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Abstract—Relational database management systems are gen-
eral in the sense that they can handle arbitrary schemas, queries,
and modifications; this generality is implemented using runtime
metadata lookups and tests that ensure that control is channelled
to the appropriate code in all cases. Unfortunately, these lookups
and tests are carried out even when information is available
that renders some of these operations superfluous, leading to
unnecessary runtime overheads. This paper introduces micro-
specialization, an approach that uses relation- and query-specific
information to specialize the DBMS code at runtime and thereby
eliminate some of these overheads. We develop a taxonomy
of approaches and specialization times and propose a general
architecture that isolates most of the creation and execution of
the specialized code sequences in a separate DBMS-independent
module. Through three illustrative types of micro-specializations
applied to PostgreSQL, we show that this approach requires
minimal changes to a DBMS and can improve the performance
simultaneously across a wide range of queries, modifications, and
bulk-loading, in terms of storage, CPU usage, and I/O time of
the TPC-H and TPC-C benchmarks.

I. INTRODUCTION

Relational database management systems are by their nature

general, in that they can handle whatever schema the user

specifies and whatever query or modification is presented to

them. Relational operators work on essentially any relation

and must contend with predicates specified on any attribute

of the underlying relations. Through such innovations as

effective indexing structures, innovative concurrency control

mechanisms, and sophisticated query optimization strategies,

relational DBMSes are very efficient. Such generality and

efficiency has enabled their proliferation and use in many

domains.

This generality presents challenges to further increases in

performance. Consider accessing attributes of a tuple. Such

access requires consulting metadata. The catalog, which con-

tains the schema, must be scanned for each attribute value

of the tuple in this relation extracted. Although this catalog

lookup has been optimized, its overhead will still accumulate

over large relations, representing significant overhead.

DBMS specialization is an approach to improving the

efficiency of DBMSes by providing a version customized in a

way that avoids the inefficiencies resulting from the generality.

Much of the work over the last three decades in improving

DBMS performance can be characterized as specialization

with various levels of granularity. At the architectural level, the

overall architecture of the DBMS is adapted to better support a

class of applications. Examples include column-oriented stores

for OLAP, H-store for OLTP, and stream processing DBMSes.

At the component level, a component oriented to a particular

kind of data is added to the DBMS. Examples include new

types of operators, indexes, and locking modes. At the user-

stated level, users write triggers and user-defined functions

to achieve better performance. The drawbacks of these three

levels of specialization are lack of general applicability for

architectural specialization, greater complexity in query opti-

mization, DBMS development, testing, and maintenance for

component specialization, and the need for complex user

involvement for user-stated specialization.

This paper introduces micro-specialization, an approach

that applies at a finer granularity than that of architectural

or component specialization. Our approach takes advantage

of information specific to the particular environment of a

DBMS by identifying variables within an individual com-

ponent whose values—typically, schema metadata or query-

specific constants—are invariant within the query evaluation

loop. This information is used for fine-grained specialization

that eliminates unnecessary operations along frequently-taken

execution paths, leading to optimized code that is both smaller

and faster. Often this loop is evaluated for every tuple in

the underlying relation(s), thereby offering the possibility of

significant performance improvements. However, since the

invariants used for specialization are available only at runtime,

such specialization cannot be carried out using traditional

compiler techniques: micro-specialization applies at DBMS

runtime. This implies that the specialization process itself has

to be extremely lightweight, which raises a host of nontrivial

technical challenges.

This paper describes DBMS micro-specialization, applies

this concept to a complex DBMS, and evaluates its effective-

ness and cost. Our contributions are the following.

• We introduce a taxonomy of micro-specialization oppor-

tunities, based on the kind of variable(s) inducing the

specialization and when the specialization is done.

• We implemented a general module that supports and

realizes micro-specialization and added calls to this API

within PostgreSQL [14] to apply all three kinds of

micro-specialization. The changes that are required to

incorporating this module to PostgreSQL are minimal.

• We evaluated our ideas empirically using this proto-

type implementation, focusing on the TPC-H [27] and

TPC-C [26] benchmarks. Our experiments show that

each micro-specialization improves performance and that,

in concert, micro-specialization can significantly reduce

DBMS run times across bulk-loading, complex analytic

queries, and random modifications. For TPC-H, per-query

execution times improve by up to 33%, with an average



improvement across all queries of over 12%. For TPC-

C we observed throughput improvements exceeding 11%

(with queries and modifications weighted equally).

Micro-specialization incurs none of the disadvantages of the

coarser-grained specializations. Since the DBMS architecture

is not changed, it does not constrain the breadth of applica-

tions that can be supported. As micro-specialization adds no

additional components, it does not increase DBMS complexity.

Micro-specialization requires no user involvement. Moreover,

micro-specialization has the potential of being applied in con-

cert with the other three forms of specialization. For example,

it can be applied directly to column-oriented DBMSes and

main-memory-based DBMSes and to new kinds of operators.

We first examine in detail a single micro-specialization that

improves the performance of even simple queries. In this

case study, we examine the specific code changes, predict the

performance improvement, and then validate our prediction

with an experiment. Section III examines micro-specialization

opportunities broadly with a taxonomy showing where and

when to apply micro-specialization. We then introduce a

general API and discuss how to insert calls to that API to

effect micro-specialization. We apply all three kinds of micro-

specialization to PostgreSQL. We then characterize through a

set of experiments on the TPC-H and the TPC-C benchmarks

the salutary effect of micro-specialization. Section VII places

micro-specialization in the broader context of DBMS special-

ization and compares our approach with some specific ap-

proaches that share some qualities with micro-specialization.

II. CASE STUDY

In a DBMS, there are many variables which can in fact

be invariant (constant) within the query evaluation loop. For

instance, once the schema of a relation is defined, the number

of attributes is a constant. Moreover, the type of each attribute,

the length of each fixed-length attribute, as well as the offsets

of some attributes (those not preceded by a variable-length

attribute) are constants for this relation.

Listing 1 excerpts a function, slot_deform_tuple(),

from the source code of PostgreSQL. This function is executed

whenever a tuple is fetched; it extracts values from a stored

tuple into an array of long integers. The function relies on

a loop (starting on line 11) to extract each attribute. For each

attribute, a path in the code sequence (from line 12 to line 43)

is executed to convert the attribute’s value within the stored

bytes of the tuple into a long integer (that is, bytes, shorts,

and ints are cast to longs and strings are cast to pointers).

The catalog information for each attribute is stored in a

struct named thisatt. As Listing 1 shows, attribute length

(attlen), attribute physical storage alignment (attalign),

and attribute offset (attcacheoff) all participate in select-

ing a particular execution path.

Within a conventional DBMS implementation, these vari-

ables are used in condition checking because the values of

these variables depend on the specific relation being queried.

Such generality provides opportunities for performance im-

provement. Micro-specialization focuses on such variables;

1 void slot_deform_tuple(TupleTableSlot *slot, int natts) {

2 ...

3 if (attnum == 0) {

4 off = 0;

5 slow = false;

6 } else {

7 off = slot->tts_off;

8 slow = slot->tts_slow;

9 }

10 tp = (char *) tup + tup->t_hoff;

11 for (; attnum < natts ; attnum++) {

12 Form_pg_attribute thisatt = att[attnum];

13 if ( hasnulls && att_isnull(attnum, bp)) {

14 values[attnum] = (Datum) 0;

15 isnull[attnum] = true;

16 slow = true;

17 continue;

18 }

19 isnull[attnum] = false;

20 if (!slow && thisatt-> attcacheoff >= 0) {

21 off = thisatt->attcacheoff;

22 } else if (thisatt-> attlen == -1) {

23 if (!slow && off == att_align_nominal(off, thisatt-> attalign )) {

24 thisatt->attcacheoff = off;

25 } else {

26 if (!slow && off == att_align_nominal(off, thisatt-> attalign )) {

27 thisatt->attcacheoff = off;

28 } else {

29 off = att_align_pointer(off, thisatt-> attalign , -1, tp + off);

30 slow = true;

31 }

32 } else {

33 off = att_align_nominal(off, thisatt-> attalign );

34 if (!slow)

35 thisatt->attcacheoff = off;

36 }

37 values[attnum] = fetchatt(thisatt, tp + off);

38 off = att_addlength_pointer(off, thisatt-> attlen , tp + off);

39 if (thisatt->attlen <= 0)

40 slow = true;

41 }

42 ...

43 }

44 }

Listing 1. The slot_deform_tuple() Function

when they are constant within the query evaluation loop, the

corresponding code sequence can be dramatically shortened.

We utilize the orders relation from the TPC-H bench-

mark as an example to illustrate the application of micro-

specialization. To specialize the slot_deform_tuple()

function for the orders relation, we first identify the vari-

ables that are constants. According to the schema, no null

values are allowed for this relation. Therefore the null check-

ing statements from lines 13 to 18 are not needed. Instead,

we can assign the entire isnull array to false at the

beginning of the function. Since each value of the isnull

array is a byte, we can collapse the assignments with a few

type casts. For instance, the eight assignments of isnull[0]

to isnull[7] can be converted to a single, very efficient

statement: (long*)isnull = 0;

As discussed earlier, some of the variables in Listing 1 are

constant for any particular relation. For the orders relation,

the value of the natts (number of attributes) variable is

9. We apply loop unrolling to avoid the condition checking

and the the loop-counter increment instructions in the for

statement. The resulting program simply has nine assignment

statements.

values[0] = ...;

values[1] = ...;

...

values[8] = ...;



1 void GetColumnsToLongs(char* data, int* start_att, int* offset,

2 bool* isnull, Datum* values) {

3 *(long*)isnull = 0;

4 isnull[8] = 0;

5 values[0] = *(int*)data;

6 values[1] = *(int*)(data + 4);

7 values[2] = (long)(address + bee_id * 32 + 1000);

8 *start_att = 3;

9 if (end_att < 4) return;

10 *offset = 8;

11 if (*offset != (((long)(*offset) + 3) & ˜((long)3)))

12 if (!(*(char*)(data + *offset)))

13 *offset = (long)(*offset + 3) & ˜(long)3;

14 values[3] = (long)(data + *offset);

15 *offset += VARSIZE_ANY(data + *offset);

16 *offset = ((long)(*offset) + 3) & ˜((long)3);

17 values[4] = (*(long*)(data + *offset)) & 0xffffffff;

18 *offset += 4;

19 values[5] = (long)(address + bee_id * 32 + 1001);

20 *start_att = 6;

21 if (end_att < 7) return;

22 if (!(*(char*)(data + *offset)))

23 *offset = (long)(*offset + 3) & ˜(long)3;

24 values[6] = (long)(data + *offset);

25 *offset += VARSIZE_ANY(data + *offset);

26 values[7] = *(int*)(address + bee_id * 32 + 1002);

27 if (!(*(char*)(data + *offset)))

28 *offset = (long)(*offset + 3) & ˜(long)3;

29 values[8] = (long)(data + *offset);

30 *start_att = 9;

31 }

Listing 2. The Micro-Specialized GetColumnsToLongs() Function

Now let’s focus on the type-specific attribute extraction

statements. The first attribute of the orders relation is

an four-byte integer. Therefore, we don’t need to consult

the attlen variable with a condition statement. Instead,

we directly assign an integer value from the tuple with this

statement.

values[0] = *(int*)(data);

Note that the data variable is a byte array in which the

physical tuple is stored. Since the second attribute is also an

integer, the same statement also applies. Given that the length

of the first attribute is four bytes, we add four to data as

the offset of the second attribute.

values[1] = *(int*)(data + 4);

The resulting specialized code for the orders relation

is presented in Listing 2. Although the code looks longer,

the for loop in Listing 1 has been unrolled nine times.

As as result, the specialized code will execute many fewer

instructions than the stock code. Manual examination of the

executable object code found that that the for loop executes

about 340 machine instructions (x86) for the orders relation

in executing the following query.

select o_comment from orders;

To execute the specialized code, we simply insert a function

call to the GetColumnsToLongs() function to replace the

for loop. The specialized code has only 146 instructions, for

a reduction of approximately 190 instructions.

To determine the actual performance benefit, we studied the

above query in detail. This query requests a sequential scan

over the orders relation, which has 1.5M tuples (with the

scale factor set to one for the TPC-H dataset). Given that the

specialized code saves 190 instructions and the code is invoked

1.5M times (once per tuple), the total number of instructions

is expected to decrease by 285M.

We utilized callgrind [11] to collect the execution

profiles. The summary data produced by callgrind states

the total number of executed instructions, the number of

instructions for each function, and other runtime information.

We first focus on the counts for the executed instructions.

We profiled the execution of this query with both a stock

PostgreSQL and one with the shorter code replacing the for

loop. (We elaborate in detail how such code is managed within

the DBMS in Section IV.) The total number of executed

instructions of the stock PostgreSQL was 3.447B, which im-

plies that this micro-specialization will produce an (estimated)

reduction of about 8.3%. The total number of instructions

actually executed by the specialized PostgreSQL is 3.153B,

a (measured) reduction of 8.5%, consistent with our earlier

estimate. We then measured the total running time of the

query on the stock PostgreSQL and the specialized version,

at 734 milliseconds and 680 milliseconds, respectively. The

improvement in running time (7.4%) is consistent with the

profile analysis.

By specializing a single routine, the generic

slot_deform_tuple() function, on just a few variables,

we were able to achieve a 7.4% running time improvement

on a simple query. This improvement suggests the feasibility

and benefits of applying micro-specialization aggressively.

III. APPROACH

Each micro-specialization identifies one or more variables

whose value will be constant within the query evaluation

loop. It then replaces a function or small stretch of code

with multiple copies, each particular to a single value of

each of those variables. In the example given above, the

variables concerned the relation being scanned. Hence, we

need a specialized version of GetColumnsToLongs() for

each relation.

We first introduce terminology for the specifics of our

approach.

• The specialized code, in this case associated with a

particular relation is termed a bee.

• A bee can have multiple bee routines, each produced

by a particular micro-specialization at a certain place in

the DBMS source code on one or more variables that

have been identified as being invariant across the query

evaluation loop.

In the example given above, micro-specialization is ap-

plied on values (attribute length, etc.) that are constant for

each relation, and so a bee routine results. We term this

particular bee routine GCL, as shorthand for the specialized

GetColumnsToLongs() routine. There will be a unique

relation bee for every relation defined in a database.

We specialized another PostgreSQL function named

heap_fill_tuple that constructs a tuple to be stored from

an long integer array, resulting in a separate bee routine namely

SetColumnsFromLongs() (SCL) for each relation. So

each relation bee now has two bee routines.

This general approach raises two central questions: where

can micro-specialization be applied and when during the

timeline from relation-schema definition to query evaluation

can micro-specialization be done?



A. Where to Apply Micro-Specialization?

We present a taxonomy of approaches to

micro-specialization in Figure 1, based on two types of

“variables” in a DBMS where micro-specialization can

be applied to: stored data and internal data structures.

(This taxonomy also includes the other, coarser-grained

specializations discussed in passing at the beginning of the

paper.)

Query Bee

Internal Data StructureStored Data

Relation Bee

Schema Value

Tuple Bee

User−Stated  Level

DBMS Specialization

Architectural Level Component Level DBMS Micro−Specialization

Fig. 1. The Taxonomy of Where to Apply Micro-Specialization in DBMSes

We previously discussed two bee routines within relation

bees. These specialize code based on aspects of individual rela-

tions; hence, the specialization is that of the relational schema.

In this particular case, we specialize on each attribute’s length,

offset, alignment, and the presence of nullable attributes, as

well as on the number of attributes in the relation.

We can extend the application of micro-specialization down

to an individual tuple by introducing tuple bees, in which

specialization focuses on the values of particular attributes

within a tuple. Consider an attribute with a few distinct values,

such as “gender.” When the value extraction routine requests

the value of this attribute, instead of computing the length,

offset, and alignment of the attribute, a single assignment

such as values[x] = ’M’; can properly fulfill the value

extraction of this attribute. This occurs within a tuple bee

associated with that tuple; we do so by including in such tuples

a short index identifying the appropriate tuple bee, termed a

beeID. So we might just have two tuple bees, one for each

gender, or we might also specialize on other attributes, as long

as there aren’t too many tuple bees generated, so that a small

number of tuple bees are generated for all the tuples in the

relation.

The last type of bee specializes on internal data structure

issued during query evaluation, for which some of the values in

the data structure are constant during the evaluation loop of a

query. For example, a query that involves predicates will utilize

a FuncExprState data structure (a C struct) to encode

the predicate. For the predicate age <= 45, this predicate data

structure contains the ID of attribute age, the <= operator,

and the constant 45. We can thus apply specialization on these

variables once we know the predicate from the query. The bees

resulting from specializing such query-related data structures

are thus termed query bees.

This taxonomy characterizes three different kinds of bees,

depending on the kind of variable specialized on to create the

bee. By identifying values used by oft-executed code within

the query evaluation loop, many bee routines can be created.

Each bee routine will independently speed up a subset of

queries.

B. When Can Micro-Specialization be Applied?

Figure 2 depicts when individual bees of each kind are

created. Relation bees are created at relation schema definition

time, one for each newly-created relation. Individual query

bees are created during query plan generation. Once we have

a query plan, we know the particulars of the various data

structures used in query evaluation, and so can generate the

highly-specific code that uses these structures. Tuple bees are

created during the evaluation of tuple insertions and updates,

deep within the query evaluation loop.

Schema Definition Query Preparation Query execution,
insert, and update

Relation bee Query bee Tuple bee

Fig. 2. When to Create Various Kinds of Bees

Each bee routine is the result of specializing on a type

of variable, as emphasized in Figure 1. Note though that

a variable available to an earlier specialization is thus also

available to a later specialization. So for example a micro-

specialization on an attribute’s offset in a relation bee can

both be utilized in a query bee or tuple bee. Hence, as we

travel to the right along the timeline from schema definition to

query execution, the number of variables available for micro-

specialization accumulate, making those later bees highly

efficient.

Where bee creation resides along the timeline affects how

efficient bee creation must be. Note however that we are not

discussing the design of a bee routine. As we will see in the

next section, the code to create the individual bees and to

invoke bee routines is manually inserted into the DBMS before

it is compiled. Here we are focusing on creation of individual

bees, each containing specialized code resulting from knowing

the exact values of the variable(s) evincing the specialization.

For relation bees, bee creation overhead is not critical.

Hence, when creating a relation bee, we can invoke gcc to

compile the source code, as illustrated in Listing 2, to produce

the executable object code for the bee.

Because ad hoc queries need to be fast, the overhead of

generating query bees needs to be minimized. Recall that

query bee may contain the join and predicate evaluation

routines. In the case of join, all possible combinations of the

join routines, such as different types of joins (left, semi, anti,

etc.) can be enumerated and compiled ahead of time. At query

preparation time, the associated join bee routine is assembled

by selecting one of the pre-compiled join evaluation routines

in the executable form.

Delving down into the details, there are two ways that

specialization affects query bee code. Some specializations,



such as on the join type for a join evaluation bee routine in

a query bee, affect the object code, thus resulting in multiple

versions of a bee routine. Other specializations, such as the

attribute ID for both the join and predicate bee routines, only

affect constants in the bee routine. For the latter, the bee is

effectively cloned each time, with different values substituted

for the latter values, as discussed in Section V. Only the unique

object code combinations need be generated ahead of time.

Finally, tuple bee generation needs to be extremely fast

because the generation occurs during query execution. As

discussed earlier, a tuple bee may contain the value(s) for

particular attribute(s). As just mentioned, the bee can be

cloned, with the particular value(s) then substituted. Creating

tuple bees is thus very efficient, as we will demonstrate when

we evaluate the performance in detail in Section VI.

It may seem that by creating individual bees, additional code

is being added to the DBMS. In fact, the introduced code

replaces the original code. Moreover, at run time a significant

amount of instructions can be reduced by the specialized code,

as illustrated in the case study.

IV. A BEE ARCHITECTURE

We propose a separate Generic Bee Module which performs

many of the underlying management tasks associated with cre-

ating bees and executing bee routines on behalf of the DBMS.

The bee module provides an API to the DBMS, thereby

making it easy for DBMSes to utilize micro-specialization

while minimizing modifications to the existing DBMS.

Figure 3 depicts a conventional DBMS architecture [12].

The lightly-shaded boxes, including a repository (Templates),

comprise the components of the bee module. This module pro-

vides the bee configuration, bee generation, and bee invocation

functionality in a largely DBMS-independent fashion.

The shaded boxes represent the code added to the DBMS

to invoke methods provided by the bee module API, as well

as the other changes required to existing code within DBMS.

To fully support all the bee types in the taxonomy of Figure 1,

three existing DBMS components (the DDL Compiler, the

Runtime Database Processor, and the Stored Data Manager),

two repositories (the System Catalog/Data Dictionary and the

Stored Database), and the schema (the DDL Statements) need

to be augmented with added code (depicted with darker boxes).

The thick lines denote calls to a component of the bee module

and the dotted lines depict either storage of or access to schema

information.

While the bee module comprises all of the functionality

needed for incorporating bees into a DBMS (admittedly a good

number of boxes in the figure), it is still quite manageable, as

we’ll see in the next section. One (continuing) challenge has

been how to effectively partition the generic code from the

DBMS-specific code additions, while ensuring that each bee

routine provide added efficiency.

The developer performing micro-specialization, i.e., re-

placing some generic DBMS code with calls to specialized

bee routines, must decide what bee routines are to be provided

and effect the execution of bee routines in the context of query

evaluation. The changes required to the architecture of a con-

ventional DBMS to accommodate bees can correspondingly

be classified into two groups, termed the Bee Configuration

Group and the Query Evaluation Group, respectively. We now

examine the components within each group.

A. The Bee Configuration Group

Each bee routine represents existing DBMS code that has

been specialized based on invariant values, replaced with a call

to that bee routine. The specific source code for that routine,

for a particular bee, is generated by this group of components.

To generate an individual bee, the bee routines need to be

specified by the developer performing micro-specialization.

That developer uses whatever tools (e.g., code inspection,

profiles) that are helpful. This manual task is outside of the

scope of this paper; our only comment is that there seems to

be a plethora of opportunities for such specialization within

PostgreSQL. Each routine is assembled by the developer into

a set of code snippets. For instance, to assemble the GCL

bee routine discussed in the case study, the code snippets

corresponding to each attribute are selected and grouped as

the C source code shown in Listing 2. We term such resulting

source code snippets, templates, in that they are not yet

executable. Concerning a query bee that involves joins, we

mentioned in the previous section that to avoid invoking gcc

during query evaluation, we compose a code template with the

join type and a few other variables specified as global variable,

which can be optimized away when invoking gcc with these

variables specified using the -D option.

As discussed in Section III-A, many tuples can share the

same tuple bee. Moreover, all the tuples can in fact share

the same relation bee routines such as GCL. The difference

among various tuple bees is the data values. We create a

clustered storage for all the distinct data values. We term this

storage area the data section. To access the data section so that

the tuple bees can respond with proper values to queries for

particular tuples, the relation bee routines are modified to have

“holes” for the specialized attributes, as shown in Listing 2,

lines 7, 19, and 26. The bee_id argument is used to identify

which data section a tuple bee is associated with. Therefore, it

is necessary to store a bee ID along with each tuple. The magic

numbers 1000, 1001, and 1002 shown in Listing 2 are used

as identifying placeholders such that the correct data section

addresses can be instantiated for a particular tuple bee.

Annotations are used in the creation of tuple bees, to specify

which attributes, such as “gender,” have small cardinalities.

Annotations can be specified explicitly by the DBA or can

be inferred (such as from SQL domains), a topic beyond the

scope of this paper. The remaining component of the bee

configuration group is bee reconstruction, triggered by changes

in the schema of a relation.

B. The Query Evaluation Group

This collection of eight components all perform critical

tasks to ensure that bees are properly managed by the bee

module, coupled with actions within the DBMS itself.
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Fig. 3. Architecture of a Bee-Enabled DBMS

First, after the code templates for a particular bee are

composed, the Bee Maker is invoked to compile the source

code or replace placeholders in the object code. For relation

bees, the bee maker is invoked at schema definition time.

The bee maker relies on gcc to compile the template source

code for bees. The resulting object file, namely Executable

and Linkable Format (ELF) [13] contains a collection of

information including headers, tables, variables, and function

bodies, which are all useful when the ELF file is linked

and loaded into memory for execution, in its conventional

usage. However, to assemble a bee, only the function bodies

corresponding to the bee routines are needed. So the bee

maker extracts the function bodies and uses them to create

the individual bee. For query bees, the bee maker is invoked

from the query optimizer; for tuple bees, from the runtime

database processor, specifically, the code that performs the

tuple insertion or update. To avoid source code compilation

during query preparation and evaluation when creating query

and tuple bees, the template source code is pre-compiled. The

resulting binary code is used to instantiate each executable bee

routine. For query bees, instead of extracting the attribute ID

and constant value in the comparison of a predicate with a

general expression parsing routine, these two numbers can be

inserted directly into the executable code, resulting in fewer

instructions that reference these values as compared to the

generic routine.

The resulting object code is stored in the Bee Cache, which

is a repository of all the bees in executable form. The bee

cache is written to disk along with the relations and database

metadata.

The Bee Cache Manager component manages the bees

when they are in main memory. When the bee templates are

compiled into object code, the bees are formed and flushed to

the on-disk bee cache. When the DBMS server starts, all the

bees (or perhaps only the ones that are needed) are loaded into

main memory so that bees can be directly invoked. Currently

the bee cache is not guaranteed to survive across power failures

or disk crashes, though a stable bee cache could be realized

through the Undo/Redo logic associated with the log.

When a query is evaluated, the Bee Caller acquires the

proper arguments. As an example, the GCL routine requires

a pointer to the tuple (the data argument). The bee caller

passes the needed arguments to the bee cache manager, and

the bee cache manager invokes the proper bee routine with

these arguments. The bees are placed at designated locations in

memory such that the cache miss caused by executing the bees

is minimized. Given that DBMSes at query evaluation involve

a significant amount of instructions to be executed with many

iterations, to effectively prevent bees from increasing further

cache misses, bees are placed at memory locations that will

not overlap with existing DBMS code in instruction cache. The

placements are computed by the Bee Placement Optimizer.

Note that we observed that the level-1 instruction cache miss

rate is just around 0.3% across most TPC-H queries, therefore,

the run time improvement produced by a proper placement of

bees is trivial. However, we consider this component to be

important in that it ensures an code locality optimized envi-

ronment where more bees can be introduced with minimized

impact on instruction cache.

Finally, the Bee Collector garbage collects dead bees (e.g.,

those not used anymore due to relation deletion), from those

in both the bee cache manager (those bees in main memory)

and in the bee cache on disk.



C. The Generic Bee Module

We have implemented initial versions of all of the com-

ponents shown in Figure 3 to realize a fully-elaborated bee

module, consisting of six thousand source lines of code

(SLOC). This module is rather complex, as it has to deal with

constructing bee routines from source code and from object

code, it has to insert specific values into data sections within

the object code, it has to place the object code so that that

code occupies the desired cache lines, and it has to carry out

all of these tasks efficiently.

V. BEE-ENABLED POSTGRESQL

The generic bee module provides functionality for creating

and invoking relation, query, and tuple bees during query

evaluation.

To evaluate the merits of micro-specialization generally

as well as the architecture presented in the last section, we

also implemented all three types of bees, some with several

bee routines, in PostgreSQL. To do so, we first identified

code sequences that simultaneously (i) appeared in the query

evaluation loop, (ii) constituted a significant portion of the

runtime of query evaluation, (iii) referenced variables whose

value was invariant across the query evaluation loop, and

(iv) could benefit significantly from micro-specialization, by

removing branches and accesses on those variables.

We discussed in Section III two relation bee routines: the

GetColumnsToLongs() function (the GCL bee routine)

and the SetColumnsFromLongs() function (the SCL bee

routine). The first routine is further specialized of specific

attribute values, by placing the attribute value in a tuple bee.

An initial analysis identified 70 data structures in

PostgreSQL that could be targeted for micro-specialization to

create query bee routines. While not all are involved in every

query, each is used by a subset of the queries, and some queries

would use several such bees.

We created two query bee routines. One micro-specialized

the predicate evaluation routine on the FuncExprState

data structure, to realize an evaluate predicate, or EVP, query

bee routine. As mentioned in the previous section, to avoid

source code compilation during query preparation, the tem-

plate source code for EVP is pre-compiled and specific values

inserted into the object code during bee creation.

A second query bee routine micro-specializes the

JoinState data structure, to realize the evaluate join, or

EVJ, query bee routine. A relation join will utilize this data

structure, containing the join comparison operator, the attribute

IDs of the inner and outer tuples, and the type of join (e.g.,

anti-join, semi-join, left-join). These variables are all constant

during the evaluation of a query. The values of these variables

are inserted during bee creation.

For each of the relation, query, and tuple bees, we manually

constructed the C or object code templates and inserted

code in the DBMS to call the bee maker. We also inserted

code to call the bee, thus replacing the generic code with

highly-specialized code. We added the darkly-shaded boxes

to the DBMS for memory allocation, resource reclamation,

pointer assignments, and argument passing. The changes to

PostgreSQL, which comprises 380K SLOC, was only about

600 SLOC for these components in concert.

We applied micro-specializations in parallel with the de-

velopment of the generic bee module. Each new kind of

bee requires extensions to the bee module. In the last few

months of development, the bee module has settled down.

The challenge remains in choosing the DBMS code to be

micro-specialized and in creating the templates to be used

during query evaluation by the bee maker.

VI. EMPIRICAL EVALUATION

Micro-specialization replaces generic code containing many

branches with highly customized code that relies on identified

values being invariant in the query evaluation loop. The result

is fewer instructions executed on each bee invocation, which

when summed across the often millions of times around the

loop can result in significant increase in performance.

We have investigated the performance impact of micro-

specialization in many contexts: simple select queries such

as discussed in the case study, OLAP-style queries and high-

throughput bulk-loading in the TPC-H benchmark, and OLTP-

style queries and modifications in the TPC-C benchmark.

To generate the dataset in TPC-H, we utilized the DBGEN

toolkit [27]. The scale factor for data generation was set

to one, resulting in the data of size 1GB. For TPC-C, we

used the BenchmarkSQL-2.3.2 [17] toolkit. The number of

warehouses parameter was set to 10 when the initial dataset

was created. Consequently, a total of 100 terminals were used

(10 per warehouse, as specified in TPC-C’s documentation)

to simulate the workload. We also added DDL clauses to

identify the handful of low-cardinality attributes the TPC-H

relations. Other than specifying the scale factor and number

of warehouses, we made no changes to other parameters used

in the TPC-C and TPC-H toolkits for dataset preparation.

All the experiments were performed on a machine with a

2.8GHz Intel i7 860 CPU, which contains four cores. Each

core has a 64KB Level-1 (L1) cache, which consists of a

32KB instruction (I1) and a 32KB data cache. The CPU

is also configured with a 256K unified level-2 (L2) cache.

Our prototype implementation used PostgreSQL version 8.4.2,

compiled using gcc version 4.4.3 with the default build param-

eters (where the optimization level, in particular, is –O2).

A. The TPC-H Benchmark

We start with the TPC-H benchmark to compare the perfor-

mance of the bee-enabled PostgreSQL with the stock DBMS.

The TPC-H benchmark creates a database resembling an

industrial data warehouse. The queries used in the bench-

mark are complex analytic queries. Such a workload, featured

with intensive joins, predicate evaluations, and aggregations,

involves large amount of disk I/O and catalog lookup. In

particular, we examine the importance of applying bee place-

ment optimization, which provides an improved cache-miss

reduction framework, thus allowing bees to be more efficiently



executed. In studying bulk-loading, we quantify the running

time improvement in populating the same relations.

All 22 queries specified in TPC-H were evaluated in both

the stock and bee-enabled PostgreSQL. The running time was

measured as wall-clock time, under a warm-cache scenario.

We first focus on the warm-cache scenario to study the

CPU performance: keeping the data in memory effectively

eliminated the disk I/O requests.

We ran each query twelve times. The highest and lowest

measurements were considered outliers and were therefore

dropped. The running time measurement for each query was

taken as the average of the remaining ten runs.

To ensure the validity and repeatability of the results, we

tried to ensure that in evaluating these 22 queries, both the

stock and the bee-enabled PostgreSQL were in fact using

the same query plans. It was difficult to ensure that the two

DBMSes would always choose the same plan, especially as

the underlying relations had different characteristics under the

two DBMSes through micro-specialization, e.g., the relation

size, tuple size, and number of pages occupied by a relation.

However, by setting the “default statistics target” parameter

in the postgresql.conf file to 1000 (100 by default),

we were successful in ensuring 21 of the queries were using

the same plan across the two DBMSes. The only query with

different plans was query21.
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Fig. 4. TPC-H Run Time Improvement (Warm Cache)

Figure 4 presents the percentage performance improvements

for each of the 22 queries with a warm cache, shown as

the green (lightly shaded) bars. We include two summary

measurements, termed Avg1 and Avg2, shown as the blue

(more darkly shaded) bars. Avg1 is computed by averaging the

percentage improvement over the 22 queries, such that each

queries is weighted equally. Avg2 is computed by comparing

the sum of all the query evaluation time. Given that query17

and query20 took much longer to finish, about one hour and

two hours, respectively, whereas the rest took from one to 23

seconds, Avg2 was highly biased towards these two queries.

The range of the improvements is from 1.4% to 32.8%, with

Avg1 and Avg2 being 12.4% and 23.7%, respectively. In this

experiment, we enabled tuple bees, relation bees, and query

bees, involving the GCL, EVP, and EVJ bee routines. As

shown by this figure, both Avg1 and Avg2 are significant,

indicating that the performance improvement achieved in the

bee-enabled PostgreSQL are generally applicable.

To ascertain the I/O improvement achieved by tuple bees,

we then examined the run time of the 22 queries with a cold
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Fig. 5. TPC-H Run Time Improvement (Cold Cache)

cache, where the disk I/O time becomes a major component

of the overall run time. Figure 5 presents the run time

improvement with a cold cache. The improvement ranges from

0.6% to 32.8%, with Avg1 being 12.9% and Avg2 22.3%.

A significant difference between this figure and Figure 4 is

that the performance of q9 is significantly improved with

a cold cache. The reason is that q9 has six relation scans.

Tuple bees are enabled for the lineitem, orders, part,

and nation relations. Therefore, scanning these relations, in

particular the first two benefits significantly from attribute-

value specialization and thus the near 17.4% improvement is

achieved with a cold cache.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 21 22 Avg1Avg2

P
e
rc

e
n
ta

g
e
 I
m

p
ro

v
e
m

e
n
t

Query Number

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 21 22 Avg1Avg2

P
e
rc

e
n
ta

g
e
 I
m

p
ro

v
e
m

e
n
t

Query Number

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 21 22 Avg1Avg2

P
e
rc

e
n
ta

g
e
 I
m

p
ro

v
e
m

e
n
t

Query Number

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 21 22 Avg1Avg2

P
e
rc

e
n
ta

g
e
 I
m

p
ro

v
e
m

e
n
t

Query Number

Fig. 6. Improvements in No. of Instructions Executed

Figure 6 plots the improvements in the number of instruc-

tions executed for each query. The reductions in dynamic

instruction count (shown as the lightly-shaded green bars in

Figure 6) range from 0.5% to 41%, with Avg1 and Avg2 of

14.7% and 5.7%, respectively. Note that when profiling with

callgrind, program execution usually takes around two

hundred times longer to finish. We were thus not able to collect

the profile data for q17 and q20, Therefore, we omitted the

profile related results for these two queries. This plot indicates

that the running time improvement is highly correlated with

the reduction of instructions executed, further emphasizing

that the benefit of micro-specialization stems from the reduced

instruction executions.

Performance improvement for each query is accomplished

by all the bees that are invoked. Recall that in Section II, just

the GCL routine of a relation bee achieved 7.4% improvement.

A fundamental question is that how much improvement can

be further achieved by adding more bees? More importantly,

would many bees adversely impact each other?

We examine the effect of enabling various bee routines. We

summarize the results in Figure 7. As shown by this figure,

the average improvement with just the GCL routine is 7.6% for
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Fig. 7. TPC-H Run Time Improvement with Various Bee Routines Enabled (Warm Cache)

Avg1 and 13.7% for Avg2. By enabling the EVP routine, the

average improvement reaches up to 11.5% (Avg1) and 23.4%

(Avg2). Among all the queries, q6 shows the most significant

improvement, from 15.1% to 30.6%, by enabling EVP on top

of GCL. This is because q6 contains complicated predicates

whereas the the query scans just one relation. Finally, we en-

able all three bee routines. Although the overall improvement

is slightly increased, we found that a few queries, such as

q2 and q5 were improvement significantly. Not surprisingly,

both queries have complicated join condition evaluations. A

key observation is that by adding more bee routines, the

improvement achieved by the already enabled routines is not

compromised. (The small decrease in running time when all

three bee routines are enabled for queries such as q4 and q22 is

due to measurement error.) The implication is that the micro-

specialization approach can be applied over and over again.

The more places micro-specialization is applied, the better

efficiency that a DBMS can achieve. We term this property

of incremental performance achievement bee additivity.

Most performance optimizations in DBMSes benefit a class

of queries or modifications but slow down others. For example,

B+-tree indexes can make joins more efficient but slow down

updates. Bee routines have the nice property that they are only

beneficial (with two caveats to be mentioned shortly). The rea-

son is that if a bee routine is not used by a query, that query’s

performance will not be affected either way. On the other hand

if the bee routine is used by the query, especially given that the

bee routine executes in the query evaluation loop, that query’s

performance could be improved considerably. N ote that both

Figure 4 and Figure 7 show difference among the performance

improvements. For instance, q1, q9, q16, and q18 all experi-

ence relatively lower improvements. The reason is that these

queries all have complex aggregation computation as well as

sub-query evaluation that have not yet been micro-specialized

with our implementation. These queries with low improvement

point to aggregation and perhaps sub-query evaluation as other

opportunities for applying micro-specialization.

B. Bulk-Loading

A concern is that tuple bee creation during modifications,

such as populating a relation, may be expensive, in that the

specialized attribute values from a newly inserted tuple need

to be examined to determine if a new tuple bee is needed.

Moreover, when a new tuple bee is created, new memory space

needs to be allocated to store this bee. To ascertain the possible

performance hit of this second caveat, we performed bulk-

loading on all the relations in the TPC-H benchmark.
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Fig. 8. Bulk-Loading Run Time Performance

We compared the bulk-loading performance of the

bee-enabled PostgreSQL with the stock version. Since no

query evaluation is performed in bulk-loading, only the

SCL bee routine is involved. Figure 8 presents for each relation

the loading time speed-up. In the TPC-H benchmark, the

region and nation relations each occupies only two disk

pages, which makes the performance impact of loading the

two relations not measurable. Therefore, we created for each

relation a data file that contains 1M rows. The performance of

loading these two relations reported in Figure 8 is based on

populating these two relations each with 1M rows. The rest of

the measurements comply with the original schema and data.

The bulk-load performance improvement presented in Fig-

ure 8 suggests that the overhead of creating tuple bees dur-

ing bulk-loading is in fact compensated by the benefit of

micro-specialization, such that the overall bulk-load perfor-

mance is improved. To understand where the performance

improvement comes from, we studied the profile of bulk-

loading the the orders relation. In bulk-loading this relation,

the stock PostgreSQL executed 148B instructions. Whereas the

bee-enabled PostgreSQL executed 146B instructions. In the

stock execution, the heap_fill_tuple function that con-

structs a physical tuple executed 4.6B instructions. The bee-

enabled PostgreSQL utilizes the SCL bee routine to replace



this generic function. The SCL routine executed 2.4B instruc-

tions. However, the saving does not fully explain the 8.3%

running time improvement shown in Figure 8. The remainder

of the improvement comes from attribute-value specialization.

By utilizing tuple bees, some specialized attribute (distinct)

values are stored within the bees rather than in the relations,

as discussed in Section IV-A, achieving significant disk space

and thus I/O savings, as suggested by Figure 8.

When distinct attribute values need to be store in a tuple

bee, the slab-allocation technique is employed to pre-allocate

the necessary memory, therefore avoiding expensive small

and frequent memory allocation during tuple bee creation. To

determine whether a new tuple bee is needed, we check the

few (maximally 256) possible values with memcmp. Figure 8

indicates that this step is efficient.

In summary, bee creation does not adversely impact the

performance of DBMS operations; rather, the performance is

improved due to the benefit of even a single bee routine.

C. The TPC-C Benchmark

The TPC-C benchmark focuses on throughput. This

benchmark involves five types of transactions executing in

parallel. The throughput is measured as the number of

New-Order transactions processed per minute (tpmC). The

other four types of transactions produce a mix of ran-

dom queries and modifications, which altogether intensively

invoke the bee routines.

Our experiments compared the bee-enabled PostgreSQL

with the stock DBMS. Each DBMS was run for one hour,

to reduce the variance introduced by the experimental system

as well as the DBMS, e.g., the auto vacuum processes.

Performing modifications with micro-specialization was ac-

tually faster: the former completed 1898 transactions per

minute while the stock DBMS could execute 1760 transactions

per minute, an improvement of 7.3%.

We moved beyond this tpmC metric of the TPC-C bench-

mark and studied the throughput with different transaction

settings. We focused on two more quite different scenarios. Of

the five defined transaction types, three of them, New-Order,

Payment, and Delivery include both queries and modifications;

Order-Status and Stock-Level on the other hand only contain

queries. For both scenarios, the weight of the New-Order

transactions was kept at 45%. The default setting resembles a

modification-heavy scenario in that the weight of the Payment

transaction is 43%. Regarding our newly defined scenarios,

the first consists of 27% order-status and 28% stock-level

transactions (that is, only queries). The second scenario has an

equal mix of both modifications and queries. The weight of

the Payment and the Delivery transactions is 27% whereas the

other two types of transactions are weighted 28% in concert.

For the first scenario, that of only queries, the bee-enabled

PostgreSQL and the stock DBMS handled 3699 and 3135

transactions per minute, respectively, for an improvement of

18%. Concerning the second scenario, with modifications

and queries equally weighted, the bee-enabled PostgreSQL

achieved 2220 transactions and the stock version finished

1998. The improvement is 11.1%.

The profile results suggested that both modifications and

queries rely on the slot_deform_tuple function to ex-

tract tuple values. Since this function is micro-specialized

with the GCL routine, significant performance improvement

is achieved for various scenarios in the TPC-C benchmark.

Moreover, since the queries in this workload involves predi-

cates, the EVP routine has also contributed to the improved

throughput, particularly to the query-heavy scenarios.

VII. RELATED WORK

DBMS specialization is a common and effective approach to

increasing performance of DBMSes. These specialization ap-

proaches can be applied independently over a wide spectrum.

In the following, we give a necessarily incomplete sampling

of such specializations, to show what they have in common

with micro-specialization and also to emphasize how micro-

specialization differs from these other approaches.

a) Architectural Specialization: At the coarsest level,

architectural specialization customizes the entire architecture

to a particular, sometimes quite narrow application domain.

An example is the column-oriented storage model utilized by

several novel DBMSes, such as ColumnDB [1], C-store [23],

and MonetDB [7]. Column-oriented stores are very effective in

OLAP applications, by reducing the I/O overhead by fetching

only the necessary columns from disk during query evalu-

ation. In addition, MonetDB utilizes a vectorized approach

that models each column as a vector [8]. MonetDB uses a

BAT representation, with each table having just two columns,

enabling the join operators to be specialized to particular types

ahead of time. Micro-specialization, because it focuses on

short code sequences within the DBMS, can be applied at

many places, independently of architectural specialization.

To address OLTP workloads, VoltDB [30], which is based

on H-store [24], operates on a distributed and shared-nothing

architecture. By adopting a single-threaded in-memory exe-

cution model, VoltDB can eliminate the overhead of locking,

buffering, logging, and latching mechanisms. Although many

components can be eliminated from a DBMS such as VoltDB,

micro-specialization is still applicable to such DBMSes. Take

a query predicate as an example. VoltDB still utilizes data

structures, of which values can be invariant, in evaluating such

predicates. As suggested by Figure 8, micro-specialization

improves the performance of predicate evaluation significantly

by simply specializing on the predicate operands and operator

type, such that the complexity of the generic code that refer-

ences these variables and data structures are greatly reduced.

Real-time [3] and stream DBMSes [2] are other examples

of architectural specialization, in which the entire database

architecture is drastically modified to fit a restricted subset

of applications. Such an approach can deliver a significant

performance improvement. Micro-specialization could further

improve the performance of such DBMSes.

Krikellas et al. employed an approach to produce special-

ized code to replace the entire original generic query eval-



uation routines implemented in conventional DBMSes [16].

The proposed method uses code templates to form the spe-

cialized code for processing specific queries. The code is then

compiled and executed to evaluate the queries. The scope of

the code replacement is vast: the entire query evaluation code

base, often tens or hundreds of thousands of lines, must be

moved into templates that are then stitched together. These can

be also characterized as architectural specializations, reflecting

their impact on the structure of the DBMS.

Sompolski et al, Rao et al, and Neumann [19, 20, 22]

exploit similar mechanisms in compiling queries during their

execution. The MAL language [7] provided by MonetDB also

achieves a similar goal of generating specialized code during

query execution by tailoring the primitives utilized by query

evaluation. These approaches are also much coarser-grained

than the micro-specialization proposed here.

b) Component Specialization: A DBMS may also benefit

from component specialization, where multiple versions of a

single module of the DBMS are provided, each customized to

a particular kind of data or query through the use of a new

data structure or algorithm. Examples include new relational

operators, new indexing methods, new isolation levels, added

compression, and additional locking modes in concurrency

control. Each addition improves the performance of a specific

subset of the applications. Micro-specialization does not start

with particular component. Instead, our approach identifies the

invariants from the code of a DBMS first. Regardless of the

origins of these invariants, which can be join, scan, or sort

operators, all invariants can be specialized on by replacing the

original generic code with a specialized version.

There has been exciting work in what is termed architecture-

conscious optimizations [9], such as reducing data cache

misses in DBMSes by re-organizing data page layout [4, 5]

or by data partitioning [18, 21], blocking, as well as cluster-

ing [21]; reducing instruction cache misses by re-structuring

the code execution paths as well as keeping instructions in

cache for sharing [15, 31]; and minimizing cache stall latency

with prefetching strategies [10]. These particular efforts can

be classified generally as component specializations and thus

are orthogonal to (finer-grained) micro-specialization, which

is itself an architecture-conscious optimization that has as its

goal to reduce instruction executions (and thus as a side effect

both data-cache and instruction-cache misses).

c) User-Stated Specialization: A third type of DBMS

specialization is user-stated specializations that require user

involvement and generally employ SQL query language con-

structs such as triggers. The SQL code in triggers can be opti-

mized by the user. Another example is user-defined functions,

which can be implemented in various programming languages

and invoked in SQL statements. UDFs are often much more

efficient than pure SQL, and are more flexible, as they are

expressed in a Turing-complete programming language. That

said, the DBMS code to support triggers and UDF invocation

can itself be micro-specialized for further improvement.

d) Characteristics of Micro-Specialization: Micro-

specialization is applied at a finer granularity than any of

the above specializations. Micro-specialization is applied

to a short sequence of low-level query evaluation code.

Hence, it is orthogonal to and independent of other coarser-

grained specializations, enabling micro-specialization to be

aggressively applied equally well to conventional DBMS

architectures (e.g., PostgreSQL, IBM DB2, Oracle, and

Microsoft SQLServer), to column-oriented stores such as

MonetDB, ColumnDB, and C-store, to OLTP architectures

such as VoltDB, and to real-time and stream DBMSes.

And it can be applied to various modules arising from

component specialization, and in conjunction with user-

stated specializations, e.g., within the code sequences that

implement triggers. Any code within a DBMS that is

executed frequently and involves variables that are invariant

over a single time around the inner per-tuple processing

loop is a potential target for micro-specialization. Finally,

micro-specialization instantiates bees at various points along

the timeline, providing flexibility with regard to when such

instantiation is best performed.

e) The Template Mechanism: Interestingly, implementa-

tions of C++ templates [25, 28] and Java generics [6] con-

cern specialization of the methods of a parameterized class

according to the provided parameters. The C++ template

mechanism enables (as side effect) computation to be per-

formed at compile time via techniques termed metaprogram-

ming and partial evaluation [29]. Both techniques specialize

programmer-stated templates at compile time by exploiting

known parameter values and code structures, such that the

generated code is optimized. Micro-specialization is different

in that the specialization can be later, benefiting from run time

information that is not available by static analysis for compile-

time optimizations.

The template mechanism can potentially serve as a more

organized approach to applying micro-specialization for bees

instantiated at compile time. For instance, for relation bees,

code snippets are extracted for various attribute types first.

These snippets are then assembled by the generic bee module

during bee instantiation, where a set of operations, including

unrolling the attribute extraction loop, constant folding the

isnull array, as well as choosing the specific code snippets

to apply to each attribute type, are carried out, resulting in

code shown in Listing 2. We expect that such operations could

instead be performed by utilizing templates. For instance,

functions that extract attributes with pass-by-value type of val-

ues can be defined as a function template. The length of such

values can be specified as a template parameter to instantiate

the function template. Other types of value extraction functions

can be defined as templates similarly. When a relation bee

is instantiated, the bee routine source code, which consists

simply a list of function calls that instantiate specific types

of functions, will be compiled. In this way, bee instantiation

is performed by the compiler and the generic bee module is

simplified.



VIII. CONCLUSION AND FUTURE WORK

We have introduced a novel form of DBMS

specialization, targeting small sequences of code, termed

micro-specialization. This perspective utilizes the concept of

bees, which are highly optimized code fragments obtained

by dynamic code specialization based on variables whose

values are invariant within the query evaluation loop. Bees

contain bee routines that can be invoked by the DBMS;

these replace code in conventional DBMS while performing

the same operations more efficiently. The generality of

DBMS is preserved by micro-specialization. Moreover,

micro-specialization does not change the architecture of the

DBMS nor does it add significant complexity to DBMS.

We have implemented the generic bee module and

micro-specialized six bee routines across relation,

query, and tuple bees integrated into the PostgreSQL

DBMS. We have studied the performance of the

resulting bee-enabled PostgreSQL, focusing on bee

creation performance, CPU performance in complex

analytic queries, and performance of random modifications.

The bee-enabled PostgreSQL has achieved around 12%

improvements over the stock version, simultaneously in I/O

and CPU time, with the TPC-H analytic queries. For various

scenarios of intensive TPC-C modifications, improvements

of around 11% have been achieved as well, showing that

micro-specialization is generally applicable regardless of

specific types of workloads.

We plan to further investigate the many opportunities

in performance improvement within other DBMS opera-

tions such as aggregation and indexing. Furthermore, since

micro-specialization is orthogonal to other DBMS special-

ization approaches, we can apply this approach to other

architectures, for instance, a column-oriented DBMS. Finally,

we plan to develop a robust bee cache recovery component

in the bee module to utilize Undo/Redo logs to ensure the

stability of the bee architecture. While exploiting new special-

ization opportunities, we will further complete the bee module:

incorporating additional bee components as well as refine the

existing ones. We also plan to considerably enhance the bee

development environment.
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