
Kyriacos E Pavlou
Doctoral Adviser: Prof. Richard T Snodgrass
The University of Arizona Department of Computer Science

Motivation

Corporate abuses by Enron and WorldCom have given rise to recent
regulations which require many corporations to ensure trustworthy long-term
retention of their routine business documents.

• Health Insurance Portability and Accountability Act: HIPAA (1996)
• Sarbanes-Oxley Act (2002)
• U.S. Food and Drug Administration regulation “21 CFR Part 11” (2003)

Due to widespread news coverage of collusion between auditors and the
companies they audit, and a lack of tools to address such corruption, there has
been interest within the file systems and database communities in built-in
mechanisms to detect or even prevent tampering.

Compliant records are those required by law to follow certain “processes by
which they are created, stored, accessed, maintained, and retained.” It is
common to use Write-Once-Read-Many (WORM) storage devices to preserve
such records.

Reference Architecture & Execution Phases

Corruption Diagrams

K. E. Pavlou and R. T. Snodgrass. Forensic Analysis of Database Tampering.
In Proceedings of the ACM SIGMOD International Conference on Management
of Data, pages 109–120, June 2006.

K. E. Pavlou and R. T. Snodgrass. Forensic Analysis of Database Tampering.
ACM Transactions on Database Systems, 33(4):1–47, November 2008.

K. E. Pavlou and R. T. Snodgrass. The Tiled Bitmap Forensic Analysis
Algorithm. IEEE Transactions on Knowledge and Data Engineering,
22(4):590–601, April 2010.

R. T. Snodgrass, S. S. Yao, and C. Collberg. Tamper Detection in Audit Logs.
In Proceedings of the International Conference on Very Large Databases,
pages 504–515, September 2004.

Database Forensics in the Service of Information Accountability

Motivation Forensic Analysis Algorithms Taxonomy of Corruption Types

Contributions

References

Information Accountability vs Restriction

Information restriction entails rendering retained records immutable and
controlling access to them. This approach appears to be the prevailing
viewpoint for achieving privacy and security.

Information accountability assumes that information should be transparent so
as to easily determine whether a particular use is appropriate under a given set
of rules.

Dragoon

A shift towards information accountability presents valuable advantages over
information restriction in the particular area of correct storage, use, and
maintenance of databases.

An information accountability approach to database security is cheaper, can
protect against a variety of threats (including insider threats), can successfully
deal with the aftermath of information restriction failure and can render complex
security problems tractable.

We are working to show information accountability can effectively realize
appropriate use (i.e., guarantee no unauthorized modifications—insertions,
deletions, updates) in high-performance databases.

We will achieve this by:
• developing a tamper detection approach,
• accommodating shredding and litigation holds,
• developing a taxonomy of corruption types,
• designing forensic analysis algorithms and associated techniques, and
• implementing and evaluating a prototype system.

!"#$%&#

!"'$%&#

()*+,-./01

2+,341-5
(46)71-1

!"#$%"&'(8+.6,-96.-+4
"3,:-53

;-*-.6)
<=.3,46)4+.6,7$#;>

,31?).@1A 4+.6,7$#;

,31?).

43B$/61/$:6)?3

"35?,3$"-.3

;CD"

,3/61/

;C($%&#

!"#$%&'"#(
)&'"*+,-(.

/0*01023

;6.6E613
@-45)?F-4*
(?F-.$G+*A

"35?,3$
D61.3,$
;6.6E613

Information accountability has been
tried and tested successfully since
ancient times.

Fair Credit Reporting Act

Fig. 1. Modern Tamper-Indicating Seals (left).
Bulla, 14th c. Byzantium (top). American
Scientist, 94(6):515–524, Nov–Dec 2006.

(including

External
Digital

Service
Notarization

record

Audit Log)

transactions

hash value

notary ID

Secure Site

changes
DBMS

Replication

Notarizer

User
Application

hash value notary ID

Service

CSI GUI

CSO GUI

DBA GUI
Database

Database
(including
Audit Log)

Secure
Master

Database

Database foRensic Analysis safeGuard Of arizONa

 is a prototype continuous assurance auditing system that is
highly customizable in terms of offering a tunable trade-off between level of
security and forensic cost. A beta version of is already available at:

http://www.cs.arizona.edu/projects/tau/dragoon/
It is lightweight and scalable and hence is able to adequately address aspects
of information accountability.

We intend to expand our prototype to an enterprise-wide information
accountability solution that can effectively realize appropriate use (i.e.,
guarantee no unauthorized modifications–insertions, deletions, updates even
by insiders) in high-performance databases.

Dragoon

Dragoon

Fig. 5. Changing the
Transaction Size.

Fig. 2. The Normal Processing Phase.

Fig. 3. The Tamper Detection and Forensic Analysis Phases.

Thesis Statement

Fig. 6. The Monochromatic Forensic Analysis Algorithm.

Fig. 7. The a3D Forensic Analysis Algorithm.

receiving the notary ID back from the notarization ser-
vice, a quite conservative estimate). This reflects the
worst case, because in the real world application, the
notarization will not be done that frequently. It would
usually be around one notarization per day, which im-
poses much less notarization overhead than what we
did here. We chose five seconds here just to accommo-
date the experiments, which run for a relatively short
amount of time (much less than a day!). We imple-
mented our own notarization service, rather than using
one of the commercial services.

8.4 Validation Overhead

As discussed in Section 6.1, validation involves a linear
scan of the audit log, which costs O(n) time according
to the size of the audit log. (Since an intruder could
have changed any byte of the audit log, necessarily the
entire audit log must be read by the validator.) As an
initial experiment, we ran small transactions (inserting
four tuples each), and then validated the audit log.
We varied the number of transactions that were run
before validation and observed the total running time,
which consists of CPU time, sleep time and I/O time.
Validation time was under 1% of the time required to
create the audit log.

8.5 Impact of the Number of Transactions per
Application

We then studied the scalability of the auditing system
as the number of transactions grows. The database
was initially populated with 4M tuples to simulate
that many different bank accounts. implying a start-
ing database of approximately 1GB. Then according
to different experiments, insertion and/or deletion op-
erations wrapped in transactions were applied on ran-
domly selected tuples. In order to simulate the data
access hot spots (i.e., some of the accounts are very
active and represent a greater percentage of the total
accesses), the access to the tuples follows a normal dis-
tribution with an average equal to half of the largest
key and standard deviation equal to 1

8
of the largest

key.
We ran an application that performed updates on

this database changing the balance of accounts to a
new value (with the audit log retaining the old value
in an archival tuple). Each transaction updated four
tuples. We ran the application with different number
of transactions, and observed the total running time
and the number of I/Os with and without the auditing
system.

We can see from Figure 4 that the auditing running
time overhead increases proportionally to the number
of transactions, at about 9% over the non-auditing
database (for all the experiments in this paper, the
auditing overhead was between 9% and 16%).

The auditing system introduces essentially no I/O
overhead (either no or one I/O, for a slightly larger

0

20

40

60

80

100

0 2 4 6 8 10 12

Ti
m

e
(s

ec
)

Number of Transactions (thousand txn)

AUD-Total Time
nonAUD-Total Time

Figure 4: Performance: Changing the Number of
Transactions per Application

log). For example, at 12,000 transactions, the NSR
made only 44 I/O requests.

8.6 Impact of Transaction Size

We then studied the impact of transaction size (num-
ber of tuples modified per transaction) on the auditing
system performance. The database configuration was
identical to the above. We ran the application with
10,000 transactions, but varied the number of tuples
updated per transaction, from 2 to 64. Then we ob-
served the total running time and the number of I/Os
with and without auditing system. From Figure 5, we
see that the overhead of auditing is again about 11%,
independent of transaction size.

8.7 Impact of Tuple Size

We then turned to the impact of the tuple size on the
auditing system performance. The database configura-
tion was identical to that above. Here each transaction
modified four tuples. We fixed the data bandwidth (to-
tal bytes of data manipulated) and varied the number
of transactions in inverse proportion to the tuple size,
namely (10 bytes/tuple, 10,000 transactions) to (1000
bytes/tuple, 100 transactions). Note that the x-axis of
Figure 6 is logarithmic.

Here the time overhead for hashing ranged from
16% in the worst case (for very small tuples) to an
insignificant overhead for large tuples. From this ex-
periment and the fact that hashing operations count
for most of the auditing system overhead, we can infer
that the number of hashing operations instead of the
total bytes of data hashed dictates to first order the
auditing system overhead.

512

0

50

100

150

200

250

0 10 20 30 40 50 60

Ti
m

e
(s

ec
)

Number of Tuples Modified Per Transaction

AUD-Total Time
nonAUD-Total Time

Figure 5: Performance: Changing the Transaction Size

0

10

20

30

40

50

60

10 30 100 300 1000

Ti
m

e
(s

ec
)

Tuple Size (byte)

AUD-Total Time
nonAUD-Total Time

Figure 6: Performance: Changing the Tuple Size
While Fixing the Data Bandwidth

8.8 Impact of the Notarization Service Re-
sponse Time

In this experiment, we studied the impact of the nota-
rization service response time on the auditing system.
The “response time” is defined as the time interval
from sending the notarization service request until the
DBMS received the notary ID back from the notariza-
tion service. There were 10,000 transactions in this
application and each updated four tuples. We ran the
application with various notarization response time,
namely 1, 2, 3, and 4 seconds (the system was exe-
cuting about 100 transactions per second, so there are
many hundreds of transactions backed up when the
response time is four seconds) and observed the CPU
time, total running time and number of I/Os with the
auditing system.

The notarization service response time does not af-
fect the auditing system performance. The total time

was around 98 seconds, independent of the response
time. When the notarization takes longer time to re-
turn the notary ID, the currently running transactions
will accumulate in the TOL in the AUD module, which
causes an undetectable CPU overhead to maintain the
TOL data structure management.

9 Related Work

There has been related work in several fields: security,
operating systems, and databases. We address each in
turn.

Mercuri raises the need to audit the audit log [14].
Peha [17] uses, as we do, one-way hash functions and a
“trusted” notary to hash and store every transaction.
Our approach differs in that we make no assumptions
about the DBMS, or even the hardware it executes on,
remaining in the trusted computing base following an
intrusion; Peha on the other hand advocates a “no-
tary on a chip”. Unlike Peha, we integrate hashing
with stamping of tuples in the table, and we consider
system issues such as the need to hash tuples and us-
ing partial result authentication codes to link transac-
tions. Peha simply batches transactions together by
hashing all the data in all the transactions, which will
undoubtedly result in very poor performance, as we
discussed in detail in Section 6.1. Peha goes into more
detail on how customers, notarizers, validators, and
auditors can use public key encryption to coordinate.
Note that since we send the notarization service only
hash values, no private data that is revealed to that
external service. It may still be useful to encrypt the
tuples that flow from the database to the validator, if
that process communicates with the DBMS over non-
secure channels.

As mentioned in Section 2, Schneier and Kelsey ad-
dress audit logs that are used for later forensic investi-
gations into detected intrusions [21]. Their require-
ments differ considerably from ours. In particular,
they render the log entries impossible for the attacker
to read. They use a hash linking in a similar way
to our algorithm. They do not consider efficiency is-
sues, which are critical in our situation where an online
transactional database is being logged.

Merkle proposed a digital signature system based
on a secure conventional encryption function over a
tree of document fragments [15]. This work could be
utilized within an notarization service, but is not di-
rectly applicable to our problem of hashing the data
of individual transactions.

Devanbu et al. applied the Merkle Tree authenti-
cation mechanism to both relational [6] and XML [5]
data. Here the model is different: queries over static
data which has been previous digested are evaluated
by an insecure server. The query results are sent to
clients, which can independently verify, using the di-
gest, that the result contains all the requested records
and no superfluous records. While our approach also

513

Fig. 4. Changing the Number of
Transactions per Application.

Symbol Name Definition
CE Corruption event An event that compromises the database

The validation of the audit logVE Validation event
by the notarization service
The notarization of a documentNE Notarization event
(hash value) by the notarization service

IV Validation interval The time between two successive VE s
IN Notarization interval The time between two successive NE s

Temporal detection Finest granularity chosen to express
Rt resolution temporal bounds uncertainty of a CE

Spatial detection Finest granularity chosen to express
Rs resolution spatial bounds uncertainty of a CE
tFVF Time of first validation failure Time instant at which the CE is first detected

Upper bound of the spatial uncertaintyUSB Upper spatial bound
of the corruption region
Lower bound of the spatial uncertaintyLSB Lower spatial bound
of the corruption region
Upper bound of the temporal uncertaintyUTB Upper temporal bound
of the corruption region
Lower bound of the temporal uncertaintyLTB Lower temporal bound
of the corruption region

2

Corruption Event

Corruption
Schema

CorruptedTable Schema Other SchemaColumn Schema
Corrupted

Hash Value
Corrupted

Data
Corrupted

d

Corruption
Main Memory

(in memory)(in memory)

dd

Corrupted

This conceptual framework on information accountability architecture with
advanced capabilities, forensic analysis tools and their evaluation will be
extremely valuable and applicable to a variety of sectors. They can:

• ensure record compliance for financial and medical institutions,

• serve as an unbiased witness to databases storing sensitive information,
e.g., court-submitted data from police databases,

• ensure non-deviation from standard operating procedures in biosciences
labs (provenance of results),

• detect bugs silently corrupting databases,

• detect corruption shortly after tampering,

• automate some of the forensic work required in the aftermath
 of a database corruption saving both time and money,

• have advantages over information restriction approaches relying on
hardware (prohibitive costs for small institutions, limited shelf-life, relatively
complex), and

• mirror the relationship between the law and human behavior more closely.

Funded by NSF grants IIS-0415101 and IIS-0803229 and a grant from Surety, LLC.

Partition Field
(on disk)

Non Partition Field

lesser value Postdated

(on disk)

greater value

Implicit
AttributeAttribute

Explicit

Field

Changed to

Tuple Deleted
Data in

Header Corrupted

Changed to

Virtual

(on disk)
Corrupted

Partial Chain

Attribute

for page hashing.
NB: This is only

Changed
Transaction ID

Total Chain

Corruption Event

Data Corruption

Hash Value
(on disk)

Corrupted

Transaction Log

Corrupted

(on disk) Corrupted

d

d

d

Header Deleted

d

d

d

d

d

(on disk)
Entire Tuple

Backdated

24

t

ct

I
N

= 2

I
NVI

R = 2s

R = 6t

FVFt = UTB

CE

When

Where
USB

 Failure (FVF)
First Validation

NE0

.

16 LSB t FVF

NE
1

NE
2

NE
3

NE
4

NE
5

NE10

NE11

VE
4NE12

NE7

VE2NE6

NE8

VE3NE9

VE1

22

= 6 = 3

18
LTB

l

.

= 2Rt

IN = 2VI =

8,4,0

Rs

2 164 6 8 10 12 14
Where

0

VE1

VE

VE3

VE4

VE5

VE6

VE7

VE8

P

2P2,0,2

2,0,3

P2,1,1
4 4,3,0

P
P

6,0,10P

6,2,2

6,1,5

B = P

B = P
P

= 1

8

8,3,1
P8,2,3

8,1,7
P

P

8,0,14 P8,0,15

P4,2,1

4,1,3
P
P

4,0,6

P6,0,11

P4,0,7
B = P2 2,2,0

When

B = P
P1,0,0 P1,0,1

1,1,01

NE

CE1 2CE

http://www.cs.arizona.edu/projects/tau/dragoon/
http://www.cs.arizona.edu/projects/tau/dragoon/

