Generalizing Database Forensics

KYRIACOS E. PAVLOU and RICHARD T. SNODGRASS, University of Arizona

In this article we present refinements on previously proposed approaches to forensic analysis of database
tampering. We significantly generalize the basic structure of these algorithms to admit new characterizations
of the “where” axis of the corruption diagram. Specifically, we introduce page-based partitioning as well as
attribute-based partitioning along with their associated corruption diagrams. We compare the structure of
all the forensic analysis algorithms and discuss the various design choices available with respect to forensic
analysis. We characterize the forensic cost of the newly introduced algorithms, compare their forensic cost,
and give our recommendations.

We then introduce a comprehensive taxonomy of the types of possible corruption events, along with an
associated forensic analysis protocol that consolidates all extant forensic algorithms and the corresponding
type(s) of corruption events they detect. The result is a generalization of these algorithms and an overarching
characterization of the process of database forensic analysis, thus providing a context within the overall
operation of a DBMS for all existing forensic analysis algorithms.

Categories and Subject Descriptors: H.2.7 [Database Management]: Database Administration—Security,
integrity, and protection; K.6.5 [Management of Computing and Information Systems]: Security and
Protection—Unauthorized access

General Terms: Algorithms, Performance, Security

Additional Key Words and Phrases: Compliant records, forensic analysis algorithm, forensic cost, Monochro-
matic Algorithm, a3D Algorithm, page-based partitioning, attribute-based partitioning, corruption event
taxonomy, forensic analysis protocol.

ACM Reference Format:

Pavlou, K. E. and Snodgrass, R. T. 2013. Generalizing database forensics. ACM Trans. Datab. Syst. 38, 2,
Article 12 (June 2013), 43 pages.

DOL: http://dx.doi.org/10.1145/2487259.2487264

1. INTRODUCTION

Regulations and societal expectations have recently emphasized the need to mediate
access to valuable databases, even access by insiders. Fraud occurs when a person
tampers illegally with a database and tries to hide illegal activity. There are thou-
sands of regulations [Gerr et al. 2003] that mandate how data should be managed
and equally numerous laws for ensuring the correct storage, use, and maintenance of
databases on extant DBMSes ([HIPAA, US Department of Health & Human Services
1996; Sarbanes-Oxley Act, U.S. Public Law No. 107-204, 116 Stat. 745 2002]).

Data owners would like to be assured that such tampering has not occurred, or if
it does, that it will be quickly discovered. This need has spurred a high demand for

NSF grants 1IS-0415101, 1IS-0639106, 11S-0803229, 11S-1016205, and EIA-0080123 and a grant from Mi-
crosoft provided partial support for this work.

Authors’ addresses: Kyriacos E. Pavlou, (Current address) Department of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, IL 61801-2302, kpavlou@illinois.edu; Richard T. Snodgrass, Depart-
ment of Computer Science, University of Arizona, Tucson, AZ 85721-0077, rts@cs.arizona.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2013 ACM 0362-5915/2013/06-ART12 $15.00

DOI: http://dx.doi.org/10.1145/2487259.2487264

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:2 K. E. Pavlou and R. T. Snodgrass

integrated solutions for ensuring the integrity of databases, detecting data corruption
even by insiders, and performing forensic analysis on such corruptions in a variety of
application domains.

A previous paper by our research group on tamper detection proposed a new ap-
proach in which cryptographically strong one-way hash functions prevent an intruder,
including an auditor or an employee or even an unknown bug within the DBMS itself,
from silently corrupting the audit log [Malmgren 2007; Snodgrass et al. 2004]. This is
accomplished by using a a database with ¢transaction time semantics in which all data
manipulated by transactions are cumulatively hashed as they become available to the
system. This generates a hash chain whose value at each time instant represents all
the data in the database. The hash values are periodically notarized and then validated
in order to detect if the database audit log has been altered.

The question then arises, what should be done when an intrusion has been detected?
At that point, all that is known is that at some time in the past, data somewhere in
the database have been altered. Database Forensics is needed to ascertain when the
intrusion occurred, what data were altered, and ultimately, who the adversary is.

In subsequent papers we introduced several algorithmic tools used in tam-
per detection and forensic analysis. Specifically, we have developed several foren-
sic analysis algorithms, including Monochromatic [Pavlou and Snodgrass 2006],
RGB [Pavlou and Snodgrass 2006], Tiled-Bitmap [Pavlou and Snodgrass 2010], RGBY
[Pavlou and Snodgrass 2008], and a3D [Pavlou and Snodgrass 2008]. We have shown
how the execution of each of these algorithms and their results can be succinctly cap-
tured in a corruption diagram. We have also introduced the concept of forensic cost for
these algorithms.

These previous algorithms and their associated corruption diagrams utilize a single
“where” dimension, that of commit time. This provides a very important clue as to
what data was tampered with as well as perhaps who perpetrated the tampering. One
limitation of these algorithms is that this clue only can go so far. It would be useful to
provide more semantic information during forensic analysis. We show how to provide
alternate characterizations of “where,” specifically physically where in the database
(which page or pages) as well as which values were corrupted. Doing so will provide
more flexibility to the Chief Security Officer (CSO) in configuring forensic analysis to
the semantics of the database and to the environment of the database and its associated
threats and will provide more information in the event of tampering.

A second major limitation of previous work is the inadequate characterization of the
space of possible corruptions and the concomitant lack of understanding of the com-
prehensiveness of extant tamper detection forensic analysis algorithms: the extent to
which existing algorithms can identify all possible corruptions. For example, straight-
forward application of an existing forensic analysis algorithm can only identify multiple
sites of corruption. The result has no additional information with regard to how the
corruption affected the data: whether an attribute value was changed, or a timestamp
was backdated or postdated, or even whether the schema of the database was changed.

Problem Statement. Existing techniques are not generalizable. What is needed are
generalized forensic algorithms that support multiple characterization of the “where”
aspect of the corruption. Also needed is a broader understanding of the types of cor-
ruptions possible as well as a general description of the process of database forensic
analysis.

In this article, we build on this work and provide several refinements to extant tamper
detection and forensic analysis techniques. Our contributions are the following.

—We extend the notion of hashing transactions based on timestamps, first to phys-
ical pages and then to any general time-correlatable field. The latter significantly

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:3

generalizes the basic structure of these algorithms to admit new characterizations
of the “where” axis of the corruption diagram. Specifically, we introduce page-based
partitioning as well as attribute-based partitioning.

—We compare the structure of all the forensic analysis algorithms and discuss the
various design choices available with respect to forensic analysis. We compute the
forensic cost of the newly introduced algorithms, compare their forensic cost, and
give our recommendations.

—We introduce a comprehensive taxonomy of the types of possible corruption events.

—We introduce a forensic analysis protocol that consolidates all extant forensic algo-
rithms. Employing this protocol achieves the detection of different types of corruption
events characterized in the taxonomy.

The result of these four contributions is a generalization of the forensic algorithms
and an overarching characterization of the process of database forensic analysis, thus
providing a context within the overall operation of a DBMS. The importance of the
contributions lies in the fact that this work presents a general identification of the steps
that need to be taken from the time a tampering is detected until the corruption sites
and the types thereof have been identified. By following these steps, anyone charged
with the security of a database can thereby obtain a more complete explanation of what
data were affected, in what ways the data were affected, and when this corruption
transpired. This explanation is customizable to the needs of the user or to the demands
of the application domain.

Section 2 discusses the audit system and different design choices required for the
system’s architecture. Section 3 reviews the key ideas behind corruption diagrams and
forensic analysis algorithms. In particular we revisit perhaps the two most represen-
tative of the forensic analysis algorithms: the Monochromatic and a3D algorithms. In
Sections 4 and 5 we show how forensic analysis algorithms can be generalized by par-
titioning the database data according to pages and attributes, respectively. Section 6
summarizes these new forensic analysis algorithms. We then cover the various de-
sign choices available with respect to forensic analysis, while Section 8 compares the
structure of the complete collection of forensic analysis algorithms. Sections 9 and 10
characterize the forensic cost of the newly introduced algorithms, compare their foren-
sic cost, and give recommendations. Section 11 introduces a formal definition of forensic
analysis and provides a taxonomy of corruption event types along with an associated
forensic analysis protocol. This is followed by related work. The article concludes with
an overall summary and directions for future work. Finally, an electronic Appendix
provides a detailed description of the step-by-step process of forensic analysis protocol
to identify the type of a detected corruption.

2. THE AUDIT SYSTEM

In this section we describe how to audit a database and summarize the tamper
detection approach we previously proposed and implemented [Snodgrass et al. 2004].
We give the gist of our approach, so that the refinements we subsequently propose can
be understood. Table I lists the audit system execution phases, their subphases, and
the actions performed during each. Figure 1 shows the architecture of the system and
the actions performed during the Normal Processing execution phase.

The basic approach to normal processing differentiates between the Total Chain
Computation subphase, in which transactions are hashed and resulting values are
digitally notarized, and the Tamper Detection and Partial Chain Computation sub-
phase, in which the hash values are recomputed and compared with those previously
notarized. It is during validation of the total chain that tampering is detected, when
the just-computed hash value doesn’t match those previously notarized. Also, certain

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:4 K. E. Pavlou and R. T. Snodgrass

Table I. Audit System Execution Phases, Subphases, and Actions

‘ Execution Phases Subphases Actions ‘

— Hashing to create total chain
— Notarization of total chain
— Re-hashing of total chain

Total Chain Computation

Normal Processing | Tamper Detection — Validation of total chain
and If required by forensic algorithm:
Partial Chain Computation — Hashing to create partial chains

— Notarization of partial chains

— Running a forensic algorithm

C tion Region Analysi .
orruption fegion Analysis to determine where and when

Forensic Analysis
Manual Analysis — Determining who and why

algorithms like a3D require the computation and notarization of one or more partial
hash chains during the scan of the entire database that occurs during validation.

The actions for both normal processing subphases are illustrated in Figure 1. In
Figure 1, the user application performs transactions on the database, each of which
inserts, deletes, and updates rows of the current state. Behind the scenes, the DBMS
maintains the audit log by rendering a specified relation as a transaction-time table.
This instructs the DBMS to retain previous tuples during update and deletion,
along with their insertion and deletion/update time (the start and stop timestamps
[Snodgrass and Ahn 1986]), in a manner completely transparent to the user applica-
tion [Bair et al. 1997]. (Thus the tuples of a transaction are those inserted, deleted, or
updated by the transaction.) We note that IBM [IBM Corporation 2010], Oracle [Oracle
Corporation. 2009] and Teradata [Teradata Corporation. 2012] DBMSes now support
transaction-time tables in such a transparent manner.

An important property of all compliant data stored in the database is that they
are append-only: modifications only add information; no information is ever deleted
[Snodgrass and Ahn 1986]. Hence, if old information is changed in any way, then tam-
pering has occurred. How this information is stored (e.g., in the log, in the relational
store proper, in a separate “archival store” [Ahn and Snodgrass 1988]) is not criti-
cal in terms of tamper detection, as long as previous tuples are accessible in some
way.

On each modification of a tuple, the DBMS and the Notarizer are responsible for hash-
ing the tuples. (Our implementation uses the SHA-1 cryptographic hash function [US
National Institute of Standards and Technology 2012] provided by the beecrypt-4.1.2
library.) When that transaction commits, the DBMS obtains a time-stamp and com-
putes a cryptographically strong one-way hash function of the data in the tuple and
the timestamp. This type of hashing is termed holistic in order to distinguish it from
the faster, but more complex, opportunistic and incremental hashing where tuples are
hashed as soon as they are written to the database buffer [Snodgrass et al. 2004].

The DBMS then periodically performs a notarization by sending that hash value
as a digital document to an independent external digital notarization service, such
as Surety (www.surety.com), and obtaining a notary ID, thereby locking the contents
and time of that digital document [Haber and Stornetta 1999]. The returned notary
ID along with the initially computed hash values are stored in the secure master
database [Malmgren 2007].

Later, say an adversary, let us call her Mala, gets access to the database. If she
changes the data or a timestamp, the notary ID obtained from their notarization no
longer corresponds to them. Mala cannot manipulate the data or the timestamp so that

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:5

User
Application

transactions

! "- i "\ hash

i s -%fe
" hash value Te '},O
+ notary ID L
¥ : 5 [
v - Y
Secure |
Master EDNS
| Dlatabase T
S i | 7 l
| ~ | ! &
. " . | e
transactions i linear scan notary ID| | result o W@

i

. | + ; E
= | S,
Transaction result
Time Validator
Database
L Secure Site |

Fig. 1. Normal Processing comprises of (a) Computation of Total Chain and (b) Tamper Detection & Com-
putation of Partial Chains.

the notary ID remains valid, because the hash function is one-way. Note that this holds
even when Mala has access to the hash function itself. It is computationally infeasible
to alter other tuples so that the same hash value results.

An independent validation service later scans the entire database (as illustrated in
Figure 1). The Validator hashes the data and the timestamp of each tuple and provides
the resulting hash value along with the previously obtained notary ID to the notariza-
tion service, which then checks the notarization time with the stored timestamp. The
validation service then reports whether the database has been compromised.

If Mala decides to undo the corruption and is quick enough to revert the corrupted
data to their original values before a validation check, such a temporary corruption will
not be detected during tamper detection; the validation of the database will report that
the database had not been compromised. Even though, at first glance, this appears to
be a problem, we need to keep in mind that Mala’s remedial action leaves the database
in an legal state so we do not consider this attack as a corruption of the data stored
in the the database. A full threat model concerning the audit system can be found
elsewhere [Snodgrass et al. 2004]. Also, all important design choices discussed in this
section will be summarized in Table V.

During the same execution of Tamper Detection and Partial Chain Computation
the validator computes partial chains whose resulting values are then sent to be
notarized (Figure 1). The creation and use of the partial chains for forensic analysis
are discussed in Section 3.1.

For our purposes, the only detail important for forensic analysis is that at commit
time, the transaction’s hash value and the previous hash value are hashed together to
obtain a new hash value. Thus, the hash values of the modified tuples of each individual
transaction are linked in a sequence, then linked with each subsequent transaction,
with the final value being essentially a hash of all changes to the database since the
database was created. Hence, this chain is termed total.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:6 K. E. Pavlou and R. T. Snodgrass

Table Il. Assumptions of Commit-Time-Based Monochromatic and a3D Algorithms

‘ Monochromatic a3D ‘
Uses total cumulative chain Uses total cumulative chain as well as
but does not use partial chains partial chains which form a binary tree

Can only detect a single corruption
with no false positives.

If multiple corruptions exist it detects
the one affect data with the oldest
commit-time.

VeN V=1
N=1 NeN

Can detect multiples corruptions
with no false positives.

For more details on exactly how the tamper detection approach works, please refer
to our previous paper [Snodgrass et al. 2004], which presents the threat model used
by this approach, discusses performance issues, and clarifies the role of the external
digital notarization service.

The validator provides a vital piece of information, that tampering has taken place,
but doesn’t offer much else. Since the hash value is the accumulation of every transac-
tion ever applied to the database, we don’t know when the tampering occurred, or what
portion of the audit log was corrupted. We now turn to the details of how validation
results can be leveraged to perform forensic analysis.

3. THE FORENSIC ANALYSIS ALGORITHMS

In this section we give an overview of important forensic tools and concepts that are
central to the refinements discussed in the later sections. Table II summarizes the
assumptions of the of Monochromatic and a3D Algorithms. A summary of the notation
used along with definitions are given in Table III.

3.1. The Monochromatic Algorithm

Once the corruption has been detected, the forensic analyzer (a program) springs into
action. The task of this analyzer is to ascertain, as accurately as possible, the corruption
region: the bounds on “where” and “when” of the corruption.

From the last validation event, we have exactly one bit of information: validation
failure. However, the forensic analyzer can use just the database itself to determine
bounds on the corruption time (#.) and the locus time ().

The Monochromatic Forensic Analysis Algorithm yields the rectangular corruption
region illustrated in Figure 2, with an area of 12 days? (two days wide by six days tall).
Note that even though the two axes have different semantics, both are measured in
days. To reach this result we must first note that the most recent VE before FVF is
VEj3 and it was successful. This implies that the corruption event has occurred in this
time period. Thus ¢, is somewhere within the last Iy, which always bounds the “when”
of the CE.

To bound the “where,” the Monochromatic Algorithm can validate prior portions of
the database, at times that were earlier notarized. Consider the very first notarization
event, NE;. The forensic analyzer can rehash all the transactions in the database in
order, starting with the schema and then from the very first transaction (such data
will have a commit time earlier than all other data), and proceeding up to the last
transaction before NE;. If that newly computed hash value matches the notarized
hash value, the validation result will be true, and this validation will succeed, just like
the original one would have, had we done a validation query then. Assume likewise
that NE; through NE7; succeed as well.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:7
Table Ill. Summary of Notation Used
Page numbers of where each definition can be found in Pavlou and Snodgrass [2008] are also given.
Symbol Name Definition Page #
CE Corruption event An event that compromises the database 30:6
VE Validation event The vahdatl?n o.f the aufht log 30:6
by the notarization service
NE Notarization event The notarization of a d0c1.1meT1t . 307
(hash value) by the notarization service
le Corruption locus data The corrupted data 30:7
tn Notarization time The time instant of a NE 30:7
ty Validation time The time instant of a VE 30:7
t. Corruption time The time instant of a CE 30:6
4 Locus time The time instant that /. was stored 30:7
Iy Validation interval The time between two successive VEs 30:7
Iy Notarization interval The time between two successive NEs 30:7
R Temporal detection Finest granularity chosen to express 307
t resolution temporal bounds uncertainty of a CE ’
R Spatial detection Finest granularity chosen to express 307
i resolution spatial bounds uncertainty of a CE ’
Time of most recent The time instant of the last NE whose
trvs 1. 1 . 30:12
validation success revalidation yielded a true result
trve Time of first validation failure | Time instant at which the CE is first detected | 30:9
USB Upper spatial bound Upper bound f)f the s.patlal uncertainty 30:12
of the corruption region
LSB Lower spatial bound Lower bound ?f the s.patlal uncertainty 30:12
of the corruption region
UTB Upper temporal bound Upper bound f)f the t.emporal uncertainty 30:12
of the corruption region
ITB Lower temporal bound Lower bound ?f the t.emporal uncertainty 30:12
of the corruption region
14 Validation factor The ratio Iy /Iy 30:14
N Notarization factor The ratio Iy/R;s 30:23

Of course, the original VE; and VEj,, performed during normal database processing,

succeeded, but we already knew that. What we are focusing on here are validations
of portions of the database performed by the forensic analyzer after tampering was
detected. Computing the multiple hash values can be done in parallel by the forensic
analyzer. The hash values are computed for each transaction during a single scan of
the database and linked in commit order. Whenever a midnight is encountered as a
transaction time, the current hash value is retained. When this scan is finished, these
hash values can be sent to the notarization service to see if they match.

Now consider NEg. The corruption diagram implies that the validation of all trans-
actions occurring during day 1 through day 16 failed. That tells us that the “where” of
this corruption event was the single Iy interval between the midnight notarizations of
NE; and NEg, that is, during day 15 or day 16. Note also that all validations after that,
NEj through NE+1, also fail.

In general, we observe that revisiting and revalidating the total chain at past nota-
rization events will yield a sequence of validation results that start out to be true and
then at some point switch to false (TT...TF.. .FF). This single switch from true to false
is a consequence of the cumulative nature of the total hash chain.

We term the time of the last NE whose revalidation yielded a true result (before the
sequence of false results starts) the time of most recent validation success (tzys). This tgys

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:8 K. E. Pavlou and R. T. Snodgrass

T First Validation
toyp= UTZIZ I}:Ea;ﬂure (FVF)
1 NE,,

1 CE

. 22 J NE,
1 NEj,
LTB VE,
18| NEo®
T NE
T ‘NE,
When VE,

4 NEg™

1 \E,

T : : ly=6=3-1, :

T NE, R,=6

1 VE,

NE,

4 V=3

T NE, N=

+ —

1 I,=2

NE] N
1 R=2
NE,
—tt—t—t—t—t—t—t—t—t—t—t 7 6} —t—t—t—t—t—t—t—t
trys= LSB , USB teyr

Where !

Fig. 2. Corruption diagram for the transaction-time-based Monochromatic Algorithm.

helps bound the where of the CE because the corrupted tuple belongs to a transaction
which committed between %, and next time database was notarized (whose validation
now evaluates to false). t;s is marked on the Where axis of the of the corruption
diagram, as seen in Figure 2.

In practice the Monochromatic Algorithm can quickly compute the bounds on the
“where” of the CE by determining the interface between the true and false validation
results, achieved by performing a binary search on notarization events. More details on
the implementation of the Monochromatic Algorithm can be found elsewhere [Pavlou
and Snodgrass 2008].

3.2. The a3D Algorithm

The Monochromatic Algorithm and its page-based counterpart cannot isolate the
“where” of a corruption event to a resolution finer than R, nor can it differentiate
multiple corruptions. The a3D Algorithm [Pavlou and Snodgrass 2008], an extension
that extensively utilizes partial chains for a more comprehensive analysis, is illustrated
in Figure 3. (Note that the values for V = 1 and N = 2 are different from the ones in
Figure 2 because the two figures illustrate different algorithms. The a3D Algorithm in
Figure 3 requires that V = 1 while the Monochromatic Algorithm in Figure 2 requires
that N = 1.) Even though the corruption diagram shows only VEs, it is implicit that
these were preceded immediately by notarization events (not shown). The difference be-
tween a3D and the other algorithms (including Monochromatic) is a slowly increasing

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:9

When
VE,
==
VE,
- ==
VE,
==
VE;
VE,
==
VE,
== V=1
VE, N=2
— R,=1
VE,
NE,

I 2 4 6 8 10 12 14 16 18
Where

Fig. 3. Corruption diagram for the transaction-time-based a3D Algorithm.

number of (partial) chains at each validation. Thus in addition to the cumulative total
chain (45-degree line in Figure 3) being maintained several smaller chains (shown
with white-tipped arrows in Figure 3) that only hash specific parts of the data in the
database (hence the name “partial”) are computed during the validation scan.

The beauty of this algorithm is that it decides which chains to add based on the cur-
rent time period induced by R;. In this way the number of chains increases dynamically
and thus maintains a binary tree/forest structure of hash chains covering the data in
the database. This allows us to perform recursive binary search over the tree structure
in order to locate the corruption(s).

Full details on the a3D Algorithm and an analysis of its forensic cost are pro-
vided elsewhere [Pavlou and Snodgrass 2008]. Fortunately, those details are not
needed to understand the refinement and generalization of this a3D Algorithm to a
page-based one.

As mentioned at the beginning of this article, the prior work just described is limited,
in that they all provide a single characterization of the “where” dimension, that of com-
mit time. In the following, we provide several refinements to extant tamper detection
and forensic analysis techniques. Specifically, we build upon these algorithms to achieve
significant generalizations and an overarching characterization of forensic analysis.

In the next section we elaborate on our previous approach to database forensics.
We expand the basic structure of the forensic algorithms, so that they admit new
characterizations of the “where” axis within the corruption diagram. Doing so will
result in significant generalizations of the extant forensic analysis algorithms. Then
in Section 11 we present a taxonomy and decision graph of corruptions, characterizing
forensic analysis as a map from observables to types of corruptions in the taxonomy.

4. EXPANDING THE CONCEPT OF “WHERE”

The forensic analysis algorithms just described apply to a database for which the
“where” axis is labeled by transaction commit time. (This axis also applies to the other

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:10 K. E. Pavlou and R. T. Snodgrass

forensic algorithms in the literature [Pavlou and Snodgrass 2006, 2008].) In essence,
those algorithms all view the data as partitioned on a very particular attribute within
each tuple: the commit time.

In this section we generalize these algorithms by partitioning the database on any at-
tribute that can be correlated with real time. We start by applying the same techniques
to a database partitioned into pages, thereby analyzing each corruption from a differ-
ent, “spatial” perspective. One environment where this might be especially effective is
when the database is physically distributed, so that knowing which pages were altered
could provide important information to identify who was responsible for the tampering.

4.1. Static-Numbered Page Hashing

In the Monochromatic Algorithm and also in the other forensic algorithm discussed
here and elsewhere [Pavlou and Snodgrass 2008], the tuples of transactions are hashed
and then linked to produce a total chain. Here we generalize the forensic algorithms
to instead hash pages, specifically, the data in those pages. This marks a shift from a
logical to a physical perspective in terms of implementation and forensic analysis. We
discuss this in greater detail in Section 4.5.

This particular approach assumes that the records once initially stored on a partic-
ular page never move. This is a fair assumption, if one recalls that nothing is phys-
ically deleted from the database: instead at deletion a transaction stop timestamp is
recorded. Hence, once a page is full it will not be modified again. (We note that in some
transaction-time storage structures such as Time Split B-trees [Lomet and Salzberg
1989], tuples do move. For such structures, page hashing is not appropriate.) As a con-
sequence, each record can be associated with a specific page number which does not
change throughout its lifetime. This unchanging page number identifies the page in
which the record was originally stored; for this reason we term this technique static-
numbered page hashing. One such example would be an implementation that uses an
unordered heap file [Ramakrishnan and Gehrke 2003]. (Note that the page number is
not stored with the tuple; rather, it can be determined from where the tuple resides.)

To ensure consistency with our previous definitions, we define the spatial detection
resolution, R, under this scheme, in terms of pages.

The first issue that needs to be addressed is when should page hashing occur (recall
that page hashing produces the total chain used for tamper detection). There are
several possibilities. Hashing of the tuples in a page can be:

(1) per tuple, that is, done individually for each modified tuple;

(2) lazy, that is, any time after page is written to disk;

(8) holistic, that is, only when the page becomes full in main memory;

(4) incremental, that is, whenever a tuple is written to a page cached in main memory;
(5) hash-page-on-write, that is, whenever the page is written to disk.

To see which option makes the most sense, we consider each one in turn.

Considering per-tuple hashing we simply note that it is inefficient especially in high
performance databases and therefore is not appropriate.

Lazy hashing is also not appropriate because any time a page whose contents are not
hashed is written to disk, correctness is compromised. The reason is that once the page
is written to disk it can be corrupted. When time comes to hash the page the system
will hash and then notarize the corrupted value.

In the case of the holistic option, hashing the page when it is full in main memory
introduces a delay which compromises correctness and creates an irregular notariza-
tion interval. More specifically, a page may not become full for months, so this creates
an unbounded amount of time before notarization and validation can occur; in the
meantime tuples on the yet-to-be-hashed page on disk might be corrupted.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:11

Incremental hashmg is trickier. Let us see what happens if we try to apply it.
As the tuples come in during normal processing they are written to pages in main
memory. In a similar way to incremental hashing in commit-based partitioning, we
will have to maintain a hash value for each page in memory a tuple is written to. The
question which arises then is “when does the hash function produce a value?” Under
incremental hashing in commit-based partitioning the hash value is produced as soon
as the transaction commits.

In an equivalent construction of incremental hashing in page-based partitioning,
the hash function will produce a value when the page is written to disk. But this is
essentially the same as the Hash-Page-On-Write where the contents of the entire page
are hashed once it is to be written to disk. Thus, there is no need to start a hash function
early and hash incrementally. The only option that ensures correctness and preserves
the consistency of the definitions is Hash-Page-On-Write.

We also need to consider where the hash values should be stored and how the hash
values can be reproduced during the validation scan. It turns out these two concerns
are intricately linked. In the commit-time-based algorithms, we could easily reproduce
the hash value during validation because once a transaction commits it never changes
and the timestamp, which is unique for each transaction, provides the desired
order of hashing. (Also, a tuple sequence number had to be introduced to designate
the order with which the tuples should be hashed within a particular transaction
[Snodgrass et al. 2004].) In a page-based scheme, the complication is that the contents
of a page (unlike those of a transaction) can change with time until it becomes full.
So the page can be brought into memory and written out to disk (and thus hashed)
multiple times before it is full. This implies that a single page can have multiple hash
values associated with it, each capturing the contents of the page at different points in
time. Hence, we cannot use the page number to order the pages in the order with which
they were written out to disk/hashed. We need a way to somehow track this order and
then be able to reproduce it during validation. Moreover, we also need to know for each
of the potentially multiple hash values associated with a page, what were the contents
of the page at the particular moment in time when they were hashed.

There are two ways to capture the order with which pages are hashed: save a page
write timestamp on the page each time the page is hashed, or use a separate page
pinned in main memory. We examine each in turn.

4.1.1. Page Write Timestamp (T-Only). Figure 4 provides an example of how this scheme
works. (Please note that certain DBMSes implement the page structure such that the
records are appended in the opposite order, that is, recy, recy_1,. .., recs, recy.) The
figure should be read left to right and top to bottom as depicting one continuous se-
quence of events. Records are written to the page during normal processing, shown as
recy, ..., recs. When the page is to be written out to disk the hash function hashes all
the contents of the page and creates a hash value which it links with a hash value from
the previous page write (of a potentially different page). The resulting hash value is
maintained in main memory. Then the time of the page write—the timestamp —is
stored on the page just hashed, in a position immediately following the last record, and
the page is written out to disk. At a later time when the same page is brought into
memory to store more records, that is, recg, ..., recs, these will be appended after the
timestamp #. When the page has to be written to disk again, a new hash is calculated
corresponding to the records inserted since the last time the page was written to disk.
This yields a new hash value which will be linked and stored in main memory and the
new page write timestamp ¢; will be appended after the last tuple (recg). Note that ¢;
may not be the successor of ¢ since other pages may have been written out to disk in
the time required for records recg, recy, recg, to be appended to the current page. In

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:12 K. E. Pavlou and R. T. Snodgrass

<header> ‘ recy <header> ‘ recy
records rec, ‘ recy recy rec, ‘ recy recy
added S
recs page hash recs t;
page
written
to disk
<header> rec; <header> rec;
more
records rec, recy recy rec, recy recy
added
recs f recg | Page hash recs f rec
page
rec rec -
7 recs 7 recg written
. ‘ to disk
J

Fig. 4. Page structure exhibiting the page structure under the Hash-Page-On-Write scheme.

this way the page write timestamps delimit each addition of tuples in the database.
The placement of the page write timestamps in the page captures the contents of the
page at the time of hashing, whereas the values of the timestamps themselves identify
the time of the page write event. The strictly monotonically increasing nature of the
page write timestamps captures the order with which the pages were hashed/written
out. This allows the faithful reconstruction of the hash chain values during
validation.

4.1.2. Page Write Timestamp, Page Number, and Page Offset (TNO). The other approach is
to use a page pinned in main memory to store the page number of the page just hashed
along with an offset into the page where the last record ends, termed TNO. The page
write timestamp is also stored since it anchors the page write event in clock time. This
effectively captures the same information as the previous T-Only scheme (storing only
a page write timestamp), however, under this scheme the information is explicit and
saved in main memory rather than on disk. (This requires that redo and undo recovery
actions must maintain the consistency of this pinned page across system failures.)
Note that we could also store similar information on the log, though such an approach
complicates forensic analysis because the forensic algorithms would be required to
access the log.

4.1.3. Timing of Notarization. The next design choice we consider is when notarization
occurs. We aim for consistency with the commit-time-based algorithms, therefore no-
tarization events are scheduled after a set period of time. The notarization interval
should then be defined as the time interval between two successive notarization events
(NEs). 1t still holds that Iy = N - R; where N = 2" for some n € IN. For example, if
R, = 4 days and N = 1 then a notarization event occurs every four days. When it is
time to perform a notarization the hash value produced from hashing the pages and
which is stored and maintained in main memory is sent, along with a timestamp of the
current time, to the external digital notarization service. There they will be notarized
and returned along with a notary ID to be stored in the secure master database as the
original protocol demands.

4.1.4. Implementation Considerations. During tamper detection the validator performs a
linear scan the database. If a T-Only scheme is used, then the contents of the pages
will be read and the timestamps stored within the pages will indicate the sequence

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:13

of page writes and hence the order with which the pages will be hashed and linked.
Under this scheme the pages must be sorted (in multiple passes) according to the page
write timestamp. The relative position of the page write timestamps within the page
will indicate the appropriate content to be hashed. If the TNO scheme is used then
the timestamps will indicate the order with which the pages must be hashed while the
page number and the page offset will indicate which page is to be hashed and what
part of the page must be hashed, respectively. The advantage of this latter scheme is
that by using the page number we know exactly the order with which the pages must
be brought into main memory and therefore no sorting is required.

A new hash value is thus constructed and sent with the corresponding notary ID
(from the secure master database) to the notarization service for validation. Recall
that a validation interval is the interval between two successive validation events and
that the definition Iy = V - Iy still holds.

Storing timestamps on disk can give rise to a new type of corruption whereby the
page write timestamps stored on the page are tampered with. We will discuss this type
of corruption in Section 11.

There is no immediate performance penalty under these implementation schemes.
Under the T-Only scheme, appending a timestamp to the page is does not incur further
I/0. However, in the long term, the space overhead of appending a timestamp to the
page after each page write will have an impact on I/O since pages become full more
quickly. As an example, if tuples are 50 bytes on average and if a page is written after
10 tuples are inserted or modified on average, the additional timestamps (say each
8 bytes) will add about 1.6%, if the pages are full. If tuples are small and pages are
large and the main-memory buffer is small, resulting in many page writes, then the
overhead may become a problem, favoring the TNO scheme.

Under the TNO scheme the overhead is negligible. A single auxiliary page is pinned
in main memory and used to store the page number, page offset, and page write time-
stamp. When the page becomes full then it treated as any other page: its contents are
hashed, the page number, offset, and timestamp written to a clean page pinned in main
memory and finally is written out to disk.

We now define a page-based corruption diagram—parallel to the previously intro-
duced (transaction-time-based) corruption diagram in Figure 2—to illustrate this new
technique. Figure 5 shows the page-based corruption diagram for the Monochromatic
Algorithm. The x-axis is labeled in page numbers (as an order can be imposed on the
pages) representing the spatial aspect while the y-axis, which captures the temporal
aspect, is labeled with the enumeration of the page write events, denoted by WE. Each
one of these events corresponds to a specific page being written to disk (marked by the
small black circles on the trajectory of the write events). For example, at page write
event 7, page 3 was written to disk. (Page write event 7 is on the y-axis; page 3 is on
the x-axis.)

The meandering chain is the equivalent of the linear total chain in the
commit-time-based corruption diagram. It shows the order with which the pages are
hashed and linked cumulatively. The normal sequence of notarizations and validations
occurs every two and every four days (because Iy = N- Ry = 1.2 days = 2 days and
Iy =V . Iy =2-2days = 4 days), respectively.

The corruption diagram in Figure 5 also shows a corruption event affecting page 6
when it was written during page write event 4 (WE,). Here a corruption is indicated
by an open circle at the relevant write event. Note that specifying the page write event
is crucial because the same page (with potentially different contents) can be written
out to disk during more than one write event. For example, page 3 is written out to
disk at WE; and at WEg. As before, tamper detection will recompute the hashes at
the different validation events. The validations VE; to VE3 succeed and thus return

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:14 K. E. Pavlou and R. T. Snodgrass

Page Write 11 VE, = False
Events (WE) 10
T 9 VE 5 =True
When 8
7
6 VE, =True
5
! VE| =True
3 I
2 | V=2
1 | o
1I2I3I4I5I(;I7ISI‘)I10I11I12I13I14-I RS:Z

Where — Page#

Fig. 5. The Monochromatic Forensic Analysis Algorithm extended to page hashing.

true, whereas at VE, a mismatch of hash values is observed and the result returned is
false.

4.2. The Page-Based Monochromatic Algorithm

We can generalize the Monochromatic Forensic Analysis Algorithm to apply to this
meandering total chain. The #, of the corruption lies in the time interval between VE3
and VE, since the former yielded a True result while the latter yielded a False result
during validation. More information on how these bounds are found in Section 4.4.

The spatial analysis is more involved. As in previously introduced algorithms we
can once again perform a binary search on the validation results of the previously
notarized hash values in order to locate the interface of the transition from true to
false (T'T...TF...FF) validation results. This interface occurs between NE; and NE;
(marked with TRUE and FALSE respectively) and allows us to bound the corruptions
(shaded regions in Figure 5) in two different ways: in terms of page write event(s)
and in terms of corruption locus, . (i.e., page(s)). At this point we know that the CE
occurred some time between VE3 and VE, (it was detected during VE,) and corrupted
pages that were written to disk between NE; and NEs.

Note that the y-axis does not technically express a time dimension and for this reason
the absolute spacing in the dotted horizontal lines which correspond to the notarization
and validation events do not convey any temporal information. However, their relative
spacing shows which pages were written during each notarization interval.

Forensic analysis returns two suspect pages: 5 and 6 (occurring at WE4 and WEj5),
which were written doing a 2 day period in accordance with the spatial resolution R
(recall it is two days). The fact that the number of pages matches Ry is incidental. If
three or one page was written during the interval of those two days then all those pages
would be treated as suspect. Unlike the original corruption diagram for the Monochro-
matic Algorithm (e.g., Figure 2), the corruption region may not be (although here it
is) a single visually contiguous rectangle, though in this example it is still of the same
area because the suspect pages were written during the same notarization interval.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:15

Page Write 11 | 1]
Events (WE
Tl e TFT | NE, vE,
T B H* L NEg VEG
e - e e E. : NEs VEs
When 8 - CE,
r F

NE, VE,

o . TFE 1 .

o TF M’ |- : NE3 VE3

T@I | . NE
LU v NE, Y,

NE, VE,

x =z =
I
—_ [SS] —

1
1
1
|
1
1
1
1
1
1 -
1
1
1
1
1
1
I I N N N N |
I 2 3 4 5 6 7 8 9 10 11 12

Where ——= Page#

1
13 14

Fig. 6. The a3D Forensic Analysis Algorithm extended to page hashing.

4.3. The Page-Based a3D Algorithm

The next natural step is to introduce partial hash chains into the Page-based Monochro-
matic Algorithm which will help us create the Page-based a3D Algorithm. The partial
hash chains are computed during the tamper detection phase when the validator per-
forms a linear scan over the entire database. While the validator is hashing all the
data in the database it can at the same time, and thus with no I/O overhead, compute
hash chains which cover only parts of the database as per the specification of the a3D
Algorithm parameters. Depending on the scheme chosen, T-Only or TNO, the validator
will have sufficient information (page write timestamps, etc.) so as to hash the pages
in the correct order. The resulting hash values of the partial chains are sent along with
the new hash value, notary ID pair of the total chain to the external digital notariza-
tion service. The notarization service performs a validation on the total chain and if it
succeeds it notarizes the partial chain hash values and returns a set of notary IDs back
to be stored in the secure master database. As we can see the protocol for notarizing
or validating any particular hash value remains the same. The important difference
here is that during the tamper detection phase the system performs a validation and
multiple notarizations.

During the forensic analysis phase instead of relying on a single total chain, we have
additional previously notarized partial chains which we can now validate in order to
achieve tighter bounds on the corruption event and even detect multiple corruptions
(since these partial chains are not cumulative).

Figure 6 shows the page-based corruption diagram for the generalized a3D Algorithm
with two corruptions. The first corruption affects page 6 and transpired during WE,
while the other affects page 12 during the eighth write event. (In Figure 6 we have
assumed the same sequence of writes as in Figure 5, but have introduced an additional
corruption.) The partial hash chains seen on the right side of Figure 6 create a binary
tree on top of the entire database in a way similar to the one shown in Figure 3.
However, each of the partial chains hashes records according to the page the records
belong to. Another difference from the Commit-time-based a3D Algorithm is that here
we could have notarization intervals which are devoid of page writes, hence no pages
were hashed. There are two such examples in Figure 6. Observe that no page write
events occur in the two days between NE; and NEs and the two days between NEjg
and NE7;. For this reason there is no need to maintain all the partial hash chains that
cover those time intervals. We just maintain a dummy hash chain for each such empty

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:16 K. E. Pavlou and R. T. Snodgrass

interval. The dummy chains shown with an enclosing small rectangle in the figure.
The validation value of these dummy chains is automatically and always set to true.
This culls that part of the binary tree and hence speeds up forensic analysis since
that subtree does not have to be investigated. This optimization does not endanger
the correctness of the forensic analysis since during these time periods no pages were
written to disk and hence their contents cannot be corrupted.

During forensic analysis a simple binary search on this tree identifies the location
of the corruption(s). In Figure 6, the two partial chains that are circled (one computed
during VE5 and one computed during VE5) are the ones that identify corruption events
CE1 and CE2.

It is important to note that in Figure 6, there are two rectangular corruption regions
which are not contiguous. In this case each corruption region signifies a single cor-
ruption, resulting in the identification of a total of two corruption events. This should
not be confused with the two (contiguous) rectangular parts which together should be
regarded as single corruption region shown in Figure 5. The difference stems from the
fact that in Figure 5, two pages were written during the interval between NEs and
NEj3. This implies that the spatial bounds identify two pages written consecutively
constituting a single corruption region.

The above discussion thus shows how any “conventional” corruption diagram (that is,
based on a where-axis of transaction time) can be extended to apply to static-numbered
page hashing, thereby determining a “where” of a single page or a short write sequence
of pages containing the page that was tampered.

4.4. Determining “When” from Page Number

In static-numbered page hashing as shown in Figures 5 and 6, the bounds on the
“when” are not, strictly speaking, temporal. For example, in Figure 5, the bounds on
the y-axis tell us only that a corruption occurred during a period when the fourth and
fifth page write events took place. It does not inform us about when these two page
write events occurred in real time. (This is in direct contrast to commit-time based
corruption diagrams, for instance, Figures 2 and 3, where the “when” axis denotes
real, that is, clock time, and so any conventional forensic analysis can bound the actual
time a corruption occurred.) For this reason, we must find a way to determine the real
time bounds on £, from the suspect page numbers.

In order to obtain true temporal bounds on ¢, we must correlate the sequence of page
write events with real time. We first find the times these events occurred. The way to
achieve this is to employ the page write timestamps that were harvested and stored in
the page when the page was hashed. Then we can plot real time against these times of
page write events in a similar way as in the commit-time based corruption diagrams.
This will allow us to put temporal bounds on # by using the clock time axis.

To illustrate this solution we introduce in Figure 7 an expanded 3D version of
a page-based corruption diagram termed the correlated page-based corruption dia-
gram. (We later describe how the implementation computes the corruption regions.)
The (Page Number)x(Page Write Event)-plane is the page-based corruption diagram
already given in Figure 6. The z-axis measures clock time while the (newly introduced)
axis labelled “Time of Write Event” establishes the correlation between a write event
and clock time. Observe that the partial chains which were situated on the right side
of Figure 6 are now drawn in the (Clock Time)x(Time of Write Event)-plane. Also, note
that now the partial hash chains of a particular level! are drawn as having equal
lengths unlike the same chains in Figure 6. For example, any two chains of level zero

1Level was first defined for the a3D Algorithm as “the (zero-based) vertical position of [a hash] chain within
a group of chains added at [a particular] VE” [Pavlou and Snodgrass 2008].

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:17

Generalizing Database Forensics

"Juoj poq ut payreuwt
axe o1 pue Iip) jo spunoq Terpeds pue Terodwa) oy, ‘(B ST posn wiyjLIoSe sisA[eue d1sualoj oy, "werderp uorydn.riod paseq-oSed paje[arios ayy, °/ 'Bi4
I 4!
< €1
£ 418 .
Ll e 01
SJUOAY A oFed 9 S < R - 6
. N L #08ed <—— QIOUYM
8
6 BRE
I (1]
1
[4
€
o y
Lo S
surey [ened jueaspoy = > JUIAH LM JO uﬁﬂlm m 0
1= b L
=N ! m 8
=4 m m 6
Lo 01
Lo -
i | I ud
! p j ! 4t M
/| el
= u v1 aun, yo0[)
P b st
; | j 1
, £ 91
L i ,
(€101 9 a* Co

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:18 K. E. Pavlou and R. T. Snodgrass

each covers one day (R; = 1), so their lengths are necessarily equal. This is because
the lengths of the partial chains reflect the time intervals between notarization events
which which occur every Iy days. This was not the case in Figure 6, where the length
of the partial chains was adjusted to cover the appropriate pages that were written
during the time period the chains covered. This is because the page write events were
equally spaced on the y-axis. In Figure 7 this irregularity in chains is no longer seen.
Instead the intervals between page write events on the (Page Write Event)-axis are
clearly shown as not being equally spaced, the reason being that the page write events
here are correlated with time.

To see what information the coordinates of the diagram conveys, let us use point E
as an example. (This point is not used in forensic analysis.) The coordinates of E are
(3, 10, 14.3). This should be interpreted as E marking page 3 which was written to disk
at write event 10 which occurred at time 14.3.

During forensic analysis the binary search identifies two corrupted partial hash
chains (shown circled in Figure 7), which reveal pages 6 and 12 as suspect. The
corruption regions are shaded in the (Page Number)x(Page Write Event)-plane and
the suspect pages 6 and 12 are marked with CE; and CE; respectively. Even though
we can see from the (Page Write Event)-axis that page 6 was written at write event
4 and page 12 at write event 8, we have no direct indication on when the corruption
occurred. (Technically there are two #.’s because we are assuming two corruption
events CE; and CE; in this example. We will describe only CE; for convenience.)
In order to obtain the temporal bounds we must first find when the write events
occurred. The (Time of Write Event)-axis provides this information. Consider CE;.
The bounds on the (Page Write Event)-axis shown with red-dotted lines contain only
WE,. However, the same bounds when projected onto the (Time of Write Event)-axis
produce bounds on the time the write event occurred, namely, WE, occurred during
day (4, 5]. Notice that if these bounds are projected upwards onto the 45-degree action
axis in the (Clock Time)x(Time of Write Event)-plane, they align with the corrupted
partial hash chain identified during forensic analysis, as expected. Note also that care
should be taken to avoid the pitfall of identifying the upper bound of the the interval
(4, 5] which aligns with the tip of the partial hash chain as 6 instead of the correct 5.
Even though the partial hash chain was calculated during the validation scan which
happened at time 6 it hashed pages which were written to disk only in the (4, 5]
time interval. Now we can find the true temporal bounds of CE;. Observe that since
VE;=True and VEg=False, the corruption transpired in the time interval between the
two validations. According to the (Clock Time)-axis, the time of VE; is 14 and that of
VEg is 16 (shown in bold font in Figure 7), therefore, ¢, € (14, 16]. (The corresponding
corruption regions in the (Clock Time)x(Time of Write Event)-plane are also shaded.)

Finally, we conclude that CE; happened sometime in the interval (14, 16] affecting
page 6, which was written to the database some time in (4, 5]. A similar analysis for
CE; produces the same temporal bounds (14, 16] and page 12 as the corrupted page,
which was written to the database sometime in (9, 10].

So the question remains, how is Figure 7 constructed during forensic analysis? The
first step after detecting tampering is to find the temporal bounds of the corruption.
This is easy since the temporal bounds are always the times of the second to last and
last validation events, that is, the most recent validation which returned true and
the one first to return false. In our example these are VE; and VEj§, respectively. The
next step is to run the a3D Algorithm. The algorithm will perform a recursive binary
search on the binary tree of chains and identify the chains which return false when
validated. By construction we already know what time intervals each of these chains
covers. For example, the partial chain which returned false corresponding to CE; was
added at the start of day 6 and covered the interval (4, 5].

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:19

In order to get the spatial bounds of the corruption we have to able to answer
the next crucial question: Which pages were written out to disk/hashed during the
interval covered by the false partial chain? This answer is provided by the page write
timestamps which were stored at the time each page was hashed and stored either on
the page itself or in a separate page in main memory. The Time of Write Event-axis
is comprised of these timestamps, which allows us to map the locus times #, that is,
page write timestamps, into the corruption loci /., that is, page numbers. The forensic
analysis ends by scanning the pages and looking for timestamps which fall in the
interval covered by the identified partial chains. If the timestamp is in that interval
the page storing the timestamp is considered suspect; otherwise it is ascertained to not
have been altered.

4.5. Comparison with Commit-Time Approaches

There are some compelling reasons for why one should choose page-based algorithms
over the commit-time-based ones.

One of the advantages of page-based algorithms is that a tuple sequence number is
not explicitly maintained within the tuple so the inner workings of notarization and
validation are completely imperceptible to the user. Moreover, if the TNO implementa-
tion is used then we can avoid the overhead of sorting the data during the validation
scan since the order with which the pages have to be read back into main memory is
explicitly stored in the pages that were pinned in main memory.

Furthermore, the implementation of hashing and of storing timestamps in pages can
be moved below the level of the DBMS file manager, even into the OS/file system layer.
Such an implementation decouples the function of the audit system from the DBMS,
further reinforcing the shift from a logical to a physical perspective first mentioned in
Section 4.1. The advantage of this is clear when the system is scaled to support multiple
DBMSes. The representation of corruptions becomes uniform across all DBMSes: a list
of page numbers is returned by forensic analysis for all corrupted databases. Recall
that in general, a page-based scheme can be achieved without increasing forensic cost
and with minor space overhead. This opens up many avenues to explore in our future
work in order to understand the full architectural implications of such a modification.

Paged-based algorithms can be modified to provide added features to forensic analy-
sis. Defining Ry, Iy, and Iy in terms of number of page write events rather than number
of days would allow us to bound the manual work required once forensic analysis is fin-
ished. The number of pages we would have to examine would always be a fixed integral
multiple of R;. That is not the case with commit-time-based algorithms where within
two separate R;-day intervals there can exist a different number of transactions. By
making this modification in the way R; is measured, manual work is rendered load
insensitive. This has also the desirable side-effect of making the notarization and val-
idation intervals irregular with respect to time because page write events do not occur
at regular time intervals. Hence, the adversary cannot predict when notarization and
validation events occur making them difficult to intercept. In order to avoid cases
where pages are not written to disk often enough, hence resulting in overly long nota-
rization/validation intervals, we can put an artificial limit on the time a page can reside
in main memory. When that time limit is reached then the pages are flushed to disk.

5. PARTITIONING ON ATTRIBUTES

We now turn to extending the partitioning of the data according to an identified
explicit attribute. Note that we are now talking about a single table whose schema
includes that attribute. This is in direct contrast to the commit time- and page-based
schemes which are schema agnostic. Attributes, on the other hand, are restricted
to a single table and therefore only pertain to a section of the data. The advantage

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:20 K. E. Pavlou and R. T. Snodgrass

of the attribute-based scheme over the others is that it allows for finer control over
what part of the data is under audit, by utilizing the database schema. For example,
we may want to partition on zip code, which provides a semantic partitioning of the
data. Another example is partitioning on the manager attribute. Again, the CSO
would determine from a variety of considerations whether to utilize partitioning on
attributes and if so, on which attributes.

5.1. Naive Approach

Let us assume that the domain of the identified attribute is discrete and finite, for
instance, zip code. If we try to apply analogous definitions (from commit time- and page-
based partitioning) to an attribute-based scheme then we run into problems. R, needs to
be defined in terms of “groups of tuples” or granules, in the same way transactions and
pages were used in commit time and page-based partitioning, respectively. Moreover,
these granules need some sort of timestamp associated with them so that they can be
chronologically ordered (akin to commit time or page write time).

However, there is no “natural” way to do this with respect to a chosen attribute. And
by “natural” we mean “native to the system.” However, let us try and do it artificially
by introducing some user-defined way of grouping the tuples.

Suppose we group the attributes within the tuples by the order they are modified,
into groups of size R;. In other words, every R, tuples constitute a granule.

We could also use the time the attribute is written to the database cache (this is
what we mean when we mentioned above “tuples that are modified”) as a way to
chronologically order the groups (or even order the tuples within the group).

However, the approach just described does not achieve the desired partition because
closer inspection reveals that the scheme, in reality, does not make use of attributes at
all. It doesn’t matter whether we are using zip code or another attribute like age; we
could just as easily describe this by dealing only with the tuples themselves.

This is revealed when we try to do forensic analysis: the spatial bounds obtained,
inform us that a granule was corrupted, having R, tuples. This last sentence says
nothing about the specific attribute which we are supposedly partitioning on! In other
words, there is nothing in this partitioning scheme that takes advantage of the chosen
attribute in order to produce forensic information by characterizing the corrupted
tuples in terms of the value the attribute takes in these tuples. Hence, the scheme we
have been using so far cannot be applied directly in order to construct a total chain
based on attribute partitioning.

5.2. A Natural Extension to Attribute-Based Partitioning

In order to leverage the existence of attributes and of their particular domain, which can
be appropriately partitioned, we clearly need a different approach. The naive approach
we tried in the previous section does not work so we have devised a new one which
seems to be the most natural extension from commit-time- and page-based partitioning
to an attribute-based one.

The first change required is for the total chain, under the new attribute-based
scheme, to be replaced by multiple nonoverlapping chains maintained in parallel. For
a chosen attribute in a specific table we partition the values in the domain associated
with that attribute. Let the chosen attribute be zip code and let there be ten subsets
yielded by the associated partitioning. We thus maintain ten hash chains in paral-
lel, one for each subset. The reason for not having any overlap between the subset(s)
that each chain corresponds to, is that experience with creating the Tiled Bitmap and
RGBY Algorithms has shown that if we are not careful, overlap between hash chains
can introduce complications (e.g., false positives) during forensic analysis [Pavlou and
Snodgrass 2008]. As the algorithms introduced in the present article do not introduce

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:21

false positives, we will just mention such complications only when comparing our new
algorithms with Tiled Bitmap and RGBY.

The next step is to assign each tuple in the table to the corresponding hash chain
according to the value it contains. This means that if a specific tuple has the value
85705 as zip code, that tuple is hashed into the hash chain corresponding to the subset
containing the value 85705. Recall that each version of the tuple is written only once.
A modification of the tuple, including that of its zip code, results in a new tuple being
inserted. So each tuple is hashed once and included in only one hash chain. This
implements an initial partition of tuples into different hash chains according to their
attribute value. The number of subsets in the partition of the domain and hence the
number of hash chains is decided by the DBA and thus is configurable. We term this
number the domain resolution, Ry.

We assume each of the ten hash chains is constructed and maintained according to
the original commit-time-based partitioning. This is because page-based partitioning
has a high implementation overhead. Recall that whenever a page is written to disk,
the page write timestamp of the chain that page belongs to has to be written in the page
itself. In this attribute-based scheme, a single page can have tuples with zip code values
belonging to all of the ten subsets/hash chains. This implies that we could potentially
have to store and maintain hash values for each one of those ten hash chains within a
single page. The space overhead and the logistics of tracking which hash values in the
page correspond to which hash chain make this approach less than appealing.

The tuples within one hash chain can be ordered chronologically according to their
commit time. Under this scheme notarizations and validations will happen simultane-
ously for all chains, if all chains have the same notarization and validation intervals,
or independently for each chain, if the intervals differ across chains. In either case, this
creates an overhead for the scheme where the number of contacts with the external
digital notarization service is bounded above by a multiple of R; since notarizations
and validations have to be performed for each one of the hash chains.

The initial tamper detection stage will also work, with some modifications. All hash
chains will need to be validated periodically and validation failure in any one of the
chains will identify which hash chain/zip code set the corrupted tuple belongs to. After
this initial step, forensic analysis can proceed as in the commit time-based scheme.

Due to this independence between an attribute-based and a commit time-based
scheme, one can potentially use a different forensic algorithm for each of the Ry in-
dependent total hash chains. The overall database audit scheme will have a single
domain resolution R;, which then determines the number of chains, with each such
chain potentially having a particular spatial detection resolution R, notarization inter-
val Iy, validation interval Iy, and forensic analysis algorithm. For example, assume we
partition the domain of the attribute zip code into ten subsets (i.e., By = 10). The first
nine resulting total chains could use a Tiled Bitmap Forensic Analysis Algorithm with
R; = 2 days and Iy = Iy = 16 days. The tenth total chain is unusual: the distribution
of zip code values in the tuples is skewed, in that it has higher density in the subset
corresponding to this tenth chain. Due to this skew we wish that the forensic analysis
on the tenth chain provide tighter spatial bounds on the corruption region computed by
forensic analysis and with no false positives. Thus we specify for this particular chain
the a3D Algorithm with R; = 1 day, and Iy = Iy = 8 days. The increased accuracy of
the tenth chain comes at the expense of a higher forensic cost, assuming the database
is online for a sufficient length of time, for instance, one year [Pavlou and Snodgrass
2008]. This independence provides an additional means for an attribute-based scheme
to allow for finer control over the auditing of data in the database.

There are some remaining issues that need to be addressed, especially with respect to
the nature of the domain of the attribute chosen for the partition. The above description

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:22 K. E. Pavlou and R. T. Snodgrass

Mon;cg;o;z atic Schema agnostic commit-time-based
Tiled Bit X Schema agnostic page-based
- a3}3map Attribute-based

Fig. 8. The types of forensic analysis algorithms.

pertains to domains that are discrete and finite. (Note these domains include ones with
categorical values, e.g., “nationality.”) Hence, the next natural extension is to ask how
does implementation change if the domain values are continuous?

If the domain is continuous and finite, the solution is to first partition the domain
into intervals. The number of intervals defines the number of total chains maintained
in parallel, although the correspondence might not be one-to-one. A chain could be as-
sociated with several such intervals. Note that there is nothing that prevents us from
applying this scheme of forming intervals to discrete finite domains, thus grouping
different values together to form hash chains containing tuples with multiple domain
values. The domain values each hash chain contains could be informed by the appli-
cation semantics and/or the cost for maintaining the chains. For example, instead of
maintaining a chain for each different nationality we could instead have five chains
grouping nationalities by continent.

The way the data are partitioned under the attribute-based partitioning scheme mer-
its special attention. The data are first partitioned according to the attribute domain
and for each such resulting subset of data, the data are further partitioned according
to transaction commit-time. Therefore, the data are subjected to two nested partitions:
attribute and then commit-time, which we term composite partitioning.

6. SUMMARY

In the previous section we formulated a way to partition the data based on any attribute.
The initial naive approach did not work, suggesting that a new scheme had to be de-
vised. This led to a natural extension of commit-time-based and page-based partitioning
to attribute-based partitioning.

The set-theoretic formulation given in Figure 8 captures all the types covered so
far. The leftmost column features the four familiar forensic analysis algorithms. Each
algorithm can be applied to a database partitioned according to the three schemes of
the middle column.

These schemes of partitioning the records in a database can easily be further ex-
tended to apply to more general attributes. We can distinguish between three kinds of
fields on which a database may be partitioned.

—Implicit attributes. These pertain to data maintained by the DBMS, specifically,
transaction ID, commit time, insertion time, and deletion time [Lorentzos 2009].

—Virtual attributes. These pertain to data or aspects maintained by the file system,
for instance, the physical order in which data may be organized/stored (by increasing
commit time) and the page number of the page the tuple was originally stored.

—Explicit attributes. These pertain to actual attributes in the schema of the database.

Table IV summarizes the different ways the data in a database can be partitioned:
according to commit time, page writes, or attribute (the columns of the table). Note that
the column denoted “Attribute-Based” represents all the forensic analysis algorithms
which can be used in conjunction with an attribute-based partitioning scheme. For each
such partitioning the table provides a number of crucial properties and features and
how they are defined (the rows of this table). Along any particular row, the important
aspect of each cell is italicized.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:23

Generalizing Database Forensics

"PaLINDD0 dABY

"PaLIND20 dABY

"PaLINDD0 dABY

SUOT)BZLIBIOU A SB U00S SB SIN0d() | SUOIJBZLIBIOU A SB UOOS SB SINJO() | SUOIBZLIBIOU A SB U0OS SB SINdd() UOHDPIPA
‘poysey aae sa[nueid ‘pPaysey aae se[nuBvi3 ‘Paysey aae se[nueisd woumzLDION
N SD U00s $D SINd0() N SD U00s $D SIN2D() N $D U00s $D SIN2D()
NI x A NI x A NI x A A1
XN Y XN q XN Ny
vda £q peyweadg vda £q peyweadg vda 4q paywedg (A) 1010
))) uonvpIvA
vdd 4£q pagredg vdda £q pagredg vdda £q pagedg (N 1omnd
: : : UODZIIDION
SIIWWI0D JULUL3SS 18] [IIMm 'SIND20 JULULZSS 9Y) UL SITWUIO0D JUWSSS 18] YIIm Juaagy
pojeosse anueisd JueAe 9jLIm a5nd pojewoosse enueid uona]dwio))
oY} Ut a7dng)se[oY) USY M SB[oY} USYM oy} ur 27dng 1se[9y} USYM JuawSag
Tequinu 93ed Jo IopJao ut
2w J1w09 UTSBIIIUL JO paysey jou sa[nue.tr) -aded ayj Jo *aul17 J1UW09 JUTSBIOUL JO 42PLO
I9PJO UT PAYSBY SUOT}OBSUBL], quaaa @1im aded, Jo uap.io J9PJO Ul PAYSBY SUOIJOBSURL], Surysogy
[82130[0UOIYD UT POYSBY SI[NUBIY)
‘(Fuew3as Jet) ut ‘(Puow3as Jery ur
Suryruuwod suorjdesuLL) “JUSULZSS PIIRINOSSE) Furruuiod suoresuLBI)
Auew wogy soydng sey uryjim peuonpuewr ased e Auew wogy so[dng sey opnunan)
S[NUEBL3 9UO) JUSULIOS PIBIIOSSE ur St u01na0] 0a1sfyd s[nue.L3 9U0) JUSUL3SS PIJBII0SSB
Y] UIYIIM a1} JIUUI0D YITM asoym sodng [[e sesseduwoouy o) UIYIIM S2WUI1F JIUULOD YITM
so1dny [[e sessedwoousy so[dnyg [Te sessedwoousy
‘uonyryred pagopio ‘uonrred paJopao ‘uonrred paiop.ao
A[reordojouoayo e uLioj sporrad A[reotsojouoayo e uLioj sporrod A[reostSojouoayo e uLioj sporrod
snongrpuo)) Ioyoue re[norred e snongrjuo)) Ioyoue re[norred e snongrjuo)) “Ioypue re[nornred uawSag
wogy gunae)s Sy £q peanput wogy 3unaes)s ‘Sy Aq peonpurt wogy Jurae)s Sy £q peanput
sporiad snongryuod ayj Jo sauQ sporiad snongryuod a3 Jo auQ sporiad snongrpuod oy} Jo U
SON[BA UTBWOP JO S19SNS JO JoqUINN V/N V/N Py
[BAJISUT OWIL], [BAISIUT OWIL], [BAIS]UT BWIL], Sy
9IN(LI))e POIRUIISOP oY) SUTUTR)u0d soquInT £y — pagoaffy
9S01[} JO [BISASS I0 SU() sajqnJ,
peseg-onquiy peseg-o3eq peseg-ouwL]-Iurwo))
Suruonnred

ereq oy Buluoniied jo skepy ‘Al 8jqeL

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:24 K. E. Pavlou and R. T. Snodgrass

Table V. Design Choices

. Options
With respect to Qualifier Explanation
Monochromatic Tuples are hashed cumulatively into a single hash chain.
RGBY In addition to the total chain, tuples are hashed into
repeating & partially overlapping shorter (partial) chains.
. In addition to the total chain, tuples are hashed into
Algorithms
Tiled Bitmap repeating groups of hash chains, covering and creating
a bitmap over the data.
23D Tuples are hashed in such a way so as to create
a binary tree of hash chains over the data.
Per Tuple Each modified tuple is hashed individually.
Tuples are hashed as soon as they are written
Incremental to the buffer. No associated overhead of restarting
Hashing the hash function.
Holistic Tuples are hashed as soon as transaction commits.
Lazy Tuples are hashed any time after transaction commits.
Hash-Page-On-Read | A hash of the tuples is logged on each data page read.
Hash-Page-On-Write | The page is hashed whenever it is written to disk.
. Clustered The records are physically ordered on disk.
Clustering ; -
Unclustered The records are not physically ordered on disk.
Single A single field is used to partition the data.
Orthogonal Two or more fields create independent
Partitioning partitions of the data.
. Two or more fields create a nested
Composite ..
partition of the data.

Of particular interest are the notions of segment, induced by R, as a partition of the
spatial dimension, and of granule as the group of tuples included in a segment. The
table also provides useful information on how the hashing is implemented and when
notarization and validation events occur. It is interesting to see both the portions of
each aspect (row) that are common across partitioning approaches and those portions
(rendered in italics) that are unique to a partitioning approach.

Note that issuing an ALTER TABLE command is allowed since it does not change the
integrity of the chains so far. If the command is used just to rename the table then
the notarizer and validator do not need to be altered. However, a command used to
change columns in the table is handled in the usual way: a new temporary copy of the
original table is made. The alteration is performed on the copy, and then the original
table is deleted and the new one is renamed. The notarizer and and validator must be
made aware which columns to hash in the rows prior to the alteration. There is only
one case where we disallow the alter command and that is when the command affects
a partitioning attribute.

7. DESIGN CHOICES

Table V summarizes the different design choices the (CSO) must make when decid-
ing on the features of the forensic analysis to be applied to the particular database
(or even to a particular table). The choices required are with respect to Algorithms,
Hashing, Clustering, and Partitioning. Please note that Table V definitions of the dif-
ferent hashing choices refer to commit-time-based partitioning and do not contradict
the definitions given in Section 4.1 which refer to page-based partitioning. In a sense,

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:25

“page” is the equivalent of “transaction” as a convenient way of grouping tuples together
under the two partitioning schemes.

All choices are orthogonal (i.e., independent of each other) with the sole exception of
Hash-Page-On-Write which is associated with single partitioning and more specifically
with page-based partitioning. The criteria used when making these choices are cost,
spatial/temporal detection resolution, and feasibility. (Striking a balance between the
first two can be challenging. Of course this also depends on how sensitive is the data
stored in the database, and hence how much one is willing to spend to protect it.) For
example, an algorithm like a3D provides a greater forensic power but at a higher cost.
In the case of hashing, per tuple schemes are usually very expensive. On the other
hand, trying to use lazy hashing with a page-based partitioning scheme compromises
correctness (vid. Section 4.1). Clustering can provide greater forensic power in allowing
us to distinguish between postdating and backdating corruption events. Orthogonal
and composite clustering schemes provide greater forensic strength but again at a
higher cost.

8. COMPARISON OF FORENSIC ANALYSIS ALGORITHMS

Table VI provides a convenient comparison of the structure of hash chains used by the
forensic analysis algorithms. Italicized words highlight the differences between cor-
responding algorithms under different partitioning schemes. For example, the length
and width of chains for commit-time based algorithms grow with time whereas those
of page-based algorithms grow with the number of page writes.

The first column titled “Algorithm” shows all the possible algorithms grouped by
partition scheme. The next column summarizes the number of levels in each algorithm
which is an initial indication of the number and complexity of the corresponding algo-
rithm. We need to generalize the notion of “level” to apply to our new algorithms [Pavlou
and Snodgrass 2008]. To the prior definition of level we must add that we choose the
numbering such that 2 /v equals the number of hash chains present at that level.
Then this definition can be applied to the RGBY, Tiled Bitmap, and a3D Algorithms.
However, the Monochromatic Algorithm presents a slight problem: this algorithm tech-
nically has no levels because levels are only defined for the partial chains added during
a validation event. So for Monochromatic we interpret “levels” loosely: even though it
has no partial chains it does have a single cumulative chain. We state this in Table VI
as having “(1)” level.

The “Topology of Chains” column captures the position of the chains relative to each
other whereas the next column over indicates whether the partial chains are linked,
which has significant implications for the forensic strength of the algorithms. In the
case of the Monochromatic Algorithm, even though the total chain is cumulative and
linear and can be considered as linked this chain is not partial by definition. For the
RGBY Algorithm the total chain is linear with the partial chains overlapping nonlinked.
The Tiled-Bitmap Algorithm makes use of a linear total chain and repeating pattern
of partial hash chains called a tile. These partial chains within a tile are linked in
such a way so as to form a bitmap over the database data. All a3D Algorithms have a
total linear chain and partial which together form a binary tree over the database. The
partial chains are not linked.

The next two columns are named “Length of Chain(s)” and “Width of Chain(s)”
respectively. The length of a hash chain is the portion of the data stored in the database
that the chain’s hash value captures. The width of the hash chain is the partition: that
subset of the domain of the partition attribute for which the chain hashes tuples with
an attribute value in that subset. The length of a Commit-time-based Monochromatic
Algorithm increases with time as more and more records are hashed; the chain always

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

K. E. Pavlou and R. T. Snodgrass

12:26

Py -6 "JUB)SU0D JUB)SU0D ON 9aqy Areurq a[qeLIBA ase
ST 91 9SIMISYI0 ST 31 9SIMIST30 o[} UTIIM o[} UM
AT ‘owiy YIim smoas ‘o Ym smorsd SR deunyiq/resur| pexy deuiq-parLL,
Pz 1 UOTjRaId SULIN(1 UOTjRaId SULIn(] ON Surddepreso/reaur] 1 Ag9o49
Py w1 YIIM SMOI3 w17 YJIM SMOIS V/N Teaur| @9) O1)BWOIYIOUOTA
Pasng-2INqQLITy
d “JuUBISUOD JURISUOD ON 991} Areurq s[qeLIeA ase
ST 91 9SIMISYI0 ST 31 9SIMIST[30 g — P
15 ‘sag1um aSnd Jo {sag1um a8nd Jo Sox Q@Q.H . s . ’ x) deuniq-porL,
J1q/resur] pexy
42QuINU YIIm SMOIS | 42QuINU YIIm SMOIS
4 1 UOTjRaID SULIN(1 UOT)RaId SuLIn(] ON Surddepreso/reaur] I AgH49
sag1um asnd jJo sag1um asnd Jo
T 42QuINU YIIM SMOIS | 42QuINU YIIm SMOIS VIN et L SHEWOIPOION
pasng-a5ng
76 JUR)SU0D JUR)SUO0D ON oax Areurq a[qeLIBA ase
ST 8SIMI8Y)0 ST 91 9STMI8Y}0 o[r} urgiim o[} urym
76 {owig YIim smoas ‘owig Yim Smois S dewyiq/reaur] poxy detm3IG-poLL
H4 1 UoyBAID FULIN(] 1 UoryeaId JutIn(q ON Surddefreao/reaur] T Ad5Y9
I w17 YIIM SMOIS au1) YIIM SMOIS V/IN Ieaur| (1) OT)BWOIYIOUOTA
PasDG-aw1, I, -J1UULO0))
[oA9T B Ul (s)urey) jo (s)urey) jo Jpayury surey) (s)urey) jo S[eAe'T JO
surey)) Jo : ; : : : wWILIos[y
Uy TIPTM q8ue] [e1Ied 91y £3ofodog, Jequny

SWiYIoB|y sisAjeuy 21Sua104 0 81njoNnaS urey) ayy Jo uosuedwo A a|qer

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:27

cover the entire database. Its width also increases with time because the partition
attribute is commit time and the total chain includes records with commit time values
over the entire time domain. The RGBY, Tiled Bitmap, and a3D Commit-time-based
Algorithms only consider partial chains. The length and width of these partial chains
only increase during the time of their creation. Once they are fully formed their length
and width do not change again.

The page-based algorithms follow an analogous pattern. Here the length and width
of the total chain in the Monochromatic Algorithm changes with the number of page
writes occurring and not with time. Even though page writes are correlated with time,
time can increase whereas the chains will not increase accordingly unless a page write
occurs. For the rest of these algorithms, the partial chain length and width increase
with the number of page write events during the chain’s creation but remain constant
once they are created. If no page writes occur during the chain’s creation then then
these partial chains technically do not exist.

The attribute-based case is exactly the same the commit-time-based case. The length
of the partial chains increases with time since tuples are hashed into the chain as time
passes. The width however remains fixed with time: even though more tuples are
hashed and included in a particular partial chain the value of the partition attribute is
an element of the subset of the partition attribute domain corresponding to that chain.

The number of chains in a level as given in the last column of Table VI where the level
of a chain is denoted by L. The number of chains in a level provides a crucial parameter
to the cost formulas of the forensic algorithms: the greater the number of chains the
higher the cost [Pavlou and Snodgrass 2008]. In the case of natural extensions of
attribute-based algorithms, we assume the same algorithm is used in each of the Ry
chains. Note that in only the attribute-based schemes, all the hash chains of the Ry
independent partition subsets are treated together.

Because the attribute-based schemes add an orthogonal partitioning on the attribute,
the total number of chains is increased by a factor of Ry, thereby obtaining counts of
chains such as 2% . R;.

Overall, the three groups of forensic algorithms (commit-time, page, and attribute-
based) follow a consistent parallel construction. Attribute-based and commit-time-
based algorithms differ in the number of chains per level they maintain. The additional
multiple total chains have to be maintained in parallel in the case of attribute-based
algorithms in order to produce tighter bound on the corruption event. The same is true
if we compare page-based and attribute-based algorithms.

Page-based algorithms also differ from both commit-time-based and attribute based
in the way the length and width of the chains increases. In page-based algorithms, the
chains’ length and/or width changes with page writes and not time as is the case for
commit-time and attribute-based algorithms.

9. FORENSIC COST

In this section we generalize the forensic cost model developed elsewhere [Pavlou and
Snodgrass 2008] so that it is applicable to the new forensic algorithms developed in
this article.

9.1. Forensic Cost of Commit-Time-Based Algorithms

Forensic cost is a sum of four components, each representing a cost that we would like
a forensic analysis algorithm to minimize, and each weighted by a separate constant
factor: «, B, y, and §. The first two components capture number of calls to the external
digital notatization server (each such call will have monetary cost); the other two
components capture the discernability of the algorithm: how exactly can it characterize

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:28 K. E. Pavlou and R. T. Snodgrass

a tampering.
FC(D,N,V,k) = a-NormalProcessing(D, N, V) + B - ForensicAnalysis(D, N,V , k)
+y - Areap(D,N,V,k)+6- Areay(D, N, V, k)

Each of the normal processing, and forensic analysis costs is measured as the number
of times the digital notarization service is contacted during each execution phase.

The forensic cost is defined as a function of D (the number of days since the database
went online, normalized in terms of number of R, units), N, the notarization factor
(with Iy = N - Ry), V, the validation factor (with V = Iy /Iy), and «, the number of
corruption sites. A corruption site differs from a CE because a single CE can result in
a corruption of multiple data sites.

Each i of the « corruption sites is associated with three areas. Areap; is the area
where the algorithm positively identifies that a corruption site exists. (We mention in
passing that false positives will increase this area, and so are included in forensic cost,
though the algorithms developed in this article never produce false positives.) Areay;
is the area where we have no information as to whether a corruption site exists or
not. Areay; is the area where the algorithm establishes that no corruption site ex-
ists. For each corruption site, the sum of the areas, denoted by TotalArea = Areap;
+ Areay; + Areay;, corresponds to the horizontal trapezoid in the corruption diagram
which is bound by the action line, the When-axis, and the two horizontal lines of the last
two validation event scans. Hence, TotalArea = (V - N)-(D —(1/2)-V - N). The forensic
cost model only features Areap =) ; Areap; and Areay =) ; Areay; because minimiz-
ing these areas maximizes Areay with the overall effect of minimizing forensic cost.

Under this model we have already computed the forensic cost of commit-time-based
algorithms [Pavlou and Snodgrass 2008]. The Monochromatic Algorithm has foren-
sic cost O(x - V - D) under worst-case distribution of corruption sites while the a3D
Algorithm has cost O(x - N + D+« -1g D).

As we will see in detail in the following, the forensic cost model does not depend
on the underlying partitioning of data. For this reason the forensic cost of page-based
algorithms remains the same as that of commit-time-based ones. The commit-time-
based algorithms have been implemented and evaluated using actual values elsewhere
[Pavlou and Snodgrass 2008]. In the case of attribute-based algorithms, the above
statements are also true but because of the composite nature of the partitioning we end
up having multiple instances of commit-time-based algorithms maintained in parallel.
This is reflected in the forensic cost attribute-based algorithms which otherwise have
the same forensic cost components as the commit-time-based algorithms except that the
Normal Processing and Areay components will be scaled by R; (the domain resolution)
which is also the number of instances of commit-time-based algorithms we have to
maintain in parallel.

9.2. Forensic Cost of Page-Based Algorithms

In order to compute the forensic cost of paged-based forensic analysis algorithms, we
can use same formulas as above. This is due to the fact that the forensic cost model
does not depend on the underlying partitioning of the data. Hence, the forensic cost
remains the same for commit-time and page-based algorithms.

In page-based algorithms, the temporal bounds on the corruption event are reported
in the exact same way as in the commit-time-based algorithms. The difference between
the two groups lies is the way the final spatial bounds are reported. For (commit-time)
a3D the spatial bounds are given in terms of a time interval. This means that any
further analysis to find exactly where the corruption lies will have to look for all the
tuples in the transactions which committed in the given time interval. For Page-based

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:29

a3D the spatial bounds are initially also given in terms of time, that is page write time.
We can deduce this from the start and stop times of the hash chain which evaluated to
false during forensic analysis. In this case, any further analysis will have to look for
all the tuples in the pages which were written in that time interval. The page-based
algorithm goes one step further and can actually find those pages from information
kept during the validation scan of the entire database. The final spatial results are
given in terms of a set of pages. Actually, the commit-time-based algorithms can be
extended to operate in an analogous way. They can report the spatial results in terms
of transaction IDs. (This implies that commit-time-based algorithms can have their
own type of 3D corruption diagram.)

9.3. Generalization of Forensic Cost

We must now generalize the forensic cost model in order to create a model capable
of characterizing the forensic cost of all the new algorithms, including the attribute-
based ones. We augment the model by introducing the domain resolution Ry in all of
the components of the model except for the forensic analysis component. In order to
be consistent with the analysis given elsewhere [Pavlou and Snodgrass 2008], we also
assume here that the four constant factors are equal to one.

FC(D,N,V,«, Ry, p.) = NormalProcessing(D, N, V, Ry)
+ ForensicAnalysis(D, N,V «, p.)
+ Areap(D,N,V, k, Ry) + Areay(D, N, V, k, Ry).

The introduction of R; is crucial because it captures the increase in the Normal
Processing cost of the attribute-based algorithms and the decrease in the areas re-
sulting from forensic analysis. The new parameter p. is the number of partitions (out
of a total of R;) that have corruption sites, thus 1 < p. < Ry. It specifies on which
partition(s) forensic analysis must be performed. Note that if B; = 1 then the re-
sulting algorithms, and thus their forensic cost, are identical to the commit-time and
page-based ones. This property is termed single-partition reducibility.

9.4. Forensic Cost of the Attribute-Based Monochromatic Algorithm

Attribute-based forensic analysis algorithms are different from the other two algorithm
groups. In the Attribute-based Monochromatic Algorithm, we are dealing with com-
posite partitioning: attribute partitioning with nested commit-time partitioning. The
attribute-based algorithms use the Ry subsets of the attribute domain to partition the
data. Then, for each of the R; subsets in the partition a conventional Monochromatic
Algorithm is applied.

As in our initial analysis [Pavlou and Snodgrass 2008], here we assume a worst-case
distribution for « corruption sites, where all sites occur within a single total chain
affecting tuples with partition attribute value in a single partition domain subset that
is, p. = 1. This guarantees that the Areay term in the forensic cost formula is not zero.
Also, each site is added to the earliest untampered Iy. This distribution minimizes
Areay and maximizes Areay . Details on how the sites are added can be found elsewhere
[Pavlou and Snodgrass 2008].

We also assume a uniform partition of the attribute domain. For this reason, the two
types of area in the forensic cost must be divided by R, in order to maintain an accurate
comparison between the algorithms. In order to derive the asymptotic complexity we
make, here and in the following sections, the simplifying assumptions that 1 < « < D,
1< N=<D, 1<V <D,and 1 < R; < D. We first study the Attribute-based

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:30 K. E. Pavlou and R. T. Snodgrass

Monochromatic Algorithm when « = 1.

FCutr mono(D, 1, V,1, Ry, 1) = R;- NormalProcessing,,,.,
+ 1 ForensicAnalysis,,,,,
—i—Areap,m,w/Rd
= R;-(D+D/V)
+2-1gD
+V/Ry
= O(Ry - D). 1)

The first three lines of the of the first equality show clearly the relationship between
the components of the original forensic cost model and the general one. The Normal
Processing cost of the attribute-base Monochromatic Algorithm is R; times the Normal
Processing cost of the original Commit-time-based Monochromatic. The Forensic
Analysis component for the Attribute-based Monochromatic is the same as that of
the commit-time based because a worst-case distribution of corruption sites implies
that p. = 1. The Areap of the attribute-based algorithms is only 1/R,; of the Areap
of the commit-time-based ones because each area in the attribute-based algorithms is
restricted to a single partition and hence captures only 1/Ry; of the entire data.

On the first line of the second equality of equation (1), D is the number of notarization
and D/V is the number of validations for a single Monochromatic Algorithm. Since we
are maintaining Ry of them, one for each partition subset, we multiply the two terms.
On the fifth line the term 2 - 1g D is the cost of doing a binary search during the
forensic analysis phase. Under worst-case distribution of corruption sites all sites are
located within a single partition so we need only perform forensic analysis on a a single
Monochromatic Algorithm. The term V /R, on the sixth line corresponds to the Areap
of the single corruption site we have. Hence no Areay is present. We now consider the
case where « > 2.

FCutr mono(D,1,V,k >2,Rq,1) = Ry-(D+ D/V)

+2.1gD
+(1/Ry) - (V + (k — 1) - (TotalArea — V)
— O(R;-D+«-V-D/Ry. @)

The only difference in the case of x > 2 is the existence of Areay associated with
« — 1 sites because the Monochromatic Algorithm can only detect the corruption site
affecting a tuple with the oldest commit time.

9.5. Forensic Cost of the Attribute-Based a3D Algorithm

For the Attribute-based a3D Algorithm we assume in a similar manner that all «

corruption sites have a worst-case distribution within a single partition subset so

that only one of the R; binary trees is affected. The corruption sites have worst-case

distribution inside the binary tree, namely, they tamper every other leaf node.
FCutr_a3p(D, N, 1,k, Ry, 1) = Ry - NormalProcessing,sp

+ 1. ForensicAnalysis,sp

+Areapqsp/Ra

R;-(D/N +N(D)+ D/N — (1 + |1g(D/N))))

+ V(x)

+Areapsp/Ra

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:31

Table VII.
Settings used in experimental validation of forensic cost assuming worst-case distribution of corrup-
tion sites (Values in bold are nonconfigurable)

Algorithm
Parameters Commit-time/Page-based Attribute-based

Monochromatic | RGBY | Tiled Bitmap | a3D | Monochromatic | a3D
Ry 1 1 1 1 4,8 4,8
R, 1 1 1 1 1 1
N 1 1 8 8 1 8
\%4 8 2 1 1 8 1
D 40, 200, 1000

= R;-(D/N+2-D—1+D/N— 1+ |lg(D/N))))
+2-k-(lg D] — [lgx]) + (1 + [k # 2°]) - 2Ule<i+1 1
+(1/Rg) - (k - N)

= O -N/R;y+ R;-D+«-lgD). 3)

On the first line of the second equality of Equation (3), D/N is the number of validations
for a single a3D Algorithm while A (D) + D/N — (1+ |lg(D/N)|) is the number of nota-
rizations. V(D) is a recursive formula which gives the number of chains in the binary
tree and D/N — (1+ [1g(D/N)|) is the number of total chain hash values not part of the
tree. The derivation of /(D) can be found elsewhere [Pavlou and Snodgrass 2008]. We
maintain R; of these binary trees so again all terms are multiplied by R;. The term V(«),
on the second line of the second equality is the cost of performing forensic analysis on
the binary tree. V(«) is a recursive formula which computes the number of hash chains
validated by the algorithm when « corruption sites exist under a worst-case distribu-
tion. The derivation of V(k) can also be found elsewhere [Pavlou and Snodgrass 2008].
All the « corruption sites can be positively identified by a3D so Areay= 0 while Areap
is k times the area N/R; of a single site.

We can use big theta notation to describe the cost of Attribute-based a3D because
similar analysis under a best-case distribution of corruption sites (not shown) yields
the same asymptotic cost. This is not the case for the Attribute-based Monochromatic
Algorithm, whose cost under best-case distribution is O(R; - D + « - V/Ry).

9.6. Forensic Cost Evaluation of the Forensic Analysis Algorithms

We proceed to compare the forensic analysis algorithms and give recommendations.
The values used to create the cost plots in Figures 9—13 are predicted values computed
from the forensic cost formulas derived above. We have used all the terms with the
recursions accurately computed, rather than the asymptotic behavior of the cost. We
expect the predicted forensic cost values to be accurate because the attribute-based
algorithms’ costs are comprised of distinct cost components identical to ones found in
commit-time-based ones, albeit with small rearrangements that constitute scaling of
the commit-time cost components. The accuracy of the commit-time-based algorithms’
forensic cost has been previously verified by comparing predicted values to actual ones
computed from an implementation of the commit-time-based algorithms [Pavlou and
Snodgrass 2008]. Hence, the predicted forensic cost for the attribute-based algorithms
should be very close to what would be observed in practice.

Any artifacts on the cost curves of the following plots are due to the way they were
generated in gnuplot. Even though we obtained values for all points in the stated
domain, only certain values are marked with the distinguishing point symbol (e.g., m,
x, o) in order to avoid cluttering the image. Thus each cost was drawn twice using two
data sets of differing cardinalities and the resulting curves may not always coincide.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:32

K. E. Pavlou and R. T. Snodgrass

8000 j T T T T T o T T T
o Mono (P) —e—
o . Agr.BMono }Eg
iled Bitmap (P) -+~ |
=l Attr. Var-Level a3D (P) -- -a-- -
e a3D (P) ke
RGBY (P)
7000 P
x
6000 [
x
; .‘.'. - ol U Sk IR
8 5000 - o e e Wl - e ER
o L E R
2 K
13 x
S 4000
w “-.
3000 .
________ —
g g B »
2000 e
L3
ST — a2
S s
1000 foc oot
o
0 X . : L L ! ! ! !
20 40 60 80 100 120 140 160 180 200
Number of Corruption Sites (k)
Fig. 9. The Forensic Cost versus « for D = 256 and Ry = 8.
2000 - . | |
| bR [Mona (F) —a—
| i Mono (P) | R
8000 | | A 8000 | i
| H II 23D (P}
| " [RGBY (P)
” II 7000 |'I
)
= II 8000 ||'
)
)
J)
g R ' - E s | |
i oo o | I,
£ wol | e
& f |
:)
3000 - | o i .'I
| 1 P . .
2000 I|' ol
: |
" fl e e . 1 1000 {f xer ¥
* i av
5 10 18 F 28 20 n 40 5 0 18 m 2) ™ a
Number of Cormuption Sies (x) Number of Cormupsion Sites (k)
(3) Ri=28 (b) R d

Fig. 10. The Forensic Cost against « for D = 256 (detail).

Table VII summarizes the key parameter values used to generate the cost plots.
Figures 9 and 10 investigate the impact a growing number of corruption sites on
forensic cost for a fixed D = 200. All algorithms exhibit a linear behavior with respect
to x except the two a3D Algorithms, which are O(x — « - 1g«). Even though this is a
decreasing function on «, only its ascending slightly leveling limb is visible because «

is bounded above by D.

We observe that as « increases RGBY becomes the cheapest algorithm. However,
RGBY suffers from false positives. Fortunately the second cheapest algorithm is
a3D which can detect multiple corruptions with no false positives. Even though the
Attribute-based a3D in only the third cheapest algorithm it outperforms all the rest
of the algorithms. Thus a new attribute-based algorithm such as a3D can outperform
even a commit-time-based algorithm like Tiled Bitmap. The advantage of Attribute-
based a3D over RGBY is the same as that of a3D: a3D algorithms do not suffer from
false positives. Attribute-based a3D has the added advantage of providing semantic

information associated with the corruption. Once we identify which one of the R; sub-
sets contains the corruption site then we immediately know the range of the partition
attribute values in the affected tuples. (This semantic information is not captured by
our forensic cost model.) By incurring a slightly higher forensic cost, Attribute-based

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013

Generalizing Database Forensics 12:33

a3D provides semantic information about the nature of the corrupted data which can
help identify the perpetrator at a later stage.

Figure 10 displays the forensic cost curves for the first 40 corruption sites (before
most of the algorithms completely diverge from each other) and for two different sizes
of the domain partition (R; = 4, 8). Figure 10(a) is a detail of Figure 9 with R; = 8.
When the number of corruption sites is small (¢ < 7) Tiled Bitmap is the cheapest
algorithm. Then for 8 < « < 27 a3D becomes cheapest and for values of x > 28,
a3D overtakes RGBY making the latter the algorithm with lowest cost. Even though
none of the attribute-based algorithms can compete purely in terms of forensic cost, if
additional semantics are required then for x < 10 Attribute-based Monochromatic is
preferable to Attribute-based a3D. For x > 11 the situation is reversed. Remarkably,
because the forensic cost of the Attribute-based a3D Algorithm increases slowly, the
algorithm can be cheaper than Tiled Bitmap for certain values of «. This is clearly seen
in Figure 9 when « reaches the value 71.

Reducing the R; value (the number of partitions) from 8 to 4, as shown in Figure 10(b),
has no effect on the page-based algorithms. However, as R; decreases the Attribute-
based Monochromatic Algorithm converges towards its page-based counterpart. For
R; = 1 the two algorithms are identical. The same applies to the Attribute-based a3D
Algorithm which converges to the Page-based a3D Algorithm. This is the reason why
the Attribute-based a3D Algorithm becomes cheaper than Tiled Bitmap at a smaller «
value when Ry is reduced from 8 to 4.

We now turn to the effect of the number of days D on the forensic cost for different
values of k. We show results for k = 1, 2, 30, and 100. These values were chosen because
major shifts in forensic costs are observed at these or close to these values, as also seen
in Figures 9 and 10(a). Note that curves in these plots do not begin at D = 1. They
begin at D = max {Iy, k} because enough days must elapse before validation can occur
or because a sufficient number of days is needed to accommodate all the corruption sites.

Figure 11 shows cost plots of forensic cost versus D for k = 1 and 2. When a single
corruption exists the Monochromatic Algorithm is the cheapest algorithm for the first
136 days. For days 137-141 Monochromatic and Tiled Bitmap share the same cost
while past day 142 Tiled Bitmap becomes cheapest. This is to be expected since « = 11is
a special case for the Monochromatic Algorithm: recall Areay is zero. A more accurate
picture emerges in Figure 11(b), where the Monochromatic Algorithm becomes the most
expensive of the page-based algorithms getting closer to the cost of the Attribute-based
Monochromatic Algorithm. In the long term, the two attribute-based algorithms are
the most expensive algorithms overall (for « = 1 and 2). The reason for this is that the
Ry - D term in the asymptotic behavior of the algorithms dominates the forensic cost.
This is the price to be paid in exchange for the extra semantic information furnished
by these algorithms.

If the number of corruption sites is increased to 30, as shown in Figure 12, then
the cost of the Monochromatic Algorithm becomes so large that for the sake of clarity
it is not included in the cost plot. To fully capture the forensic cost behavior we have
extended the domain values to 1000 days. RGBY starts as the cheapest algorithm and
on day it overtakes a3D. The a3D Algorithm remains the cheapest algorithm until day
975 when the Tiled Bitmap Algorithm becomes cheapest. The Attribute-based a3D is
the algorithm of choice if additional semantic information is sought.

Figure 13(a) shows the effect on forensic cost of a large number of corruption sites
(k = 100) while Figure 13(b)shows the effect of halving the domain resolution (R; = 4).
Both figures show that the forensic cost curves exhibit a similar behavior to the ones
in Figure 12. The main difference lies in the time it takes for the RGBY Algorithm
to cross the a3D Algorithm, Tiled Bitmap to cross a3D, and Attribute-based a3D and
Monochromatic to cross Tiled Bitmap. The bigger the « the longer it takes for the

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:34 K. E. Pavlou and R. T. Snodgrass

1200 . . .
Attr. Var-Level a3D (P) « = -
Attr. Mona (P)
; RGBY (P)
¥ adD (P) - x
i Mono (P) —o— |
- / Tiled Bitmap :P{ S—
=
800 - i
+
i &
3 Y
4 00 i
H £
£ ’
400 -
200
o L L 1 L , , .) |
20 40 60 80 100 120 140 160 180 200
Number of Days (D)
(@r=1
1200 ! : ; : I
Afir. Var-Level a3D (P) - -@- -
Attr. Mono (P)
Mono (P) —e—
"
I a i »
. Tiled Bitmap (P) ---&---
800 -
S
g 600
=
o
&
e
400 | e
e
-
,‘_..__,...-——.—-—‘—'—""'
200 +
9 g 3 ; . L L 1 L
20 40 60 80 100 120 140 160 180 200
Mumber of Days ()
(b) k=2

Fig. 11. The Forensic Cost against D for Ry = 8.

crossing to occur. Also, the cost of the Attribute-based Monochromatic Algorithm is
sufficiently large that it starts at a higher value than Tiled Bitmap. Reducing R; has
the opposite effect; the crossings happen sooner.

10. RECOMMENDATIONS

As the expected number of corruption sites increases the algorithms with lowest foren-
sic cost are Tiled Bitmap, RGBY, and a3D depending on the specific value of «. This is
of course the case if minimizing forensic cost is the only criterion used to choose an
algorithm. If the existence of false positives is unacceptable then we must opt for a3D.
If extra semantic information is required or if only part of the database suffices to be
under audit then we have to turn to the Attribute-based a3D Algorithm which is the
cheapest algorithm fulfilling these requirements.

Long-term cost is sensitive to «. For x = 1 the Monochromatic Algorithm rivals a3D
and even manages to be cheaper than Tiled Bitmap at least for a while. Tiled Bitmap

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:35

6000 T T T T T T

1 ' At!r.I Mono (P)I
4 Attr. Var-Level a3D (P) -- -&- -
‘ RGBY (P)
! a3D (P) o
s000 N Tiled Bitmap (P) %+

4000 |

Forensic Cost

3000 :’- -
'{’ -
T
2000 7R =
i’. e
oo S L |
e
T
’ : . . . L 1 1 1 1
100 200 300 400 500 600 700 800 900 1000

Number of Days (D)

Fig. 12. The Forensic Cost against D for Ry = 8 and « = 30.

25000 25000

Atir. Mano (P) Amr. Mana ()
Attr. a30 (P) -~ - Adtr, Var-Lovel a30 (P} ~
Tiled Bitmap (P} --®--- RGBY (P}
RGEY (P} 30 (P}
230 (P} = Tied Bamnap (P) <=
20000 1 20000 -
1
/
//
§ 15000 ¢+ // g 15000
E F.// E
-
10000 o < 10000 F
s -
il IS sl
- '—""__..-
5000 et sl S v ol .
ral . e el
af el o ; e
. e T £
0 o =BT
100 20 300 400 500 600 700 800 800 1000 00 200 300 400 500 600 700 BOO 900 100C
Number of Days (1) Number of Days ()
(a) Rg =8, k=100 (b) Ra=4,k=30

Fig. 13. The Forensic Cost against D for large « and small Ry.

is consistently the cheapest algorithm in the long term regardless of the number of
corruption sites. This algorithm is closely followed by a3D which has obvious advan-
tages over Tiled Bitmap (easier to implement and no false positives). The only effect
of increasing the number of corruption sites has is to postpone the time at which Tiled
Bitmap and a3D become the cheapest algorithms.

If an attribute-based algorithm is required then the situation is slightly different
than before. The Attribute-based Monochromatic Algorithm has the cheapest cost
in the long term for a small number of corruption sites (x = 1,2). If ¥ increases
then Attribute-based a3D becomes once again the cheapest among attribute-based
algorithms in the long term.

Varying R, can only affect the attribute-based algorithms. Our results show that Ry
does not have as wide a range of useful values as we initially had hoped. Experiments
with Ry values as high as 128 (not shown) make the forensic cost of these algorithms
rival that of the Monochromatic Algorithm.

Overall, our findings corroborate the cost analysis of the commit-time-based
algorithms found elsewhere [Pavlou and Snodgrass 2008]. The Tiled Bitmap and the
RGBY provide forensic analysis with low associated forensic cost but suffer from false

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:36 K. E. Pavlou and R. T. Snodgrass

Forensic
Analysis
Tamper Prevention Algorithms
Transaction Tamperin Tamper Detection O
Processing C DBMS state peme DBMS state P Observable(s)

(Legal) CE in Taxonomy (Illegal)

|

Fig. 14. The relationship between Observables, Taxonomy, Forensic Analysis Algorithms, and Forensic
Analysis.

Forensic Analysis

positives. False positives are significant factor which needs to taken into account when
choosing an forensic algorithm. The rate of false positives has been quantified for both
Tiled Bitmap and RGBY [Pavlou and Snodgrass 2008]. In the worst case scenario
where corruption sites alternate with corruption-free areas of width Iy, RGBY can
produce up to 50% false positives. The number of false positives in the Tiled Bitmap
Algorithm, under worst case conditions where only the first granule of each tile is
tampered, could be significantly higher than the number of false positives observed in
the RGBY Algorithm: for each tile of size NV granules we have N — 1 false positives. The
choice between the two depends on how acceptable false positives are and ultimately
rests with the Chief Security Officer.

The Monochromatic Algorithm although cheap has limited forensic capabilities since
it cannot detect multiple corruptions. If false positive results are unacceptable and
long term forensic cost is tolerated then the a3D Algorithm is the algorithm of choice.
Attribute-based variants of these algorithms should be used if it is important to obtain
information on the corrupted attribute values of the data during forensic analysis.

One question remains. When does one choose page-based algorithms instead of the
commit-time-based ones, especially in light of the fact that both sets of algorithms ex-
hibit the same forensic cost? Here the answer revolves around differential advantages
in implementation. A page-based approach is preferable over a commit-time-based one
when scalability of the system to support multiple DBMSes with a uniform presen-
tation of the results of forensic analysis is very important. Additional factors include
performance, such as the smaller overhead of linear scans in page-based algorithms,
and information hiding by not exposing of the page-based algorithms’ inner workings
to the DBMS file manager layer.

We now turn our focus to the variety of different types of corruptions and present a
general forensic analysis protocol to detect them.

11. A TAXONOMY AND A DECISION GRAPH OF CORRUPTIONS

In this section we step back to attempt to understand and characterize the space of
possible corruptions and the comprehensiveness of extant tamper detection and forensic
analysis algorithms to be able to identify the full range of such corruptions.

To achieve this we use the high-level model shown in Figure 14. Initially the database
exists in a legal state. When a corruption occurs the database transitions from a legal
to an illegal state. The specific details of this illegal state are solely dependent on the
type of corruption that transpired. Hence, one of the first things one needs to consider
is the set of types of corruption events. To do so, we propose a taxonomy of what can
go wrong. Then sufficient tamper detection tools and techniques must be developed
so that the result of their application to the database can yield a set of observables.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:37

Observables are clues which help detect corruptions as well as reveal the details of
the illegal state of the DBMS. We can then define forensic analysis as a map from
the observables to the elements in the taxonomy. Ideally, we would like to have a one-
to-one correspondence, between the observables and elements (kinds of corruptions)
in the taxonomy, so that forensic analysis can unequivocally identify each possible
corruption. For this to happen, the available tools should be able then to determine
the causal factors (what, where, when) of the corruption, such that subsequent manual
analysis can determine who and why, given the illegal state of the database.

Figure 15 is a UML [Booch et al. 2005] taxonomy which shows all the places within
the DBMS where a single tampering can occur along with the resulting type of cor-
ruption event. This diagram concerns a single corruption event, therefore some of the
conclusions are drawn by the process of elimination. The situation is more complex
when multiple corruptions are involved.

Tampering could affect data on disk, the schema of the data on disk, the transaction
log (on disk), or even data stored in main memory. In the case of main memory tam-
pering, corruption could affect data brought into main memory from disk or the hash
chain values evaluated from the data. Tampering the hash values in main memory
poses a challenge to our current approach.

Before we delve into the taxonomy in more detail observe that all subclasses are
disjoint (denoted by (@) and that all superclass/subclass relationships are total (denoted
by the double line descending from the little triangle below the superclass into the
constituent subclasses).

If data are corrupted on disk then this could affect page write timestamps, a tuple
attribute, or even an entire tuple. Timestamps are stored on disk (and within pages)
only under a page hashing/partitioning scheme. If such a timestamp is corrupted then
we must identify if it has been postdated (changed to later time) or backdated (changed
to earlier time).

If an attribute value of a tuple is corrupted then we must distinguish whether the
database is partitioned on this attribute. This is important because these corruptions
produce different observables during forensic analysis. Even though in most cases
we can identify Non-Partition Attribute corruptions, there are situations in which we
cannot distinguish between these and corruptions of an attribute in a tuple stored
on non-static-numbered pages. In fact, no forensic analysis algorithm can yet distin-
guish between all possible types of corruptions when using non-static-numbered page
hashing schemes.

Corruption of a partition field can lead to either a timestamp (transaction commit
time) corruption or a corruption of any other attribute value. If a partition attribute is
corrupted, and given that the domain of the partition attribute is ordered (either natu-
rally or artificially), then we need to discover whether the value resulting from the cor-
ruption is lesser or greater than the original. Timestamp corruption is a special case of
Attribute corruption, in which we need to distinguish between corruptions that changed
the original timestamp to an earlier time (Backdated) or a later time (Postdated).

Moving back up the tree, if Data Corruption affects an entire tuple then there are
four possibilities: the data in the tuple is deleted, the header of the data is deleted, just
the tuple header is corrupted, or an entire tuple is inserted. All these will make the
data of the tuple inaccessible.

Finally, if a Corruption Event affects the schema of the database then we could face
corruption of the specific Table and Column schemas. Of course corruption of other
schema information is also possible.

In the Appendix we give a forensic analysis protocol to identify leaves in the
taxonomy. Currently, the protocol does not include tools or techniques that allow for
the analysis of transaction log corruption, main memory corruption, or page number

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

K. E. Pavlou and R. T. Snodgrass

(“19Y30 83 9A0(E 8U0 USAILS ‘s)red omj) ojur Jr[ds sem weISeIp oY) suoryeiIWI] 89eds 01 on(:gN) AwWouoxe], yueay uorpdnrio) ayy, ‘G| B4

A1owoaw ur A1owoaw ur
(vu:_z.coo.w (pardn. too.v pardniio)
an[eA yseH eReq BUWIDYIS 1Y

BWAYOS UWN[0)

padniio)

padniio)
BUWAYS d[qE],

uondniio)
KIOWSN uIejy

uondniio)
BWAYOS

paSuey)
] uonowsuel],

_ pajepIsoq _ _ parepyoeg

anjea 1aea1d
01 paSuey)

anfeA 10ssa|
01 paguey)

anqupy anquny
porduy [enpIA
a (isip uo) A)
apasu] afdn a1dnio)) 1opea 219(] JopEd) paRIg ajdny paydniio) JISIp UO. 21EPISO, parepyeg
_ P Tardng P D 1opEeH peRIed 19peeH ur eje(Y uonnIed UoN ANqUNY UonIEd papied

:38

12

]
[

(Cistp uo)
ardny amug

(Crstp o)
amquny

‘Surysey oSed 10§
Auo st sy, :
[UO STSIYL -GN \V
(stp uo)
dwreisown, aup 28eq

pardniio)

S0 uonoesuel],

(Cistp uo)
uondniio) ereq

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:39

corruption (a virtual attribute corruption) under non-static-numbered page partition-
ing. In the case of entire tuple corruption, the forensic analysis algorithms will detect
a corruption but there are no techniques yet to distinguish between the corruption’s
different subtypes. Our protocol can distinguish between the remaining types of
corruption.

12. RELATED WORK

Recent years have seen an increase in research activity surrounding the issues of
compliance, tamper-resistance, appropriate use, and provenance of business records.
In this section we focus on the relevant issues of tamper-resistance, tamper detection,
and forensic analysis of records in high-performance relational databases.

Various long-term high-integrity retention techniques for fine granularity business
records (database tuples) have been proposed based on WORM storage servers. One
such example is a log-consistent compliant database architecture (LDA) that extends
immutability to relational tuples [Mitra 2008; Mitra et al. 2009]. This system stores
a database snapshot on WORM at audit time, then uses an additional compliance log
stored on WORM to record database modifications. This snapshot plus the compliance
log let the auditor verify that the new database state is compliant.

A more efficient architecture is the transaction log on WORM (TLOW) approach
for supporting long-term immutability of relational tuples [Hasan and Winslett 2011].
TLOW stores the current database instance in ordinary storage and the transaction
log on WORM storage, while dispensing with the compliance log altogether. The audit
process uses hash values representing the data in database snapshots and logs rather
than the data themselves. In a similar fashion as in LDA, after a successful audit, the
auditor writes a snapshot of the current database state to WORM storage. However,
in TLOW the auditor also stores on WORM a hash of the contents of this snapshot
obtained using a cryptographically strong hash function. The auditor then signs both
the snapshot and its hash value. For the next audit, the auditor checks the signature on
the hash of the previous snapshot and generates new hashes from the current database
state and from the log. An audit is successful if the hash from the old database snapshot
plus the hash of all the new tuples introduced in the transaction log is equal to the hash
of the current database instance. TLOW has several advantages over LDA. It requires
no changes to the DBMS kernel so legacy applications can run on it without any
changes. Moreover, TLOW imposes less than 1% overhead in transaction throughput
under a TPC-C benchmark and with a special audit helper add-on module audit time
is reduced to two hours.

AuditGuard is a new framework that allows auditing of a relational database that
is subject to retention policies [Lu et al. 2012]. The challenge arises from the fact that
such policies while trying to address privacy can run contrary to the ability to provide
meaningful answers to auditing queries. The authors present the historical data model
they employ by describing the structure of the audit log, transaction-time relations and
how essentially one can be derived from the other (audit-fields notwithstanding). They
define and describe declarative rules that can express two types of retention rules,
namely, redaction and expunction. They then present, implement, and evaluate two
models: the Tuple-Independent (TT) and Tuple-Correlated (TC) model which allow audit
queries on tables containing incomplete information or uncertainty. Implementations
of both the TI and TC models are evaluated and compared.

We emphasize that tamper prevention is not the only way to address the problem
posed by unauthorized database tampering. Weitzner et al. [2008] argue that access
control and cryptography are not capable of protecting information privacy and that
there is a true dearth of mechanisms for effectively addressing information leaks. They
propose that as an alternative information accountability “must become a primary

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:40 K. E. Pavlou and R. T. Snodgrass

means through which society addresses appropriate use” [Weitzner et al. 2008]. Infor-
mation accountability, in this context, assumes that information should be transparent
so as to easily determine whether a particular use is appropriate under a given set of
rules. The following works elaborate their systems and techniques along these lines.

Basu [2006] presents a method of forensic tamper detection of sensitive data in
SQL Server. His method does not provide tamper-prevention measures, but shows how
tampering can be detected and how to localize the affected data. The solution is based
on creating an interwoven chain of hash values which will ensure that if a particular
row is modified, inserted, or deleted from the audit log table, the detection algorithm
can find a mismatch between newly calculated hash values and those stored in the
special columns HReserved and VReserved. Even though this method has some nice ad-
vantages (e.g., lack of overhead resulting form maintaining the data in nonencrypted
form, no special deployment strategy required), it suffers from some serious draw-
backs. The hash functions used are not cryptographically strong (the hash values are
computed using BINARY_CHECKSUM and CHECKSUM_AGG), and the algorithm has limited
forensic strength (in that certain delete operations cannot be detected).

An entirely different approach to tamper detection that can encompass database
forensics is database watermarking. In general, digital watermarking for the purpose
of integrity verification is called fragile watermarking whereas robust watermarking is
used for copyright protection. When using a robust watermarking scheme, the goal is
to embed in data a watermark that is resilient against attacks that aim at removing
the watermark or at making it undetectable. In a fragile watermarking scheme, the
embedded watermark is such that it becomes “broken” by modifications. This char-
acteristic of the watermark allows for the detection and localization of the tampered
data. Agrawal and Kiernan [2002] have devised a robust watermarking scheme for
databases which uses watermark bits embedded in the data by modifying some bits of
some attributes. The modifications happen according to a secret embedding key.

A different robust watermarking scheme for databases was devised by Sion et al.
[2003]. Whereas Agrawal’s watermarking scheme is tuple-based, Sion’s scheme is
based on securely dividing tuples into nonintersecting subsets. Each subset has a
single watermark bit embedded into its tuples by modifying the distribution of tuple
values. The same watermark bit is embedded repeatedly across several subsets and
the majority voting technique is employed to recover the embedded bits. This scheme
is robust against subset attacks, data resorting, and data transformation. The major
drawback with this scheme is the fact that it is not suitable for database relations that
are frequently updated, due to the high overhead associated with re-watermark the
updated relations.

Guo, Jajodia, Li, and Liu formulated a fragile watermarking scheme for databases
[Guo et al. 2006; Li et al. 2004]. Their scheme is based on a watermark that is invisible,
meaning that the embedded watermark does not introduce any distortions to the data
(hence, this approach is also suitable for categorical data). Furthermore, the watermark
can be blindly verified meaning that the original unmarked database relation is not re-
quired for verification. Finally, during verification, the extracted watermark indicates
the locations of alterations down to the granularity of a range of tuples. The watermark
is based on the hash values of the tuples’ primary key value, their attribute values,
and a secret embedding key. Unauthorized tampering of data is detected when foren-
sic analysis yields a mismatch between the originally embedded watermark and the
extracted watermark. This scheme wrests control on tuple placement from the DBMS
and suffers from false positives.

All these database forensic techniques are valuable but most of them are evaluated
using a probabilistic analysis. Furthermore, watermark embedding techniques may
distort data and have a high overhead. Although watermarking techniques can provide

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:41

spatial bounds on the tampered data (by localizing them), they provide no temporal
bounds on when the tampering transpired. These are concerns we wish to avoid.

Database tampering evinces three basic concerns: (i) how to detect tampering, (ii) how
to determine roughly where and when tampering occurred, and (iii) how to further
narrow the corruption regions and/or make forensic analysis or normal processing
more efficient via successive refinements and generalizations. Our original paper on
tamper detection [Snodgrass et al. 2004] was concerned with the first issue. Subsequent
papers [Pavlou and Snodgrass 2006, 2008, 2010] elaborated on the second issue. In
contrast, the present article, particularly Sections 4 and 11, on expanding the concept
of “where” through page hashing and partitioning on attributes, is solidly in the mold of
issue (iii). Moreover, the present article introduces a taxonomy of corruption types and
a protocol which demonstrates how the forensic algorithms can distinguish between
different types of corruption.

13. SUMMARY AND FUTURE WORK

Integrated solutions for ensuring the integrity of databases, detecting data corruption
even by insiders, and performing forensic analysis on such corruptions are of great
interest in a variety of application domains.

The goal of the this work is to create (a) a generalization of forensic analysis
algorithms that provides more semantically relevant information about detected
tampering, (b) an overarching characterization of the process of database forensic
analysis, and (c) a general approach to this task that provides a context within the
overall operation of a database for all existing forensic analysis algorithms.

We have expanded the notion of “Where” by introducing page-based partitioning
along with attribute-based partitioning. Thus we can speak of attribute-based parti-
tioning and an attribute-based corruption diagram that characterizes a database as
partitioned on different attributes, be they time (recorded in the transaction start and
stop implicit attributes), pages (determined by the page number of the page the tuple
resides in), or any tuple attribute that can be correlated with time (and thus ordered).
We have illustrated these approaches by applying both to two forensic algorithms: the
Monochromatic and a3D Algorithms.

The expansion of forensic analysis algorithms necessitated the development of a
generalized forensic cost model which could characterize all algorithms. For a small
number of expected corruptions the algorithms with lowest forensic cost are the Tiled-
Bitmap and a3D, whereas for a large number of corruptions the use of RGBY is recom-
mended. If the existence of false positives is undesirable then one must opt for the a3D
Algorithm. If additional semantic information is needed one can turn to the Attribute-
based a3D Algorithm. In case the long-term cost of the algorithms is of importance,
then the Tiled-Bitmap algorithm must be used. Page-based algorithms are preferable
to commit-time-based ones when scalability, performance, and information hiding take
priority over other criteria.

In subsequent sections we introduced a taxonomy of various types of corruption
events and a definition of forensic analysis. Then based on that definition, we con-
structed a forensic analysis protocol which described the available tools and methods
required to distinguish between the different types of corruption.

The developed algorithms can help ensure record compliance for financial and
medical institutions. They can serve as an unbiased witness to any type of database
storing sensitive information. These may include court-submitted data from police
databases or biological research results. The latter can be of particular use to a
biosciences lab because it can ensure nondeviation from protocols thus providing a
certain type of provenance for their final results. Furthermore, they can be utilized for

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

12:42 K. E. Pavlou and R. T. Snodgrass

the improvement of software and protect databases from bugs silently corrupting the
system by potentially providing hints for isolating the piece of code responsible.

The techniques proposed do not just protect data but also provide continuous assur-
ance as to the quality of the data, since the system will be able to detect corruption
shortly after tampering and automate to a great extent the work required in the after-
math of a database corruption. The techniques also highlight the advantages over ap-
proaches relying heavily on information restriction through either hardware which can
have prohibitive costs for small institutions, have a limited shelf-life and are relatively
complex; or require cryptography which does not adequately offer remedies after a leak.

Several interesting issues remain to be resolved. The first is to address the problem
of temporary corruption. The discussion in Section 2 assumes a nonzero regret interval
which allows for the detection of a temporary corruption. Techniques are needed that
can detect a temporary corruption under the assumption of an empty regret interval.

Regarding the alternative implementations of page-based forensic algorithms we
need to explore the architectural opportunities provided by the shift from a logical to
a physical perspective in the audit system and forensic analysis as well as specific im-
plementation issues such as addressing the complication of records spanning multiple
pages and the handling of data skew in attribute-based techniques.

It would be desirable to incorporate semantic information, such as the that provided
by the attribute-based algorithms, into the forensic cost model. The next task is the
creation of new forensic analysis techniques to map observables to all the individual
types of corruption in the taxonomy. This would serve as good basis for the creation of
a forensic analysis protocol which would describe the tools and techniques required to
analyze multiple corruption events.

Another challenging problem is to create a non-static-numbered page hashing ap-
proach. This is important because it would be applicable to DBMS storage structures
where tuples can migrate between pages.

Finally, we need to consider the corruption of data in main memory. This is rather
hard to achieve since a well-maintained operating system will make this line of at-
tack unattractive. Nevertheless, we need consider it for the sake of completeness and
because it has some interesting implications. A full analysis of the corruption of hash
values in main-memory is also required in order to complete the characterization of
the forensic analysis decision graph.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
The appendix presents a step-by-step discussion of the forensic analysis protocol which
allows us to identify many types of corruption events.

ACKNOWLEDGMENTS

We thank Alejandro Estrella-Balderrama for computing the initial level-planar graph embedding for the
taxonomy (Figure 15) and the associated forensic analysis protocol. We also thank Christian Collberg,
Peter Downey, Nirav Merchant, Soumyadeb Mitra, Radu Sion, Joseph Watkins, and Marianne Winslett for
numerous and very helpful discussions on compliant databases and on tamper detection and prevention.
Finally, we thank the reviewers for their helpful comments.

REFERENCES

AcrawaL, R. AND KIERNAN, J. 2002. Watermarking relational databases. In Proceedings of the International
Conference on Very Large Databases. VLDB Endowment, 155-166.

AnN, 1. AND SNoDGRASS, R. T. 1988. Partitioned storage structures for temporal databases. Inf Syst. 13, 4,
369-391.

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

Generalizing Database Forensics 12:43

Barr, J., BoaLEN, M., JENSEN, C. S., AND SNODGRASS, R. T. 1997. Notions of upward compatibility of temporal
query languages. Business Informatics (Wirtschafts Informatik) 39, 1, 25-34.

Basu, A. 2006. Forensic tamper detection in SQL server. http:/www.sqlsecurity.com/chipsblog/archivedposts.

BoocH, G., RUMBAUGH, dJ., AND JACOBSON, 1. 2005. The Unified Modeling Language User Guide 2nd Ed. Addison-
Wesley Professional.

GERR, P. A., BaBINEAU, B., AND GorDON, P. C. 2003. Compliance: The effect on information management and
the storage industry. Res. rep., Enterprise Storage Group.

Guo, H., L1, Y., Ly, A., AND JaJopia, S. 2006. A fragile watermarking scheme for detecting malicious modifi-
cations of database relations. Inf. Sci. 176, 10, 1350-1378.

HABER, S. AND STORNETTA, W. S. 1999. How to time-stamp a digital document. J. Cryptology 3, 99-111.

Hasan, R. anp WinsLeETT, M. 2011. Efficient Audit-based Compliance for Relational Data Retention. In
Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security
(ASIACCS ’11). ACM, New York, 238-248.

HIPAA, US DepARTMENT oF HreALTH & Human Services. 1996. The Health Insurance Portabil-
ity and Accountability Act. https:/www.cms.gov/Regulations-and-Guidance/HIPAA-Administrative-
Simplification/HIPAAGenInfo/index.html.

IBM CorproraATION. 2010. A matter of time: Temporal data management in DB2 for z/OS. White paper, IBM.

L1, Y., Guo, H., aND Jajopia, S. 2004. Tamper detection and localization for categorical data using fragile water-
marks. In Proceedings of the 4th ACM Workshop on Digital Rights Management. ACM, New York, 73—-82.

LowMmET, D. AND SALZBERG, B. 1989. Access methods for multiversion data. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. ACM, New York, 315-324.

Lorentzos, N. A. 2009. Encyclopedia of Database Systems. Springer, Chapter on Value Equivalence.
Lu, W., MikLAU, G., AND IMMERMAN, N. 2012. Auditing a database under retention policies. VLDB J., 1-26.

MarLMmGRrEN, M. 2007. An infrastructure for database tamper detection and forensic analysis. Honors thesis,
University of Arizona. http:/www.cs.arizona.edu/projects/tau/tbdb/MelindaMalmgrenThesis.pdf.

MiTra, S. 2008. Trustworthy and cost effective management of compliance records. PhD dissertation,
Department of Computer Science, University of Illinois at Urbana-Champaign.

MiTra, S., WiNsSLETT, M., SNoDGRAsS, R. T., YapuvaNsHI, S., AND AMBOKAR, S. 2009. An architecture for
regulatory compliant database management. In Proceedings of the IEEE International Conference on
Data Engineering. 162-173.

ORACLE CORPORATION. 2009. Oracle Database 11g Workspace Manager overview. Oracle Corporation.
http://www.oracle.com/technetwork/database/twp-appdev-workspace-manager-11g-128289.pdf.

Paviou, K. E. AND SNoDGRASS, R. T. 2006. Forensic analysis of database tampering. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. 109-120.

Paviou, K. E. aND SxoDGRass, R. T. 2008. Forensic analysis of database tampering. ACM Trans. Datab. Syst.
33, 4, 30:1-30:47.

Paviou, K. E. aND SNoDGRaASS, R. T. 2010. The tiled bitmap forensic analysis algorithm. IEEE Trans. Knowl.
Data Eng. 22, 4, 590-601.

RAMAKRISHNAN, R. AND GEHRKE, J. 2003. Database Management Systems 3rd Ed. McGraw-Hill.

SarBaNES-OxLEY Act, U.S. PusLic Law No. 107-204, 116 Stat. 745. 2002. The Public Company Accounting
Reform and Investor Protection Act. (2002).

Sion, R., Atarran, M., AND PraBHAKAR, S. 2003. Rights protection for relational data. In Proceedings of the
ACM SIGMOD International Conference on Management of Data. ACM, New York, 98—-109.

SNopGRrass, R. T. anp AnN, 1. 1986. Temporal databases. IEEE Comput. 19, 9, 35-42.

Snoparass, R. T., Yao, S. S., anp CoLLBERG, C. 2004. Tamper detection in audit logs. In Proceedings of the
International Conference on Very Large Databases. 504-515.

TERADATA CORPORATION. 2012. Teradata transforms global database technology. http:/www.teradata.com/
News-Releases/2012/Teradata-Transforms-Global-Database-Technology/.

US NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. 2012. Federal Information Processing Standards Pub-
lication 180-4: Secure Hash Standard. (March 2012). http://www.csrc.nist.gov/publications/fips/fips180-
4/fips-180-4.pdf.

WEITZNER, D. J, ABELSON, H., BERNERS-LEE, T., FEIGENBAUM, J., HENDLER, J., AND SussMaAN, G. J. 2008. Information
accountability. Comm. ACM 51, 6, 82-87.

Received January 2012; revised September 2012, January 2013; accepted March 2013

ACM Transactions on Database Systems, Vol. 38, No. 2, Article 12, Publication date: June 2013.

