
Validating Quicksand: Schema Versioning in τXSchema

Curtis Dyreson
Washington State University

cdyreson@eecs.wsu.edu

Richard T. Snodgrass
University of Arizona
rts@cs.arizona.edu

Faiz Currim
University of Iowa

faiz-currim@uiowa.edu

Sabah Currim
University of Arizona

scurrim@eller.arizona.edu

Shailesh Joshi
University of Arizona

shailesh@cs.arizona.edu

Abstract

The W3C XML Schema recommendation defines the
structure and data types for XML documents, but lacks
explicit support for time-varying XML documents or for
a time-varying schema. In previous work we introduced
τXSchema which is an infrastructure and suite of tools to
support the creation and validation of time-varying docu-
ments, without requiring any changes to XML Schema. In
this paper we extend τXSchema to support versioning of
the schema itself. We introduce the concept of a bundle,
which is an XML document that references a base (non-
temporal) schema, temporal annotations describing how
the document can change, and physical annotations de-
scribing where timestamps are placed. When the schema
is versioned, the base schema and temporal and physical
schemas can themselves be time-varying documents, each
with their own (possibly versioned) schemas. We describe
how the validator can be extended to validate documents in
this seeming precarious situation of data that changes over
time, while its schema and even its representation are also
changing.

1. Introduction

Much of the power of a database management system
stems from the presence of a schema that describes the
structure of the database. When the data is versioned, a
schema helps even more, because it expresses the com-
monality among the different versions, as well as indicating
which parts of the data can change, and how. The schema is
the solid ground upon which the data structures can stand.

When the schema itself is versioned, there is no solid
ground. How schema versioning is supported makes the dif-
ference between a fluid motion between versions and awk-
ward struggling against quicksand.

The W3C XML Schema recommendation defines the
structure and data types for XML documents [14]. XML
Schema lacks explicit support for time-varying XML docu-
ments. We previously proposed a data model and architec-
ture, called τXSchema [9], for creating a temporal schema
from a base schema, a temporal annotation, and a physi-
cal annotation. The annotations specify which portion(s) of
an XML document can vary over time, how the document
can change, and where timestamps should be placed. The
advantage of using annotations to denote the time-varying
aspects is that logical and physical data independence for
temporal schemas can be achieved while remaining fully
compatible with both existing XML Schema documents and
the XML Schema recommendation.

In this paper we extend τXSchema to also support
schema versioning. In doing so, we leverage both conven-
tional XML Schema and related tools (principally, validator
parsers), as well as τVALIDATOR for data versioning.

Schemas designers often edit their schemas, refining and
adding element and attribute types. As an example, the
Botanic Garden and Botanical Museum in Berlin-Dahlem
(BGBM1) maintains a repository of XML Schemas2 related
to index terms, keywords, biodiversity data about specimens
and observations, meta-level data about collections, organi-
zations, and networks, and various wrapper and configura-
tion files. Most of these XML schemas have had multiple
versions over the last two to three years. The BioCASE Col-
lection Profile is up to version 1.24; the Access to Biologi-
cal Collection Data is up to version 2.06. The Pharmacoge-
netics Knowledge Base (PharmGKB3) “contains genomic,
phenotype and clinical information collected from ongoing
pharmacogenetic studies.” Its schema is up to version 4.0;
its evolution is documented4.

1http://www.bgbm.org
2http://www.bgbm.org/biodivinf/schema/default.asp
3http://www.pharmgkb.org/
4http://www.pharmgkb.org/schema/history.html

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

One challenge is that in this potential quicksand, any-
thing can change, and thus must be versioned: the snapshot
documents, the base schema, the temporal annotations, the
physical annotations, the schema documents included by
these documents, even the schemas of these schema com-
ponents. And, because the physical annotations can change,
the concrete representation within a temporal XML docu-
ment can vary. How can one even define validation in such
a fluid environment?

2. Approach

There are several key ideas to our solution. First, a tem-
poral bundle (or simply, a bundle) serves the analogous pur-
pose of an XML Schema document for a static document.
So we have a single point of reference for the schema of a
temporal document. Of course, the bundle may itself con-
tain versions within it. That means that the temporal doc-
uments it references must also have associated bundles as
their schemas.

Second, as with quicksand, as you venture outward,
eventually you reach solid ground. So eventually you reach
a bundle containing no versions, or else you reach a static
XML Schema document.

The third key idea first appeared in a paper by one of the
authors on temporal aggregation [19], that of what we will
call here, schema-constant periods. It is possible, even with
versioned schemas having themselves versioned schemas,
to identify contiguous periods of time when there are no
schema changes, anywhere. Now, during such schema-
constant periods the data may be (and probably is) ver-
sioned, but at least you have a fixed base schema and fixed
temporal annotations, each of which has a fixed schema.
And since the physical annotations are fixed, the represen-
tation is also fixed, so it is possible to read and interpret
the temporal document during that schema-constant period,
and even to validate that portion of the document. (This is
just the situation discussed in our previous papers, of a sin-
gle schema and versions of the data.) So a general temporal
document can be viewed as a sequence of data-varying doc-
uments, each over a single schema-constant period. Since
we can validate each schema-constant period, given the ap-
proaches elaborated on earlier, all we have to do is validate
across schema changes.

The final key idea first appeared in the original presen-
tation of τXSchema [9]: the representational schema (a)
is derivable solely from information in the bundle, (b) can
be designed to enable some of the temporal integrity con-
straints to be checked by a conventional validator, and (c)
can be computed and cached within τVALIDATOR, com-
pletely unbeknown to the user. The bundle is all the user
needs for describing the temporal document, just as the con-
ventional XML Schema is all the user needs for describing

an XML document.
Of course, there are lots of interesting alleys and excur-

sions during this trip, but these four key ideas capture most
of the approach.

In the remainder of this paper, we introduce the archi-
tecture through a running example, then describe how the
validator can be extended to validate documents in this
seeming precarious situation of data that changes over time,
while its schema and even its representation are also chang-
ing over time. We note in passing that all times mentioned
in this paper are transaction times [2], though τXSchema
also supports valid time for data versioning.

3. Example and Architecture

The PHARMGKB XML schema was designed conven-
tionally, without an architecture that supports schema ver-
sioning. As new releases of this schema were developed
(on May 12, 2004 Version 4.0 was released), all XML doc-
uments that were instances of this schema were rendered
invalid, with the maintainers responsible for updating their
XML documents. The architecture proposed here retains
past data and past schemas, while always allowing the cur-
rent data and schema to be extracted, for tools that are not
schema-versioning aware. While our architecture does not
limit the kinds of changes a designer can make to a schema,
typically as a schema is edited, each new version will add
to or refine an existing version rather than entirely replace
it.

Prior to Version 3.2, the <ExperimentClass>
element of PHARMGKB contained nested <sampleSet>
elements (cf. Figure 1). In Version 3.2, this was re-
placed with a <sampleSetXRef> element (cf. Fig-
ure 2), that just mentioned the unique identifier of
the sample set, which was moved to the top of the
document, with a pharmgkbId attribute. (The
AccessionObjectClass includes an attribute
pharmgkbId to specify this unique identifier, not shown
here.) In Version 4.0 an <ExperimentClass> can now
cross-reference more than one <sampleSet> (cf. Fig-
ure 3: note unbounded for maxoccurs). Additionally,
though not shown in the figure, a <sampleSet> is now
a set of <sample> instead of a set of <subject>
(logically!).

Now let’s examine how this could have been done using
τXSchema.

Figure 4 illustrates the architecture of τXSchema. This
figure is central to our approach, so we describe it in detail
and illustrate it with the PHARMGKB schema. We note that
although the architecture has many components, only those
components shaded gray in the figure are specific to an in-
dividual time-varying document and need to be supplied by
a user. We also note that to this point, the schemas (boxes 4,

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

<xsc:complexType name="ExperimentClass">
<xsd:complexContent>
<xsd:extension base="AccessionObjectClass">
<xsd:sequence>
<xsd:element name="name"

type="NonEmptyTokenType"
minOccurs="0" maxOccurs="1" />

...
<xsd:element name="sampleSet"

minOccurs="0" maxOccurs="1" />
<xsd:complexType>
<xsd:complexContent>
<xsd:extension

base="AccessionObjectClass">
<xsd:sequence>
<xsd:element name="name"

type="NonEmptyTokenType"
minOccurs="0" maxOccurs="1"/>

...
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

</xsd:element>
...

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Figure 1. <ExperimentClass> element in
version 3.1.

5, 6, and 7) are static. We’ll later relax this assumption.
The designer starts with the base schema (in

the case of PHARMGKB, root.xsd.xml and
xsd:imported or xsd:included schemas such as
"http://www.pharmgkb.org/schema/sequence.xsd",
which itself xsd:includes experiment.xsd. The
designer annotates the base schema with temporal anno-
tations (box 6). The temporal annotations together with
the base schema form the logical schema. The temporal
annotations specify a variety of characteristics such as
whether an element or attribute varies over valid time or
transaction time, whether its lifetime is described as a
continuous state or a single event, whether the item itself
may appear at certain times (and not at others), and whether
its content changes. Elements that are not described as
time-varying are static and must have the same content and
existence across every XML document in box 8.

The schema for the temporal annotations document is
given by TXSchema (box 2), which in turn utilizes temporal
values defined in a short XML Schema TVSchema (box 1).
(Due to space limitations, we won’t describe in detail these

<xsc:complexType name="ExperimentClass">
<xsd:complexContent>
<xsd:extension base="AccessionObjectClass">
<xsd:sequence>
<xsd:element name="name"

type="NonEmptyTokenType"
minOccurs="0" maxOccurs="1" />

...
<xsd:element name="sampleSetXref"

type="XrefClass"
minOccurs="0" maxOccurs="1" />

...
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
...
<xsd:element name="sampleSet" />
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="AccessionObjectClass">

<xsd:sequence>
<xsd:element name="name"

type="NonEmptyTokenType"
minOccurs="0" maxOccurs="1" />

...
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>

Figure 2. <ExperimentClass> element in
version 3.2.

annotations, but it should be clear what aspects are specified
there.)

The next design step is to create the physical annotations
(box 7). In general, the physical annotations specify the
timestamp representation options chosen by the user. Phys-
ical annotations may also be nested, inheriting the specified
attributes from their parent; these values can be overridden
in the child element. Physical annotations play two impor-
tant roles. They help to define where in the document tree
the physical timestamps will be placed (versioning level).
The location of the timestamps is independent of which
components vary over time (as specified by the temporal
annotations). Two documents with the same logical infor-
mation will look very different if we change the location
of their physical timestamps. The physical annotations also
define the kind of timestamp (for both valid time and trans-
action time). Changing an aspect of even one timestamp can
make a big difference in the representation. The schema for
the physical annotations document is PXSchema (box 3).

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

<xsc:complexType name="ExperimentClass">
<xsd:complexContent>
<xsd:extension

base="AccessionObjectClass">
<xsd:sequence>
...
<xsd:element name="sampleSetXref"
type="XrefClass"
minOccurs="0" maxOccurs="unbounded"/>

...
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Figure 3. <ExperimentClass> element in
version 4.0.

τXSchema supplies a default set of physical annotations.
(Again, space limitations do not allow us to describe these
annotations in detail.) We emphasize that our focus is on
capturing relevant aspects of physical representations, not
on the specific representations themselves, the design of
which is itself challenging. Also, since the temporal and
physical annotations are orthogonal and serve two separate
goals, we choose to maintain them independently. A user
can change where the timestamps are located, independent
of specifying the temporal characteristics of that particu-
lar element. In the future, when software environments for
managing changes to XML files over time are available, the
user could specify temporal and physical annotations for an
element together (by annotating a particular element to be
temporal and also specifying that a timestamp should be lo-
cated at that element), but these would remain two distinct
aspects from a conceptual standpoint.

The base schema, temporal annotations, and physical an-
notations, which are all XML documents, are referenced by
a temporal bundle. An example bundle for PHARMGKB
is shown in Figure 6. The <format> element provides in-
formation about how timestamps are formatted; here we use
XML Schema dates. A <bundleSequence> contains
a sequence of <schemaAnnotation> elements, each
referencing a snapshot (base) schema, a temporal annota-
tion, and a physical annotation. Note that any of these three
documents referenced by a <schemaAnnotation>
element can include other schemas. For example,
root.xsd.xml includes sequence.xsd.xml which
itself includes experiment.xsd.xml.

At this point we can contend with time-varying data.
Box 8 of the architecture shows a sequence of non-temporal
documents, each an instance of the PHARMGKB schema
(root.xsd.xml). The temporal XML document (box 9)
is essentially a timestamped representation of this sequence

of non-temporal XML data files (box 8). The schema of
the temporal document is its associated representational
schema (an XML Schema document). The timestamps are
based on the characteristics defined in the temporal and
physical annotations (boxes 6 and 7). The sequence of
non-temporal documents can be SQUASHed into a tempo-
ral document (rep.xml), with its XML schema shown as
box 10, generated by SCHEMAMAPPER from information
in the temporal bundle. The tools are described in greater
detail elsewhere [9].

The defining schema of the temporal document (box
9) is the temporal bundle (bundle.xml). However, the
conventional XML validator does not understand time-
varying documents nor their schema, so we have devel-
oped τVALIDATOR, a stand-in for the regular validator (see
Figure 5). Within τVALIDATOR, SCHEMAMAPPER is in-
voked to generate the representational schema, which is
then handed to the conventional validator. However, this
is not sufficient due to the limitations of XML Schema in
checking temporal constraints. For example, a regular XML
Schema validating parser has no way of checking something
as basic as “the time boundaries of a parent element must
encompass those of its child.” These temporal checks are
implemented in the time-varying data checker.

τVALIDATOR, by checking the temporal data, effectively
checks the non-temporal constraints specified by the base
schema simultaneously on all the instances of the non-
temporal data (box 8), as well as the constraints between
snapshots, which cannot be expressed in a conventional
schema. To reiterate, using the conventional approach, the
user would start with the daunting task of manually gen-
erating a representational schema (box 10); our proposed
approach is to have the user design a base schema and two
annotations, with the representational schema automatically
generated.

4. Supporting Versioned Schemas

We now generalize the architecture to also support ver-
sioned schemas. As noted previously, the PHARMGKB
schema has undergone a series of changes. This implies
that box 4 is actually a sequence of base schemas, three
of which are excerpted in Figures 1–3. Not only do these
base schemas change over time, but the schemas included
by them (e.g., sequence.xsd, experiment.xsd) can
vary over time. Similarly, the temporal annotations (box
6) and those annotations included by them and the physical
annotations (box 7) and those annotations included by them
all can vary over time, resulting in multiple versions.

This versioning is handled by timestamping the
<schemaAnnotation> element in the bundle. To each
such element is added a <tTime> element that specifies
when that annotation element became applicable. So our

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

9. Temporal Data
10. Representational

Schema

5. Temporal Bundle

4. Base Schema

1. TB Schema 3. PX Schema

0. XML Schema

8. Non−Temporal Data

2. TX Schema

6. Temporal Annotation 7. Physical Annotation

Legend of Arrows

Input/Output References Namespace

SCHEMA
MAPPER

SQUASH

Figure 4. Architecture.

PHARMGKB schema would have many annotation ele-
ments, with version 3.1 becoming applicable on April 25,
2003, version 3.2 on May 21, 2003, and version 4.0 on
May 12, 2004.

The schema annotation elements reference individual
base schemas. One approach is to have a different document
(file) for each version, similar to what is shown in box 8. So
we might have files named root.4.25.03.xsd.xml,
etc., or perhaps root.3.1.xsd. etc. Each of
these files would reference subsidiary schemas,
such as sequence.v3.1.xml.xsd or
experiment.4.25.03.xsd.xml. As one can
imagine, this becomes rather cumbersome. The problem
with this approach is that whenever a subsidiary schema
changes, a new version is produced, with its own URI,
which requires the referencing schema document to be
changed. So a new version of experiment.xsd requires
a new version of sequence.xsd, which requires a new
version of root.xsd.

While this approach is allowed, τXSchema also per-
mits temporal schemas, in place of multiple versions of
conventional schemas. Consider the sequence of root

Document
Messages

Bundle Schema

Temporal

Representational

Conventional
Validator

Error

Checker
Data

Time−Varying

SCHEMA
MAPPER

Figure 5. Validating a Document with
Time-Varying Data.

schemas: root.1.0.xsd, root.2.0.xsd, ... We
write a simple temporal bundle for these and invoke
the SQUASH utility, which produces a single tempo-
ral document, tv snapshot.xml which is then refer-
enced by multiple schema annotation elements. Simi-
larly, we use SQUASH to generate temporal schemas for
sequence.xsd.xml and experiment.xsd.xml.

This rather involved state of affairs, with time-varying
documents and time-varying schemas, is illustrated with a

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

<?xml version="1.0" encoding="UTF-8"?>
<temporalBundle

xmlns="http://www.cs.arizona.edu/tau/tauXSchema/TBSchema"
xmlns:tv="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.cs.arizona.edu/tau/tauXSchema/TBSchema">
<format plugin="XMLSchema" granularity="date"/>

<bundleSequence defaultTemporalAnnotation="defaultTA.xml"
defaultPhysicalAnnotation="defaultPA.xml">

<schemaAnnotation
snapshotSchema="root.xsd"
temporalAnnotation="temp_anno.xml"
physicalAnnotation="phy_anno.xml">

</schemaAnnotation>
</bundleSequence>

</temporalBundle>

Figure 6. A Temporal Bundle for PHARMGKB: bundle.xml

T Diagram in Figure 8. In this notation, first described al-
most forty years ago [5], the input of a translator is given
on the left arm of the “T” (for example, for SCHEMAMAP-
PER in the upper right-hand-side of the figure, the input is
the logical schema document, bundle.xml), the name
of the translator is given at the base of the “T” (here,
“Schema Mapper”), and the output of the translator is given
on the right arm of the “T” (here, a representational schema,
rep.xml). The name of these diagrams was to the best of
our knowledge given by McKeeman, Horning, and Wort-
man in their classic compiler book [16].

We extend these diagrams to allow multiple inputs,
which unfortunately complicates them somewhat. As
shown in Figure 8, SQUASH takes both a bundle and
a sequence of snapshot documents and produces a tem-
poral document, and UNSQUASH does just the opposite
(this is illustrated for the temporal annotations, which are
SQUASHed into a single tv temp anno.xml document,
then UNSQUASHed back into their constituent time slices.

In this figure we show a bundle (bundle.xml, right
in the middle of the figure, with the arrows pointing
left) referencing two temporal schemas, one of the base
schema and one of the physical annotations; the bun-
dle also references several temporal annotation documents.
Note that the base schema for the base schema (!) is
XSchema bundle.xml, which has as its base schema
XSchema.xml.

τVALIDATOR treats each URI it encounters as the spec-
ification of a temporal timeslice operation to select the ap-
propriate version. The timeslice is as of the time of the doc-
ument or context that contains the URI. For example, con-
sider the excerpt in Figure 7. root.xsd.xml is a time-
varying document, containing several schema versions. In
this context, τVALIDATOR will utilize the temporal context

<schemaAnnotation
snapshotSchema="root.2.0.xsd"
temporalAnnotation="temp_anno.xml"
physicalAnnotation="phy_anno.xml">

<tTime>May 21, 2003</tTime>
</schemaAnnotation>
</schemaAnnotation>

Figure 7. An excerpt from the time-varying
Temporal Bundle for PHARMGKB.

of “May 21, 2003” to extract a single version of the root
schema. To do so, it calls UNSQUASH, passing it (a) the
bundle, (b) the temporal document, and (c) a timestamp. It
does so as well, for all the schemas included by that schema,
such as sequence and ExperimentClass. The under-
lying semantics ensures that at any point in time, there is
a single base schema, a single temporal annotation, and a
single physical annotation.

Of course, one can carry this further. Because the base
schema is versioned, it is associated with a temporal bun-
dle which could itself have multiple schema annotation el-
ements. τVALIDATOR recursively calls UNSQUASH so that
at any point in time, there is a single schema in effect.

Let’s examine how τVALIDATOR depicted in Figure 5
could handle the versioned schema for PHARMGKB. Re-
call that prior to Version 3.2, the <ExperimentClass>
element of PHARMGKB contained nested <sampleSet>
elements (cf. Figure 1). In Version 3.2, this was replaced
with a <sampleSetXRef> element (cf. Figure 2), that
just mentioned the unique identifier of the sample set,
which was moved to the top of the document, with a
pharmgkbId attribute.

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

rep.xml rep.xml

bundle.xml

bundle.xml rep.xsd

XSchema_bundle.xml tv_snapshot.xml

TXSchema_bundle.xml

temp_anno_1.0.xml

temp_anno_2.0.xml

tv_temp_anno.xml
tv_temp_anno.xml

temp_anno_mon.xml
temp_anno_wed.xml
temp_anno_fri.xml

bundle.xml

1.0.xml

2.0.xml

3.1.xml

3.2.xml

4.0.xml

Messages
Error

PXSchema_bundle.xml

phy_anno_1.0.xml

phy_anno_4.0.xml

phy_anno_2.0.xml

tv_phy_anno.xml

SQUASH

SQUASH

_bundle.xml
TXSchema

SQUASH

UNSQUASH

SQUASH

SCHEMA
MAPPER

τ
VALIDATOR

root.1.0.xsd

temp_anno_4.0.xml

root.3.0.xsd
root.3.1.xsd
root.3.2.xsd
root.4.0.xsd

Figure 8. T Diagram of Validation.
This change is reflected in two versions of the

experiment.xsd.xml document, one for version 3.1
and one for version 3.2, as well as moving the
definition of the <sampleSet> element to a new
sampleset.xsd.xml subschema document and chang-
ing root.xsd.xml to also include the new sam-
pleset subschema. We could write a very short
experimentBundle.xml document, then use SQUASH

to create a temporal experiment.xml schema, and do
the same for the root schema.

What do we do with our actual XML document
(3.1.xml in Figure 8), whose schema is the origi-
nal root schema (root.3.1.xsd)? We take each in-
stance of the <sampleSet> element out of its enclos-
ing <ExperimentClass> element and move it up to
beneath the root of the document (the <pharmgkb> ele-
ment), replacing it with a <sampleSetXref> element.
Then we take the two documents, the first using the old
schema (3.1.xml) and the second the updated document
(3.2.xml) and SQUASH them into a temporal document
(rep.xml). (Even better, we could use a temporally-aware
XML editor to make these changes to the document. Such
an editor would output the temporal document.)

What would the representational schema look like for
this temporal document? We could see that schema
directly by running SCHEMAMAPPER on our bundle.
A portion of the temporal document is shown in Fig-

ure 9. Note that every change of the base schema
(which is what occurred here) or in the physical anno-
tation results in a new <tv version i> element within
the time-varying root (with these names being gener-
ated by SCHEMAMAPPER). The conventional valida-
tor can thus check to ensure that prior to the schema
change on May 25, <ExperimentClass> elements
contained an <sampleSet> element, and afterward, an
<sampleSetXRef> element. (SQUASH will ensure that
the appropriate <version> is used in the generated tem-
poral document; τVALIDATOR will also check this.)

Continuing with the example, in Version 4.0 an
<ExperimentClass> can now cross-reference more
than one <sampleSet> (cf. Figure 3: note unbounded
for maxoccurs). Additionally, a <sampleSet> is now
a set of <sample> instead of a set of <subject>.

The latter change can be checked by the conventional
validator because such sub-elements would themselves be
enclosed in a new <tv version 3> element. The for-
mer change, however, possibly cannot be checked by the
conventional validator. In the earlier schema, with a
maxoccurs of 1, the temporal semantics of this integrity
constraint is sequenced [18]: at every point in time, there
can be a maximum of one such element. However, de-
pending on the physical annotations, it may be that the
<sampleSet> element is itself versioned, which im-
plies that an <ExperimentClass> element could have

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

<?xml version="0.1" encoding-"UTF-8"?>
<time-varying-root bundle="bundle.xml" ...>
<tv_version_1>

<tTime>May 1, 2004<tTime>
<pharmGKB>

...
<ExperimentClass>

...
<sampleSet> ... </sampleSet>

...
</ExperimentClass>

</pharmGKB>
</tv_version_1>
<tv_version_2>

<tTime>May 29, 2004<tTime>
<pharmGKB>

...
<ExperimentClass>

...
<sampleSetXRef>...</sampleSetXRef>
...

</ExperimentClass>
<sampleSet>

...
</sampleSet>

</pharmGKB>
</tv_version_2>

</time-varying-root>

Figure 9. A portion of a temporal document
(rep.xml).

several <sampleSet> elements, each resident at non-
overlapping periods, so that at any one time, there wouldn’t
be more than one. In this case, this integrity constraint
would need to be checked separately by the time-varying
data checker, which knows the temporal extent of the in-
tegrity constraint (from the bundle), and thus could check
for a maximum of one only before Version 4.0 went into
effect.

τVALIDATOR is a direct replacement for the conven-
tional validator. If it is provided with a conventional
schema and a conventional XML document (such as
root.1.0.xsd and 1.0.xml), it simply invokes the
conventional validator. The UNSQUASH tool is similarly
configured. If it is given a temporal document (e.g.,
rep.xml) that references a temporal bundle (versioned or
not; here, bundle.xml), it will produce a conventional
XML document by taking a timeslice at now (4.0.xml);
this conventional document will reference a conventional
XML Schema (root.4.0.xsd), formed by slicing the
bundle at now. If UNSQUASH is given a static XML docu-
ment, it simply returns that document. Hence UNSQUASH

can be invoked before any conventional XML tools. In this

way, temporal upward compatibility [3] is ensured.
This arrangement works very well. However, there are

one remaining aspect that does not show up with time-
varying data, but rather is unique to versioned schemas: an
evolving definition of keys.

5. Accommodating Evolving Keys

When documents vary over time, it is important to iden-
tify which elements in successive snapshots are in actuality
the same element, varying over time. We refer to the process
of associating elements that persist across various snapshots
as gluing the elements. SQUASH must do this gluing; the
time-varying data checker within τVALIDATOR must also
on occasion glue elements.

When a pair of elements is glued, an item is created. An
item is an element that evolves over time through various
versions. Determining which elements should be glued de-
pends on two factors: the type of the element, and the item
identifier for that element’s type. Elsewhere we describe in
detail how item identifiers are specified and how the gluing
is accomplished [11]. What is relevant for our purposes here
is that item identifiers are specified in the temporal annota-
tions, are usually the (snapshot) key of the element type [6]
given in the base schema, and are used by τVALIDATOR

to extract the items from the temporal document and then
check the temporal constraints on those items.

What if either the snapshot key (specified in the base
schema) upon which an item identifier is defined, or if
the item identifier itself (specified in the temporal an-
notation) changes? This is a particularly insidious kind
of quicksand. Even worse is when the underlying el-
ement type of an item changes. For example, in Ver-
sion 3.3 of PHARMGKB schema, the <assay> el-
ement was replaced with <sequencingAssay> and
<genotypingAssay> elements. An item that was a par-
ticular <assay> element before the schema change could
be associated with a particular <sequencingAssay> el-
ement in the snapshot document associated with the latter
schema.

Our solution is to put in the <schemaAnnotation>
element, which signals a change in some aspect of the
schema, an <itemIdentifierCorrespondence>
element, specifying how old item identifiers are to be
mapped to new item identifiers. This element has
four attributes: oldRef, a string naming an item
that appears in the old schema, newRef, a string
naming an item that appears in the new schema,
mappingType, an XML Schema enumeration, and op-
tionally a mappingLocation, which is a URI. We have
defined four mapping types.

• useNew: The new identifier must also be present in
the old element.

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

• useOld: The old identifier must also be present in the
new element.

• useBoth: An attribute’s name is changed, but its
value isn’t.

• replace: Use an externally-defined mapping.

This is best described with an example. Say that on Mon-
day the item identifier is the assayNumber attribute of the
<assay> element. On Tuesday, this attribute is renamed
assayID; we specify a mapping type of useBoth. On
Wednesday, the item identifier is changed to the name at-
tribute, with a mapping type of useNew. (This attribute
has been around since Monday, but it wasn’t used as a key
until Wednesday.) On Thursday we add a new attribute,
assayKey, and specify that as the item identifier, with a
mapping type of useOld. Finally, on Friday we replace
the <assay> element with a <genotypingAssay> el-
ement, with a genoID attribute as the item identifier and a
mapping type of replace.

The gluing of elements into items is then done the fol-
lowing way. Before Tuesday, the assayNumber is used
for gluing. When the schema change occurs sometime on
Tuesday, we glue across the schema change by matching
the assayNumber value of the element before the schema
change with the assayID value after the change: these
(integer) values must match for the two elements to be
glued. On Wednesday, we glue across the schema change
by matching up old elements and new elements that have
the same (string) value for their name attribute, the new
item identifier. The only difference is that before the schema
change, that attribute was present but wasn’t being used as a
key. In a consistent fashion, on Thursday we also glue using
the name attribute, which was the old item identifier.

Friday is the most complex. We need to glue an
assay element with an item identifier of assayKey with
a genotypingAssay element with an item identifier of
genoID. For this, we use the MappingLocation at-
tribute in the bundle to access a mapping table that provides
a list of pairs, each with an assayKey and a genoID
value. (Of course, the mapping location document can also
be time-varying; τVALIDATOR extracts the relevant time-
slice with UNSQUASH.)

This completes the picture. To validate a time-
varying document associated with a time-varying schema,
τVALIDATOR applies the conventional validator to the doc-
ument, using the representational schema produced by
SCHEMAMAPPER. It then determines the times when the
schema changes, thus determining the periods when the
schema is constant, termed the schema-constant periods.
These periods will be non-overlapping and continuous; be-
tween the periods are schema change walls. For each such
period, the time-varying data checker is invoked to check
the temporal integrity constraints over the time-varying
data, with the single base schema, temporal annotation, and

Document

Schema

Bundle

Messages
ErrorTemporal

Representational

Conventional
Validator

Data Checker

Checker
Constraint
Temporal

Slice

Bundle

Time−Varying

MAPPER
SCHEMA

Figure 10. Validating a Document with a
Time-Varying Schema.

physical annotation (see Figure 10). Then the temporal con-
straint checker glues across the schema change walls and
performs the temporal checks across these walls. For exam-
ple, if a temporal annotation states that there can be at most
three such values within a year (a rather complex kind of
temporal constraint), the temporal constraint checker will
ensure that the number of unique values before the wall and
the number of unique values after the wall do not together
exceed three. For most temporal constraints, it suffices to
just check independently before and after the wall. Only
for certain kinds of non-sequenced constraints [18] does the
temporal constraint checker get involved.

6. Related Work

Methods to represent temporal data and documents on
the web have been actively researched. This research has
covered a wide range of issues that include architectures for
collecting document versions (cf. [10, 15]), data modeling
of time-varying data (cf. [1]), strategies for storing versions
(cf. [7]), studies on the frequency of data change (cf. [8]),
and temporal query languages (cf. [12]). Grandi has created
a bibliography of previous work in this area [13].

There is only one previous paper on validation: our pa-
per that introduced τXSchema but did not discuss schema
versioning [9]. Schema versioning has been previously re-
searched in the context of temporal databases [17]. But an
XML schema is a grammar specification, unlike a (rela-
tional) database schema, so new techniques are required.
Though various XML schema languages have been pro-
posed in the literature and in the commercial arena (cf. [14])
for a summary), none model schema changes nor provide
for versioning. We chose to base our research on XML
Schema because it is backed by the W3C and is the most
widely-used schema language.

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

Recently there has been interest in the incremental vali-
dation of XML documents [4] using static schemas, which
has application in the area of data streaming. To the best of
our knowledge, the effect of changes to the schema during
incremental validation is an open area of research. We do
not address incremental validation in this paper.

7. Conclusion

This paper shows how schema versioning can be inte-
grated with support for time-varying documents in a fash-
ion consistent and upwardly-compatible with XML, XML
Schema, and conventional XML validators. Schema ver-
sioning in its full generality is supported, including (time-
varying) schemas that include or reference other (time-
varying) schemas. Bundles are used uniformly to denote
the schema of a temporal document; SCHEMAMAPPER is
used to generate a representational schema when needed.

By identifying when schema changes occur, the schema-
constant periods can be identified. Such periods have the
very useful property that there is an unchanging schema
(comprised of a single base schema, a single temporal an-
notation document, and a single physical annotation). The
dance between the conventional validator, the time-varying
data checker, and the temporal constraint checker ensures
that most of the checking is done by the conventional val-
idator, with most of the remaining checking done by the
time-varying data checker.

In the future, we plan to integrate τXSchema with a
schema-aware XML-based editor like XMLSpy. Schema-
aware editors generate easy-to-use templates for updating
each type of element defined in a schema. But they do not
track changes to either the schema or the data. Enabling ver-
sioning for both will support unlimited undo/redo, improve
change tracking, and aid in cooperative editing. Another
direction of future work is to add versioning to XUpdate.
XUpdate is a language for specifying changes to an XML
document. By specifying how the evaluation of an XUpdate
statement on an XML Schema document modifies a bun-
dle, we should be able to support schema versioning in
XUpdate.

8. Acknowledgments

We thank Lingeshwaran Palaniappan and Eric Roeder
for their help in the development of SCHEMAMAPPER,
SQUASH, UNSQUASH, and τVALIDATOR. NSF grants IIS-
0100436, IIS-0415101, and EIA-0080123 and grants from
the Boeing Corporation, Microsoft, and the Arizona Tech-
nology and Research Initiative Fund through the University
of Arizona Internet Technology, Commerce and Design In-
stitute provided partial support for this work. The reviewers
provided helpful comments.

References

[1] Amagasa, T., M. Yoshikawa and S. Uemura, “A Data
Model for Temporal XML Documents,” In Database and
Expert Systems Applications, 11th International Confer-
ence, DEXA 2000, pages 334–344, London, UK, September
2000.

[2] Snodgrass, R. T. and I. Ahn, “Temporal Databases,” IEEE
Computer 19(9):35–42, September, 1986.

[3] Bair, J., M. Böhlen, C. S. Jensen, and R. T. Snodgrass,
“Notions of Upward Compatibility of Temporal Query Lan-
guages,” Business Informatics (Wirtschafts Informatik)
39(1):25–34, February, 1997.

[4] Barbosa, D., A. Mendelzon, L. Libkin, L. Mignet,and
M. Arenas, “Efficient Incremental Validation of XML Doc-
uments.” in ICDE, pp. 671–682, 2004.

[5] Bratman, H., “An Alternate Form of the “UNCOL Dia-
gram”,” CACM 4(3):142, 1961.

[6] Buneman, P., S. Davidson, W. Fan, C. Hara, and W. Tan,
“Keys for XML,” Computer Networks 39(5): 473–487,
2002.

[7] Chien, S., V. Tsotras, and C. Zaniolo, “Efficient schemes for
managing multiversionXML documents,” VLDB Journal,
11(4): 332–353.

[8] Cho, J. and H. Garcia-Molina, “Estimating Frequency of
Change,” ACM Transactions on Internet Technology, 3(3):
256–290, 2003.

[9] Currim, F., S. Currim, C. Dyreson and R. T. Snodgrass, “Ef-
fecting Data Independence for Temporal XML Schemas,”
in Proceedings of the International Conference on Extend-
ing Data Base Technology, Crete, pp. 348–365, 2004.

[10] Dyreson, C., and H.-L. Lin and Y. Wang, “Managing
Versions of Web Documents in a Transaction-time Web
Server,” in WWW, New York, NY, pp. 422–432, 2004.

[11] Dyreson, C., R. T. Snodgrass, F. Currim, and S. Cur-
rim, “Schema-mediated Exchange of Temporal XML Data,”
Technical Report, November, 2005.

[12] Gao, D. and R. T. Snodgrass, “Temporal Slicing in the Eval-
uation of XML Queries,” in VLDB, pp. 632–643, 2003.

[13] Grandi, F., “A Bibliography on Temporal and Evolution
Aspects in the World Wide Web,” TimeCenter TR-75, 2003.

[14] Lee, D. and W. Chu, “Comparative Analysis of Six
XML Schema Languages,” SIGMOD Record 29(3):76–87,
September 2000.

[15] Marian, A., S. Abiteboul, G. Cobena and L. Mignet,
“Change-Centric Management of Versions in an XML
Warehouse,” in VLDB, Roma, Italy, pp. 581–590, 2001.

[16] McKeeman, W. M., J. J. Horning, and D. B. Wortman, A
Compiler Generator, Prentice-Hall, Englewood Cliffs,
NJ., 1970.

[17] Roddick, J. F., “Schema Evolution in Database Systems—
An Annotated Bibliography,” SIGMOD Record, 21(4),
pp. 35–40, 1992.

[18] Snodgrass, R. T., Developing Time-Oriented Database
Applications in SQL, Morgan Kaufmann Publishers, Inc.,
San Francisco, CA, July, 1999, 504+xxiv pages.

[19] Snodgrass, R. T., S. Gomez and E. McKenzie, “Aggregates
in the Temporal Query Language TQuel,” IEEE Transac-
tions on Knowledge and Data Engineering 5(5):826–842,
October, 1993.

Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW'06)
0-7695-2571-7/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

