3

