
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2016; 00:1–41
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

EMP: Execution Time Measurement Protocol
for Compute-Bound Programs

Young-Kyoon Suh1†, Richard T. Snodgrass1, John D. Kececioglu1,
Peter J. Downey1, Robert S. Maier1, and Cheng Yi1*

1University of Arizona, Tucson, AZ 85721

SUMMARY

Measuring execution time is one of the most used performance evaluation techniques in computer science
research. Inaccurate measurements cannot be used for a fair performance comparison between programs.
Despite the prevalence of its use, the intrinsic variability in the time measurement makes it hard to obtain
repeatable and accurate timing results of a program running on an operating system. We propose EMP
(Execution Time Measurement Protocol) for measuring the execution time of a compute-bound program
on Linux, while minimizing that measurement’s variability. During the development of EMP, we identified
several factors that disturb execution time measurement. We introduce successive refinements to the protocol
by addressing each of these factors, in concert, reducing variability by more than an order of magnitude. We
also introduce a new visualization technique, what we term “dual-execution scatter plot” that highlights
infrequent, long-running daemons, differentiating them from frequent and/or short-running daemons. Our
empirical results show that the proposed protocol successfully achieves three major aspects—precision,
accuracy, and scalability—in execution time measurement that can work for open-source and proprietary
software. Copyright © 2016 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: execution time; measurement; protocol; compute-bound programs

1. INTRODUCTION

Measuring program execution time is one of the most often used performance evaluation techniques
in computer science research. The resulting timings are typically used to compare the performance
of different programs. Despite the significance of accurately and precisely measuring execution
time, the presence of considerable variability in the measured time has not been adequately
addressed.

There are two basic definitions of program execution time: elapsed time and process time. Elapsed
time represents the end-to-end time of a program (or process). It is a common way of measuring
execution time. Process time is the execution time taken only by the process of interest, often
calculated as the sum of the user time and system time of the process. The process time thus does not
include the time spent in other processes, many of which are operating system daemon processes.
The elapsed time measures what a user will experience if running their program on an identical
system, though of course that time includes the vagaries of the various daemons.

∗Currently at Google Inc. Mountain View, CA 94043
†Correspondence to: KISTI, 245 Daehak-ro, Yuseong-gu, Daejeon, 34141, Rep. of KOREA (current address). E-mail:
yksuh@kisti.re.kr

Copyright © 2016 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

Figure 1. Taxonomy of Execution Time Measurements

As shown in Figure 1, different approaches and resulting accuracies apply to various kinds of
programs. Programs that perform I/O (on the left, at the second level) are much harder to measure,
because the I/O requests to a shared storage device (e.g., hard disk) from other programs running
at the same time affect various measures in complex ways. Elsewhere we have provided the Tucson
Timing Protocol (TTP) which figures out those interactions to reduce the variability of elapsed time
of greater than 13% to about 2% for process time [1]. (The results for TTP given in the figure concern
measuring execution time of SQL queries, taking from milliseconds to a substantial fraction of an
hour. The queries were executed on a variety of proprietary and open-source DBMSes running on a
Linux system enabling a single core with hyper-threading disabled.)

This article concerns the somewhat simpler task of measuring the program and elapsed times of
programs that do not perform I/O, that is, are compute-only (on the right on the second level in the
figure). (Why a compute-bound program? Because we realized that there still exist many unknown
extraneous factors in timing programs that do not perform significant I/O in pure-computation mode.
In this paper we will successively uncover these factors and compare the timing results before and
after handling each such factor.)

If we can modify the program, we can use the rdtsc machine instruction to get the number
of clock cycles required by the program (a clock cycle on modern machines is a fraction of a
nanosecond), which is quite repeatable. If we want elapsed time (the three at the bottom right in
the figure), there are a variety of timing methods available on Linux, to be examined shortly.

If the program is not modifiable, such as if one is measuring a proprietary program, elapsed
time can be measured by an obvious timing tool such as time or Java’s popular timing API
(System.currentTimeMillis()). Using elapsed time, however, turns out to yield variability
of about 0.9%, which is not much better than what the sophisticated TTP achieves on programs with
I/O. (The results given here and in the figure for EMP concern INC8, which as we will describe
shortly is a compute-only program running for about 8 seconds.)

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 3

0 50 100 150 200 250 300

8
2

0
0

8
4

0
0

8
6

0
0

8
8

0
0

9
0

0
0

9
2

0
0

Iterations

E
T

 (
m

s
e

c
)

(a) Initial Elapsed Time (ET) Measurements

0 50 100 150 200 250 300

8
0

1
4

8
0

1
6

8
0

1
8

8
0

2
0

8
0

2
2

Iterations

P
T

 (
m

s
)

(b) Computed Process Time (PT) Measurements from Our
Protocol

Figure 2. Execution Time Measurements of an 8-Second Compute-Bound Process

The purpose of this article is to show how to reduce this variability by over an order of magnitude,
to under 2 msec for INC8, or 0.02%. As we discuss in Section 8, more accurate measurements
can produce better prediction models for execution time and can also reveal previously-undetected
phenomena within the operating system.

Relying on elapsed time measurement methods, therefore, may not be appropriate in
circumstances in which it is important to know exactly how much actual time was spent only for the
process. What is needed is a comprehensive timing protocol that provides both high resolution and
low overhead, while eliminating extraneous factors.

Figure 2 shows the measured execution times of a program in pure-computation mode. In
each plot, we ran the program under test 300 times, and so each plot records 300 points. This
program, to be given in detail in Figure 7, repeatedly incremented a counter. For each iteration,
we used System.currentTimeMillis(). We expected that the measured data for the many
timings would be almost identical, as the program performs a very simple computation without I/O.
Surprisingly, that expectation was untrue.

Figure 2(a) plots the elapsed times (ET) before we applied the refinements of our protocol, to
be presented later, while Fig. 2(b) shows the process times (PT) computed by our measurement
protocol. Note that the vertical axis of Fig. 2(b) (with times between 8014 and 8021 msec, a range of
7 msec, corresponding to the horizontal lines of PT measurements) is greatly expanded as compared
with Fig. 2(a) (with times between about 8300 and 9200 msec, a range of about one second).

Figure 2(a) demonstrates how the measured ETs of such a simple compute-bound program could
vary considerably. Here, we observed several layers in measured times. The thickest (main) band in
the figure was formed around 8397 msec, or the mean value. Another band, less compact than the
main band, was observed about 8450 msec. The other band was seen around 8600 msec. Also, one
abnormally high sample (i.e. outlier) was seen around 9200 msec.

We wondered what sources such substantial variation of ET originated from, and how to minimize
this variation. In other words, we would like to answer two fundamental questions: what factors
might affect the timing of a program running on Linux, and what intervention one could apply to
obtain more accurate timing measurements?

To answer these two questions, we have developed a sophisticated timing measurement protocol
called EMP (Execution Time Measurement Protocol) for a compute-bound process running on
Linux. EMP yielded very flat timing results, as illustrated in Fig. 2(b). EMP eliminates some

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

4 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

and minimizes other factors that affect the timing of a process running on Linux. The protocol
also mitigates the variability of memory access time, as confirmed later in our experiments with
real-world workloads.

Our contributions can be summarized as follows.

• We provide various timing options for a compute-bound program on Linux.
• We uncover several unknown factors that can seriously impact the timing results for that

program.
• We introduce a sophisticated measurement protocol, termed EMP, which addresses these

factors to provide more accurate and more precise measurements.
• This protocol uses the novel device of a dual-execution scatter plot to highlight what we term
L-samples, to identify within those samples infrequent, long-running daemons, and thus to
determine in a disciplined way cutoffs to remove samples with such daemon executions.

• We examine how this protocol applies to proprietary as well as open-source programs.
• We evaluate the performance of EMP by rigorous experiments, starting from a simple

program in pure-computation mode to a popular CPU-bound benchmark suite, the SPEC
benchmark [2].

• Our empirical results strongly support the effectiveness and scalability of EMP.

The following section discusses accuracy and precision in execution time and then describes the
timing mechanisms in Linux and their limitations. In Section 3 we introduce our Execution Time
Measurement Protocol (EMP). Section 4 explicates factors and presents experimental results
detailing the successive refinement of this protocol. The evaluation of the protocol continues with
more realistic scenarios. We then review existing literature over the last thirty-plus years related
to execution time measurement. We conclude by discussing future work, including an intriguing
phenomenon that our refined protocol uncovered.

2. BACKGROUND

This section describes an overall background of timing a program on Linux. Specifically, we clarify
accuracy and precision in timing and discuss the Linux timing mechanism and some limitations.

2.1. Accuracy and Precision in Timing

The concepts of accuracy and precision in time measurement should be carefully differentiated. The
accuracy of any measurement is the “closeness of agreement between a measured quantity value and
a true quantity value of a measurand” while the precision of that measurement is the “closeness of
agreement between ... measured quantity values obtained by replicate measurements on the same
or similar objects under specified conditions” [3]. (In some contexts, accuracy is termed external
validity and precision, repeatability.) Sometimes the precision means the unit a measured value can
be appropriately expressed, such as milliseconds, microseconds, or nanoseconds. But in this paper
that particular meaning is ascribed to the alternative term “resolution.”

A challenge in determining the accuracy is that we do not know the “true” value associated with a
timed sample. That is, we do not have ground truth. But at least we can utilize protocol aspects that
should improve the accuracy of the timing, such as, for example, by eliminating as many external
factors as possible. The present paper identifies these factors by which external variability may be
controlled to some extent by our protocol to yield high-quality measurements.

Determining the precision is easier, as it is equivalent to examining how far timed samples are
from each other, which is then translated to the standard deviation among the samples.

A good timing protocol should be able to yield more accurate (that is, with appropriately reduced
noise) and more precise (that is, low standard deviation and relative error) measurements.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 5

2.2. Elapsed versus Process Time

As mentioned in the introduction, elapsed time is the end-to-end time of a process’ execution and
process time is the execution time devoted to that process. The distinction arises from the fact that
modern operating systems context-switch between processes for better performance.

These two times are illustrated in Figure 3. A process executing is depicted there as a horizontal
line (time advances to the right), with context switches represented as vertical arrows. Here, a (as
well as b, c, and d) is equal to the sum of time spent in user and system mode of a given program
while e corresponds to the wall-clock time difference between ts (the program’s start time) and te
(the program’s end time).

Figure 3. Process Time versus Elapsed Time

2.3. Linux Timing Mechanism

There is a spectrum of granularities with regard to Linux timing mechanisms, as illustrated in
Figure 4. (Our protocol is currently restricted to this widely-used operating system.) The first
decision is whether the operating system is running. When the operating system is down (depicted
on the left of the second level), the Real Time Clock (RTC) (leftmost on the third level), a hardware
clock device equipped in the system, can still tick thanks to power supplied by a small battery. When
the system boots up (rightmost on the second level), the RTC sets the kernel clock (also known as
system or software clock) (shown to the rightmost of the third level) during kernel initialization, and
that kernel clock begins to keep track of current time on the system.

There are two basic schemes by which the kernel can record the passage of the time. One scheme
is based on a counter incremented every CPU clock cycle (termed a cycle counter) (shown on
the left of the fourth level). A representative cycle counter is Time Stamp Counter (TSC) (on the
leftmost of the fifth level). TSC is a 64-bit register, incremented by 1 at each CPU cycle. If the CPU
frequency is 1 GHz, the TSC is increased once every nanosecond. The rdtsc assembly instruction
(on the leftmost of the sixth level) can be used to retrieve the current CPU cycle count from the
TSC register. The rdtsc instruction simply reads the current CPU cycle count from the register.
Hence, the overhead is very low. rdtsc has the highest resolution since the CPU frequency, read
from the /proc/cpuinfo file, is usually the highest among the frequencies of all clock devices
in a computer system.

The other scheme is based on a low frequency timer in the hardware periodically interrupting
the CPU (interval counter) (on the right of the third level). The interval counter is incremented by
timer interrupts issued by a hardware timer of the computer system. There are several hardware
timers. One is Programmable Interval Timer (PIT) (the second box of the fifth level), which can
issue timer interrupts at a fixed frequency. The Linux kernel can catch these interrupts, so that it
can repeatedly perform certain tasks once every time interval. Other common timer devices include
High Precision Event Timer (HPET) (the third box of the fifth level), and Advanced Configuration
and Power Interface Power Management Timer (ACPI PM) (the rightmost box of the fifth level).

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

6 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

Time Stamp

Counter

(TSC)

Programmable

Interval Timer

(PIT)

High Precision

Event Timer

(HPET)

Advanced Configuration

Power Interface

Power Management

Timer (ACPI_PM)

time,

gettimeofday,

clock_gettime

System Calls

rdtsc

Instruction

Real Time

Clock

(RTC)

System

is Down

System

is Up

Kernel

Clock

Cycle Interval

Linux

Timing

Mechanism

Figure 4. Diagram of Linux Timing Mechanism

Almost all timing system calls, including time (in secs), gettimeofday (in µsecs), and
clock gettime (with resolution in secs) (on the right of the sixth level), provided by the
Linux kernel rely on a global variable, called xtime, which is maintained by the kernel. More
details about the timing mechanism are covered in the Appendix A. The elapsed time mentioned in
Section 2.2 can be provided by these system calls. We will consider ways to measure process time
in Section 3.

Limitations of System Calls: There are some drawbacks of resorting to the system calls when
they are used for execution time measurement. First, each system call comes at a cost (on average
50∼100 µsec). In addition, the measured time via these calls cannot exclude system noise that could
occur during the measurement. So the final time measure may not be entirely accurate or precise.
Also, even though the system calls can be used for open-source software (by being embedded into
and then recompiled with the code), the system calls cannot be added within proprietary software,
which is the focus of our paper. While the time [4] command may be considered in that case, the
measured time by time could still include system noise, as mentioned above.

As an alternative, consider rdtsc. That instruction does not actually measure the execution time
of an operation. Rather, it only counts the CPU cycles consumed for the operation. Additionally, due
to cycle scaling in modern processors that change the clock frequency to save power: the approach
of dividing cycle counts by clock frequency will only approximate elapsed time. Therefore, rdtsc
may not be the best choice for timing.

As we will see, on the contrary, EMP can produce as accurate and precise measurements as these
system calls can, by extracting the time only taken by a program. In addition, EMP applies to any
type of software, regardless of whether it is proprietary or not.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 7

3. MEASURING EXECUTION TIME

We now elaborate on measuring the execution time of a program (a Linux process) in
pure-computation mode. (Previous work [1] details timing a process in mixed mode in which
computation is accompanied by significant I/O.)

3.1. Taskstats Interface

The basis of our measurement protocol is the taskstats C struct, provided by the Linux NetLink
facility [5]. Taskstats is an API that reports per-task (thread) and per-process statistics from
the kernel to user space [6] through the NetLink [5] interface. Taskstats presents programmers
with placeholders for many useful statistics of a task during its lifetime and upon termination. These
statistics include a variety of measures for the task, such as time-related metrics like user and system
times, IO metrics like number of bytes and characters written or read, and CPU-metrics like number
of involuntary and voluntary context switches. That said, statistics other than user time and system
time are not needed to measure the execution time of a compute-intensive program.

3.2. Time Measurement Resolution

As mentioned in Section 1, there are two types of execution time for a Linux program: elapsed
time (ET) and process time (PT). Different resolutions can be considered for these two time
measurements. For the PT measurement of a process in pure-computation mode, the highest
resolution is microsecond, as the taskstats facility can provide user and system time in
microseconds. Some might claim that the /proc system [7] could be used instead of the
taskstats C struct, as it can also provide the measures of the user and system time for the
process as well. But the kernel increments the user and system time in /proc by one tick, whose
size is determined the value of the kernel constant HZ (as 1 HZ is equivalent to one hundredth of a
second, the conventional value of this constant of 10 results in a tick being 10 msec). In other words,
the resolution of /proc (10 msec) is less precise than that of taskstats (microseconds). For the
PT measurement, therefore, we use the taskstats C struct instead of the /proc filesystem,
which is detailed in Appendix B.

As far as the ET measurement of the pure-computation process is concerned, the highest
resolution we can use is nanosecond, as we can exploit a Java API, called System.nanoTime(),
which returns the current time in nanoseconds. (The Java API will internally invoke the system
call of the bottom right of Figure 4.) However, in this paper we simply use millisecond-resolution
via System.currentTimeMillis() for the ET measurement, as the millisecond resolution is
sufficient, given our accuracy and precision capabilities.

3.3. Detailed Measurement of Execution Time of a Given Program

We give a detailed description of measuring the execution time of a given program. (Note that this
measurement approach can be applied to any arbitrary program.)

The steps of the measurement approach are detailed in Figure 5. Consider a user program, called
userProgram. To obtain the measurements of PT and ET of the userProgram, we collect a number
of samples by repeatedly executing the userProgram. The repetition count (NUM REPETITIONS)
is predetermined. (As will be seen later, our protocol suggests ten for NUM REPETITIONS.) For
each sampling we do the following, as depicted in Figure 6. getProcInfo() asks the kernel to
report the present per-process statistics in the taskstats container through the NetLink socket,
recording the reported statistics of each process (beforeImage). getTime() then obtains the
current timestamp (startTime). After that, we execute the userProgram via executeProgram().
Once the userProgram finishes its computation, then getTime() again requests the current time
(stored as endTime), and getProcInfo() requests the kernel to send the current per-process
statistics (afterImage). We then compute ET by endTime-startTime and calculate the
difference (procDiff) between beforeImage and afterImage. Finally, we record ET and
procDiff (as strings) into the database.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

8 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

Algorithm measureExecutionTime(userProgram, NUM REPETITIONS):
for k = 1 to NUM REPETITIONS by 1 do

beforeImage = getProcInfo()
startTime = getTime()
executeProgram(userProgram)
endTime = getTime()
afterImage = getProcInfo()
elapsedTime = endTime - startTime
procDiff = getProcDiff(beforeImage, afterImage)
recordImageDiff(k, elapsedTime, procDiff)

end for

Figure 5. Measuring the Execution Time of a Given Run of a Program (e.g. userProgram)

Figure 6. Our Measurement Approach Diagram

Later, for each execution of the run, we retrieve the respective procDiff from the database and
extract per-process measures from the procDiff. We then calculate PT of the userProgram as the
sum of user and system ticks in the extracted measures associated with the userProgram.

We now use this underling measurement approach as the basis for a succession of refinements to
our protocol.

4. EXECUTION TIME MEASUREMENT PROTOCOL

We propose a novel protocol, termed the Execution time Measurement Protocol (EMP), for precisely
and accurately timing a compute-bound program on Linux. EMP identifies and tackles various
external factors of timing, leading to high-quality measurements. This protocol also considers the
variability of execution time by memory references. The consideration is twofold. One is to use
warm cache. Specifically, the very first measurement is thrown out due to code and input read, and
the rest reflecting cache effects (misses or hits) is counted for measurements. Another is to utilize
“PT,” more robust (less variable) than ET to system noise.

The timing protocol has been established and incrementally refined through our rigorous
experiments, running and collecting execution times and relevant timing measures on, a very simple
program, or what we call INC, which we describe now.

Program-under-Test: The program-under-test that we use initially is INC, which is a simple C
program composed of a nested for-loop. INC can be straightforwardly configured so that its running
time completes in a specified task length (tl, in seconds). In the inner loop, INC increments an
unsigned integer variable (k) by one for as many times as the maximum value (i.e., UINT MAX)
defined in <limits.h>. The outer loop runs the inner loop for a certain number (c) of iterations
translated from the task length. For instance, using our test machine configured with Intel Core i7
CPU 870 at 2.93GHz we empirically found the corresponding number of iterations for a one-second
task was c = 1.46 billion. For a longer task we simply derive its corresponding proportional constant.

In our experiments we increased the task length of INC from 1 second to 8 seconds (and later up
to 16,384 seconds) by successive factors of two.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 9

Algorithm runNestedLoop(tl):
c = TranslateToConstant(tl)
for i = 1 to c by 1 do

for j = 1 to UINT MAX-1 by 1 do
k += 1

end for
end for

Figure 7. Computation Performed by INC

We emphasize that INC is only run internally to our timing protocol, and should not be confused
with the user program whose running time our protocol is ultimately measuring. INC is designed to
be the simplest-possible compute-bound program that performs no I/O, while the user program that
our timing protocol is measuring is unrestricted, and can for instance perform arbitrary accesses to
the machine’s memory hierarchy.

Environment Settings: Our experimental machine was configured with an Intel Core i7-870
Lynnfield 2.93GHz quad-core processor on a LGA 1156 95W motherboard with 4GB of DDR3
1333 dual-channel memory and Western Digital Caviar Black 1TB 7200rpm SATA hard drive. As
seen before in Section 1, we initially installed Red Hat Enterprise Linux (RHEL) [8] 6.1 with a
kernel of 2.6.28 on the machine. Later, the machine’s OS was upgraded to RHEL 6.4 with a kernel
of 2.6.32. We specify which RHEL version was used for a specific protocol.

Our experiments were conducted on an experimental platform [9], which was originally designed
for running large-scale experiments with thousands of queries on multiple DBMSes. We redesigned
the platform’s data collection schema to store the data (ET and process snapshot images) collected
from the run of a given program (e.g. INC). We then applied the same experiment methodology used
in the original platform. Specifically, we ran a centralized database server for the data collection and
a process-monitoring program (called ProcMonitor) communicating with the kernel and supplying
the process images. After that, we executed measureExecutionTime shown in Figure 5. Again, for
each execution we recorded the data into the database.

Protocol Summary: Table I exhibits a succession of the refinements of EMP in a chronological
fashion. For each protocol evolution, we list the primary refinement it identified. The rest of this
section discusses each of six refinements in sequence and considers its influence on timing by
comparing the measured data before and after the refinement. In Section 5.2, the performance of
the most-refined EMP is evaluated on realistic scenarios.

Table I. Protocol Evolution

Protocol (Version) Description

EMPv1 Deactivate non-critical daemon processes and use process time.
EMPv2 Activate the NTP daemon process.
EMPv3 Switch off Turbo mode and the SpeedStep feature.
EMPv4 Install an up-to-date Linux kernel.
EMPv5 Remove outliers in a disciplined manner.
EMPv6 Determine a suitably small sample size.

Figure 8 provides a high-level view of the proposed timing protocol. The protocol consists of four
steps, each established from a specific refinement of EMP. Step 1 configures a timing environment
using the refinements of EMPv1—EMPv4. As specified in Figure 6, Step 2 runs a given program
and measures its execution time. We use the number of repetitions suggested by the refinement of
EMPv6. Step 3 removes some timing results using the refinement of EMPv5. At the end, Step 4
calculates the execution time of the program: a single value averaged among the retained results.
(Note that with regard to the number of repetitions of Step 2, we follow the suggestion of EMPv6,
later identified after EMPv5.) Later in this paper, we evaluate the performance of this timing protocol
on realistic workloads as well as the running program-under-test, INC.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

10 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

Algorithm ExecutionTimeMeasurementProtocol():
Step 1 - Set Up the System for Measurement (along with EMPv1—EMPv4).
Step 2 - Run and Time a User’s Program with Ten Repetitions (along with EMPv6).
Step 3 - Remove Some Timing Results by Well-Motivated Criteria (along with EMPv5).
Step 4 - Calculate the Execution Time of the Program Using the Average.

Figure 8. High-level View of the Proposed Timing Protocol

4.1. EMP Version 1: Deactivate Non-Critical Daemons and Use Process Time.

The basis of EMP is to disable as many system daemons as possible and to utilize PT against ET.
On Linux there may be many daemon processes running for system maintenance. These processes

in general influence the execution time of INC. Some of the daemon processes could be inevitably
necessary, but others may not need to be running.

Appendix C lists the daemons that are non-critical and so can be turned off for the purpose of
measurement studies. With these daemons deactivated, our experiments were conducted along with
the underlying measurement approach in Figure 5, to see the benefit that accrues from doing so.

Figure 9 illustrates the execution time measurement results for INC. We assigned the task length
of 8 seconds to INC, termed INC8, which we ran 1,000 times. Let’s first take a look at Figure 9(a)
exhibiting the ET measurements of INC8. Interestingly we can see the main band formed around
8,328 msec on INC8. Above the main band there is another band weakly formed between 8,600
msec and 8,800 msec. The highest ET was measured at 9,180 msec, and the second highest one at
9,004 msec. Although many daemon processes were turned off, we found that these long-running
ET instances appeared, because of the influence by live daemon processes captured during INC8
execution, that ran longer than usual.

0 200 400 600 800 1000

8
2

0
0

8
4

0
0

8
6

0
0

8
8

0
0

9
0

0
0

9
2

0
0

Iterations

E
T

 (
m

s
e

c
)

(a) ET Measurements on INC8

0 200 400 600 800 1000

8
2

0
0

8
4

0
0

8
6

0
0

8
8

0
0

9
0

0
0

9
2

0
0

Iterations

P
T

 (
m

s
e

c
)

(b) PT Measurements on INC8

Figure 9. ET and PT Measurements on INC8 by EMPv1

We now take a look at the PT measurements of INC8 as shown in Figure 9(b). Most of
the PT measurements are gathered between 8,322 and 8,400 msec. We can also see a couple
of outliers above the thick main band. The highest PT point was 8,500 msec. Compared with
Figure 9(a), we can easily notice that 1) the number of outliers was significantly reduced, and
2) there was little variation in measurement. This implies that PT is relatively less influenced by
daemon processes. Therefore, using PT for execution time measurement can significantly reduce
the variation compared to ET.

Table II exhibits the overall statistics of ET measurements on not only INC8 but also INC1, INC2,
and INC4. As a given task length increases, the variation in the ET measurements get increasingly

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 11

Table II. ET Statistics on INC1, INC2, INC4 and INC8

Minimum Maximum Average Std. Dev.
(msec) (msec) (msec) (msec)

INC1 1,040 1,377 1,051 23.6
INC2 2,081 2,584 2,102 38.0
INC4 4,163 4,782 4,196 43.5
INC8 8,328 9,180 8,397 72.4

Table III. PT Statistics on INC1, INC2, INC4 and INC8 by EMPv1

Minimum Maximum Average Std. Dev.
(msec) (msec) (msec) (msec)

INC1 1,040 1,076 1,047 3.6
INC2 2,080 2,146 2,093 6.4
INC4 4,159 4,256 4,183 9.9
INC8 8,322 8,500 8,367 15.4

higher. The difference between the maximum and the minimum in INC1’s ET measurements was
337 msec. This difference was 503 msec, 619 msec, and 852 msec in INC2, INC4, and INC8,
respectively. These results demonstrate that the measurement using ET do not scale with increasing
task lengths.

Table III exhibits the overall statistics of the PT measurements on the same INC as shown in
Table II. Compared with Table II, the quality of overall PT measurements was improved. For
instance, an average of measured times was decreased by 4 msec to 30 msec, indicating less
vulnerability to the live daemon processes and thus proving improved accuracy. (The maximum PT
measurements also were significantly reduced, by up to 22%.) In addition, the standard deviations of
each INC’s PT measurements were significantly improved. The standard deviation of ET on INC8
was 72 msec while that of PT was 15 msec, a reduction of almost a factor of five. The degree of
improvement ranged from 3x to 7x across different INCs. As a task length increased, PT also scaled
better than did ET. These results reveal that PT measurements show better accuracy, precision, and
scalability than ET measurements.

We now consider a sequence of refinements on the protocol, starting with the Network Time
Protocol (NTP) [10].

4.2. EMP Version 2: EMPv1, plus Activate the NTP Daemon.

NTP is used to synchronize the local system time to a server in the network [10, 11]. The server
is connected to other servers in a hierarchical structure, with an authoritative clock, such as the
atomic clock maintained by the US government at the root. More details about NTP are provided in
Appendix D.

When the NTP daemon was enabled, the time adjustments by NTP worked out by minimizing
the variation. Figure 10 compares the PT measurements when the NTP daemon was deactivated and
activated. Note that Figure 10(a) exhibits the same data used in Figure 9(b) in a zoom-in view, and
thus, the y-axis of Figure 10(a) is different than that of Figure 9(b). As shown in Figure 10(a), when
the NTP daemon was disabled, many values formed the thick black band around 8,366 msec while
there appeared a lot of values spread above and below the band. In contrast, when the NTP daemon
was enabled many values also formed the main band around 8,309 msec, but there were fewer
upper and lower values than the average represented by the band (Figure 10(b)). In other words, the
central band was thicker, and much fewer outliers were observed under the NTP daemon’s activity.
Activating the NTP daemon resulted in reducing the variation in measurement.

Table IV shows the overall statistics of the PT measurements on INCs with the same set of task
lengths. Compared with Table III the average PT on INC1, INC2, INC4, and INC8 was reduced by
8 msec, 15 msec, 28 msec, and 58 msec, respectively, with the corresponding maximum measured
values further lowered, improving the measurement accuracy. The standard deviations across INC
dropped by about 30% on average, contributing to better precision and scalability.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

12 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

0 200 400 600 800 1000

8
2

5
0

8
3

0
0

8
3

5
0

8
4

0
0

8
4

5
0

8
5

0
0

Iterations

P
T

 (
m

s
e

c
)

(a) PT Measurements on INC8 with NTP Disabled

0 200 400 600 800 1000

8
2

5
0

8
3

0
0

8
3

5
0

8
4

0
0

8
4

5
0

8
5

0
0

Iterations

P
T

 (
m

s
e

c
)

(b) PT Measurements on INC8 with NTP Enabled

Figure 10. PT Measurements on INC8

Table IV. PT Statistics on INC1, INC2, INC4 and INC8 by EMPv2

Minimum Maximum Average Std. Dev.
(msec) (msec) (msec) (msec)

INC1 1,034 1,094 1,039 2.4
INC2 2,068 2,157 2,078 4.3
INC4 4,136 4,242 4,155 7.5
INC8 8,275 8,396 8,309 10.7

4.3. EMP Version 3: EMPv2, plus Switch off Turbo Mode and the SpeedStep Feature.

The Intel processor in our machine includes a feature named “Intel® Turbo Boost Technology” [12].
This feature allows the processor to increase the base frequency and voltage at times through
dynamic control of the CPU’s clock rate. This feature is supported by some Intel processors such as
Core i5 and i7. The Turbo mode of our processor (Core i7) is auto-enabled by default.

Furthermore, our machine’s processor supports another feature, called “Enhanced Intel
SpeedStep® Technology” [13], which can reduce power usage and heat based on the load of the
processor. SpeedStep first scales frequency and then drops or raises voltage if necessary to match
the frequency. In other words, it optimizes the voltage on the selected frequency. Therefore, with
Turbo mode and SpeedStep enabled, the CPU clock speed can go faster or slower. To see if these
features were the actual cause of some of the variance, we disabled both features in this test, thereby
stopping frequency and voltage scaling together.

Figure 11 compares the measurement results on INC8 before and after Turbo mode and SpeedStep
features were disabled. Note that Figure 11(a) was copied from Figure 10(b), but the range of the
y-axis was shrunk to keep the same height as that of Figure 11(b). Check that the y-axis values are
higher in Figure 11(b) than those in Figure 10(b).

In Figure 11(a) the NTP daemon was enabled, and the Turbo mode and SpeedStep features were
switched on for the measurement. As mentioned before, some periodic lower values were observed.
For instance, we can see the PT values at around 45th, 90th, 135th, 180th, and many later executions
faster than the average (the thick black band). There were a couple of outliers much lower than those
in the main band. We observed a similar tendency in the execution results of INC1, INC2, and INC4
presented in Table IV.

Figure 11(b) shows our measurement results before and after turning off the two features. After
eliminating the influence of the features, overall PT measurement values were slightly higher due to

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 13

0 200 400 600 800 1000

8
2

5
0

8
3

0
0

8
3

5
0

8
4

0
0

Iterations

P
T

 (
m

s
e

c
)

(a) PT Measurements on INC8 with Turbo Mode and
SpeedStep Enabled

0 200 400 600 800 1000

9
0

0
0

9
0

5
0

9
1

0
0

9
1

5
0

Iterations

P
T

 (
m

s
e

c
)

(b) Per-Execution PT on INC8 with Turbo Mode and
SpeedStep Disabled

Figure 11. PT Measurements on INC8 before and after Turbo Mode and SpeedStep Features were Disabled

Table V. PT Statistics on INC1, INC2, INC4 and INC8 by EMPv3

Minimum Maximum Average Std. Dev.
(msec) (msec) (msec) (msec)

INC1 1,128 1,146 1,133 1.7
INC2 2,255 2,279 2,266 2.8
INC4 4,513 4,630 4,532 5.8
INC8 9,025 9,080 9,063 8.7

the disabled features. That said, we significantly reduces the measurement variation. The range was
reduced from 121 msec to 55 msec, a difference of more than two.

Table V shows the overall statistics of the PT measurements. Compared with Table IV, the
standard deviation was improved by about 0.7 msec (from 2.4 msec to 1.7 msec) (29%), 1.5 msec
(35%), 1.7 msec (23%), and 2 msec (19%).

The measurements shown in Figure 11(b) still retained the lower values. The next version of our
protocol, called EMPv4, eliminates those.

4.4. EMP Version 4: EMPv3, plus Use an Up-to-Date Linux Version.

We determined that NTP, Turbo mode, and SpeedStep could significantly contribute to the variation
in PT measurements. Recall that EMPv3 switched NTP on but Turbo mode and SpeedStep off
before timing the program. However, EMPv3 still showed the values below the central band.

After much investigation, we found out that the lower values were induced by an out-of-date
Linux version. The next version of the protocol, named EMPv4, used the most up-to-date Linux
version at the time of conducting this experiment (on October 17, 2013).

Figure 12 represents the timing results of INC8 running on different RHEL versions. Figure 12(a),
copied from Figure 11(b), shows the results measured on RHEL 6.1, and Figure 12(b) illustrates the
results measured on RHEL 6.4. As demonstrated in Figure 12, our measurements on RHEL 6.4
were strikingly cleaner. Unlike Figure 12(a), the less-frequent loser values were eliminated. Most of
the points in Figure 12(b) aligned along with the horizontal lines starting from only ten consecutive
y-axis values. This results in an exceedingly low standard deviation, about 1.81 msec as shown in
Table VI.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

14 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

0 200 400 600 800 1000

9
0

2
0

9
0

3
0

9
0

4
0

9
0

5
0

9
0

6
0

9
0

7
0

9
0

8
0

9
0

9
0

Iterations

P
T

 (
m

s
e

c
)

(a) PT Measurements on INC8 on RHEL 6.1

0 200 400 600 800 1000

8
0

1
0

8
0

1
5

8
0

2
0

8
0

2
5

Iterations

P
T

 (
m

s
e

c
)

(b) PT Measurements on INC8 on RHEL 6.4

Figure 12. PT Measurements on INC8 running on RHEL 6.1 and 6.4

Red Hat had announced that one bug related to NTP was fixed in RHEL 6.4 [14]. The bug was that
the ntpd daemon could terminate unexpectedly when one system network interface had an IPv6
address and the network service was stopped or started. Considering that 1) no version upgrade of
NTP was made, and 2) no other bug fixes were provided between two Linux versions, it appears
empirically that the bug fix helped minimizing the variability in timing.

Table VI presents the statistics of PT measurements via EMPv4. Here we extended the task
lengths of INC to 4,096 seconds first and then up to 16,384 seconds in steps of 2x for further
scalability assessment. Note that the number of repetitions was 1,000 when a given task length
was fewer than or equal to 64 seconds. However, for the task lengths greater than 64 seconds, we
estimated that it would take more than ten months to finish the extended tasks from 128 seconds
to 16,384 seconds. For these extended task lengths we thus reduced the number of repetitions: 300
repetitions up to 4,096 seconds and thereafter, 40 repetitions (up to 16,384 seconds).

We decided on 300 iterations by examining the previous empirical data on shorter executions
times, discovering that the best trade-off between total run time (by task length) and data quality
(that is, standard deviation of PT) occurred in the first 300 samples (out of 1,000). For consistency,
we used the same sample size (300) on the shorter tasks by taking the first 300 iterations. Indeed,
there was little difference of the measurement quality between the original and reduced sample size
for the shorter tasks.

As exhibited in Table VI, overall EMPv4 produced much cleaner data than EMPv3. In comparing
Tables V and VI, the standard deviation reduced by more than a factor of two.

4.5. EMP Version 5: EMPv4, plus Remove Outliers in a Disciplined Manner.

Examining Figure 12(b), we see that the vast majority of the executions have times of
8,015–8,022 msec, with just three measurements outside of that, at 8,014 and 8,023 msec. This
suggests removing the extreme outliers, while retaining most of the measures.

The next version of the protocol, termed EMPv5, eliminates such an outlier based on two
criteria to be covered in this section. EMPv5 first identifies infrequent, long-running daemons
and determines an (ET) cutoff for each such daemon. It then drops samples containing such
a daemon’s execution time exceeding that cutoff. A second sanity check drops samples whose
corresponding PT measurements are higher or lower than two standard deviations from the average
of PT measurements in the retained samples (those remaining after applying the first sanity check).

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 15

Table VI. PT Statistics by EMPv4

Minimum Maximum Average Std. Dev.
(msec) (msec) (msec) (msec)

INC1 999 1,005 1,002 0.7
INC2 1,996 2,007 2,005 1.4
INC4 4,004 4,012 4,009 1.6
INC8 8,014 8,022 8,018 1.8

INC16 16,029 16,039 16,034 1.9
INC32 32,065 32,079 32,068 1.9
INC64 64,128 64,145 64,135 2.3
INC128 128,244 128,260 128,251 2.3
INC256 256,494 256,523 256,502 3.3
INC512 512,995 513,152 513,005 9.4
INC1024 1,025,996 1,026,141 1,026,011 11.4
INC2048 2,051,981 2,052,156 2,052,012 11.2
INC4096 4,105,451 4,105,629 4,105,526 26.0

INC8192 8,207,870 8,207,967 8,207,918 21.0
INC16384 16,415,757 16,415,964 16,415,810 40.4

In the following, we first enumerate the steps to (a) identify infrequent, long-running daemons,
using a single run of many samples of INC128, (b) refine the list using a single run of many
samples of INC16384, and then (c) use the data from those two runs to determine the cutoff for
each so-identified daemon. We can then apply these cutoffs to remove outliers from subsequent
runs of any INC.

4.5.1. Protocol Summary Here is the series of steps that EMPv5 takes, building upon the steps
taken for EMPv1–EMPv4.

1. Perform a single INC run (specifically, INC128) for many samples (specifically, 800). (Why
INC128? Because it is long enough to perhaps experience an infrequent daemon. Why 800?
To capture infrequent daemons that may only run every few hours or even only once a day, as
these samples will require over 28 cumulative hours.)

2. Consider each pair of ET measurements to be a dual-execution measurement (that is,
equivalent to 400 samples of dual-INC256, to be termed, where each dual-INC256 sample
contains a pair of consecutive INC128 samples). Examine a scatter-plot to see if it it displays
an L-shape. (It is this shape that helps us identify infrequent daemons. We will give an
example in the next section.)

3. Zoom into the central cluster to ensure that it is symmetric (roughly circular). We term this this
symmetric collection of samples the “central cluster,” differentiated from the other samples,
termed the “L-samples.” (We emphasize that we use this sequence of scatter plots to visualize
and then differentiate these two flavors of samples. This is admittedly a heuristic. We do
this only to differentiate infrequent, long-running daemons from the other daemons, to be so
identified in the subsequent steps.)

4. Compute the maximum and standard deviation of the process time for each daemon
encountered within the central cluster samples. (Why? These are daemon executions that we
do not regard as “long-running,” as we will explain in detail in the next section.)

5. Identify for each L-sample the infrequent long-running daemon executions: those whose
process time is over two standard deviations above the maximum from that computed in the
previous step. Intuitively, it is those execution(s) that have moved each such sample from the
central cluster to one of the arms of the “L”. (Note: we do not assert that this step will have
identified all infrequent, long-running daemons. But it will detect a good number of them,
allowing us to target them in the remainder of the protocol.)

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

16 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

6. Gather those daemon executions that weren’t in the central cluster but were in the L-samples.
Determine which might be periodic. Compute for each daemon, the minimum process time
from those executions identified.

7. Perform Steps 1–6 above for a single run consisting of a small number of executions (40)
of INC16384. (Why INC16384? Because it is much longer, about 4.5 hours, helping us to
identify very infrequent daemons. Why 40? Because we need a good number of samples, but
not too many, as that would take long. This run requires about 180 hours, or around eight
days) Use this data to see if any of the infrequent daemons just identified using INC128 are
actually frequent when the execution time is much longer.

8. For each of those infrequent daemons so identified, compute a cutoff that differentiates the
normal case. For each such daemon, take the midpoint (as the computed cutoff) between the
average for that daemon in the samples of the central cluster (or 0, for those daemons not
present at all in the central cluster) and the average for those daemon executions within the
L-samples that have been identified as long-running daemon executions. Do so for both the
INC128 and INC16384 samples. Take 5% of the observed periodicity (if there is one) to define
two cases. (Why 5%? To ensure that such daemons only impact a small number of the shorter
INCs, while be accounted for in longer INCs.) Also include daemons that were identified as
infrequent and long-running from INC128 but not in the INC16384 L-samples but were in
the INC16384 central cluster. For each case, use the maximum of the two cutoffs for the final
cutoff.

The above eight steps compute a cutoff PT for each infrequent, long-running daemon (perhaps
two cutoffs for periodic daemons). For any subsequent experiment we can use the cutoffs just
determined.

For a run of an arbitrary INC, first discard those few samples of the original set of samples that
have one or more of those daemons previously identified associated with a program time above their
previously-determined cutoff. This should remove most if not all of the samples with long-running
daemons.

Additionally, discard from the remaining samples those few samples that exhibit a PT
measurement for the Program Under Test that is higher or lower than two standard deviations from
the average PT across that run. This will remove some of the samples at the boundary of the central
cluster.

We now elaborate the above protocol with an example, to explain and justify each step.

4.5.2. A Running Example: Table VII exhibits the run-statistics of INC128 with 800 samples and
Figure 13 plots those 800 ET measurements. (This is the first step of EMPv5 given above.) We see
three rows in the plot: a solid row of many samples, perhaps six or more samples that are just above
that solid row, and two samples that are way above the solid row. We will now drill down into these
samples, and even to specific daemon executions within these samples, to show how to reliably
eliminate the indirect influence of some “infrequent, long-running daemons” on the PT of INC.

ET/PT Minimum Maximum Average Standard Deviation Relative
(msec) (msec) (msec) (msec) Error

ET 128,245 163,913 128,343 1,730.3 1.3×10−2

PT 128,244 128,493 128,251 10.9 8.5×10−5

Table VII. Statistics of INC128 with 800 Samples by EMPv4

To identify such daemons, we use a novel scatterplot: those of pairs of successive samples. So
samples 1 and 2 form the first pair, samples 3 and 4 form the second pair. We then plot each pair as
a single circle with the ET of the first half of the pair on the x-axis and the ET of the second pair
on the y-axis. As we’ll see, such dual-execution scatterplots can be very effective at highlighting
infrequent, long-running daemons.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 17

0 200 400 600 800

1
2

0
0

0
0

1
3

0
0

0
0

1
4

0
0

0
0

1
5

0
0

0
0

1
6

0
0

0
0

1
7

0
0

0
0

Iterations

E
T

 (
m

s
)

Figure 13. INC128 with 800 Samples (Step 1 of EMPv4)

Figure 14 exhibits a series of zooms on a scatter plot of 400 samples (fromed consecutive pair)
constructed from a run of 800 INC128 samples, which we term dual-INC256. (This is Step 2 of
the protocol.) Figure 14(a) presents all of the ET measurements. We see two quite obvious outliers,
corresponding to sample # 75 and # 634, with ETs of 163,913 msec (rightmost), and 161,785 msec
(uppermost), respectively.

Here is the central intuition of the EMPv5 protocol: a frequent, long-running daemon (a) will
often not occur in either sample of a pair of INC128 samples, (b) may sometime occur in the first
of a pair of INC128 samples, (c) may sometime occur in the second of a pair of INC128 samples,
and (d) will occasionally occur in both samples in a pair of INC128 samples. But an infrequent,
long-running daemon will not appear in set (d).

The cluster at the bottom left of this scatter plot is mainly those pairs in set (a). The single sample
in the top left indicates a pair in set (b). There is probably one or more long-running daemons present
specifically in the first sample of that pair.

The single sample at the bottom right indicates a pair in set (c); it indicates that here is probably
one or more long-running daemons present specifically in the second sample of that pair.

Importantly, there are no samples in the top right of the cluster, indicating there are no pairs in set
(d). This implies that no frequent long-running daemons are high-lighted in Figure 14(a); at least
they are not readily apparent.

We informally term this phenomenon of a scatter plot of a dual-execution run an “L-shape,”
and ascribe it as evidence for the presence of infrequent long-running daemons. Again, samples
containing such daemons (termed the L-samples) will appear along the left y-axis or along the
bottom x-axis, but will not occur in the top right of the scatter plot of the dual-execution.

Figure 14(b) zooms into the lower left region, focusing on the tight cluster of samples.
Interestingly, this plot continues to exhibit an L-shape, with perhaps a dozen or more L-samples
in the left and bottom arms of the “L,” and again no samples in the upper right portion of the scatter
plot.

We further zoom in the scatter plot to arrive at Figure 14(c), which exhibits two L-samples, which
can also be seen in Figure 14(b).

We continue zooming until we get to Figure 14(d), which shows a central cluster (this is Step 3).
We confirm the symmetry of the ET measurements in the central cluster: there is no L-shape, and
thus no L-samples, and thus no obvious infrequent long-running daemons. (We emphasize that these
samples may have lots of frequent daemons, as well as infrequent, short-running daemons.) There
were 384 dual-INC256 samples in this central cluster, implying that 16 of the INC128 samples
were L-samples and the 784 remaining of the original 800 INC128 samples had no infrequent,
long-running daemons, which motivates that term.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

18 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

120000 130000 140000 150000 160000 170000

1
2

0
0

0
0

1
3

0
0

0
0

1
4

0
0

0
0

1
5

0
0

0
0

1
6

0
0

0
0

1
7

0
0

0
0

1st Half’s ET (ms)

2
n

d
 H

a
lf
’s

 E
T

 (
m

s
)

(a) All 400 ET Measurements from Step 2

128200 128400 128600 128800 129000 129200 129400

1
2

8
2

0
0

1
2

8
4

0
0

1
2

8
6

0
0

1
2

8
8

0
0

1
2

9
0

0
0

1
2

9
2

0
0

1
2

9
4

0
0

1st Half’s ET (ms)

2
n

d
 H

a
lf
’s

 E
T

 (
m

s
)

(b) Zooming in on the L-shape

128240 128260 128280 128300 128320

1
2

8
2

4
0

1
2

8
2

6
0

1
2

8
2

8
0

1
2

8
3

0
0

1
2

8
3

2
0

1st Half’s ET (ms)

2
n

d
 H

a
lf
’s

 E
T

 (
m

s
)

(c) Further Zooming in on the L-Shape

128240 128245 128250 128255 128260

1
2

8
2

4
0

1
2

8
2

4
5

1
2

8
2

5
0

1
2

8
2

5
5

1
2

8
2

6
0

1st Half’s ET (ms)

2
n

d
 H

a
lf
’s

 E
T

 (
m

s
)

(d) The Central Cluster (Step 3)

Figure 14. Successive Zooms of a Scatter plot of a Dual-INC256 (drawn from INC128 with 800 samples),
in Elapsed Time (Steps 2 and 3)

We then perform Step 4, which collects in Table VIII the daemon processes observed in the
central cluster samples (those in Figure 14(d)) and provides the statistics on the PT of those daemon
processes.

Step 5 focuses on the daemons occurring in the INC128 L-samples, those in one of the arms of
the L-shape. (Again, the dual-INC256 samples in the top left of the scatter plots indicate that the
former of the pair of INC128 samples is an L-sample; symmetrically, for the dual-INC256 sample
in the lower left of the scatter plot, the latter of the pair is an INC128 L-sample.) Table IX lists
the daemon processes captured in the 16 INC128 L-samples in Figures 14(a), 14(b), and 14(c), and
provides their PT measurements.

We then identify, for each daemon in the L-samples, those that are actual long-running daemon
executions. We define such executions as those whose PT (process time, note the switch in emphasis
from execution time to process time) is over two standard deviations above the maximum PT for
that daemon in the central cluster samples, shown in Table X. (Note that these also appear in the
cluster samples, cf. Table VIII.)

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 19

Daemon Maximum PT Standard Deviation of PT
Process Name (msec) (msec)

cifsd 1 0
flush-9:0 1 0
java 6 0.8
jbd2/md0-8 2 0.2
kblockd/0 1 0
khugepaged 1 0
md0 raid1 4 0.4
ntpd 1 0
proc monitor 204 1.1

Table VIII. PT Measurements of Daemon Processes Observed in the 784 Central Cluster Samples (Step 4)

Sample # Daemon Process Name: PT

75 flush-9:0: 126 msec, java: 3 msec, jbd2/md0-8: 31 msec,
kblockd/0: 1 msec, md0 raid1: 78 msec, proc monitor: 202 msec, rhn check:
35,176 msec, rhnsd: 6 msec

104 java: 3 msec, proc monitor: 202 msec, rhsmcertd-worke: 115 msec

186 java: 3 msec, proc monitor: 200 msec, rhn check: 562 msec, rhnsd: 4 msec

216 java: 3 msec, java: 1 msec, md0 raid1: 1 msec, proc monitor: 204 msec,
rhsmcertd-worke: 114 msec

298 java: 3 msec, proc monitor: 202 msec, rhn check: 832 msec, rhnsd: 5 msec

328 java: 3 msec, proc monitor: 202 msec, rhsmcertd-worke: 115 msec

366 bash: 2 msec, cifsd: 1 msec, grep: 1 msec, java: 3 msec, proc monitor: 203 msec,
sshd: 15 msec, sshd: 3 msec,

410 java: 3 msec, md0 raid1: 1 msec, proc monitor: 202 msec, rhn check: 571 msec,
rhnsd: 4 msec

439 java: 3 msec, java: 1 msec, md0 raid1: 1 msec, proc monitor: 200 msec,
rhsmcertd-worke: 114 msec

451 bash: 1 msec, grep: 6 msec, grep: 5 msec, grep: 1 msec, grep: 1 msec, java: 3 msec,
proc monitor: 202 msec, sshd: 13 msec, sshd: 12 msec, sshd: 3 msec, sshd: 3 msec,

522 java: 3 msec, proc monitor: 204 msec, rhn check: 833 msec, rhnsd: 6 msec

551 java: 3 msec, proc monitor: 201 msec, rhsmcertd-worke: 114 msec

634 flush-9:0: 127 msec, java: 3 msec, jbd2/md0-8: 6 msec, md0 raid1: 65 msec,
proc monitor: 202 msec, rhn check: 33155 msec, rhnsd: 3 msec

663 java: 3 msec, proc monitor: 200 msec, rhsmcertd: 1 msec,
rhsmcertd-worke: 114 msec, rhsmcertd-worke: 114 msec,

746 java: 3 msec, jbd2/md0-8: 1 msec, md0 raid1: 1 msec, proc monitor: 203 msec,
rhn check: 629 msec, rhnsd: 5 msec

775 java: 3 msec, proc monitor: 200 msec, rhsmcertd-worke: 116 msec
Table IX. Daemon Processes Observed in the Sixteen L-Samples (Step 5)

We also identify “extra” infrequent daemons: those found only in the L-samples (those in Table X
but not in Table VIII), along with those identified as infrequent and long-running from the central
cluster, listed in Table X, to arrive at Table XI. (This is Step 6.)

We use a heuristic to determine the last column, the daemon’s periodicity: the daemon must occur
regularly in a sequence of samples. So the rhn check daemon appears in samples 75, 186, 298,
410, 522, 634, and 746, or roughly every 112 samples (which corresponds to very close to every
four hours). The rhnsd daemon appears in the same samples. Similarly, the rhsmcertd-worke
daemon appearing in samples 104, 216, 328, 439, 551, 663, and 775, with the same periodicity. Note
in all three cases, the entire 800 samples are covered. Four others (flush-9:0, jbd2/md0-8,

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

20 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

Daemon Name Sample # PT

flush-9:0 75 126 msec
634 127 msec

jbd2/md0-8 75 31 msec
634 6 msec

md0 raid1 75 78 msec
634 65 msec

Table X. Infrequent, Long-Running Daemon Executions Identified from the Sixteen L-Samples (Step 5)

Daemon Name Maximum PT Minimum PT Periodicity
from central cluster from L-samples from L-samples

bash — 1 msec —
flush-9:0 1 msec 126 msec 20 hours (?)
grep — 1 msec —
jbd2/md0-8 2 msec 6 msec 20 hours (?)
md0 raid1 — 65 msec 20 hours (?)
rhn check — 562 msec 4 hours
rhnsd — 3 msec 4 hours
rhsmcertd — 1 msec —
rhsmcertd-worke — 114 msec 4 hours
sshd — 3 msec —

Table XI. Collected Infrequent, Some of which are Long-running, Daemons from Dual-INC256 (Step 6)

md0 raid1, and rhn check) all occur together (in samples 75 and 634) and have a periodicity
of perhaps 559 samples (that is, five times longer, or just about 20 hours). We say “perhaps” because
only two instances do not convincingly imply a periodicity. It is important only which samples a
given daemon shows up in; we don’t care in this heuristic whether daemons are co-occurring.

We can compute for each so-identified infrequent, long-running daemon its minimum time in the
L-samples, shown in the third column of Table XI (this is Step 6). This table provides a rough,
initial distinction of a “long-running” daemon. Consider bash. That daemon occurs only in (three)
L-samples, and so is infrequent, but is very fast, taking only 1 msec. Contrast this behavior with
that of jdb2/md0-8, which runs very quickly, hence, retaining that sample in the central cluster.
But every 20 hours or so, it runs for a much longer time, at least 126 msec, moving that sample into
one of the legs of the “L”. The valley between the maximum PT from the central cluster and the
minimum PT from the L-samples differentiated “short-running” from “long-running” executions
of the daemon. For those daemons that never appear in the central cluster, for example, grep, we
would from this initial analysis conclude only that they are infrequent.

We then repeat steps 1–6, but instead with the much-longer running INC16384 instead (4.5 hours
per sample versus 2 minutes), to see if any of our identified infrequent daemons are actually frequent
at that much longer INC execution time.

Figure 15 illustrates a zoom of a scatter plot of 20 samples (each a pair) drawn from a run of 40
INC16384 samples, which we term dual-INC32768. As seen in Figure 15(a), there are two extreme
outliers on the y-axis (Step 2′). If we zoom in the central cluster (Figure 15(b), Step 3′), there seems
to be no ET measurements outside the central cluster, though it is not as neat as Figure 14(d).

Table XII gathers the daemon processes from the central cluster (Step 4′). Compared
with Table VIII, we see that there are some frequent daemon processes that appear in both
the dual-INC256 and dual-INC32768 central clusters: flush-9.0, java, jbd2/md0-8,
kblock/0, md0 raid1, ntpd, and proc monitor. That said, the central cluster also contains
other processes not seen in the dual-INC256 central cluster: grep, rhn check, rhnsd,
rhsmcertd, rhsmcertd-worke, and sshd. But these daemons were categorized in the
dual-INC256 analysis (see Table XI) as infrequent, several having periodicities estimated at four
or twenty hours.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 21

16415000 16420000 16425000 16430000 16435000 16440000 16445000

1
6

4
1

5
0

0
0

1
6

4
2

5
0

0
0

1
6

4
3

5
0

0
0

1
6

4
4

5
0

0
0

1st Half’s ET (ms)

2
n

d
 H

a
lf
’s

 E
T

 (
m

s
)

(a) All 40 ET Measurements (Step 2′)

16415000 16416000 16417000 16418000 16419000 16420000

1
6

4
1

5
0

0
0

1
6

4
1

6
0

0
0

1
6

4
1

7
0

0
0

1
6

4
1

8
0

0
0

1
6

4
1

9
0

0
0

1
6

4
2

0
0

0
0

1st Half’s ET (ms)

2
n

d
 H

a
lf
’s

 E
T

 (
m

s
)

(b) Zooming in on the Central Cluster (Step 3′)

Figure 15. Successive Zooms of a Scatter plot of a Dual-INC32768 (drawn from INC16384 with 40
samples) [cf. Figure 14]

Daemon Maximum PT Standard Deviation of PT
Process Name (msec) (msec)

flush-9:0 7 1.5
grep 8 2.1
java 3 0.8
jbd2/md0-8 7 1.4
kblockd/0 4 1
md0 raid1 26 4
ntpd 1 0
proc monitor 206 1.3
rhn check 714 93
rhnsd 9 1.6
rhsmcertd 1 0
rhsmcertd-worke 117 1
sshd 14 4.7

Table XII. Process Time Measurements of Daemon Processes Observed in the 39 Central Cluster Samples
on Dual-INC32768 (Step 4′) [cf. Table VIII]

It is easy to understand what has just happened: when INC had a “short” program
time (in this case, two minutes), daemons with a periodicity of hours are infrequent.
But with an INC with a “long” program time (in this case, 4.5 hours), some of
those daemons are now frequent, and appear in the central cluster. We handle this in
the protocol by using the observed periodicity in our categorization of a daemon as
“infrequent”, later in Step 8.

We now locate which are infrequent and long-running (Step 5′). As exhibited in Table XIV, we
additionally identify one more infrequent daemon, rhn check. But no extra processes were found
in the L-samples of dual-INC32768 (as opposed to the case of INC128).

Step 6′ takes the infrequent daemons found only in the L-Samples (in Table XIV) that are
not in the central cluster (Table XIII), in this case, there are no such daemons, adding those
identified as infrequent and long-running from the central cluster, listed in Table XIV, to arrive
at Table XV. From Table XIII, we see that all four of these processes were in samples 10 and 16,
for an estimated periodicity of 6 samples, or about 20 hours, consistent with what was previously
estimated. However, such a periodicity would imply that these daemons would appear in sample 4

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

22 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

Sample # Daemon Process Name: PT

10 flush-9:0: 89 msec, java: 3 msec, java: 1 msec,
jbd2/md0-8: 14 msec, kblockd/0: 1 msec, md0 raid1: 76 msec, proc monitor:
204 msec, rhn check: 24,942 msec, rhn check: 523 msec, rhnsd: 9 msec,
rhsmcertd-worke: 116 msec

16 flush-9:0: 91 msec, java: 3 msec, java: 1 msec,
jbd2/md0-8: 21 msec, kblockd/0: 2 msec, md0 raid1: 78 msec, proc monitor:
204 msec, rhn check: 26,667 msec, rhnsd: 3 msec, rhsmcertd-worke: 115 msec

Table XIII. Daemon Processes Observed in the Two L-Samples (Step 5′) [cf. Table IX]

Daemon Name Sample # PT

flush-9:0 10 89 msec
16 91 msec

jbd2/md0-8 10 14 msec
16 21 msec

md0 raid1 10 76 msec
16 78 msec

rhn check 10 24,942 msec
16 26,667 msec

Table XIV. Infrequent, Long-Running Daemon Executions Observed in the Two L-Samples in the
Dual-INC32768 run (Step 5′) [cf. Table X]

Process Name Maximum PT Minimum PT Periodicity
for central cluster for L-Samples for L-Samples

flush-9:0 7 msec 89 msec 20 hours
jbd2/md0-8 7 msec 14 msec 20 hours
md0 raid1 26 msec 76 msec 20 hours
rhn check 714 msec 24,942 msec 4 hours

Table XV. Collected Infrequent (Some of which are Long-running) Daemons in Dual-INC32768 Run (Step
6′) [cf. Table XI]

as well. And in fact they did: flush-9:0 did show up in that sample, but with a PT of only 5
msec, under the maximum PT from the central cluster. We require only that the periodicity detected
for the dual-INC256 samples be consistent with those L-samples in dual-INC32768 run. Thus,
the flush-9:0, jdb2/md0-8, and md0 raid1 daemons all retain that periodicity. Finally, for
rhn check, a periodicity of 4 hours is consistent with it appearing in these two L-samples. As
before, we don’t include processes (e.g., java) whose maximum central time is greater than the
min L-Sample time. This concludes Step 7.

We then perform Step 8. We compute the cutoff for each of those infrequent, long-running
daemons so identified, based on INC128 (Table XI) and the INC16384 (Table XV) as collected
in Table XVI.

1. For the cutoff of such a daemon with INC128, we take the midpoint between the maximum
of that daemon’s PTs in the central cluster (or 0, if absent) for those in Table XI, and the
minimum of those in the L-samples, shown in the second column of Table XVI.

2. For the cutoff of such a daemon with INC16384, we do the same from Table XV, shown in
the third column of Table XVI.

3. We compute a “task time” as 5% of the inferred periodicity. (As mentioned before, 5% ensures
that such infrequent daemons will impact only a small percentage of the shorter INCs, while
presumably being associated with much larger cutoffs for the very long INCs.)

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 23

Daemon Process Cutoff PT Cutoff PT Task Final
Name on INC128 on INC16384 Time Cutoff PT
bash 1 msec — — 1 msec

flush-9:0 64 msec — < 1 hour 64 msec
— 48 msec ≥ 1 hour 48 msec

grep 1 msec 12 msec — 12 msec
jbd2/md0-8 4 msec — < 1 hour 4 msec

— 11 msec ≥ 1 hour 11 msec
md0 raid1 35 msec — < 1 hour 35 msec

— 51 msec ≥ 1 hour 51 msec
rhn check 281 msec — < 12 min 281 msec

— 12,828 msec ≥ 12 min 12,828 msec
rhnsd 2 msec — < 12 min 2 msec

— 12 msec ≥ 12 min 12 msec
rhsmcertd 1 msec 1 msec — 1 msec

rhsmcertd-worke 57 msec — < 12 min 57 msec
— 119 msec ≥ 12 min 119 msec

sshd 2 msec 23 msec — 23 msec
Table XVI. Collected Infrequent, Long-running Daemons and Their Final Cutoff Process Time (Step 8)

4. We also include daemons that (a) were identified as infrequent and long-running from INC128
and (b) were not identified as so in INC16384 L-samples, but may have in the dual-INC32768
central cluster (in which case we add two standard deviations): bash, grep, rhnsd,
rhsmcertd, rhsmcertd-worke, and sshd.

5. We then take the maximum of the two cutoffs for the final cutoff PT, resulting in the last
column of Table XVI.

For any subsequent run of an arbitrary INC, we apply two sanity checks on the samples of that
run.

First, we discard any sample containing an infrequent, long-running daemon execution over the
corresponding cutoff. We thus remove the following fifteen of the 800 INC128 samples: 75, 104,
186, 216, 298, 328, 366, 410, 439, 522, 551, 634, 663, 746, and 775 and only two of the forty
INC16384 samples: 10 and 16, as exhibited in Table XVII.

of Samples Samples

INC128 800 75, 104, 186, 216, 298, 328, 366, 410, 439, 522, 551, 634, 663, 746, 775
INC16384 40 10, 16

Table XVII. Samples Removed by Infrequent Daemons’ Cutoffs (First sanity check)

We additionally remove those samples in which the PT measurements are greater or less two
standard deviations from the average of the combined samples. In this particular case, no additional
samples were removed.

(For an arbitrary INC with x-second, that is, the set of outliers by the second sanity check is
defined as being outside ±2 standard deviations:

{Pi ∈ P | Pi > P̄ + 2σ(P) or Pi < P̄ - 2σ(P)},

where P denotes a set of process time (PT) measurements for a certain INC with an x-second task.)
Finally, we calculate the execution time of INC128 as the average PT measurement in

Table XVIII: 128,250 milliseconds (rounded up to the nearest millisecond, because PT is measured
in msec). Table XVIII shows the statistics of the PT and ET measurements. (In the third column, the
number of samples dropped by the first sanity check (15 for ET) and by the second sanity check (1)
are indicated.) Our original goal was to determine using a carefully-motivated protocol the program
time (PT) for this program under test (INC). We see that the standard deviation and relative error

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

24 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

ET/PT # of Outliers (=I+II) Minimum Maximum Average Stdev. Relative
/ # of Samples (msec) (msec) (msec) (msec) Error

INC128 ET 16 (=15+1) / 800 128,245 128,256 128,250 2.5 2.0×10−5

PT 20 (=15+5) / 800 128,245 128,255 128,250 2.6 2.0×10−5

INC16384 ET 6 (=2+4) / 40 16,416,454 16,417,155 16,416,637 138.6 8.4×10−6

PT 2 (=2+0) / 40 16,415,757 16,415,855 16,415,804 27 1.6×10−6

Table XVIII. Statistics of INC128 (above) and INC16384 (below) by EMPv5

Table XIX. PT Statistics by EMPv5

Num. Minimum Maximum Average Std. Dev.
of Outl. (msec) (msec) (msec) (msec)

INC1 57 1,001 1,003 1,002 0.6
INC2 42 2,002 2,007 2,005 1.0
INC4 28 4,006 4,011 4,009 1.5
INC8 11 8,015 8,021 8,018 1.7

INC16 12 16,031 16,038 16,034 1.7
INC32 16 32,065 32,071 32,068 1.5
INC64 13 64,131 64,139 64,135 1.9
INC128 9 128,247 128,255 128,251 2.1
INC256 24 256,497 256,506 256,502 2.3
INC512 31 512,998 513,009 513,004 2.6
INC1024 15 1,026,001 1,026,019 1,026,011 4.1
INC2048 23 2,051,997 2,052,156 2,052,012 6.4
INC4096 33 4,105,477 4,105,572 4,105,526 20.9

INC8192 2 8,207,877 8,207,955 8,207,918 18.4
INC16384 2 16,415,757 16,415,855 16,415,804 26.7

have both been considerably reduced by this principled elimination of samples containing identified
infrequent, long-running daemons.

Figure 16 compares the EMPv4 and EMPv5 data over INC8, INC64, and INC4096.
Figures 16(a), 16(c), and 16(e) show the EMPv4 data with outliers, each enclosed by a square and
a triangle (indicated by the first and second sanity checks). Figure 16(b), 16(d), and 16(f) exhibit
the EMPv5 data with the outliers eliminated. As can be easily seen, EMPv5 produces much cleaner
data.

Table XIX provides the numerical comparison: number of outliers removed and results (min,
max, average, stdev) without the outliers. EMPv5 obtains a standard deviation reduction of 65% (at
INC1024), while the outliers were reduced by at most 3.7% (found in INC8).

The remaining questions that we had in measuring the execution time of INC were: Do we even
need the 300-sample size? Can we further reduce this sample size? How can we reach a desired
(perhaps minimal) sample size? The next version of the protocol addresses these questions.

4.6. EMP Version 6: EMPv5, plus Use a Suitably Small Number of Sample Size.

We originally collected a total of 1,000 samples for INC assigned with a task length shorter than
64 seconds, and for the longer tasks up to 4,096 seconds, we lowered the total sample size to 300.
(INC4096 takes over an hour per sample.) Indeed, we felt that collecting even 300 samples takes
too long for the longer tasks. Furthermore, the standard deviations of the 300 samples by EMPv5
were sufficiently small. For these two reasons, we further investigated how the sample size relates
to the number of outliers, to choose a smaller sample that retained the structure of the data.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 25

0 200 400 600 800 1000

8
0

1
4

8
0

1
6

8
0

1
8

8
0

2
0

8
0

2
2

8
0

2
4

Iterations

P
T

 (
m

s
)

(a) PT Measurements on INC8 by EMPv4

0 200 400 600 800 1000

8
0

1
4

8
0

1
6

8
0

1
8

8
0

2
0

8
0

2
2

8
0

2
4

Iterations

P
T

 (
m

s
)

(b) PT Measurements on INC8 by EMPv5

0 50 100 150 200 250 300

6
4

1
2

5
6

4
1

3
0

6
4

1
3

5
6

4
1

4
0

6
4

1
4

5

Iterations

P
T

 (
m

s
)

(c) PT Measurements on INC64 by EMPv4

0 50 100 150 200 250 300

6
4

1
2

5
6

4
1

3
0

6
4

1
3

5
6

4
1

4
0

6
4

1
4

5

Iterations

P
T

 (
m

s
)

(d) PT Measurements on INC64 by EMPv5

0 50 100 150 200 250 300

4
1

0
5

4
5

0
4

1
0

5
5

0
0

4
1

0
5

5
5

0
4

1
0

5
6

0
0

4
1

0
5

6
5

0

Iterations

P
T

 (
m

s
)

(e) PT Measurements on INC4096 by EMPv4

0 50 100 150 200 250 300

4
1

0
5

4
5

0
4

1
0

5
5

0
0

4
1

0
5

5
5

0
4

1
0

5
6

0
0

4
1

0
5

6
5

0

Iterations

P
T

 (
m

s
)

(f) PT Measurements on INC4096 by EMPv5

Figure 16. Comparison of PT Measurements by EMPv4 and EMPv5

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

26 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

4.6.1. Description Here is a series of steps to determine what is a proper number of samples for
EMPv6.

1. We recursively divide the whole size to be half (or less) until a sample size is sufficiently
minimal.

2. We compute the number of outliers and the standard deviation of PT measurements for each
sample size.

3. We then choose a proper sample size, considering the similarity of the number of outliers and
the standard deviation of each subset to those of the whole set.

4. To confirm the proper size, run INC1—INC4096 and INC8192—INC16384 with the
respective sizes of 300 and 40 samples, repeat Steps 1—2, and then compare the number
of outliers and the standard deviation of each subset and to those of the whole set.

4.6.2. A Running Example In this running example, we divide the whole set of 800 samples on
INC128 to a total of seven subsets, each having (the first) 400, 200, 100, 40, 30, 20, and 10 samples,
respectively. (This is Step 1.) For each of the seven subsets, we examine the number of outliers
with ET (PT) measurements, greater or lower than two standard deviations from the average ET
(PT) measurements computed in each subset. (This is Step 2.) As a result, Table XX illustrates the
number of outliers identified in each sample size.

ET/PT 400 200 100 40 30 20 10 800 (samples)

ET 9 (=7+2) 5 (=4+1) 3 (=2+1) 1 (=1+0) 1 (=1+0) 0 0 16 (=15+1)
PT 13 (=7+6) 7 (=4+3) 3 (=2+1) 0 1 (=1+0) 2 (=1+1) 0 20 (=15+5)

Table XX. Comparison of the Number of Outliers (= I+II) for Different Sample Sizes on INC128.
() indicates the breakdown of the total number of outliers: 1) how many samples are discarded by the cutoff

and 2) by the average ± two standard deviations.

Table XXI exhibits the standard deviation associated with each sample size.

ET/PT 400 200 100 40 30 20 10 800 (samples)

ET 2.5 2.5 2.5 2.7 2.7 2.4 2.7 2.5
PT 2.6 2.5 2.7 2.7 2.9 2.4 2.6 2.6

Table XXI. Comparison of Standard Deviations in PT for Different Sample Sizes on INC128

All things considered, we see that 10 is the most appropriate number of samples, based on the
similarity between the standard deviation and the number of outliers of each subset and those of the
whole set.

Now let’s examine whether the 10-sample size still holds for the running INCs with 1—16384
seconds. (This is Step 3.)

Let’s start with PT (process time) measures. Based on the measured data by EMPv5, we divided
up the whole 300 samples in a binary manner; namely, each subset was given 150, 75, 40, 20, 10,
and 5 samples, respectively. We applied EMPv5 to each subset of the EMPv4 data and identified
outliers in the respective subset, computing the average and standard deviation within each subset
and determining the outliers in that subset, as shown in Table XXII.

The numbers in bold are from the 10-sample size and from the original 300-sample size (in the
left-to-right order). As the subset size got smaller, the number of outliers decreased. In particular,
the subsets containing fewer than 20 samples had no more than two outliers across INCs. If the
number of outliers were the only criteria of determining the minimal sample size, we would have
recommended collecting only five samples, as 1) very few (at most 2) outliers were found in that
subset, and 2) the size of the samples was also smallest. However, the fact that a certain subset had
no outliers was not enough to conclude that the size of the subset is the best minimal size. We also
had to take into account the standard deviation.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 27

Table XXII. Comparison of the Number of Outliers for Different Sample Sizes by EMPv5

150 75 40 20 10 5 300 (samples)

INC1 9 3 0 0 0 0 12
INC2 12 6 3 2 1 0 17
INC4 0 0 0 0 0 0 0
INC8 0 0 0 1 0 0 4
INC16 3 5 1 0 0 0 12
INC32 8 3 2 1 1 0 16
INC64 8 3 1 1 0 0 13
INC128 4 4 0 1 1 0 9
INC256 7 6 5 0 0 0 24
INC512 13 8 4 2 0 2 31
INC1024 7 3 2 1 1 0 15
INC2048 7 3 2 2 0 0 14
INC4096 11 3 2 3 0 0 33

25 10 5 40 (samples)

INC8192 2 0 0 2
INC16384 2 0 0 2

Table XXIII. Comparison of the Standard Deviations of PT for Different Sample Sizes

150 75 40 20 10 5 300 (samples)

INC1 0.6 ms 0.7 msec 0.4 msec 0.5 msec 0.4 msec 0.5 msec 0.6 msec
INC2 0.6 msec 1.0 msec 0.6 msec 0.5 msec 1.0 msec 0 msec 0.7 msec
INC4 1.5 msec 1.5 msec 1.6 msec 1.9 msec 1.7 msec 0.5 msec 1.5 msec
INC8 2.1 msec 1.5 msec 1.5 msec 1.0 msec 1.5 msec 1.5 msec 1.8 msec
INC16 1.8 msec 1.4 msec 1.6 msec 2.1 msec 2.2 msec 2.2 msec 1.7 msec
INC32 1.4 msec 1.4 msec 1.7 msec 1.6 msec 2.1 msec 1.6 msec 1.5 msec
INC64 2.0 msec 2.0 msec 1.5 msec 1.8 msec 2.4 msec 1.9 msec 1.9 msec
INC128 2.3 msec 1.8 msec 2.2 msec 1.6 msec 0.7 msec 2.5 msec 2.1 msec
INC256 2.4 msec 2.4 msec 1.7 msec 2.3 msec 3.3 msec 4.2 msec 2.3 msec
INC512 2.8 msec 2.3 msec 2.5 msec 2.1 msec 2.9 msec 5.2 msec 2.6 msec
INC1024 4.0 msec 4.7 msec 4.1 msec 3.0 msec 2.3 msec 3.1 msec 4.0 msec
INC2048 6.1 msec 6.7 msec 6.6 msec 4.6 msec 6.0 msec 6.5 msec 6.4 msec
INC4096 21.4 msec 23.6 msec 19.2 msec 17.7 msec 22 msec 15.9 msec 20.9 msec

25 10 5 40 (samples)

INC8192 16.6 msec 20.6 msec 25.9 msec 18.4 msec
INC16384 25.1 msec 28.9 msec 18.6 msec 26.7 msec

After removing these outliers (that is, in the EMPv5 data), we further calculated the average and
standard deviation, exhibited in Table XXIII. For comparison purpose, the last columns in the table
are added to show the standard deviation of PT values measured in an arbitrary INC over the full
sample size.

In examining these results, it is hard to tell which sample size is best. The smallest sample, 5
executions, exhibited a standard deviation for INC512 of 5.2, which was somewhat different than
that for 300 executions. This inconsistency was observed across the other sample sizes.

The standard deviation results of the 10-sample subsets were fairly close to non-decreasingly
monotonic over increasing task length (even the 300-sample wasn’t entirely monotonic). In addition,
the 10-sample collections’ outliers much fewer than those of the bigger subset although the outliers
were slightly more than those of the smaller collections, as shown in Table XXII. In other words, the
smaller subsets did not drop as many samples as the bigger subset, while showing very close overall

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

28 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

Table XXIV. Comparison of the Standard Deviations of ET for Different Sample Sizes

150 75 40 20 10 5 300 (samples)

INC1 0.6 msec 0.6 msec 0.6 msec 0.5 msec 0.5 msec 0.4 msec 0.6 msec
INC2 0.8 msec 1.1 msec 0.8 msec 0.8 msec 1.5 msec 0 msec 1.1 msec
INC4 1.7 msec 1.8 msec 1.8 msec 2.2 msec 1.6 msec 1.1 msec 1.8 msec
INC8 2.1 msec 1.3 msec 1.7 msec 1.6 msec 1.5 msec 1.3 msec 1.8 msec

INC16 1.8 msec 1.6 msec 1.6 msec 2.3 msec 4.1 msec 2.3 msec 1.7 msec
INC32 1.6 msec 1.8 msec 1.9 msec 1.7 msec 1.7 msec 1.1 msec 1.6 msec
INC64 2.4 msec 1.8 msec 1.3 msec 1.6 msec 2.8 msec 2.7 msec 2.0 msec
INC128 2.3 msec 2.0 msec 1.9 msec 1.5 msec 0.5 msec 1.6 msec 2.1 msec
INC256 2.3 msec 2.6 msec 2.1 msec 2.2 msec 3.2 msec 3.0 msec 2.5 msec
INC512 3.1 msec 2.8 msec 3.0 msec 2.0 msec 2.9 msec 2.9 msec 2.9 msec
INC1024 4.6 msec 5.2 msec 4.8 msec 4.2 msec 5.2 msec 247.7 msec 4.9 msec
INC2048 73.8 msec 109.4 msec 109.1 msec 91.5 msec 130.1 msec 7.4 msec 103.5 msec
INC4096 366.7 msec 319.5 msec 366.0 msec 312.2 msec 303.0 msec 404.8 355.7 msec

25 10 5 40 (samples)

INC8192 364.3 msec 297.0 msec 353.9 msec 339.6 msec
INC16384 121.7 msec 197.8 msec 94.1 msec 138.6 msec

statistics compared to those of the whole collection. As seen in Table XX, EMPv6 thus utilizes 10
samples, which are empirically sufficient to represent the overall statistics on the PT measurements
of INC.

We now turn to ET (elapsed time) measures. As before, we computed the standard deviations of
the measurements over decreasing sample size, as exhibited in Table XXIV. We affirmed that the
sample size of 10 yielded statistics broadly similar to those the original sample size, also in the
measured ET data. Therefore, we reaffirmed that 10 samples are sufficient to represent a suitably
small sample size for measuring execution time.

Our recommendation for measuring the running time (PT or ET) of a program is to run it once
for 300 samples and prepare a table such as Table XXIII to independently confirm that a sample
size of 10 is reasonable (as one would expect). (A smaller sample size is probably not possible,
as the previous step may drop a few samples.) The goal is to choose the smallest sample size that
approximates that of the 300 samples. Once the sample size has been determined, then it can be
used for the entirety of the study, reporting that sample size.

4.7. Comparison of Protocol Quality

Each of the EMP versions has its own sequence of steps:

• EMPv1: deactivate non-essential daemons (p. 10)
• EMPv2: activate the NTP daemon (p. 11)
• EMPv3: switch off Turbo mode and the SpeedStep feature (p. 12)
• EMPv4: use an up-to-date Linux version (p. 13)
• EMPv5: remove outliers using protocol on pp.15-16
• EMPv6: determine the proper number of sample using steps on pp. 24-26.

We now compare the measurement quality of EMP with incremental refinements. Figure 17
shows the standard deviations and relative errors of the measured ET and PT data by the
incrementally-refined EMP over increasing task lengths.

Recall that prior to EMPv4 the maximum task length of INC was 8 seconds; we extended the
length up to 16,384 seconds.

We can learn several things from Figures 17(a) and 17(b). First, the standard deviation in
milliseconds increases as task length increases. Note that both the x and y axes are logarithmic
in the ET figure but the y axis is linear in the PT figure. Second, for successive versions of EMP, the
standard deviation generally improves. At INC8, EMPv6 improves on EMPv1 by about 36x, from
72 msec to about 2 msec (for ET), and by over 7x, from 15 msec to 2 msec, for PT, respectively.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 29

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 16384

 1 4 16 64 256 1024 4096 16384

S
ta

n
d
ar

d
 d

ev
ia

ti
o
n

 o
f

E
T

 (
m

se
c)

Task length (sec)

EMPv1
EMPv2
EMPv3
EMPv4
EMPv5
EMPv6

(a) Standard Deviations of ET

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 4 16 64 256 1024 4096 16384

S
ta

n
d
ar

d
 d

ev
ia

ti
o
n
 o

f
P

T
 (

m
se

c)

Task length (sec)

EMPv1
EMPv2
EMPv3
EMPv4
EMPv5
EMPv6

(b) Standard Deviations of PT

1.0×10
−6

1.0×10
−5

1.0×10
−4

1.0×10
−3

1.0×10
−2

1.0×10
−1

 1 4 16 64 256 1024 4096 16384

R
el

at
iv

e
er

ro
r

in
 l

o
g
 s

ca
le

Task length (sec)

EMPv1
EMPv2
EMPv3
EMPv4
EMPv5
EMPv6

(c) Relative Errors of ET

1.0×10
−6

1.0×10
−5

1.0×10
−4

1.0×10
−3

1.0×10
−2

 1 4 16 64 256 1024 4096 16384

R
el

at
iv

e
er

ro
r

in
 l

o
g
 s

ca
le

Task length (sec)

EMPv1
EMPv2
EMPv3
EMPv4
EMPv5
EMPv6

(d) Relative Errors of PT

Figure 17. Measurement Quality Comparison among the EMP versions

Third, the standard deviation of the PT data was much lower than the ET data; PT outperformed
ET by about an order of magnitude for the longest task length (at 16,384 seconds), at 29 msec
versus 198 msec. Fourth, the largest effect was observed for EMPv4; apparently, the bug in RHEL
6.1 added a factor of 4 to the variability of the times. Fifth, there is something fishy happening with
INC512 and INC4096 in EMPv4 as well as INC4096 in EMPv5. We reran EMPv6, and the anomaly
at INC4096 disappeared (the standard deviation was 8 msec and the relative error was 2.0×10−6),
showing quite smooth behavior over the wide range of program run times.

Figures 17(c) and 17(d) show relative errors over the ET and PT data of each INC measured by the
EMP versions. Here the y axes are both logarithmic. PT outperforms ET by an order of magnitude
in any of the EMP versions and that the later versions of EMP starting with EMPv4 smooth out,
though with the same bumps as before (as expected).

5. FURTHER EVALUATIONS

In this section we further evaluate the performance of EMP, comparing the the performance of
timing system calls and EMP, and applying EMP to more realistic programs.

5.1. Comparison with Existing System Calls

One question might arise: how close or even better the measurement quality of EMP is compared to
that of timing-relevant system calls? To respond to this question, we chose clock gettime and
rdtsc as examples of interval-based and cycle-based methods, respectively. INC8, motivated in
Figure 2, was chosen for the comparison.

Figure 18 exhibits 40 ET measurements on INC8 using the two system calls. The measured
values (CGT) from clock gettime (Figure 18(a)) alternate up and down, but the overall CGT
values vary only a little, over a range of 8,009 to 8,015 msec. Likewise, the measured values (RDT)

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

30 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

0 10 20 30 40

8
0

0
9

8
0

1
0

8
0

1
1

8
0

1
2

8
0

1
3

8
0

1
4

8
0

1
5

Iterations

C
G

T
 (

m
s
e

c
)

(a) ET Measurements on INC8 by clock gettime

0 10 20 30 40

8
0

2
0

8
0

2
2

8
0

2
4

8
0

2
6

8
0

2
8

Iterations

R
D

T
 (

m
s
e

c
)

(b) ET Measurements on INC8 by rdtsc

Figure 18. ET Measurements on INC8 by clock gettime and rdtsc

Table XXV. Statistics of ET Measurements on INC8 by clock gettime and rdtsc

Minimum Maximum Average Std. Dev. Rel. Err.
(msec) (msec) (msec) (msec)

clock gettime 8,009 8,014 8,012 2.4 0.0003
rdtsc 8,020 8,027 8,023 2.5 0.0003
EMP 8,014 8,023 8,018 1.6 0.0002

from rdtsc (Figure 18(b)) are almost constant (e.g., about 8,021 or 8,026 msec) while the RDT
values bounce up and down in an alternative fashion. We don’t know exactly why this phenomenon
occurs. Perhaps the RDT measured may have a correlation with the processor’s cycles, though more
investigation is needed.

Table XXV compares the statistics for CGT, RDT, and PT. clock gettime revealed the lowest
gap (5 msec) between the minimum and the maximum, and thus it might realize slightly better
accuracy than the other two. (That said, there is no ground truth on the measured time.) EMP yielded
the lowest standard deviation and relative error among the three methods. The overall performance
of rdtsc was not as good as that of the other two, despite its higher resolution.

Recall that clock gettime cannot be used with proprietary software. Additionally, its
measured time is typically contaminated by system noises, hurting precision and accuracy. As
discussed before, rdtsc is also not appropriate. Furthermore, its quality seems behind the other
two’s quality.

In sum, EMP can be considered an alternative to system calls, especially when timing proprietary
software with compute-bound workloads.

We now proceed to more realistic workloads.

5.2. Experiments with Real Programs

Another question may arise: does EMP really work for more realistic workloads than a simple
program like Figure 7? Some may claim that the nested-loop of INC measured above is too
straightforward to evaluate EMP’s efficacy.

To address this concern, we tackle more challenging cases: (i) some real-world programs with
memory accesses and greater computation and (ii) a well-known CPU-bound benchmark suite.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 31

 0.5

 1

 2

 4

 8

 16

 32

 64

100K 200K 400K 800K 1600K 3200K

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 (
m

se
c)

 i
n
 l

o
g

 s
ca

le

of elements in log scale

ET by EMPv6
PT by EMPv6

(a) ET vs. PT on SORT - Standard Deviation

 2×10
−6

 4×10
−6

 8×10
−6

 2×10
−5

 3×10
−5

 6×10
−5

 1×10
−4

 2×10
−4

 5×10
−4

 1×10
−3

100K 200K 400K 800K 1600K 3200K

R
el

at
iv

e
er

ro
r

in
 l

o
g

 s
ca

le

of elements in log scale

ET by EMPv6
PT by EMPv6

(b) ET vs. PT on SORT - Relative Error

 0.5

 1

 2

 4

 8

1000x1000 2000x2000 4000x4000 8000x8000

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n
 (

m
se

c)
 i

n
 l

o
g
 s

ca
le

Matrix size in log scale

ET by EMPv6
PT by EMPv6

(c) ET vs. PT on MATC - Standard Deviation

 2×10
−6

 4×10
−6

 8×10
−6

 2×10
−5

 3×10
−5

 6×10
−5

 1×10
−4

 2×10
−4

 5×10
−4

 1×10
−3

1000x1000 2000x2000 4000x4000 8000x8000

R
el

at
iv

e
er

ro
r

in
 l

o
g

 s
ca

le

Matrix size in log scale

ET by EMPv6
PT by EMPv6

(d) ET vs. PT on MATC - Relative Error

 0.5

 1

 2

 4

 8

 16

1000x1000 2000x2000 4000x4000 8000x8000

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n
 (

m
se

c)
 i

n
 l

o
g
 s

ca
le

Matrix size in log scale

ET by EMPv6
PT by EMPv6

(e) ET vs. PT on MATR - Standard Deviation

 2×10
−6

 4×10
−6

 8×10
−6

 2×10
−5

 3×10
−5

 6×10
−5

 1×10
−4

 2×10
−4

 5×10
−4

 1×10
−3

1000x1000 2000x2000 4000x4000 8000x8000

R
el

at
iv

e
er

ro
r

in
 l

o
g

 s
ca

le

Matrix size in log scale

ET by EMPv6
PT by EMPv6

(f) ET vs. PT on MATR - Relative Error

Figure 19. Performance Evaluation on Real-world Programs

Real-world Programs: We apply our measurement methodology to the following three types of
programs: 1) an insertion sort program (termed SORT), 2) a square-matrix-multiplication program
in column-major order (MATC), and 3) the same program but in row-major order (MATR). SORT
performs an insertion sort on an array filled with random integers. That array grows in size
from 100K elements to 800K elements. MATC (MATR) performs in column (row) major the
multiplication of two given matrices filled with random integers and then stores the results into
a third matrix. The size of each matrix increases from 1K-by-1K to 8K-by-8K.

Figure 19 exhibits the evaluation results of EMP on the above real-world programs. Both ET and
PT exhibited increasing standard deviation, but PT’s was less, with the relative standard deviation
falling faster with PT over increasing array size (Figure 19(a)). In particular, the gap between ET
and PT became somewhat wider, up to over 5x for the array with 1600K and 3200K elements. The
relative error of PT was always lower than that of ET even though there was an overlap observed at
200K (Figure 19(b)).

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

32 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

For MATC (MATR), PT also exhibited somewhat slower increasing standard deviation and faster
decreasing relative error compared with ET as the matrix size increased. For that biggest matrix, PT
dominated ET by 2x.

Concerning the standard deviations of ET on the real-world programs, in particular, there was
a significant rise on the y-axis at the longest task length on the x-axis at all times. The rise was
mainly attributed to a strong correlation with the run times of daemon processes. In other words, the
longer time taken to complete a computation task by SORT or MATC(R), (i) the more likely some
existing daemon processes (e.g., kslowd000 and kslowd001) ran longer than usual, and (ii) the
more likely some unusual daemon processes (e.g., flush-9:127) suddenly showed up and ran
for some time, thereby hurting the ET (and PT). (This empirical evidence has been demonstrated
with INC throughout this paper.) In contrast, PT was relatively less vulnerable to these daemons’
influence. That said, PT was not totally independent of the daemon processes’ activities. Further
investigation is needed to examine why such infection occurs to PT.

In sum, the performance of EMP (advocating PT) still holds valid for real-world workloads.
We now turn to an evaluation with real-world CPU-bound applications.

SPEC CPU2006: There is an industry-standard benchmark, SPEC CPU2006, designed to
evaluate with CPU-intensive workloads the performance of different computer systems. This
benchmark reflects various compute-bound real applications. The SPEC benchmark can provide
a basis for measuring a system’s performance by stressing different components including the
processor, the memory subsystem, and the compiler. One of its use cases is to measure and compare
the latency of completing a single task. Thus, employing the SPEC benchmark as a real-world
workload is a reasonable approach to evaluate EMP.

Table XXVI shows the evaluation results of EMP on the SPEC CPU2006 benchmarks. Note that
in the figure there are two empty bins associated with the 481 and 483 benchmarks. For 481, we
could not obtain its measurements, as there happened an unknown runtime error (seemingly caused
by provided binary input data). For 483, we excluded that benchmark in that I/O was involved.
Other than these two benchmarks, we had successful runs of a total of 29 (out of 31) benchmarks.

As exhibited in Table XXVI, EMP was effective for the real workloads. Overall, PT outperformed
ET on the standard deviation and relative error across the SPEC benchmarks. Most of the
benchmarks revealed a smaller standard deviation of PT than that of ET. In addition, regarding
the relative error PT surpassed ET for slightly under an half (specifically, 12) of the benchmarks. In
particular, a 10x margin between ET and PT was observed in a certain benchmark (400).

EMP also scaled well for these real CPU-bound benchmarks, in terms of growth of relative
error as the execution time lengthened. For some lightweight benchmarks (e.g., 400, 403, 410,
434, 445, and 999) (taking under 100 sec), PT outperformed ET by about 4.5x, on average. PT
continued its dominance against ET for the medium-weight ones (e.g., 447, 456, 470, and 473)
(100∼400 sec). For the heavyweight ones (e.g., 436 and 454) (> 900 sec), the relative error of PT
was lower than that of ET, up to about 1.3x.

Lastly, we still observed a substantial standard deviation (and relative error) for some benchmarks
(e.g., 436 and 462). The high variance seemed mainly attributed to the activities of the
kslowd000 and kslowd001 daemon processes, as also identified in the real-world programs.
These two were not observed during the daemon-cutoff study discussed in Section 4.5. The daemons
cannot be switched off, as they involve kernel threads. More investigation is needed to hopefully
better remove daemon executions interfering with timing a program.

In summary, these results empirically demonstrate that measurement quality—accuracy,
precision, and scalability—of EMP is also realized with real CPU-bound benchmarks.

6. RELATED WORK

Surprisingly, there is little literature regarding program execution time measurement. We found
several Unix programming books that address the measurement of running time. Stevens introduces

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 33

Table XXVI. Performance Evaluation on the SPEC CPU2006 Benchmarks

Benchmarks Standard Deviation (msec) Relative Error
ET PT ET PT

400.perlbench 21 2 5×10−2 4×10−3

401.bzip2 991 931 2×10−3 2×10−3

403.gcc 106 89 4×10−3 3×10−3

410.bwaves 50 22 6×10−3 3×10−3

416.gamess 1,077 1,087 1×10−3 1×10−3

429.mcf 523 482 2×10−3 2×10−3

433.milc 1,100 1,106 2×10−3 2×10−3

434.zeusmp 73 11 4×10−3 7×10−4

435.gromacs 1,137 1,232 1×10−3 1×10−3

436.cactusADM 4,798 4,536 4×10−3 4×10−3

437.leslie3d 1,462 1,000 3×10−3 2×10−3

444.namd 251 164 4×10−4 3×10−4

445.gobmk 109 23 1×10−3 3×10−4

447.dealII 291 109 6×10−4 2×10−4

450.soplex 109 65 3×10−4 2×10−4

453.povray 646 591 2×10−3 2×10−3

454.calculix 662 560 4×10−4 3×10−4

456.hmmer 108 49 3×10−4 1×10−4

458.sjeng 547 537 9×10−4 9×10−4

459.GemsFDTD 2,135 2,094 3×10−3 3×10−3

462.libquantum 5,265 5,178 9×10−3 9×10−3

464.h264ref 677 611 1×10−3 9×10−4

465.tonto 1,115 1,074 1×10−3 1×10−3

470.lbm 73 35 2×10−4 1×10−4

471.omnetpp 339 289 9×10−4 8×10−4

473.astar 331 320 9×10−4 9×10−4

481.wrf Runtime Error
482.sphinx3 1,740 1,787 3×10−3 3×10−3

483.xalancbmk Out-of-Scope
998.specrand 0.6 0.6 5×10−3 5×10−3

999.specrand 0.6 0.7 5×10−3 6×10−3

a variety of different library functions [15]. He also discusses measuring performance and presents
user-implemented timing methods [16].

Profilers [17, 18] are discussed as tools for checking code bottleneck based on function execution
time, and the timers as tools for measuring the amount of time spent executing code segments.

McGeoch in her book presents two basic methods of measuring process time, the time taken for an
actively running program [19]. One is to calculate real time, wall clock time or elapsed time derived
by comparing the two timestamps of the clock register taken before and after the process’ execution.
The other is to use interval timing to report computation or CPU time. As a general rule, she claims
that CPU time is preferred to algorithm researchers, as the time taken by other processes can be
ignored in CPU time, compared to the wall clock time.

The closest work to EMP is the measurement schemes suggested in Bryant and O’Hallaron [20].
The authors introduce two basic mechanisms used by computers for recording the passage of time,
one based on a counter incremented every clock cycle, and one based on a low frequency timer
periodically interrupting CPU. On top of these two mechanisms, the book presents the two timing
schemes by cycle counters (the total number of cycles spent during program execution), and by
interval counters (the total elapsed clock ticks during program execution). The two authors found
that the most accurate value for the observed elapsed clock ticks was the minimum one. Hence, they
devise an approach, called a minimum-of-k protocol.

None of these existing approaches takes into consideration variability in these measurements. The
longer a Linux program takes, the more variance in the program execution time is observed.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

34 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

Odom et al.’s work [21] also focuses on measuring long running programs. Their study was
conducted on a simulation framework. They used dynamic sampling of trace snippets while
execution an application. Our measurement technique is much simpler than their approach, and
we don’t require an execution trace of an application.

There is a rich body of literature [22, 23, 24, 25] discussing the worst case execution time (WCET)
of a process. As addressed here, the papers also point out that measuring worst-case execution time
at least needs some support from the underlying operating system. However, the papers focus on
measuring the WCET of a deadline-sensitive process on real-time embedded systems. We don’t
consider real-time constraints.

Several library packages provide access to hardware performance monitor information [26, 27,
28, 29, 30, 31, 32]. Among the packages, the Performance Application Programming Interface
(PAPI) [29] seems capable of measuring the execution time of a process. A call to the function
PAPI flops() returns four parameters, two of which concerns measured time: rtime and ptime.
According to the PAPI’s website [29], rtime indicates total real time in seconds since the first
PAPI flops() call, and ptime is total process time in seconds since the first PAPI flops()
call. But ptime’s resolution is in seconds. Thus, ptime may not be appropriate for a program ending
earlier than a second.

Note that a timer should be chosen based on its resolution, taking into account how long the
program runs. The timer for a very short code block might be different than that for a long-executing
code block.

In Windows, there is an infrastructure, called Windows Management Instrumentation (WMI), for
collecting management data and operations on a Windows-based OS [33].

There are also commercial software tools for measuring execution time [34, 35, 36]. These
software analyzers offer a timing trace to show exactly what process is executing at what time,
similar to open-source tools such as prof and gprof.

Measuring execution time concerns benchmarking and resource management. A component of
BenchExec [37], runexec, can measure the CPU time and wall-clock time of a program, as
can EMP. There are several differences between EMP and BenchExec. First, EMP identifies a
variety of sources of variability in execution time and eliminates the identified sources to minimize
the variability before actually measuring the execution time of INC. Second, EMP captures
all concurrently-running daemon processes around the main program (INC) and uses them for
post analysis. Third, EMP can remove significant outliers greatly contributing to variance in the
execution times of INC and then produces the refined timing results with limited variability.

A variety of works take an empirical approach to different aspects of software. Some perform an
empirical study related to measuring software performance [38, 39]. Others empirically investigate
the performance of an algorithm written in C [40] or in Java [41]. Our work is similar from
a methodological perspective, though we (i) identify key sources of variation that have been
overlooked and (ii) present a high-quality timing protocol that carefully controls sources of
variation.

We mentioned in the introduction that we had earlier developed a protocol for measuring
execution time for programs exhibiting I/O, in particular, query execution time in DBMSes [1].
That study identified a variety of Linux measures (e.g., user ticks, system ticks, IOWait ticks, etc.)
relevant to measuring query time, presented a structural causal model of explaining the variance of
query time, and introduced a timing protocol called TTP (Tucson Timing Protocol) for calculating
the query time. That protocol is applicable for measuring execution time of any program on Linux.

7. CONCLUSION

In this paper, we first presented a taxonomy of execution time measurements, distinguishing process
time from elapsed time, compute-bound programs from programs that perform I/O (the latter that the
Tucson Timing Protocol (TTP) presented earlier [1] is applicable to), and observing that three cases,
elapsed time for modifiable programs and program and elapsed time for non-modifiable programs,
were still in need of a refined protocol. We introduced a variety of factors affecting measuring the

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 35

execution time of a compute-bound program on Linux. We then proposed a sequence of refinements
that ultimate achieved a protocol (Execution Time Measurement Protocol, or EMP) that exhibits
precision, accuracy and scalability. This protocol uses a novel visualization, a dual-execution
scatterplot, and a carefully-motivated method of first identifying outliers in EMP (called L-samples)
and then outliers (in PT) of infrequent, long-running daemons, and finally cuttoffs that distinguish
those daemons from frequent and/or short-running daemons. Our experiments showed the validity
and effectiveness of EMP, specifically, that the relative error was reduced by at least an order
of magnitude and the observed behavior across widely varying process times (four orders of
magnitude) was more regular. The effectiveness of EMP was observed in real-world applications
as well.

EMP does not require any modifications to the program under test. It does not rely on hardware
counters, and thus is not platform-specific, though at this point the protocol only works on Linux.
But it does utilize other measurements provided by Linux to improve the time measurement quality.

8. FUTURE WORK

It would be useful to replicate EMPv6 to see if the strange behavior at INC1024 for ET persists.
It would also be helpful to run EMPv6 at higher runtimes, just to see what happens to the relative
error.

As stated in Section 4.2, we do not know the reason that EMPv2 (enabling on NTP) reduced the
average time. It would be useful to look into this.

But more importantly, now that we have a highly accurate and repeatable means of measuring
algorithm time, with relative errors at least an order of magnitude better than a simple protocol,
it would be useful to understand the cause(s) of the behavior of the increasing standard deviation
and decreasing relative error observed in Figure 17(b). One hypothesis is that there is variability
in the actual time measurement; that was rejected by the increasing standard deviation. Another
hypothesis is that there is variability on each context swap; that was rejected by the fact that the
standard deviation is not linear with program execution time. We looked briefly into whether the
number of context switches correlated with relative error and found no such connection, which
also argues against that hypothesis. Thus, at this point the origin of the shape of these curves is
entirely unknown. There must be some underlying mechanism that generates the observed (actual
and relative) standard deviation, but this is the first time to our knowledge that this phenomenon has
been observed.

Now that EMPv6 can now provide quite accurate program execution time measurements, even
given the existence of the newly-seen mechanism just described, one can now consider whether
repeated timing of an algorithm on input data of different sizes could infer the asymptotic
complexity of that algorithm. If one wishes to make predictions about running times in the future of
an actual program on different size inputs, it is necessary to fit a running time model. Variability of
the timing of the algorithm increases the challenge of such an empirical characterization of running
time, because multiple cost functions can fit empirical timing data. The more accurately one can
measure times on the given inputs, the better the resulting model that is obtained from fitting. The
more the timing data is constrained, the more alternative cost functions can be rejected.

9. ELECTRONIC APPENDIX

A separate electronic appendix provides (a) details on the Linux time-keeping mechanism,
(b) details on the Linux proc file system, (c) a list of non-critical daemons, and (d) details on
the NTP daemon.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

36 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

10. ACKNOWLEDGMENTS

We thank Phil Kaslo, Tom Lowry, Tom Buchanan, and Bob Burton for constructing and maintaining
our experimental instrument, a laboratory of seven machines and associated software. This research
was supported in part by NSF grants IIS-0639106 and IIS-1016205.

REFERENCES

1. Currim S, Snodgrass RT, Suh YK, Zhang R. DBMS Metrology: Measuring Query Time. ACM Transactions on
Database Systems (TODS) November 2016; 42(1):3:1–3:42.

2. Spradling CD. SPEC CPU2006 Benchmark Tools. SIGARCH Computer Architecture News March 2007; 35.
3. WORKING GROUP 2 OF THE JOINT COMMITTEE FOR GUIDES IN METROLOGY (JCGM/WG 2). International

Vocabulary of Metrology—Basic and General Concepts and Associated Terms 2008.
4. Kerrisk M. LINUX User’s Manual: TIME(1). http://man7.org/linux/man-pages/man1/time.1.

html , viewed on April 29, 2016.
5. Linux Programmer’s Manual. Netlink - Communication between Kernel and User Space (AF NETLINK). http:

//man7.org/linux/man-pages/man7/netlink.7.html , viewed on Apr 10, 2014.
6. The Linux Kernel Archives. Per-task Statistics Interface. https://www.kernel.org/doc/

Documentation/accounting/taskstats.txt , viewed on April 10, 2014.
7. The Linux Kernel Archives. The /proc Filesystem. https://www.kernel.org/doc/Documentation/

filesystems/proc.txt , viewed on April 10, 2016.
8. Red Hat. Red Hat Enterprise Linux. http://www.redhat.com/en/technologies/

linux-platforms/enterprise-linux , viewed on April 10, 2014.
9. Suh YK, Snodgrass RT, Zhang R. AZDBLAB: A Lab Information System for Large-scale Empirical DBMS

Studies. Proceedings of the VLDB Endowment (PVLDB) September 2014; 7(13):1641–1644.
10. Mills DL. Internet Time Synchronization: The Network Time Protocol. IEEE Transations on Communication

October 1991; 39(10):1482–1493.
11. Mallada E, Meng X, Hack M, Zhang L, Tang A. Skewless Network Clock Synchronization Without Discontinuity:

Convergence and Performance. IEEE/ACM Transactions on Networking (TON) October 2015; 23(5):1619–1633.
12. Intel. Intel Turbo Boost Technology 2.0. http://www.intel.com/content/www/us/en/

architecture-and-technology/turbo-boost/turbo-boost-technology.html , viewed
on March 9, 2015.

13. Intel. Enhanced Intel SpeedStep® Technology. http://www.intel.com/cd/channel/reseller/
ASMO-NA/ENG/203838.htm , viewed on March 9, 2015.

14. Red Hat. Red Hat Enterprise Linux 6.4 Technical Notes - Networking Timing Protocol. https:
//access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/
html/6.4_Technical_Notes/ntp.html , viewed on Jan 17, 2014.

15. Stevens WR. UNIX Network Programming: Networking APIs, Second Edition, Vol. 1. Prentice Hall, 2003.
16. Stevens WR, Rago SA. Advanced Programming in the UNIX® Environment (2nd Edition). Addison-Wesley

Professional, 2005.
17. Graham SL, Kessler PB, McKusick MK. gprof: A Call Graph Execution Profiler. Proceedings of the 1982

SIGPLAN Symposium on Compiler Construction (SIGPLAN ’82), ACM, 1982; 120–126.
18. CXperf H. HP CXperf Performance Analyzer. http://www.hp.com/softwarereleases/

releases-media2/proginfo/mail176/5971-4689.htm , viewed on June 12, 2014.
19. Mcgeoch CC. A Guide to Experimental Algorithmics. Cambridge University Express, 2012.
20. Bryant ER, O’Hallaron DR. Computer Systems: A Programmers Perspective (1st Edition). Addison Wesley, 2002.
21. Odom J, Hollingsworth JK, DeRose L, Ekanadham K, Sbaraglia S. Using Dynamic Tracing Sampling to Measure

Long Running Programs. Proceedings of the 2005 ACM/IEEE Conference on Supercomputing (SC ’05), IEEE,
2005; 59.

22. Burns A, Wellings AJ. Measuring, Monitoring and Enforcing CPU Execution Time. Ada Letters Mar 1993;
XIII(2):54–64.

23. Grund D, Reineke J, Gebhard G. Branch Target Buffers: WCET Analysis Framework and Timing Predictability.
Journal of Systems Architecture June 2011; 57(6):625–637.

24. Santos OMD, Wellings A. Measuring and Policing Blocking Times in Real-time Systems. ACM Transactions on
Embedded Computing Systems (TECS) Aug 2010; 10(2):1–29.

25. Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, Bernat G, Ferdinand C, Heckmann R, Mitra
T, et al.. The Worst-case Execution-time Problem—Overview of Methods and Survey of Tools. ACM Transactions
on Embedded Computing Systems (TECS) May 2008; 7(3):1–53.

26. Anderson JM, Berc LM, Dean J, Ghemawat S, Henzinger MR, Leung STA, Sites RL, Vandevoorde MT,
Waldspurger CA, Weihl WE. Continuous Profiling: Where Have All the Cycles Gone? ACM Transactions on
Computer Systems November 1997; 15(4):357–390.

27. DeRose LA. The Hardware Performance Monitor Toolkit. Proceedings of the 7th International Euro-Par
Conference Manchester on Parallel Processing (Euro-Par ’01), Springer-Verlag, 2001; 122–131.

28. OProfile. OProfile: A System-wide Profiler for Linux Systems. http://oprofile.sourceforge.net ,
viewed on July 15, 2014.

29. Browne S, Dongarra J, Garner N, London K, Mucci P. A Scalable Cross-platform Infrastructure for
Application Performance Tuning Using Hardware Counters. Proceedings of the 2000 ACM/IEEE Conference on
Supercomputing (SC’00), 2000.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 37

30. Berrendorf R, Ziegler H, Mohr B. PCL - The Performance Counter Library. http://berrendorf.inf.
h-brs.de/PCL/PCL.html , viewed on July 16, 2014.

31. Chaney C, DeWitt J, Ganesan K, Jagoda JS, Jones ST, Johnson M, Kacur J, Lenz IN, Levine F, Mu M, et al..
Performance Inspector. http://perfinsp.sourceforge.net , viewed on July 15, 2014.

32. Zagha M, Larson B, Turner S, Itzkowitz M. Performance Analysis Using the MIPS R10000 Performance Counters.
Proceedings of the 1996 ACM/IEEE Conference on Supercomputing (SC ’96), IEEE, 1996.

33. Microsoft. Windows Management Instrumentation. http://msdn.microsoft.com/en-us/library/
aa394582(v=vs.85).aspx , viewed on July 16, 2014.

34. Intel. VTuneTM Amplifier XE 2013. https://software.intel.com/en-us/
intel-vtune-amplifier-xe , viewed on July 15, 2014.

35. TimeSys Corporation. Timesys LinuxLink. http://www.timesys.com/embedded-linux/linuxlink
viewed on July 15, 2014.

36. Wind River. Wind River Workbench. http://www.windriver.com/products/product-notes/
workbench-product-note.pdf , viewed on July 16, 2014.

37. Beyer D, Löwe S, Wendler P. Benchmarking and Resource Measurement. Proceedings of the 22nd International
SPIN Symposium on Model Checking of Software (SPIN 2015), Springer, 2015; 160–178.

38. Welponer M, Abeni L, Marchetto G, Cigno RL. Measuring and Reducing the Impact of the Operating System
Kernel on End-to-end Latencies in Synchronous Packet Switched Networks. Softw. Pract. Exper. November 2012;
42(11):1315–1330.

39. Hashemian R, Krishnamurthy D, Arlitt M. Web Workload Generation Challenges - An Empirical Investigation.
Softw. Pract. Exper. May 2012; 42(5):629–647.

40. Nesmachnow S, Luna F, Alba E. An Empirical Time Analysis of Evolutionary Algorithms As C Programs. Softw.
Pract. Exper. January 2015; 45(1):111–142.

41. Collberg C, Myles G, Stepp M. An Empirical Study of Java Bytecode Programs. Softw. Pract. Exper. May 2007;
37(6):581–641.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

38 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

A. DETAILS OF LINUX TIME-KEEPING MECHANISM

We continue the discussion of the Linux timing mechanism in Section 2.3.

A.1. Clock Devices

All the clock devices (RTC, TSC, PIT, HPET, and ACPI PM) have counters associated
with them that are updated at each clock tick. Some clock devices have fixed tick
frequencies, such as ACPI PM which ticks exactly 3,579,545 times per second (as
defined in include/linux/acpi pmtmr.h). (This strange number is the same as
the NTSC (National Television System Committee) color synchronization frequency.)
There are also clock devices whose frequencies are machine-dependent. For instance,
the frequency of TSC is equal to the CPU frequency. Since the CPU frequency varies
from machine to machine, TSC’s frequency can be determined only when the system is
running. Each computer system has a collection of these clock devices. The available
clock devices in our experiment machine are TSC, HPET, and ACPI PM (as seen in
/sys/devices/system/clocksource/clocksource0/available clocksource,
and the current device is set to TSC (as shown in /sys/devices/system/clocksource/
clocksource0/current clocksource).

A.2. Timer Interrupts

Timer interrupts are used in the Linux kernel not only for time keeping, but also other kernel
activities such as process scheduling. Timer interrupts are issued by the system’s hardware (usually
PIT or HPET). The frequency of timer interrupt is defined by constant HZ in asm/param.h.
At each timer interrupt, the kernel updates the wall time of the system and records important
information such as the current clock cycle count since the last system reset.

A.2.1. xtime This variable is used to keep the system wall time. xtime’s value is set to the time
of RTC during kernel initialization. After that, xtime is updated once every timer interrupt. It is
necessary to hold the sequential lock xtime lock before accessing xtime.

A constant time (the timer interrupt interval) should be added to xtime at each timer interrupt.
Almost all the timing functions provided by the Linux kernel are based on the value of

xtime. However, xtime is sometimes too coarse to be used directly. Therefore, for functions
like gettimeofday and clock gettime, we will need to further process xtime in order to
provide higher precision.

A.2.2. Clock Sources The Linux kernel uses a clocksource data structure to provide an
abstraction for clock sources, so that various clock sources can be accessed in a uniform way.
A clock source must be registered to the kernel before it can be used, and most clock sources
are registered during kernel initialization. The kernel keeps a list of available clock sources, and
chooses the one with the highest resolution to use. The kernel checks the clock source list at
each timer interval. If there exists a new clock source which is better than the current one, the
kernel will switch to that new one. The current clock source is recorded in the clock variable in
kernel/time/timekeeping.c.

A.2.3. Timing Functions This section reviews time-related system calls in the Linux kernel.

• The time() system call returns the current time in seconds since midnight of January 1,
1970. It uses a variable named xtime cache that can be considered as a copy of xtime. It
is synchronized with xtime at every timer interrupt. Hence, the time() system call simply
returns the tv sec field, defined in xtime cache, representing the current time in seconds.

• The gettimeofday() system call returns the current time in microseconds. The function
also takes a parameter indicating the current time zone, which is simply set to NULL.
Internally, the system call uses the current clock source used to determine the clock cycle

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 39

count elapsed since the last timer interrupt. The cycle count is changed into nanoseconds,
which are added to the current time and then converted to microseconds and returned.

• The clock gettime() system call is defined in POSIX‡. If the function succeeds,
the current time in nanoseconds is returned. The function takes a parameter specifying
which POSIX clock to use. The most commonly used clocks are CLOCK REALTIME and
CLOCK MONOTONIC.

• CLOCK REALTIME returns the current wall time, and it uses the same underlying functions
as gettimeofday. Thus, their results should be identical except for precision.

Since xtime can be modified by the time setting system calls (e.g., settimeofday), which
can be invoked by arbitrary programs with appropriate superuser privileges, the wall clock time may
not be monotonic (i.e., gettimeofday or CLOCK REALTIME may return a time value which
is earlier than the result of a previous call). CLOCK MONOTONIC solves this problem by always
returning monotonic time since the system is up, which means the result would not be affected by
modifications to the current wall time.

The Linux kernel maintains another variable wall to monotonic, which is initialized to be 0.
If xtime is changed by δ by the set-time functions, then wall to monotonicwould be changed
by -δ, such that the sum of the two variables remains unchanged, keeping the result monotonic.

For instance, suppose that at 10:05 AM someone sets the wall clock time to 11:00 AM
using the time setting system call. As a result, CLOCK REALTIME becomes 11:00 AM,
wall to monotonic is -55 minutes, and CLOCK MONOTONIC is still 10:05 AM. Five
minutes later (CLOCK REALTIME = 11:05 AM, CLOCK MONOTONIC = 10:10 AM), a user
sets the wall clock time back to 10:05 AM. Now CLOCK REALTIME becomes 10:05 AM,
wall to monotonic is 5 minutes, and CLOCK MONOTONIC is 10:10 AM.

A.2.4. rdtsc It is worth mentioning that some modern CPUs support more than one frequency,
and some Linux operating systems are able to change the CPU frequency on demand, i.e., increasing
the CPU frequency while doing bulk computations and decreasing the CPU frequency when idle.
This is good for the purpose of power saving but may affect the result of rdtsc. Therefore, it
is recommended to use cpufreq-selector facility to set the CPU frequency to a fixed value
before using rdtsc for time measurements.

B. PROC FILE SYSTEM

The proc file system [7] is a pseudo-file system which resides entirely in main memory. It is
usually mounted at /proc. It provides the same interface as a file system to allow user level access
to kernel data structures.

In the proc file system, there is a sub-directory for each process which is named by its process
id (pid). The /proc/pid/stat§ file provides the status information of the process with id
pid, including user time and system time. Furthermore, the /proc/pid/task/tid/stat file
provides even more detailed statistics on the threads (identified by tid) belonging to the process.

The kernel keeps track of the flow of time by means of timer interrupts. Namely, every time
a configured clock device (e.g. TSC¶ in our system) experiences a timer interrupt, the kernel
increments the user or system time by one tick. While a process or a thread gets time to run, the
accumulated ticks are charged to them. Accordingly, the /proc/pid/task/tid/stat gets
updated.

‡Portable Operating System Interface for Unix (POSIX) is the collective name of a family of related standards specified
by the IEEE to define the API, along with shell and utilities interfaces for software compatible with variants of the Unix
operating system.
§The ps utility actually reads process information from the /proc/pid/stat file.
¶This can be confirmed through /sys/devices/system/clocksource/clocksource0/current
clocksource

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

40 Y-K. SUH, R. T. SNODGRASS, J. D. KECECIOGLU, P. J. DOWNEY, R. S. MAIER, AND C. YI

C. NON-CRITICAL DAEMONS

We identified unnecessary daemon processes such as abrtd, acpid, atd, auditd,
certmonger, crond, cups, haldaemon, iptables, ip6tables, postfix, vmware,
vmware-USBArbitrator, and xinetd. The details about these daemons are exhibited in
Table XXVII.

We then turned off the daemon processes before conducting actual execution
time measurement on INC. After deactivating the daemons, we still observed
other running daemons in the following: abrt-dump-oops, aio, async/mgr,
ata, ata aux, bdi-default, cgroup, crypto, dbus-daemon, events,
ext4-dio-unwrit, flush-9:0, kacpid, kacpi hotplug, kacpi notify,
kauditd, kblockd, khelper, khubd, khugepaged, khungtaskd, kintegrityd,
kpsmoused, kseriod, kslowd000, kslowd001, ksmd, ksoftirqd, kstriped,
ksuspend usbd, kswapd0, kthrotld, kthreadd, hd-audio0, hd-audio1,
ib addr, ib cm, ib mcast, infiniband, init, ipoib, iw cm wq, jbd2/md0-8,
mcelog, md, md misc, md0 raid1, mingetty, migration, netns, ntpd,
pciehpd, pm, portreserve, rdma cm, rhnsd, rhsmcertd, rpcbind,
rpc.statd, rpciod, rpc.idmapd, rpc.statd, rsyslogd, scsi eh 0,
scsi eh 1, scsi eh 2, scsi eh 3, scsi eh 4, scsi eh 5, sshd, sync supers,
ttm swap, udevd, usbhid resumer, watchdog, and ypbind.

These live daemons either belong to the kernel or are managed by the root user. Due to their
association with the kernel, it is necessary to not to turn them off, otherwise, doing so may jeopardize
the proper function of the OS.

Table XXVII. List of Eliminated System Daemons

Daemon Name Description

abrtd Automated bug reporting tool’s daemon. A daemon watching
for application crashes.

acpid Advanced Configuration and Power Interface event daemon.
A daemon designed to notify user-space programs of ACPI
events.

atd atd runs jobs queued by at
auditd The Linux Audit daemon. Responsible for writing audit

records to the disk, as the user space component to the Linux
Auditing System.

certmonger A daemon that monitors certificates for impending expiration,
and is capable of optionally refreshing soon-to-be-expired
certificates with the help of a certificate authority (CA).

crond The daemon to execute scheduled commands (ISC Cron V4.1)
cups Common Unix Printing System
haldaemon A Hardware Monitoring System. Auto-recognizes various

kinds of hardware and mountable media.
ip6tables IPv6 packet filter administration
iptables Administration tool for IPv4 packet filtering and NAT
postfix Postfix control program. Used to submit mail.
vmware VMware SVGA video driver. An Xorg driver for VMware

virtual video cards.
vmware-USBArbitrator VMware USB Arbitration Service daemon. Allows USB

devices plugged into the HOST to be usable by the guest.
xinetd The extended Internet services daemon

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

EMP: EXECUTION TIME MEASUREMENT PROTOCOL FOR COMPUTE-BOUND PROGRAMS 41

D. TIME ADJUSTMENT BY NETWORK TIME PROTOCOL

Consider two alternative methods of adjusting the local system time. One is to directly modify
xtime (using set-time functions such as settimeofday), so that the system time is corrected
immediately. However, there are some problems with this method. If the clock device is itself
inaccurate, the local system time will keep deviating from the correct time, and thus we may have to
modify xtime repeatedly in order to keep the system time accurate. In addition, a large change in
the system time may confuse programs like make whose functionality depends on the time stamps
of files.

Another method is to adjust the number of nanoseconds to be added to xtime at each timer
interrupt (using adjtimex system call). In this way we can try to make the system clock more
accurate. This method takes effect slowly, but it can avoid the previous method’s problems.

The adjtimex system call is used to adjust the value of variable tick length, which is
the interval that NTP thinks should be added to xtime at each timer interrupt. As we discussed
in Section A.2.1, the actual number of nanoseconds added to xtime at each timer interrupt
is determined by clock->xtime interval. The difference between these two values is
calculated and added to clock->error at each timer interrupt. If clock->error becomes
larger than certain threshold, the value of clock->xtime interval and clock->mult
would be adjusted according to the NTP algorithm to correct the clock.

The NTP daemon (ntpd) program adopts both methods. NTP uses settimeofday for big
adjustments and adjtimex for small adjustments. settimeofday would affect the result of
gettimeofday and CLOCK REALTIME, but would not affect the result of CLOCK MONOTONIC,
whereas adjtimex may affect the result of all subsequent get-time functions.

Copyright © 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe

