
Notions of Upward Compatibility of Temporal Query Languages �John Bair, Michael H. B�ohlen, Christian S. Jensen, and Richard T. SnodgrassAbstractMigrating applications from conventional to temporal database management technology hasreceived scant mention in the research literature. This paper formally de�nes three increasinglyrestrictive notions of upward compatibility which capture properties of a temporal SQL withrespect to conventional SQL that, when satis�ed, provide for a smooth migration of legacyapplications to a temporal system. The notions of upward compatibility dictate the semanticsof conventional SQL statements and constrain the semantics of extensions to these statements.The paper evaluates the seven extant temporal extensions to SQL, all of which are shown tocomplicate migration through design decisions that violate one or more of these notions. Wethen outline how SQL{92 can be systematically extended to become a temporal query languagethat satis�es all three notions. ZumammenfassungDie Migration konventioneller Anwendungen hin zu Anwendungen die auf temporaler Daten-banktechnologie basieren wurde bis anhin nur am Rande behandelt. Der vorliegende Beitragde�niert drei Eigenschaften einer in Bezug auf SQL aufw�arts-kompatiblen zeitlichen Erweiterungvon SQL die, falls erf�ullt, einen nahtlosen �Ubergang garantieren. Die Eigenschaften legen dieSemantik herk�ommlicher SQL-Befehle fest und sie schr�anken die Semantik sprachlicher Er-weiterungen ein. Der Beitrag evaluiert sieben zeitliche Erweiterungen von SQL und zeigt auf,dass in allen F�allen eine nahtlose Migration durch Designentscheide die Eigenschaften eineraufw�arts-kompatiblen Sprache nicht ber�ucksichtigen erschwert wird. Abschliessend zeigen wirwie SQL systematisch erweitert werden kann, so dass alle drei Eigenschaften erf�ullt werden.Keywords: upward compatibility, temporal upward compatibility, temporal query language,TSQL2, SQL.1 IntroductionA wide range of database applications manage time-varying information. These include �nancialapplications such as portfolio management, accounting, and banking; record-keeping applications,including personnel, medical-record, and inventory; and travel applications such as airline, train,and hotel reservations and schedule management. In fact, it is di�cult to identify a databaseapplication that does not involve time-varying data.Currently, such applications typically use conventional relational systems. However, researchin temporal data models and query languages [TCG+93, �OS95, Sno95] clearly demonstrates thatapplications that manage temporal data may bene�t substantially from built-in temporal supportin the database management system (DBMS). The potential bene�ts from such support are several.�J. Bair is with Leep Technology, Inc., 1931 Estabrook Way, Superior, CO 80027-8089, jbair@iftime.com.M. H. B�ohlen and C. S. Jensen are with the Department of Mathematics and Computer Science, Aalborg University,Fredrik Bajers Vej 7E, DK{9220 Aalborg �, Denmark, fboehlen, csjg@cs.auc.dk. R. T. Snodgrass is with theDepartment of Computer Science, University of Arizona, Tucson, AZ 85721, rts@cs.arizona.edu.1

Application code is substantially simpli�ed. Due to faster development of code, which is also easierto comprehend and thus maintain, higher programmer productivity results. With built-in support,more data processing may be left to the DBMS, leading to much better performance.There is, however, still a chasm between the approaches now used for developing such ap-plications and the new approaches that have been proposed by the temporal database researchcommunity. While 1200 papers on temporal databases have appeared, over 300 during the lasttwo years alone [TK96], legacy systems and the migration of such systems to new technologies hasbeen almost totally overlooked.This paper considers upward compatibility, which has been claimed to o�er several potentialadvantages (this is related to the notion of `seamless', as in \the transition from classical databasesto [a temporal] model should be conceptually and literally seamless." [GN93, p. 51]). In thecontext of migrating from a conventional DBMS to a temporal DBMS, upward compatibility of-fers an evolutionary means of introducing new technology. It provides a business enterprise withan upgrade path that preserves its investment in legacy databases. Implementers can incremen-tally build new features on top of existing products, by gradually learning and incorporating newlanguage elements into their applications.We assume that the DBMS interface is captured in a data model and thus talk about the mi-gration of application code using an existing data model to using a new data model. We examinewhat it means for a temporal data model and query language to be upwardly compatible with aconventional data model, such as SQL. While the term has been used informally, we could �nd noformal de�nition (the same holds for the term `seamless'). This paper examines the issues behindthis intuitive idea, and formalizes several increasingly restrictive notions of upward compatibility,speci�cally, syntactic upward compatibility, upward compatibility, and temporal upward compat-ibility. We evaluate the seven extant temporal extensions to SQL, including two designed by us.We show that all seven violate one or more of these useful properties. Finally, we demonstratehow SQL{92 can be extended to a temporal data model while simultaneously satisfying all threenotions of upward compatibility.2 Characterizing Upward CompatibilityWe adopt the convention that a data model consists of three components, namely a set of datastructures, a set of constraints on those data structures, and a language for updating and queryingthe data structures [TL82]. In this paper we emphasize the data structures and the data manipula-tion language. As we progress, it should be clear that the de�nitions and discussions of this sectionalso apply to integrity constraints, although for simplicity we will not address these explicitly.Notationally, M = (DS, QL) then denotes a data model, M, consisting of a data structure compo-nent, DS, and a query language component, QL. Thus, DS is the set of all databases, schemas, andassociated instances, expressible by M, and QL is the set of all query and modi�cation statementsin M that may be applied to some database in DS. We use db to denote a database; a statementis denoted by s and is either a query q or a modi�cation m (e.g., in SQL{92, any INSERT, DELETE,or UPDATE statement).As the existing model is given, the focus is on formulating requirements to the new data model.The de�nitions are conceptually applicable to the transition from any data model to a new datamodel. However, we have found it convenient to assume that the transition is from a non-temporalto a temporal data model, speci�cally from the SQL{92 standard [MS93] to (some) Temporal SQL.
2

2.1 Upward CompatibilityPerhaps the most important concern in ensuring a smooth transition of application code froman existing data model to a new data model is to guarantee that all application code withoutmodi�cation will work with the new system exactly the same as with the existing system. Thenext two de�nitions are intended to capture what is needed for that to be possible.We de�ne a data model to be syntactic upward compatible with another data model if all thedata structures and legal query language statements of the latter model are contained in the formermodel.Definition: Let M1 = (DS1; QL1) and M2 = (DS2; QL2) be two data models. Model M1 issyntactically upward compatible with model M2 if� 8db2 2 DS2 (db2 2 DS1) and� 8s2 2 QL2 (s2 2 QL1). utThe �rst condition states that all data structures of the (existing) model M2 must be containedin the data structure component of the (new) model M1; the second condition states the sameproperty, but for the query language component instead of for the data structures.Note that this relationship between the two data models is asymmetric, thus providing credenceto the adjective `upward'.Next, for a data model to be upward compatible with another data model, we add the require-ment that all statements expressible in the existing language must evaluate to the same result inboth models.For a query language expression s and an associated database db, both legal elements of QLand DS of data model M = (DS;QL), de�ne hhs(db)iiM as the result of applying s to db in datamodel M . With this notation, we can precisely describe the requirements to a new model thatguarantee uninterrupted operation of all application code.Definition: Let M1 = (DS1; QL1) and M2 = (DS2; QL2) be two data models. Model M1 isupward compatible with model M2 if� M1 is syntactically upward compatible with M2, and� 8db2 2 DS2 (8s2 2 QL2 (hhs2(db2)iiM2 = hhs2(db2)iiM1)). utThe �rst condition, syntactic upward compatibility, implies that all existing databases and querylanguage statements in the old system are also legal in the new system. The second condition inthe de�nition states that for all data structures and associated query language statements in the(existing) model M2, evaluating them in the (new and existing) models gives identical results. Itthus guarantees that all existing statements compute the same results in the new system as in theold system. Thus, the bulk of legacy application code is not a�ected by the transition to a newsystem.Figure 1 illustrates the relationship between Temporal SQL and SQL{92. In the �gure, aconventional table is denoted with a rectangle. (In this paper, we use the terminology adopted inSQL: table, row, and column, rather than the terminology introduced by Codd [Cod70]: relation,tuple, and attribute.) The current state of this table is the rectangle in the upper-right corner.Whenever a modi�cation is made to this table, the previous state is discarded; hence, at any time3

m...

Time

q

m m m m

Figure 1: Upward Compatible Queriesonly the current state is available. The discarded prior states are denoted with dashed rectangles;the right-pointing arrows denote the modi�cations that took the table from one state to the next.When a query q is applied to the current state of a table, a resulting table is computed, shownas the rectangle in the bottom right corner. While this �gure only concerns queries over singletables, the extension to queries over multiple tables is clear.Upward compatibility states that (1) all instances of tables in SQL{92 are instances of tables inTemporal SQL, (2) all SQL{92 modi�cations to tables in SQL{92 result in the same tables whenthe modi�cations are evaluated according to Temporal SQL semantics, and (3) all SQL{92 queriesresult in the same tables when the queries are evaluated according to Temporal SQL.By requiring that Temporal SQL is a strict superset (i.e., only adding constructs and semantics),it is relatively easy to ensure that Temporal SQL is upward compatible with SQL{92.2.2 Temporal Upward CompatibilityThe above minimal requirements are essential to ensure a smooth transition to a new temporaldata model, but they do not address all aspects of migration. Speci�cally, assume that an existingdata model has been replaced with a new temporal model. No application code has been modi�ed,and all tables are thus snapshot tables. Upward compatibility ensures that all applications workas before, under the new temporal model.Now, an existing or new application needs support for the temporal dimension of the data inone or more of the existing tables. This is best achieved by changing the snapshot table to becomea temporal table (e.g., by using a statement of Temporal SQL).It is undesirable to be forced to change the application code that accesses the snapshot tablethat is replaced by a temporal table. We thus formulate a requirement stating that the existingapplications on snapshot tables must continue to work with no changes in functionality when thetables they access are altered to become temporal. Speci�cally, temporal upward compatibilityrequires that each query will return the same result on an associated snapshot database as on thetemporal counterpart of the database. Further, this property is not a�ected by modi�cations tothose temporal tables. The precise de�nition is given next and is explained in the following.Definition: Let MT = (DST ; QLT) and MS = (DSS ; QLS) be temporal and snapshot datamodels, respectively. Also, let T be an operator that changes the type of a snapshot table tothe temporal table with the same explicit columns. Next, let m1;m2; : : : ;mn (n � 0) denotemodi�cation operations. With these de�nitions, model MT is temporal upward compatible withmodel MS if 4

� MT is upward compatible with MS ,� 8dbS 2 DSS (T (dbS) 2 DST), and� 8dbS 2 DSS (8m1; : : : ;mn(n � 0) (8qS 2 QLS (hhqS(mn(mn�1(: : : (m1(dbS) : : :))))iiMS = (hhqS(mn(mn�1(: : : (m1(T (dbS))))))iiMT)))). utFirst, upward compatibility is required. The second condition states that when applying the type-change operator to any data structure (e.g., table) of the snapshot model, the result is a legal datastructure in the temporal model. This is required for the third condition to be meaningful. Tounderstand this condition, consider the two sides of the equality sign in the second line. On thetwo sides, the same sequence of modi�cation statements is applied to a snapshot data structureand its temporalised counterpart, respectively. Then the same query from the snapshot model isapplied to the two results of the modi�cations. The results of the queries when evaluated in thesnapshot model and the temporal model, respectively, must be identical. The �rst line simplystates that this must hold for all (meaningful) combinations of data structures, �nite sequencesof snapshot-model modi�cation statements, and snapshot-model query language statements. Weproceed to provide a more intutive and less technical explanation of this de�nition.Assume that, when moving to the new system, some of the existing (snapshot) tables aretransformed into temporal tables without changing the existing set of (explicit) columns. Thistransformation is denoted by T in the de�nition. Then the same sequence of modi�cation state-ments, denoted by the mi in the de�nition, is applied to the snapshot and the temporal databases.Next, consider any query in the snapshot model. Such queries are also allowed in the temporalmodel, due to upward compatibility being required. The de�nition states that any such queryevaluated on the resulting temporal database, using the semantics of the temporal query lan-guage, yields the same result as when evaluated on the resulting snapshot database, now using thesemantics of the snapshot query language.Temporal upward compatibility is illustrated in Figure 2. When temporal support is addedto a table, the history is preserved, and modi�cations over time are retained. In this �gure, therightmost dashed state was the current state when the table was made temporal. All subsequentmodi�cations, denoted by the arrows, result in states that are retained, and thus are solid rectan-gles. Temporal upward compatibility ensures that the states will have identical contents to thosestates resulting from modi�cations of the snapshot table.
m...

Time

q

...m m T m m

Figure 2: Temporal Upward CompatibilityThe query q is an SQL{92 query. Due to temporal upward compatibility the semantics of thisquery must not change if it is applied to a temporal table. Hence, the query only applies to thecurrent state, and a snapshot table results. 5

There is one unfortunate rami�cation to the above de�nition. Any extension that adds con-structs involving new reserved keywords will violate upward compatibility, as well as temporalupward compatibility. The reason is that the user may have previously used that keyword as anidenti�er. Query language statements that use the keyword as an identi�er will, in the extension,be disallowed.Reserved words are added in all temporal query languages. This phenomenon also holds fornon-temporal query languages. SQL{89 de�ned some 115 reserved words; SQL{92 added 112reserved words, and the draft standard SQL3 adds another 97 reserved words.To avoid being overly restrictive, we consider upward compatibility and temporal upward com-patibility to be satis�ed even when reserved words are added, as long as the semantics of allstatements that do not use the new reserved words is retained in the temporal model.3 Temporal Database Management Using SQL{92As an initial application of these notions, we �rst consider an approach employed frequently toimplement a temporal application: emulating a time-varying table with a conventional table. Aswe will see, this approach does not ensure temporal upward compatibility, leading to a number ofdi�culties.The underlying model will be SQL{92, that is, QL2 is the set of SQL{92 queries and mod-i�cations. Let us return to the Employee table, which has three columns, Name, Manager, andDept. In SQL{92, one can require that all managers be employees, by stating that Manager is aforeign key for Employee.Name. We can easily express queries such as \List those employees whoare not managers," as well as modi�cations, such as \Change the manager of the tools departmentto Bob."To store historical information, we wish to emulate time-varying information, and so we willuse the same model, SQL{92, that is, QLT will be the set of SQL{92 queries and modi�cations.We also need an operator that changes the type of a snapshot table to a `temporal' table. We willde�ne T to be the following SQL{92 schema modi�cation statements.ALTER TABLE Employee ADD COLUMN Start DATEALTER TABLE Employee ADD COLUMN Stop DATEThe T operator must also initialize the value of the Start column to be the value CURRENT DATEand the value of the Stop column to be the value DATE '9999-12-31', the largest DATE value. Thistransforms the Employee table into a `temporal' table (in the data model MT , which is SQL{92).Model MT is certainly upward compatible with MS , as all databases in MT = MS = SQL{92.Interestingly, though, SQL{92, along with the transformation operator just de�ned, is not tem-porally upward compatible with itself. As but a simple example, let qS be the query \SELECT *FROM Employee". It is certainly not the case that hhqS(dbS)iiSQL�92 = hhqS(T (dbS)iiSQL�92. Eventhe schemas do not match: the schema for the result of hhqS(dbS)iiSQL�92 has three columns,Name, Manager, and Dept, while the schema for the result of hhqS(T (dbS)iiSQL�92 has �ve columns,including Start and Stop.This violation of temporal upward compatibility has important practical rami�cations. Assumethat we have a 50,000-line application that manages the Employee table and other tables in apersonnel database, allowing employees to be added and dropped, and the information aboutemployees to be modi�ed and queried in various ways. When this table is extended to store time-varying information, via the transformation T discussed above, many portions of this applicationbreak. 6

� The constraint that all managers are employees can no longer be expressed via SQL{92'sforeign key constraint, which fails to take time into account. Instead, this constraint must bereplaced with a complex assertion that includes in its predicate the Start and Stop columns.� All queries must be examined, and most must be modi�ed. Consider the query \List thoseemployees who are not managers." A where predicate is now required to extract the currentmanagers. Also, any query that mentions `*' must be modi�ed, because the Employee tablenow has a di�erent number of columns.� Modi�cations must also be altered to take into account the Start and Stop columns. Themodi�cation \Change the manager of the tools department to Bob" is now quite more in-volved than before.In contrast, assume that instead of attempting to emulate the time-varying aspect using con-ventional tables, we use a temporal data model that is provably temporally upward compatiblewith SQL{92. We would be assured that not a single line of our 50,000-line application wouldhave to be altered when transformation T was applied to render the Employee table time-varying.4 Temporal Query LanguagesAs we just saw, the fact that an emulation of temporal tables using SQL{92 is not temporallyupward compatible has several unfortunate rami�cations in practice. We now turn to the temporalextensions to SQL that have been de�ned to date. Following an overview of the evaluation, weconsider each temporal SQL in turn.4.1 Overview of Temporally Extended SQL'sWe are aware of seven temporal data models that extend SQL. We consider each of these in turn,starting with the earliest models, examining whether or not each model satis�es the requirementsof upward compatibility (UC) and temporal upward compatibility (TUC) with respect to somevariant of SQL, e.g., SQL{89, SQL{92, SQL3, or SQL dialects of commercial DBMSs.Ideally, we prefer to be able to independently prove that a particular temporal data modelsatis�es or violates a requirement. However, the available documentation of the models often isnot adequately comprehensive for this to be possible. With two exceptions, only the integrationof the temporal query facilities with \core" subsets of SQL are documented, and which particularSQL dialect that is being extended is also not always mentioned. This makes it hard to determinewhether models are (temporal) upward compatible with \the" full SQL or some subset of \an"SQL.Aspects related to the use of regular SQL statements|modi�cations, in particular|on tem-poral tables or a combination of temporal and non-temporal tables are typically not de�ned. Thismakes it hard to verify temporal upward compatibility.Finally, the de�nition of the syntax of several of the models is quite informal and incomplete.The semantics of the models are, at best, informal and, at worst, indicated by a few examples.For the cases where we cannot prove that a temporal data model satis�es or violates a require-ment, we will report the model as satisfying (or violating) a requirement if its designers claim thatthe property is satisi�ed and we have not been able to disprove the claim with the available docu-mentation. In addition, we will report satisfaction simply if we cannot prove dissatisfaction, againgiven the available documentation. Thus, we associate the following numbers with our �ndings, toindicate the con�dence in the �ndings. 7

1. Neither satisfaction nor violation is claimed, nor can be proven.2. Satisfaction claimed, but the claim cannot be proven nor invalidated.3. Independently proven.Clearly, the highest level of con�dence is desired.Table 1 gives an overview of our conclusions. As can be seen, di�erent languages have di�erentlevels of satis�ability and di�erent reasons for non-satis�ability. The �rst three models are docu-mented rather sparsely for our purposes, but their designers emphasize that they satisfy upwardcompatibility. They do not satisfy temporal upward compatibility. The next model, TempSQL,introduces a concept of di�erent types of users that may be used to obtain satisfaction of both com-patibilities in certain circumstances. The subsequent model, IXSQL, is di�erent from all the othermodels in that it does not provide support for implicit time; rather, it adds a parameterized ab-stract interval data type and associated facilities for modi�cation and queries to SQL. ChronoSQLis one of the newer temporal models. The �nal model has been documented much more extensivelythan its predecessors, but its semantics are still given in an informal SQL-standards format. Notethat no language satis�es both notions of upward compatibility.Language Reference UC TUC CommentsTOSQL [Ari86] yes2 no3 Only a subset of SQL is considered.TSQL [NA87][NA89][NA93] yes2 no3 Not all snapshot tables can be made temporal.Some SQL views cannot be de�ned on temporaltables. Automatic coalescing violates TUC.HSQL [Sar90b][Sar93] yes2 no3 SQL queries on temporal tables return temporaltables.TempSQL [BG93][GB93][GN93] yes2 yes3(classical)no3(system) Only a subset of SQL is considered. TUCis satis�ed only for classical users. Means ofspecifying user types and defaults are not given.IXSQL [Lor93][LM96] yes2 no3 Extension of SQL with a parameterized inter-val ADT with accompanying query-languagefacilities is proposed.ChronoSQL [B�oh94] yes3 no3 Only a subset of SQL is considered. Does notrestrict TUC queries to the current state.TSQL2 [Sno95] yes3 no3 Full syntax given. Semantics de�ned informallyin SQL-standard style.Table 1: Summary of UC and TUC Compliance4.2 Description of Temporally Extended SQL'sNext, we describe each of the temporally extended SQL's in some detail.4.2.1 TOSQLTOSQL [Ari86] temporally extends a subset of an early version of SQL [AC75]. The extensionis based on the TODM data model. The syntax of TOSQL is given in a BNF-like format. This8

syntax does not include modi�cation statements, integrity constraints, nested queries, and queriesinvolving aggregates using HAVING, etc. Hence, it appears that TOSQL is upward compatible witha subset of SQL, and is perhaps upward compatible with the full language.It appears that the designer had a notion of temporal upward compatibility in mind when hewrote the following.\The default options are de�ned such that a query that omits the temporal portionretains the standard meaning of the corresponding SQL SELECT statement." [Ari86,p. 513]An example two pages later states the interpretation of a conventional SQL SELECT statement \isto specify that the query relates to current assignments, and uses the most up-to-date data aboutit." [Ari86, p. 515]. The \current assignments" refers to now in valid time; the \most up-to-datedata" refers to now in transaction time.The key phrase though is \that omits the temporal portion". The timestamp of a table inTOSQL appears as a column named RT. A non-time-varying table would not have such a column.The conversion operator T in De�nition 2.2 would add this column. The problem is with queriesinvolving `*'. Such queries on T (dbS) would return a di�erent number of columns than queriesdirectly on dbS . Hence, temporal upward compatibility is not satis�ed.4.2.2 TSQLNavathe and Ahmed's temporal relational model, TSQL, supports, in addition to conventionaltables, row timestamping for valid time by attaching two mandatory timestamp columns, Time-start (Ts) and Time-end (Te) to every time-varying relational schema [MNA87, NA87, NA89,NA93]. These timestamp columns correspond to the lower and upper bounds of time intervals inwhich rows are continuously valid.It is stated that TSQL is upward compatible with SQL.\All legal SQL statements are also valid in TSQL, and such statements have identicalsemantics in the absence of a reference to time. [...] SQL, a subset of TSQL, remainsdirectly applicable to non-time-varying relations in 1NF." [NA93, p. 99].A simpli�ed, 1.5 page BNF-like syntax is given for TSQL [NA87]. Statements such as updates,inserts, deletes, and view de�nitions are not addressed in the syntax or elsewhere in the documen-tation. Also, the use of regular SQL queries on temporal tables is not touched upon. While thismakes it hard to examine the satisfaction of TUC, there are several indications that TUC is notsatis�ed.In TSQL's data model, only tables that are in the so-called time normal form are allowed[NA87, p. 116]. Brie
y, for a table to be in time normal form, it must be in Boyce-Codd normalform (disregarding the timestamp columns), and the non-key, non-timestamp columns must all besynchronous (i.e., they must change values simultaneously). As there are no such normal formrequirements on snapshot tables, it follows that the T operator that turns a snapshot table intoa temporal table is not de�ned for all snapshot tables. Also, regular SQL view de�nitions ontemporal tables are not allowed when they lead to views that are not in time normal form. Thisis often the case for views that are joins.Lastly, TSQL performs automatic coalescing of value-equivalent rows (i.e., rows with identicalnon-timestamp column values) that have consecutive or overlapping timestamps. This facility leadsto a violation of TUC. For example, assume that we start out with an empty snapshot table, R,9

and insert two identical rows. Then SELECT * FROM R yields two rows. Now, we simultaneouslyinsert the two rows into T (R). The most reasonable assumption is that these two rows will begiven timestamps that result in them being coalesced into one row. Now, SELECT * FROM T (R)yields one row.4.2.3 HSQLAs the previous data model, Sarda's HDBMS also supports valid time; however, unlike the datamodel mentioned previously, HDBMS represent valid time in a valid-time table as a single non-atomic, implicit column [Sar90b, Sar93]. HSQL1 is the query language of HDBMS.It is emphasized that HSQL is upward compatible with respect to SQL (SQL{89, in fact).\HSQL is a superset of the popular query language SQL." [Sar93, p. 123]\In fact, the standard clauses of SQL have identical meanings in HSQL." [Sar93, p. 125]Concerning TUC, the e�ects of the standard SQL insert, delete, and update statements areconsistent with satisfying this requirement. However, a query SELECT * FROM R where R is atemporal table returns R and not the current (snapshot) state of R, as would be required in orderto satisfy TUC [Sar93, pp. 126{127].4.2.4 TempSQLGadia's TempSQL is based on a N1NF temporal data model that is value timestamped [BG93,GB93, GN93]. A column of a row may have more than one (timestamped) value. The union of thetimestamps of the values of each column must be the same for all columns throughout the entirerow, resulting in a homogeneous temporal table.Conventional tables are seen as temporal tables valid at a single time instant. Thus, each columnvalue of each row in such a temporal table is timestamped with the same instant. Integrationof snapshot tables into the data model this way is proposed partly in order to obtain upwardcompatibility.\By integrating it into our framework, we establish a smooth bridge for industry and itsuser community for migrating from classical databases to temporal databases. [...] Weprovide a framework for a smooth transition for industry, requiring no loss of investmentin application programs developed by its user community." [GN93, p. 32]The particular SQL that is being extended is not identi�ed. No BNF is given. Further, onlya subset of those facilities normally associated with SQL are mentioned, with several importantaspects, e.g., advanced query facilities, integrity and embedded queries, ignored. With these reser-vations, it is our contention that TempSQL is upward compatible with SQL. Determining whethertemporal upward compatibility is satis�ed is more di�cult for this model than any of the othermodels.TempSQL supports several types of users, e.g., system users and classical users, of a temporalDBMS. While system users have unrestricted access to the database, classical users can onlyaccess the currently valid values in the database. Thus, classical users see the current snapshotsof temporal tables. Assuming that T is a temporal table, the query SELECT * FROM T returns Twhen issued by a system user and the current snapshot of T when issued by a classical user.1In another paper, Sarda gave this extension to SQL the name TSQL [Sar90a]. We use HSQL because it wasused in the most recent paper. 10

The absence of language syntax for specifying user types at the level of individual statementsleads us to assume that, as indicated by the name, user types are �xed for individual users, andon a per-applications basis. (No information is given on how the mechanisms for di�erent typesof users interact with embedded application programs.) Had the intention been to be able todesignate individual language statements as classical or temporal, we feel that the language shouldhave provided syntax for this. We thus think about user types as being similar to ordinary SQLprivileges. This seems reasonable, as user types do restrict access to data.The choice of the default user type matters. If all users, and thus applications, are classicalby default, then it is possible to avoid modifying the legacy applications when transitioning to aTempSQL system. Having the default user type be system leads to a violation of temporal upwardcompatibility|legacy applications then need to be modi�ed to indicate that they are classical.The next issue to consider is that of the application of legacy SQL modi�cation statements ontemporal tables. As the e�ects of such statements persist in the current states (i.e., the states ofthe temporal tables valid at the (ever-increasing) current time), the statements are consistent withTempSQL satisfying temporal upward compatibility.Our conclusion is that for classical users, temporal upward compatibility is ensured. For systemusers, the opposite is true. The reason is that, for a system user, a conventional SQL query overa temporal table will return a temporal table.TempSQL is thus �ne when a non-temporal application is executed on a database that hasbeen migrated to a temporal DBMS. Where TempSQL falls short is in further migration of thatapplication, to exploit the very useful temporal constructs of that language. This requires that theuser be a system user, because a classical user is not permitted to use any of the new constructs.As soon as the user transitions from classical to system, all of the query language statements in theapplication must be reevaluated, and many must be substantially rewritten. Had temporal upwardcompatibility been ensured for all users, this jarring transition would have been much smoother.4.2.5 IXSQLIXSQL [Lor91, Lor93, LM96] di�ers from all the other temporal query languages in that it doesnot provide support for a special, built-in notion of time. Rather, IXSQL adds the ability to de�necolumns of a parameterized interval abstract data type, and it provides special query facilities formanipulating tables with rows that have such interval values.Actually, there exists at least two di�erent versions of IXSQL, an early version [Lor91], and alater version [LM96]. The initial version was neither upward nor temporally upward compatiblewith SQL, in part because it did not permit duplicate rows in tables.\IXSQL actually di�ers from the standard SQL [reference to SQL{89], in that a relationmay not contain duplicate tuples." [Lor91, p. 4]In the remainder, we consider the later version. This version was designed to be upwardcompatible with SQL{92:\IXSQL is syntactically and semantically upwards consistent with SQL2." [LM96, p. 1]Next, we consider temporal upward compatibility. The �rst step is to decide on what themeaning of T should be in a model without an implicit notion of time in its tables. To be speci�c,let us simply assume that T adds an interval-valued column to each snapshot table, with value[CURRENT DATE, DATE '9999-12-31'] for each row. Other reasonable assumptions seem to leadto the same conclusions. The result of a legacy query such as SELECT * FROM R will di�er from the11

result of SELECT * FROM T (R). In addition, legacy modi�cations to \temporal" tables will generallynot be consistent with satisfying temporal upward compatibility, or they may fail altogether. Insummary, legacy applications need to be rewritten when new columns are added to the tables thenaccess.4.2.6 ChronoSQLChronoSQL was designed and implemented as part of the ChronoLog project [B�oh94]. The mainpurpose was to illustrate how temporal concepts developed for deductive databases can be carriedover to relational databases. ChronoSQL is tightly coupled with a Datalog-based language, whichmeans that users can switch language any time.This said, it comes as no surprise that not all language features of ChronoSQL have beenworked out in detail. Speci�cally, the temporal extension was restricted to query statements; datamanipulation statements and integrity constraints were not considered. Moreover, legacy queriesover temporal tables are not restricted to the current state. This clearly violates temporal upwardcompatibility.Upward compatibility looks more promising. ChronoSQL adds a couple of non-mandatorysyntactic constructs to SQL. No other syntactic changes are proposed. This ensures syntacticupward compatibility. Furthermore, the semantics of legacy statements over nontemporal tablesremains unchanged [B�oh94, p.69], meaning that upward compatibility is ensured as well.4.2.7 TSQL2TSQL2 [Sno95] is the most comprehensively documented temporal query language. Its syntaxwas given as an extension of the syntax of SQL{92 as presented in the o�cial standard, andthe semantics of TSQL2 was also given in the format of the SQL{92 standard. Some 500 pages oftechnical commentaries accompany these speci�cations. Upward compatibility of TSQL2 is studiedin [BJS95].In TSQL2, there are six kinds of tables: snapshot tables, valid-time event tables, valid-timestate tables, transaction-time tables, bitemporal event tables, and bitemporal state tables. The�rst is the kind of table found in the relational model; the remaining �ve are temporal tables. Asall the schema speci�cation statements of SQL{92 are included in TSQL2, it follows that the datastructures of TSQL2 include those in SQL{92.TSQL2 is also a strict superset of SQL{92 in its query facilities. In particular, if an SQL{92select statement does not incorporate any of the constructs added in TSQL2, and mentions onlysnapshot tables in its from clause(s), then the language speci�cation states explicitly that thesemantics of this statement is identical to its SQL{92 semantics.It should be noted that the preliminary TSQL2 language speci�cation released in March, 1994[SAA+94] did not have that property. In particular, SQL{92 INTERVALs were termed SPANs in thepreliminary TSQL2 speci�cation, and TSQL2 INTERVALs were not present at all in SQL{92. The�nal TSQL2 language speci�cation [Sno95] retained SQL{92 INTERVALs and added the PERIODdata type, which was previously called INTERVAL in preliminary TSQL2 (confusing, isn't it?).Additional changes to the datetime literals were also made to ensure that TSQL2 was a strictsuperset of SQL{92.Hence, TSQL2 is upwards compatible with SQL{92. However, TSQL2 is not temporally upwardcompatible with SQL{92, for several reasons. First, SQL{92 tables that contain duplicates haveno counterparts in TSQL2 where tables with value-equivalent rows (and thus duplicates, either ina timeslice, or in the temporal table itself) are not allowed. A second reason that TSQL2 is nottemporally upward compatible with SQL-92 is that when the keyword SNAPSHOT is not speci�ed in12

a select statement in TSQL2, a temporal table results. Hence, an SQL{92 query over a temporaltable will result not in a conventional table, but rather in a temporal table.5 Ensuring Temporal Upward CompatibilityThis section explains a sequence of steps that lead to a temporal upward compatible SQL{92extension. Implications to syntax and semantics are discussed and illustrated with examples.Temporal upward compatible extensions allow to independently migrate data structures and ap-plication code. Speci�cally, it permits migration of data structures without also requiring changesto application code (c.f. De�nition 2.2). The examples that have been stated in prose in Section 2are reconsidered and formulated in the temporal extension of SQL{92.5.1 Syntax of a Temporal Upward Compatible Extension of SQLTemporal upward compatibility does not put an upper limit on syntactic extensions to a language.It, however, de�nes a lower limit. First, all legacy statements must be retained. (This requirementis independently established by upward compatibility.) Second, a possibility must be provided tomigrate nontemporal data structures to temporal data structures. The �rst requirement is metby adding (non-mandatory!) syntactic constructs to the base language. No syntactic constructsmay be deleted or changed. Migrating non-temporal to temporal data structures can be achievedin di�erent ways. We discuss two possibilities to illustrate the design space and the possibleconsequences to the data model.If we want to emphasize di�erent table types (snapshot tables, valid time tables, transactiontime tables, and bitemporal tables) a reasonable syntactic choice is to extend the <alter tableaction> production of SQL{92 [MS93, p.511], by adding two options.<alter table action> ::= <add column de�nition>j <alter column de�nition>j <drop column de�nition>j <add table constraint de�nition>j <drop table constraint de�nition>j <add time dimension>j <drop time dimension><add time dimension> ::= ADD <time dimension><drop time dimension> ::= DROP <time dimension> <drop behavior><time dimension> ::= VALIDj TRANSACTIONAdding valid time turns a snapshot table into a valid time table and a transaction time tableinto a bitemporal table. Adding transaction time turns a snapshot table into a transaction timetable and a valid time table into a bitemporal table. This is the approach chosen by TSQL2[Sno95].If instead we want to emphasize the conventional relational data model with tables that sup-port time through special-purpose columns, an alternative approach would be to enhance theproductions <add column de�nition> and <drop column de�nition> respectively.13

<add column de�nition> ::= ADD [COLUMN] <column de�nition>j ADD [COLUMN] <time dimension><drop column de�nition> ::= DROP [COLUMN] <column name> <drop behavior>j DROP [COLUMN] <time dimension> <drop behavior>Further syntactic alternatives can also be envisioned. It is, however, critical that all of themsupport the semantics discussed in the next section.5.2 Semantics of a Temporal Upward Compatible Extension of SQLThis section discusses the semantics of various temporally upward compatible statement categories,i.e., standard SQL{92 statement categories evaluated over temporal databases. The categoriesinclude queries, views, assertions, column constraints, referential integrity constraints, insertions,deletions, and updates. This ensures a broad coverage of the functionality of a database system.Nevertheless, there are certain statement categories that are not considered explicitly, e.g., triggers.These categories do not introduce fundamentally new problems with respect to temporal upwardcompatibility. Instead, semantics and techniques discussed for other categories can be applieddirectly.When we discuss the semantics of legacy statement categories over temporal tables we candi�erentiate between non-destructive statements, e.g., queries, views, and integrity constraints,and modi�cation statements, e.g., data manipulation statements. As we will see, these two sets ofcategories have to be treated di�erently.Below we discuss the semantics for each of the two sets of categories. Within each set allcategories are analyzed and illustrated with an example. We initially consider only valid time,then discuss the impact of adding transaction-time support.The very �rst step is of course to migrate the data structures.ALTER TABLE Employee ADD VALIDALTER TABLE Salary ADD VALIDBoth tables are turned into valid-time tables, such that all information stored in the tables can beannotated with its valid time (transaction time is discussed at the end of this section).5.2.1 Non-destructive Valid-time StatementsNon-destructive statements retrieve from or check parts of the database. They do not change thecontents of the database. To get the exact same semantics that a nontemporal database wouldprovide, we have to restrict the retrieval and checking to the current state.Queries are supported by adding an implicit selection condition to the WHERE clause that selectscurrent rows. Moreover, defaults, e.g., `*' in the select clause, may not expand to include time.As an example, assume a query that determines who manages the high-salaried employees. The`temporal' query is straightforward.SELECT ManagerFROM Salary AS S, Employee AS EWHERE S.Name = E.NameAND S.Amount > 3500 14

Whenever the temporal database system identi�es one or more temporal in an SQL{92 statement,it must perform the actions dictated by temporal upward compatibility. In this case, it mustrestrict the set of rows to the current ones.Views are similar to queries. This becomes obvious if we remember that a view is a virtualtable de�ned by a query. The query that de�nes the view is enhanced along the lines outlinedabove. As an example, consider a view that yields high-salaried employees.CREATE VIEW High_salary ASSELECT *FROM SalaryWHERE Amount > 3500;A selection condition that limits the query expression to current salaries has to be added. Moreover,the default used in the select clause has to be extended to SELECT Name, Amount (or an equivalentrelational algebra projection) so that the valid time is not part of the result.Integrity constraints come in di�erent
avors. The most general form are assertions [MS93,p.211�]. Consider the assertion that ensures that all employees get a salary, i.e., an assertion thatchecks that no employees without a salary exist.CREATE ASSERTION CONSTRAINT Emp_has_sal CHECKNOT EXISTS (SELECT *FROM Employee AS EWHERE NOT EXISTS (SELECT *FROM Salary AS SWHERE E.Name = S.Name))The general approach to check an assertion is to negate it and to execute it as a query, i.e.,SELECT *FROM Employee AS EWHERE NOT EXISTS (SELECT *FROM Salary AS SWHERE E.Name = S.Name)If the query result is empty, i.e., if no rows are returned, the assertion is respected; otherwise itis violated. With this background, temporal upward compatible assertions can be achieved easily,because we showed above how to do so with queries.5.2.2 Modi�cation Statements on Valid-time TablesModi�cation statements change the contents of the database. An obvious (but naive) approach isto carry over the semantics from the previous section and to modify the current state. Imaginethe insertion of an employee into the database.INSERT INTO Employee VALUES ('Liliane', 'Brandt', 'Tools')INSERT INTO Salary VALUES ('Liliane', 1000)If we inserted Liliane only in the current state, subsequent queries would not return this row. Whenwe later issue a query, time will have progressed and Liliane will no longer be in the (new) currentstate. Of course this is not the behavior we expect from a nontemporal database. In order to getthe expected behavior, we have to make sure that Liliane remains in the changing current state.This may be achieved by using the period from CURRENT DATE to 9999-12-31 (the largest DATE15

value) as the timestamp of Liliane's tuples. But it may also be achieved using as the end pointNOBIND(CURRENT DATE), where NOBIND has the e�ect of storing in the timestamp a variable thatevaluates to CURRENT DATE when accessed, rather than storing the current value of CURRENT DATE.Indeed, any now-relative variable [CDI+97] that evaluates to a time between these two end pointsmay be used. We will adopt the simplest choice, the date 9999-12-31.An equivalent observation holds for delete and update statements. Assume that we want tochange the manager of the tools department to Bob.UPDATE EmployeeSET Manager = 'Bob'WHERE Dept = 'Tools'If we only updated the current state, subsequent queries would not access the corrected databasestate. Again, we have to ensure that the update persists in the changing current state to get theexact same behavior a nontemporal database provides.Achieving temporal upward compatibility for modi�cation statements is slightly more compli-cated than achieving temporal upward compatibility for non-modi�cation statements. The reasonis that certain rows may be valid from some point in the past until some point in the future, i.e.,they overlap the current time. Because temporal upward compatible statements only a�ect thecurrent and future times, the modi�cations must not change the row during the entire time range.Let us consider each type of modi�cation statement in turn.Insert statements have to set the valid-time start to the current time and the valid-time end toDATE '9999-12-31', as discussed above. This ensures that, until the row is deleted or modi�ed,it will be valid.Next we consider delete statements. Historical data, i.e., qualifying rows with a valid time endbefore the current time, is left untouched. Current data, i.e., qualifying rows with a valid-timestart after the current time (including a valid time end equal to DATE '9999-12-31'), has to bedeleted as of the current time. This is done by changing valid time end to the current time. Forfuture knowledge two choices exist. If we decide not to delete it, today's future knowledge willbecome valid eventually. This behavior can be quite surprising for applications employing temporalupward compatibility exclusively. An alternative is to delete qualifying future knowledge. Thisensures a more intuitive behavior of legacy applications, but it might not be the semantics temporalapplications envision.The most complex statements are update statements. First, rows with a valid-time start beforethe current time and a valid-time end after the current time (including a valid-time end equal toDATE '9999-12-31') are duplicated. The valid-time end of the original row and the valid-timestart of the duplicated row are set to the current time. Then the update statement is applied toall rows with a valid time start that is equal or after the current time. Again we have the choicenot to update future knowledge (c.f. previous paragraph).5.2.3 Transaction TimeWith respect to temporal upward compatibility, transaction time behaves almost identically tovalid time. Exactly the same semantics applies to transaction-time tables and valid-time tables.Even bitemporal tables behave quite similarly. In non-destructive statements and insertions,both time dimensions inherit the unitemporal semantics. Deletions and updates are somewhatmore complicated, due to the nature of transaction time which guarantees that at each point intime, it is possible to reconstruct previous database states. A temporal upward compatible deletionof a bitemporal row triggers the following steps.16

1. Qualifying rows with a transaction-time end equal to 9999-12-31 are duplicated. Thetransaction-time end of the original row and the transaction-time start of the duplicatedrow are set to the current time.2. The valid-time deletion is applied to qualifying rows with a transaction-time end equal to9999-12-31.The �rst step saves the current state and thus ensures reconstructability, whereas the second stepperforms the valid-time deletion. Update follows a similar pattern.6 ConclusionUpward compatibility aids in the smooth migration of applications from a conventional to a tempo-ral data model. The de�nitions introduced here allow a speci�c temporal language to be evaluatedas to the degree that it ensures upward compatibility. The extant temporal extensions to SQL areall de�cient in one or more ways, rendering migration more di�cult. We subsequently showed howSQL{92 can be extended to yield a temporal data model satisfying all three notions of upwardcompatibility. Applications can be much more easily migrated to this new data model.The notion of temporal upward compatibility can be viewed as a form of logical data indepen-dence. In the same way that an external schema can ensure that applications are not impactedby changes to the logical schema, temporal upward compatibility ensures that applications are notimpacted by a speci�c kind of change to the logical schema: adding or removing temporal support.Logical data independence is an important bene�t provided by modern data models, in particularby the relational data model, and the speci�c kind discussed here provides similar advantages.The approach we espouse here to providing temporal upward compatibility relative to SQLwas adopted in the SQL/Temporal proposals [SBJS96a, SBJS96b]. These language constructswere explicitly designed to ensure upward compatibility and temporal upward compatibility withthe entire SQL{92 standard. The constructs have been proposed to the American ANSI andinternational ISO SQL committees for inclusion into the next ISO SQL standard.Several directions for further research are promising. First, there is a need for exploring dif-ferent implementation alternatives for upward compatible temporal SQL extensions. Alternativesrange from stand-alone implementations to implementations that maximally reuse the functional-ity o�ered by existing DBMS's with an SQL interface. Second, it is felt that much could be learnedfrom conducting actual case studies of the migration of legacy applications to temporal platforms.Third, the transition from explicit to implicit temporal knowledge should be investigated. Strate-gies must be designed to assist the user in migrating nontemporal tables with explicit time columnsto temporal tables. This is essential to maximally exploit the capabilities of temporal databasesystems.7 AcknowledgmentsMichael H. B�ohlen and Christian S. Jensen were supported in part by the CHOROCHRONOSproject, funded by the European Commission DG XII Science, Research and Development, as aNetworks Activity of the Training and Mobility of Researchers Programme, contract no. FMRX-CT96-0056. Richard Snodgrass was supported in part by NSF grants ISI-9202244 and ISI-9632569and by a grant from DuPont.
17

References[AC75] M. M. Astrahan and D. D. Chamberlin. Implementation of a Structured English QueryLanguage. Communications of the ACM, 18(10):580{588, October 1975.[Ari86] G. Ariav. A Temporally Oriented Data Model. ACM Transactions on Database Systems,11(4):499{527, December 1986.[BG93] G. Bhargava and S. K. Gadia. Relational database systems with zero information loss.IEEE Transactions on Knowledge and Data Engineering, 5(1):76{87, February 1993.[BJS95] M. H. B�ohlen, C. S. Jensen, and R. T. Snodgrass. Evaluating the Completeness ofTSQL2. In Recent Advances in Temporal Databases, International Workshop on Tem-poral Databases, pages 153{172, Z�urich, Switzerland, September 1995. Springer, Berlin.[B�oh94] M. B�ohlen. Managing Temporal Knowldege in Deductive Databases. PhD thesis, De-partement f�ur Informatik, ETH Z�urich, Switzerland, 1994.[CDI+97] J. Cli�ord, C. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass. On theSemantics of \NOW" in Temporal Databases. ACM Transactions on Database Systems,to appear 1997.[Cod70] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communicationsof the ACM, 13(6):377{387, June 1970.[GB93] S. K. Gadia and G. Bhargava. SQL-like Seamless Query of Temporal Data. In R. T.Snodgrass, editor, Proceedings of the International Workshop on an Infrastructure forTemporal Databases, Arlington, Texas, June 1993.[GN93] S. K. Gadia and S. S. Nair. Temporal Databases: A Prelude to Parametric Data, chapter2 of [TCG+93], pages 28{66. 1993.[LM96] N. A. Lorentzos and Y. G. Mitsopoulos. SQL Extension for Interval Data. IEEETransactions on Knowledge and Data Engineering, to appear 1996.[Lor91] N. Lorentzos. Management of Intervals and Temporal Data in the Relational Model.Technical Report 49, Agricultural University of Athens, 1991.[Lor93] N. Lorentzos. The Interval-extended Relational Model and Its Application to Valid-timeDatabases, chapter 3 of [TCG+93], pages 67{91. 1993.[MNA87] N. G. Martin, S. B. Navathe, and R. Ahmed. Dealing with temporal schema anoma-lies in history databases. In P. Hammersley, editor, Proceedings of the Thirteenth In-ternational Conference on Very Large Databases, pages 177{184, Brighton, England,September 1987.[MS93] J. Melton and A. R. Simon. Understanding the new SQL: A Complete Guide. MorganKaufmann Publishers, San Mateo, California, 1993.[NA87] S. B. Navathe and R. Ahmed. TSQL - A Language Interface for History Databases.In Proceedings of the Conference on Temporal Aspects in Information Systems, pages113{128. AFCET, May 1987. 18

[NA89] S. B. Navathe and R. Ahmed. A Temporal Relational Model and a Query Language.Information Systems, 49(2):147{175, 1989.[NA93] S. Navathe and R. Ahmed. Temporal Extensions to the Relational Model and SQL,chapter 4 of [TCG+93], pages 92{109. 1993.[�OS95] G. �Ozsoyo�glu and R. T. Snodgrass. Temporal and Real-Time Databases: A Survey.IEEE Transactions on Knowledge and Data Engineering, 7(4):513{532, August 1995.[SAA+94] R. T. Snodgrass, I. Ahn, G. Ariav, D. Batory, J. Cli�ord, C. E. Dyreson, R. Elmasri,F. Grandi, C. S. Jensen, W. K�afer, N. Kline, K. Kulkarni, T. Y. C. Leung, N. Lorentzos,J. F. Roddick, A. Segev, M. D. Soo, and S. M. Sripada. TSQL2 Language Speci�cation.SIGMOD RECORD, 23(1):65{86, March 1994.[Sar90a] N. Sarda. Algebra and Query Language for a Historical Data Model. IEEE ComputerJournal, 33(1):11{18, February 1990.[Sar90b] N. Sarda. Extensions to SQL for Historical Databases. IEEE Transactions on Knowl-edge and Data Engineering, 2(2):220{230, June 1990.[Sar93] N. Sarda. HSQL: A Historical Query Language, chapter 5 of [TCG+93], pages 110{140.1993.[SBJS96a] R. T. Snodgrass, M. H. B�ohlen, C. S. Jensen, and A. Steiner. Adding Valid Time toSQL/Temporal. ANSI X3H2-96-151r1, ISO{ANSI SQL/Temporal Change Proposal,ISO/IEC JTC1/SC21/WG3 DBL MCI-142, May 1996.[SBJS96b] R. T. Snodgrass, M. H. B�ohlen, C. S. Jensen, and A. Steiner. Adding Transaction Timeto SQL/Temporal. ANSI X3H2-96-152r, ISO{ANSI SQL/Temporal Change Proposal,ISO/IEC JTC1/SC21/WG3 DBL MCI-143, May 1996.[Sno95] R. T. Snodgrass (editor). The TSQL2 Temporal Query Language. Kluwer AcademicPublishers, Boston, 1995.[TCG+93] A. Tansel, J. Cli�ord, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass. Tempo-ral Databases: Theory, Design, and Implementation. Benjamin/Cummings PublishingCompany, Inc., Redwood City, California, 1993.[TK96] V. J. Tsotras and A. Kumar. Temporal Database Bibliography Update. SIGMODRecord, 25(1):41{51, March 1996.[TL82] D. C. Tsichritzis and F. H. Lochovsky. Data models. In Software Series. Prentice-Hall,1982.

19

