*

Notions of Upward Compatibility of Temporal Query Languages

John Bair, Michael H. Bohlen, Christian S. Jensen, and Richard T. Snodgrass

Abstract

Migrating applications from conventional to temporal database management technology has
received scant mention in the research literature. This paper formally defines three increasingly
restrictive notions of upward compatibility which capture properties of a temporal SQL with
respect to conventional SQL that, when satisfied, provide for a smooth migration of legacy
applications to a temporal system. The notions of upward compatibility dictate the semantics
of conventional SQL statements and constrain the semantics of extensions to these statements.
The paper evaluates the seven extant temporal extensions to SQL, all of which are shown to
complicate migration through design decisions that violate one or more of these notions. We
then outline how SQL 92 can be systematically extended to become a temporal query language
that satisfies all three notions.

Zumammenfassung

Die Migration konventioneller Anwendungen hin zu Anwendungen die auf temporaler Daten-
banktechnologie basieren wurde bis anhin nur am Rande behandelt. Der vorliegende Beitrag
definiert drei Eigenschaften einer in Bezug auf SQL aufwdrts-kompatiblen zeitlichen Erweiterung
von SQL die, falls erfiillt, einen nahtlosen Ubergang garantieren. Die Eigenschaften legen die
Semantik herkommlicher SQL-Befehle fest und sie schrinken die Semantik sprachlicher Er-
weiterungen ein. Der Beitrag evaluiert sieben zeitliche Erweiterungen von SQL und zeigt auf,
dass in allen Fallen eine nahtlose Migration durch Designentscheide die Eigenschaften einer
aufwirts-kompatiblen Sprache nicht beriicksichtigen erschwert wird. Abschliessend zeigen wir
wie SQL systematisch erweitert werden kann, so dass alle drei Eigenschaften erfiillt werden.

Keywords: upward compatibility, temporal upward compatibility, temporal query language,
TSQL2, SQL.

1 Introduction

A wide range of database applications manage time-varying information. These include financial
applications such as portfolio management, accounting, and banking; record-keeping applications,
including personnel, medical-record, and inventory; and travel applications such as airline, train,
and hotel reservations and schedule management. In fact, it is difficult to identify a database
application that does not involve time-varying data.

Currently, such applications typically use conventional relational systems. However, research
in temporal data models and query languages [TCGT93, 0595, Sno95] clearly demonstrates that
applications that manage temporal data may benefit substantially from built-in temporal support
in the database management system (DBMS). The potential benefits from such support are several.

*J. Bair is with Leep Technology, Inc., 1931 Estabrook Way, Superior, CO 80027-8089, jbair@iftime.com.
M. H. Bohlen and C. S. Jensen are with the Department of Mathematics and Computer Science, Aalborg University,
Fredrik Bajers Vej 7E, DK-9220 Aalborg @, Denmark, {boehlen, csj}@cs.auc.dk. R. T. Snodgrass is with the
Department of Computer Science, University of Arizona, Tucson, AZ 85721, rts@cs.arizona.edu.

Application code is substantially simplified. Due to faster development of code, which is also easier
to comprehend and thus maintain, higher programmer productivity results. With built-in support,
more data processing may be left to the DBMS, leading to much better performance.

There is, however, still a chasm between the approaches now used for developing such ap-
plications and the new approaches that have been proposed by the temporal database research
community. While 1200 papers on temporal databases have appeared, over 300 during the last
two years alone [TK96], legacy systems and the migration of such systems to new technologies has
been almost totally overlooked.

This paper considers upward compatibility, which has been claimed to offer several potential
advantages (this is related to the notion of ‘seamless’; as in “the transition from classical databases
to [a temporal] model should be conceptually and literally seamless.” [GN93, p. 51]). In the
context of migrating from a conventional DBMS to a temporal DBMS, upward compatibility of-
fers an evolutionary means of introducing new technology. It provides a business enterprise with
an upgrade path that preserves its investment in legacy databases. Implementers can incremen-
tally build new features on top of existing products, by gradually learning and incorporating new
language elements into their applications.

We assume that the DBMS interface is captured in a data model and thus talk about the mi-
gration of application code using an existing data model to using a new data model. We examine
what it means for a temporal data model and query language to be upwardly compatible with a
conventional data model, such as SQL. While the term has been used informally, we could find no
formal definition (the same holds for the term ‘seamless’). This paper examines the issues behind
this intuitive idea, and formalizes several increasingly restrictive notions of upward compatibility,
specifically, syntactic upward compatibility, upward compatibility, and temporal upward compat-
ibility. We evaluate the seven extant temporal extensions to SQL, including two designed by us.
We show that all seven violate one or more of these useful properties. Finally, we demonstrate
how SQL-92 can be extended to a temporal data model while simultaneously satisfying all three
notions of upward compatibility.

2 Characterizing Upward Compatibility

We adopt the convention that a data model consists of three components, namely a set of data
structures, a set of constraints on those data structures, and a language for updating and querying
the data structures [TL82]. In this paper we emphasize the data structures and the data manipula-
tion language. As we progress, it should be clear that the definitions and discussions of this section
also apply to integrity constraints, although for simplicity we will not address these explicitly.
Notationally, M = (DS, QL) then denotes a data model, M, consisting of a data structure compo-
nent, DS, and a query language component, QL. Thus, DS is the set of all databases, schemas, and
associated instances, expressible by M, and QL is the set of all query and modification statements
in M that may be applied to some database in DS. We use db to denote a database; a statement
is denoted by s and is either a query ¢ or a modification m (e.g., in SQL 92, any INSERT, DELETE,
or UPDATE statement).

As the existing model is given, the focus is on formulating requirements to the new data model.
The definitions are conceptually applicable to the transition from any data model to a new data
model. However, we have found it convenient to assume that the transition is from a non-temporal
to a temporal data model, specifically from the SQL 92 standard [MS93] to (some) Temporal SQL.

2.1 Upward Compatibility

Perhaps the most important concern in ensuring a smooth transition of application code from
an existing data model to a new data model is to guarantee that all application code without
modification will work with the new system exactly the same as with the existing system. The
next two definitions are intended to capture what is needed for that to be possible.

We define a data model to be syntactic upward compatible with another data model if all the
data structures and legal query language statements of the latter model are contained in the former
model.

DEFINITION: Let My = (DS1,QL1) and My = (DS, QLs) be two data models. Model M is
syntactically upward compatible with model M, if

e Vdby € DSy (dby € DSy) and

o Vso € QLo (82 € QLl). O

The first condition states that all data structures of the (existing) model My must be contained
in the data structure component of the (new) model Mj; the second condition states the same
property, but for the query language component instead of for the data structures.

Note that this relationship between the two data models is asymmetric, thus providing credence
to the adjective ‘upward’.

Next, for a data model to be upward compatible with another data model, we add the require-
ment that all statements expressible in the existing language must evaluate to the same result in
both models.

For a query language expression s and an associated database db, both legal elements of QL
and DS of data model M = (DS, QL), define ((s(db)))rs as the result of applying s to db in data
model M. With this notation, we can precisely describe the requirements to a new model that
guarantee uninterrupted operation of all application code.

DEFINITION: Let My = (DS1,QL1) and My = (DSs,QLs) be two data models. Model M is
upward compatible with model My if

e M, is syntactically upward compatible with My, and

o Vdby € DS (Vs2 € QLo ({(s2(db2))) 1, = ((s2(dba2))ar,))- =

The first condition, syntactic upward compatibility, implies that all existing databases and query
language statements in the old system are also legal in the new system. The second condition in
the definition states that for all data structures and associated query language statements in the
(existing) model M,, evaluating them in the (new and existing) models gives identical results. It
thus guarantees that all existing statements compute the same results in the new system as in the
old system. Thus, the bulk of legacy application code is not affected by the transition to a new
system.

Figure 1 illustrates the relationship between Temporal SQL and SQL-92. In the figure, a
conventional table is denoted with a rectangle. (In this paper, we use the terminology adopted in
SQL: table, row, and column, rather than the terminology introduced by Codd [Cod70]: relation,
tuple, and attribute.) The current state of this table is the rectangle in the upper-right corner.
Whenever a modification is made to this table, the previous state is discarded; hence, at any time

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1: Upward Compatible Queries

only the current state is available. The discarded prior states are denoted with dashed rectangles;
the right-pointing arrows denote the modifications that took the table from one state to the next.

When a query ¢ is applied to the current state of a table, a resulting table is computed, shown
as the rectangle in the bottom right corner. While this figure only concerns queries over single
tables, the extension to queries over multiple tables is clear.

Upward compatibility states that (1) all instances of tables in SQL 92 are instances of tables in
Temporal SQL, (2) all SQL-92 modifications to tables in SQL-92 result in the same tables when
the modifications are evaluated according to Temporal SQL semantics, and (3) all SQL 92 queries
result in the same tables when the queries are evaluated according to Temporal SQL.

By requiring that Temporal SQL is a strict superset (i.e., only adding constructs and semantics),
it is relatively easy to ensure that Temporal SQL is upward compatible with SQL-92.

2.2 Temporal Upward Compatibility

The above minimal requirements are essential to ensure a smooth transition to a new temporal
data model, but they do not address all aspects of migration. Specifically, assume that an existing
data model has been replaced with a new temporal model. No application code has been modified,
and all tables are thus snapshot tables. Upward compatibility ensures that all applications work
as before, under the new temporal model.

Now, an existing or new application needs support for the temporal dimension of the data in
one or more of the existing tables. This is best achieved by changing the snapshot table to become
a temporal table (e.g., by using a statement of Temporal SQL).

It is undesirable to be forced to change the application code that accesses the snapshot table
that is replaced by a temporal table. We thus formulate a requirement stating that the existing
applications on snapshot tables must continue to work with no changes in functionality when the
tables they access are altered to become temporal. Specifically, temporal upward compatibility
requires that each query will return the same result on an associated snapshot database as on the
temporal counterpart of the database. Further, this property is not affected by modifications to
those temporal tables. The precise definition is given next and is explained in the following.

DEFINITION: Let Mp = (DS7p,QLt) and Mg = (DSg,QLg) be temporal and snapshot data
models, respectively. Also, let 7 be an operator that changes the type of a snapshot table to
the temporal table with the same explicit columns. Next, let my,ma,...,m, (n > 0) denote
modification operations. With these definitions, model My is temporal upward compatible with

model Mg if

e Mr is upward compatible with Mg,
e Vdbs € DSg (T (dbs) € DSt), and

e Vdbg € DSy (le, - ,mn(n > 0) (Vqs € QLg (
{(gs(mpn(mp_1(... (m1(dbs)...))))N)ms = ((gs(ma(mn_1(... (m1(T(dbs)))))))mz))))- O

First, upward compatibility is required. The second condition states that when applying the type-
change operator to any data structure (e.g., table) of the snapshot model, the result is a legal data
structure in the temporal model. This is required for the third condition to be meaningful. To
understand this condition, consider the two sides of the equality sign in the second line. On the
two sides, the same sequence of modification statements is applied to a snapshot data structure
and its temporalised counterpart, respectively. Then the same query from the snapshot model is
applied to the two results of the modifications. The results of the queries when evaluated in the
snapshot model and the temporal model, respectively, must be identical. The first line simply
states that this must hold for all (meaningful) combinations of data structures, finite sequences
of snapshot-model modification statements, and snapshot-model query language statements. We
proceed to provide a more intutive and less technical explanation of this definition.

Assume that, when moving to the new system, some of the existing (snapshot) tables are
transformed into temporal tables without changing the existing set of (explicit) columns. This
transformation is denoted by 7 in the definition. Then the same sequence of modification state-
ments, denoted by the m; in the definition, is applied to the snapshot and the temporal databases.
Next, consider any query in the snapshot model. Such queries are also allowed in the temporal
model, due to upward compatibility being required. The definition states that any such query
evaluated on the resulting temporal database, using the semantics of the temporal query lan-
guage, yields the same result as when evaluated on the resulting snapshot database, now using the
semantics of the snapshot query language.

Temporal upward compatibility is illustrated in Figure 2. When temporal support is added
to a table, the history is preserved, and modifications over time are retained. In this figure, the
rightmost dashed state was the current state when the table was made temporal. All subsequent
modifications, denoted by the arrows, result in states that are retained, and thus are solid rectan-
gles. Temporal upward compatibility ensures that the states will have identical contents to those
states resulting from modifications of the snapshot table.

Time

Figure 2: Temporal Upward Compatibility

The query ¢ is an SQL-92 query. Due to temporal upward compatibility the semantics of this
query must not change if it is applied to a temporal table. Hence, the query only applies to the
current state, and a snapshot table results.

There is one unfortunate ramification to the above definition. Any extension that adds con-
structs involving new reserved keywords will violate upward compatibility, as well as temporal
upward compatibility. The reason is that the user may have previously used that keyword as an
identifier. Query language statements that use the keyword as an identifier will, in the extension,
be disallowed.

Reserved words are added in all temporal query languages. This phenomenon also holds for
non-temporal query languages. SQL 89 defined some 115 reserved words; SQL 92 added 112
reserved words, and the draft standard SQL3 adds another 97 reserved words.

To avoid being overly restrictive, we consider upward compatibility and temporal upward com-
patibility to be satisfied even when reserved words are added, as long as the semantics of all
statements that do not use the new reserved words is retained in the temporal model.

3 Temporal Database Management Using SQL-92

As an initial application of these notions, we first consider an approach employed frequently to
implement a temporal application: emulating a time-varying table with a conventional table. As
we will see, this approach does not ensure temporal upward compatibility, leading to a number of
difficulties.

The underlying model will be SQL-92, that is, QLo is the set of SQL-92 queries and mod-
ifications. Let us return to the Employee table, which has three columns, Name, Manager, and
Dept. In SQL-92; one can require that all managers be employees, by stating that Manager is a
foreign key for Employee.Name. We can easily express queries such as “List those employees who
are not managers,” as well as modifications, such as “Change the manager of the tools department
to Bob.”

To store historical information, we wish to emulate time-varying information, and so we will
use the same model, SQL-92, that is, QL7 will be the set of SQL-92 queries and modifications.
We also need an operator that changes the type of a snapshot table to a ‘temporal’ table. We will
define 7 to be the following SQL-92 schema modification statements.

ALTER TABLE Employee ADD COLUMN Start DATE
ALTER TABLE Employee ADD COLUMN Stop DATE

The T operator must also initialize the value of the Start column to be the value CURRENT DATE
and the value of the Stop column to be the value DATE ’9999-12-31", the largest DATE value. This
transforms the Employee table into a ‘temporal’ table (in the data model My, which is SQL-92).

Model My is certainly upward compatible with Mg, as all databases in My = Mg = SQL 92.
Interestingly, though, SQL-92, along with the transformation operator just defined, is not tem-
porally upward compatible with itself. As but a simple example, let gg be the query “SELECT *
FROM Employee”. It is certainly not the case that (gs(dbs))sqr—92 = {as(7 (dbs))sqr—92. Even
the schemas do not match: the schema for the result of (¢s(dbs)))sqr—92 has three columns,
Name, Manager, and Dept, while the schema for the result of (gs(7 (dbs)))sqL—92 has five columns,
including Start and Stop.

This violation of temporal upward compatibility has important practical ramifications. Assume
that we have a 50,000-line application that manages the Employee table and other tables in a
personnel database, allowing employees to be added and dropped, and the information about
employees to be modified and queried in various ways. When this table is extended to store time-
varying information, via the transformation 7 discussed above, many portions of this application
break.

e The constraint that all managers are employees can no longer be expressed via SQL-92’s
foreign key constraint, which fails to take time into account. Instead, this constraint must be
replaced with a complex assertion that includes in its predicate the Start and Stop columns.

e All queries must be examined, and most must be modified. Consider the query “List those
employees who are not managers.” A where predicate is now required to extract the current
managers. Also, any query that mentions ‘*’ must be modified, because the Employee table
now has a different number of columns.

e Modifications must also be altered to take into account the Start and Stop columns. The
modification “Change the manager of the tools department to Bob” is now quite more in-
volved than before.

In contrast, assume that instead of attempting to emulate the time-varying aspect using con-
ventional tables, we use a temporal data model that is provably temporally upward compatible
with SQL-92. We would be assured that not a single line of our 50,000-line application would
have to be altered when transformation 7 was applied to render the Employee table time-varying.

4 Temporal Query Languages

As we just saw, the fact that an emulation of temporal tables using SQL—-92 is not temporally
upward compatible has several unfortunate ramifications in practice. We now turn to the temporal
extensions to SQL that have been defined to date. Following an overview of the evaluation, we
consider each temporal SQL in turn.

4.1 Overview of Temporally Extended SQL’s

We are aware of seven temporal data models that extend SQL. We consider each of these in turn,
starting with the earliest models, examining whether or not each model satisfies the requirements
of upward compatibility (UC) and temporal upward compatibility (TUC) with respect to some
variant of SQL, e.g., SQL-89, SQL-92, SQL3, or SQL dialects of commercial DBMSs.

Ideally, we prefer to be able to independently prove that a particular temporal data model
satisfies or violates a requirement. However, the available documentation of the models often is
not adequately comprehensive for this to be possible. With two exceptions, only the integration
of the temporal query facilities with “core” subsets of SQL are documented, and which particular
SQL dialect that is being extended is also not always mentioned. This makes it hard to determine
whether models are (temporal) upward compatible with “the” full SQL or some subset of “an”
SQL.

Aspects related to the use of regular SQL statements—modifications, in particular—on tem-
poral tables or a combination of temporal and non-temporal tables are typically not defined. This
makes it hard to verify temporal upward compatibility.

Finally, the definition of the syntax of several of the models is quite informal and incomplete.
The semantics of the models are, at best, informal and, at worst, indicated by a few examples.

For the cases where we cannot prove that a temporal data model satisfies or violates a require-
ment, we will report the model as satisfying (or violating) a requirement if its designers claim that
the property is satisified and we have not been able to disprove the claim with the available docu-
mentation. In addition, we will report satisfaction simply if we cannot prove dissatisfaction, again
given the available documentation. Thus, we associate the following numbers with our findings, to
indicate the confidence in the findings.

1. Neither satisfaction nor violation is claimed, nor can be proven.

2. Satisfaction claimed, but the claim cannot be proven nor invalidated.

3. Independently proven.

Clearly, the highest level of confidence is desired.

Table 1 gives an overview of our conclusions. As can be seen, different languages have different
levels of satisfiability and different reasons for non-satisfiability. The first three models are docu-
mented rather sparsely for our purposes, but their designers emphasize that they satisfy upward
compatibility. They do not satisfy temporal upward compatibility. The next model, TempSQL,
introduces a concept of different types of users that may be used to obtain satisfaction of both com-
patibilities in certain circumstances. The subsequent model, IXSQL, is different from all the other
models in that it does not provide support for implicit time; rather, it adds a parameterized ab-
stract interval data type and associated facilities for modification and queries to SQL. ChronoSQL
is one of the newer temporal models. The final model has been documented much more extensively
than its predecessors, but its semantics are still given in an informal SQL-standards format. Note
that no language satisfies both notions of upward compatibility.

‘ Language ‘ Reference ‘ ucC ‘ TUC ‘ Comments
TOSQL [Ar186] yes? | no3 Only a subset of SQL is considered.
TSQL [NAS8T] yes? | no? Not all snapshot tables can be made temporal.
[NA&9] Some SQL views cannot be defined on temporal
[NA93] tables. Automatic coalescing violates TUC.
HSQL [Sar90b] | yes? | no? SQL queries on temporal tables return temporal
[Sar93] tables.
TempSQL [BG93] yes? | yes? Only a subset of SQL is considered. TUC
[GB93] (classical) | is satisfied only for classical users. Means of
[GN93] no? specifying user types and defaults are not given.
(system)
IXSQL [Lor93] yes? | no3 Extension of SQL with a parameterized inter-
[LM96)] val ADT with accompanying query-language
facilities is proposed.
ChronoSQL | [B6h94] yes? | no3 Only a subset of SQL is considered. Does not
restrict TUC queries to the current state.
TSQL2 [Sno95] yes® | no? Full syntax given. Semantics defined informally

in SQL-standard style.

Table 1: Summary of UC and TUC Compliance

4.2 Description of Temporally Extended SQL’s

Next, we describe each of the temporally extended SQL’s in some detail.

4.2.1
TOSQL [Ari86] temporally extends a subset of an early version of SQL [ACT5].

TOSQL

The extension

is based on the TODM data model. The syntax of TOSQL is given in a BNF-like format. This

syntax does not include modification statements, integrity constraints, nested queries, and queries
involving aggregates using HAVING, etc. Hence, it appears that TOSQL is upward compatible with
a subset of SQL, and is perhaps upward compatible with the full language.

It appears that the designer had a notion of temporal upward compatibility in mind when he
wrote the following.

“The default options are defined such that a query that omits the temporal portion
retains the standard meaning of the corresponding SQL SELECT statement.” [Ari86,
p. 513]

An example two pages later states the interpretation of a conventional SQL SELECT statement “is
to specify that the query relates to current assignments, and uses the most up-to-date data about
it.” [Ari86, p. 515]. The “current assignments” refers to now in valid time; the “most up-to-date
data” refers to now in transaction time.

The key phrase though is “that omits the temporal portion”. The timestamp of a table in
TOSQL appears as a column named RT. A non-time-varying table would not have such a column.
The conversion operator 7 in Definition 2.2 would add this column. The problem is with queries
involving ‘*’. Such queries on 7 (dbs) would return a different number of columns than queries
directly on dbg. Hence, temporal upward compatibility is not satisfied.

4.2.2 TSQL

Navathe and Ahmed’s temporal relational model, TSQL, supports, in addition to conventional
tables, row timestamping for valid time by attaching two mandatory timestamp columns, Time-
start (Ts) and Time-end (Te) to every time-varying relational schema [MNA87, NA87, NASg9,
NA93]. These timestamp columns correspond to the lower and upper bounds of time intervals in
which rows are continuously valid.

It is stated that TSQL is upward compatible with SQL.

“All legal SQL statements are also valid in TSQL, and such statements have identical
semantics in the absence of a reference to time. [...] SQL, a subset of TSQL, remains
directly applicable to non-time-varying relations in INF.” [NA93, p. 99].

A simplified, 1.5 page BNF-like syntax is given for TSQL [NA87]. Statements such as updates,
inserts, deletes, and view definitions are not addressed in the syntax or elsewhere in the documen-
tation. Also, the use of regular SQL queries on temporal tables is not touched upon. While this
makes it hard to examine the satisfaction of TUC, there are several indications that TUC is not
satisfied.

In TSQL’s data model, only tables that are in the so-called time normal form are allowed
[NA87, p. 116]. Briefly, for a table to be in time normal form, it must be in Boyce-Codd normal
form (disregarding the timestamp columns), and the non-key, non-timestamp columns must all be
synchronous (i.e., they must change values simultaneously). As there are no such normal form
requirements on snapshot tables, it follows that the 7 operator that turns a snapshot table into
a temporal table is not defined for all snapshot tables. Also, regular SQL view definitions on
temporal tables are not allowed when they lead to views that are not in time normal form. This
is often the case for views that are joins.

Lastly, TSQL performs automatic coalescing of value-equivalent rows (i.e., rows with identical
non-timestamp column values) that have consecutive or overlapping timestamps. This facility leads
to a violation of TUC. For example, assume that we start out with an empty snapshot table, R,

and insert two identical rows. Then SELECT * FROM R yields two rows. Now, we simultaneously
insert the two rows into 7 (R). The most reasonable assumption is that these two rows will be
given timestamps that result in them being coalesced into one row. Now, SELECT * FROM 7 (R)
yields one row.

4.2.3 HSQL

As the previous data model, Sarda’s HDBMS also supports valid time; however, unlike the data
model mentioned previously, HDBMS represent valid time in a valid-time table as a single non-
atomic, implicit column [Sar90b, Sar93]. HSQL! is the query language of HDBMS.

It is emphasized that HSQL is upward compatible with respect to SQL (SQL 89, in fact).

“HSQL is a superset of the popular query language SQL.” [Sar93, p. 123]
“In fact, the standard clauses of SQL have identical meanings in HSQL.” [Sar93, p. 125]

Concerning TUC, the effects of the standard SQL insert, delete, and update statements are
consistent with satisfying this requirement. However, a query SELECT * FROM R where R is a
temporal table returns R and not the current (snapshot) state of R, as would be required in order
to satisfy TUC [Sar93, pp. 126 127].

4.2.4 TempSQL

Gadia’s TempSQL is based on a NINF temporal data model that is value timestamped [BG93,
GB93, GN93]. A column of a row may have more than one (timestamped) value. The union of the
timestamps of the values of each column must be the same for all columns throughout the entire
row, resulting in a homogeneous temporal table.

Conventional tables are seen as temporal tables valid at a single time instant. Thus, each column
value of each row in such a temporal table is timestamped with the same instant. Integration
of snapshot tables into the data model this way is proposed partly in order to obtain upward
compatibility.

“By integrating it into our framework, we establish a smooth bridge for industry and its
user community for migrating from classical databases to temporal databases. [...] We
provide a framework for a smooth transition for industry, requiring no loss of investment
in application programs developed by its user community.” [GN93, p. 32]

The particular SQL that is being extended is not identified. No BNF is given. Further, only
a subset of those facilities normally associated with SQL are mentioned, with several important
aspects, e.g., advanced query facilities, integrity and embedded queries, ignored. With these reser-
vations, it is our contention that TempSQL is upward compatible with SQL. Determining whether
temporal upward compatibility is satisfied is more difficult for this model than any of the other
models.

TempSQL supports several types of users, e.g., system users and classical users, of a temporal
DBMS. While system users have unrestricted access to the database, classical users can only
access the currently valid values in the database. Thus, classical users see the current snapshots
of temporal tables. Assuming that T is a temporal table, the query SELECT * FROM T returns T
when issued by a system user and the current snapshot of T when issued by a classical user.

In another paper, Sarda gave this extension to SQL the name TSQL [Sar90a]. We use HSQL because it was
used in the most recent paper.

10

The absence of language syntax for specifying user types at the level of individual statements
leads us to assume that, as indicated by the name, user types are fixed for individual users, and
on a per-applications basis. (No information is given on how the mechanisms for different types
of users interact with embedded application programs.) Had the intention been to be able to
designate individual language statements as classical or temporal, we feel that the language should
have provided syntax for this. We thus think about user types as being similar to ordinary SQL
privileges. This seems reasonable, as user types do restrict access to data.

The choice of the default user type matters. If all users, and thus applications, are classical
by default, then it is possible to avoid modifying the legacy applications when transitioning to a
TempSQL system. Having the default user type be system leads to a violation of temporal upward
compatibility legacy applications then need to be modified to indicate that they are classical.

The next issue to consider is that of the application of legacy SQL modification statements on
temporal tables. As the effects of such statements persist in the current states (i.e., the states of
the temporal tables valid at the (ever-increasing) current time), the statements are consistent with
TempSQL satisfying temporal upward compatibility.

Our conclusion is that for classical users, temporal upward compatibility is ensured. For system
users, the opposite is true. The reason is that, for a system user, a conventional SQL query over
a temporal table will return a temporal table.

TempSQL is thus fine when a non-temporal application is executed on a database that has
been migrated to a temporal DBMS. Where TempSQL falls short is in further migration of that
application, to exploit the very useful temporal constructs of that language. This requires that the
user be a system user, because a classical user is not permitted to use any of the new constructs.
As soon as the user transitions from classical to system, all of the query language statements in the
application must be reevaluated, and many must be substantially rewritten. Had temporal upward
compatibility been ensured for all users, this jarring transition would have been much smoother.

4.2.5 IXSQL

IXSQL [Lor91, Lor93, LMY6] differs from all the other temporal query languages in that it does
not provide support for a special, built-in notion of time. Rather, IXSQL adds the ability to define
columns of a parameterized interval abstract data type, and it provides special query facilities for
manipulating tables with rows that have such interval values.

Actually, there exists at least two different versions of IXSQL, an early version [Lor91], and a
later version [LM96]. The initial version was neither upward nor temporally upward compatible
with SQL, in part because it did not permit duplicate rows in tables.

“IXSQL actually differs from the standard SQL [reference to SQL 89], in that a relation
may not contain duplicate tuples.” [Lor91, p. 4]

In the remainder, we consider the later version. This version was designed to be upward
compatible with SQL-92:

“IXSQL is syntactically and semantically upwards consistent with SQL2.” [LM96, p. 1]

Next, we consider temporal upward compatibility. The first step is to decide on what the
meaning of 7 should be in a model without an implicit notion of time in its tables. To be specific,
let us simply assume that 7 adds an interval-valued column to each snapshot table, with value
[CURRENT DATE, DATE ’9999-12-31"] for each row. Other reasonable assumptions seem to lead
to the same conclusions. The result of a legacy query such as SELECT * FROM R will differ from the

11

result of SELECT * FROM 7 (R). In addition, legacy modifications to “temporal” tables will generally
not be consistent with satisfying temporal upward compatibility, or they may fail altogether. In
summary, legacy applications need to be rewritten when new columns are added to the tables then
access.

4.2.6 ChronoSQL

ChronoSQL was designed and implemented as part of the ChronoLog project [B6h94]. The main
purpose was to illustrate how temporal concepts developed for deductive databases can be carried
over to relational databases. ChronoSQL is tightly coupled with a Datalog-based language, which
means that users can switch language any time.

This said, it comes as no surprise that not all language features of ChronoSQL have been
worked out in detail. Specifically, the temporal extension was restricted to query statements; data
manipulation statements and integrity constraints were not considered. Moreover, legacy queries
over temporal tables are not restricted to the current state. This clearly violates temporal upward
compatibility.

Upward compatibility looks more promising. ChronoSQL adds a couple of non-mandatory
syntactic constructs to SQL. No other syntactic changes are proposed. This ensures syntactic
upward compatibility. Furthermore, the semantics of legacy statements over nontemporal tables
remains unchanged [Boh94, p.69], meaning that upward compatibility is ensured as well.

4.2.7 TSQL2

TSQL2 [Sno95] is the most comprehensively documented temporal query language. Its syntax
was given as an extension of the syntax of SQL-92 as presented in the official standard, and
the semantics of TSQL2 was also given in the format of the SQL 92 standard. Some 500 pages of
technical commentaries accompany these specifications. Upward compatibility of TSQL2 is studied
in [BJS95].

In TSQL2, there are six kinds of tables: snapshot tables, valid-time event tables, valid-time
state tables, transaction-time tables, bitemporal event tables, and bitemporal state tables. The
first is the kind of table found in the relational model; the remaining five are temporal tables. As
all the schema specification statements of SQL—92 are included in TSQL2, it follows that the data
structures of TSQL2 include those in SQL 92.

TSQL2 is also a strict superset of SQL-92 in its query facilities. In particular, if an SQL-92
select statement does not incorporate any of the constructs added in TSQL2, and mentions only
snapshot tables in its from clause(s), then the language specification states explicitly that the
semantics of this statement is identical to its SQL 92 semantics.

It should be noted that the preliminary TSQL2 language specification released in March, 1994
[SAAT94] did not have that property. In particular, SQL.-92 INTERVALs were termed SPANs in the
preliminary TSQL2 specification, and TSQL2 INTERVALs were not present at all in SQL 92. The
final TSQL2 language specification [Sno95] retained SQL-92 INTERVALs and added the PERIOD
data type, which was previously called INTERVAL in preliminary TSQL2 (confusing, isn’t it?).
Additional changes to the datetime literals were also made to ensure that TSQL2 was a strict
superset of SQL 92.

Hence, TSQL2 is upwards compatible with SQL—-92. However, TSQL2 is not temporally upward
compatible with SQL 92, for several reasons. First, SQL 92 tables that contain duplicates have
no counterparts in TSQL2 where tables with value-equivalent rows (and thus duplicates, either in
a timeslice, or in the temporal table itself) are not allowed. A second reason that TSQL2 is not
temporally upward compatible with SQL-92 is that when the keyword SNAPSHOT is not specified in

12

a select statement in TSQL2, a temporal table results. Hence, an SQL-92 query over a temporal
table will result not in a conventional table, but rather in a temporal table.

5 Ensuring Temporal Upward Compatibility

This section explains a sequence of steps that lead to a temporal upward compatible SQL—92
extension. Implications to syntax and semantics are discussed and illustrated with examples.
Temporal upward compatible extensions allow to independently migrate data structures and ap-
plication code. Specifically, it permits migration of data structures without also requiring changes
to application code (c.f. Definition 2.2). The examples that have been stated in prose in Section 2
are reconsidered and formulated in the temporal extension of SQL-92.

5.1 Syntax of a Temporal Upward Compatible Extension of SQL

Temporal upward compatibility does not put an upper limit on syntactic extensions to a language.
It, however, defines a lower limit. First, all legacy statements must be retained. (This requirement
is independently established by upward compatibility.) Second, a possibility must be provided to
migrate nontemporal data structures to temporal data structures. The first requirement is met
by adding (non-mandatory!) syntactic constructs to the base language. No syntactic constructs
may be deleted or changed. Migrating non-temporal to temporal data structures can be achieved
in different ways. We discuss two possibilities to illustrate the design space and the possible
consequences to the data model.

If we want to emphasize different table types (snapshot tables, valid time tables, transaction
time tables, and bitemporal tables) a reasonable syntactic choice is to extend the <alter table
action> production of SQL 92 [MS93, p.511], by adding two options.

<alter table action> ::= <add column definition>

<alter column definition>

<drop column definition>

<add table constraint definition>
<drop table constraint definition>
<add time dimension>

<drop time dimension>

<add time dimension> ::= ADD <time dimension>
<drop time dimension> ::= DROP <time dimension> <drop behavior>
<time dimension> ::= VALID

| TRANSACTION

Adding valid time turns a snapshot table into a valid time table and a transaction time table
into a bitemporal table. Adding transaction time turns a snapshot table into a transaction time
table and a valid time table into a bitemporal table. This is the approach chosen by TSQL2
[Sno95).

If instead we want to emphasize the conventional relational data model with tables that sup-
port time through special-purpose columns, an alternative approach would be to enhance the
productions <add column definition> and <drop column definition> respectively.

13

<add column definition> ::= ADD [COLUMN | <column definition>
\ ADD [COLUMN | <time dimension>

<drop column definition> ::= DROP [COLUMN | <column name> <drop behavior>
\ DROP [COLUMN | <time dimension> <drop behavior>

Further syntactic alternatives can also be envisioned. It is, however, critical that all of them
support the semantics discussed in the next section.

5.2 Semantics of a Temporal Upward Compatible Extension of SQL

This section discusses the semantics of various temporally upward compatible statement categories,
i.e., standard SQL-92 statement categories evaluated over temporal databases. The categories
include queries, views, assertions, column constraints, referential integrity constraints, insertions,
deletions, and updates. This ensures a broad coverage of the functionality of a database system.
Nevertheless, there are certain statement categories that are not considered explicitly, e.g., triggers.
These categories do not introduce fundamentally new problems with respect to temporal upward
compatibility. Instead, semantics and techniques discussed for other categories can be applied
directly.

When we discuss the semantics of legacy statement categories over temporal tables we can
differentiate between non-destructive statements, e.g., queries, views, and integrity constraints,
and modification statements, e.g., data manipulation statements. As we will see, these two sets of
categories have to be treated differently.

Below we discuss the semantics for each of the two sets of categories. Within each set all
categories are analyzed and illustrated with an example. We initially consider only valid time,
then discuss the impact of adding transaction-time support.

The very first step is of course to migrate the data structures.

ALTER TABLE Employee ADD VALID
ALTER TABLE Salary ADD VALID

Both tables are turned into valid-time tables, such that all information stored in the tables can be
annotated with its valid time (transaction time is discussed at the end of this section).

5.2.1 Non-destructive Valid-time Statements

Non-destructive statements retrieve from or check parts of the database. They do not change the
contents of the database. To get the exact same semantics that a nontemporal database would
provide, we have to restrict the retrieval and checking to the current state.

Queries are supported by adding an implicit selection condition to the WHERE clause that selects
current rows. Moreover, defaults, e.g., ‘*’ in the select clause, may not expand to include time.
As an example, assume a query that determines who manages the high-salaried employees. The
‘temporal’ query is straightforward.

SELECT Manager

FROM Salary AS S, Employee AS E
WHERE §S.Name = E.Name

AND S.Amount > 3500

14

Whenever the temporal database system identifies one or more temporal in an SQL-92 statement,
it must perform the actions dictated by temporal upward compatibility. In this case, it must
restrict the set of rows to the current ones.

Views are similar to queries. This becomes obvious if we remember that a view is a virtual
table defined by a query. The query that defines the view is enhanced along the lines outlined
above. As an example, consider a view that yields high-salaried employees.

CREATE VIEW High_salary AS
SELECT *
FROM Salary
WHERE Amount > 3500;

A selection condition that limits the query expression to current salaries has to be added. Moreover,
the default used in the select clause has to be extended to SELECT Name, Amount (or an equivalent
relational algebra projection) so that the valid time is not part of the result.

Integrity constraints come in different flavors. The most general form are assertions [MS93,
p.211ff]. Consider the assertion that ensures that all employees get a salary, i.e., an assertion that
checks that no employees without a salary exist.

CREATE ASSERTION CONSTRAINT Emp_has_sal CHECK
NOT EXISTS (SELECT *
FROM Employee AS E
WHERE NOT EXISTS (SELECT *
FROM Salary AS S
WHERE E.Name = S.Name))

The general approach to check an assertion is to negate it and to execute it as a query, i.e.,

SELECT x*
FROM Employee AS E
WHERE NOT EXISTS (SELECT x
FROM Salary AS S
WHERE E.Name = S.Name)

If the query result is empty, i.e., if no rows are returned, the assertion is respected; otherwise it
is violated. With this background, temporal upward compatible assertions can be achieved easily,
because we showed above how to do so with queries.

5.2.2 Modification Statements on Valid-time Tables

Modification statements change the contents of the database. An obvious (but naive) approach is
to carry over the semantics from the previous section and to modify the current state. Imagine
the insertion of an employee into the database.

INSERT INTO Employee VALUES (’Liliane’, ’Brandt’, ’Tools’)
INSERT INTO Salary VALUES (’Liliane’, 1000)

If we inserted Liliane only in the current state, subsequent queries would not return this row. When
we later issue a query, time will have progressed and Liliane will no longer be in the (new) current
state. Of course this is not the behavior we expect from a nontemporal database. In order to get
the expected behavior, we have to make sure that Liliane remains in the changing current state.
This may be achieved by using the period from CURRENT DATE to 9999-12-31 (the largest DATE

15

value) as the timestamp of Liliane’s tuples. But it may also be achieved using as the end point
NOBIND (CURRENT DATE), where NOBIND has the effect of storing in the timestamp a wvariable that
evaluates to CURRENT DATE when accessed, rather than storing the current value of CURRENT _DATE.
Indeed, any now-relative variable [CDIT97] that evaluates to a time between these two end points
may be used. We will adopt the simplest choice, the date 9999-12-31.

An equivalent observation holds for delete and update statements. Assume that we want to
change the manager of the tools department to Bob.

UPDATE Employee
SET Manager = ’Bob’
WHERE Dept = ’Tools’

If we only updated the current state, subsequent queries would not access the corrected database
state. Again, we have to ensure that the update persists in the changing current state to get the
exact same behavior a nontemporal database provides.

Achieving temporal upward compatibility for modification statements is slightly more compli-
cated than achieving temporal upward compatibility for non-modification statements. The reason
is that certain rows may be valid from some point in the past until some point in the future, i.e.,
they overlap the current time. Because temporal upward compatible statements only affect the
current and future times, the modifications must not change the row during the entire time range.
Let us consider each type of modification statement in turn.

Insert statements have to set the valid-time start to the current time and the valid-time end to
DATE ’9999-12-317, as discussed above. This ensures that, until the row is deleted or modified,
it will be valid.

Next we consider delete statements. Historical data, i.e., qualifying rows with a valid time end
before the current time, is left untouched. Current data, i.e., qualifying rows with a valid-time
start after the current time (including a valid time end equal to DATE ’9999-12-317), has to be
deleted as of the current time. This is done by changing valid time end to the current time. For
future knowledge two choices exist. If we decide not to delete it, today’s future knowledge will
become valid eventually. This behavior can be quite surprising for applications employing temporal
upward compatibility exclusively. An alternative is to delete qualifying future knowledge. This
ensures a more intuitive behavior of legacy applications, but it might not be the semantics temporal
applications envision.

The most complex statements are update statements. First, rows with a valid-time start before
the current time and a valid-time end after the current time (including a valid-time end equal to
DATE ’9999-12-31’) are duplicated. The valid-time end of the original row and the valid-time
start of the duplicated row are set to the current time. Then the update statement is applied to
all rows with a valid time start that is equal or after the current time. Again we have the choice
not to update future knowledge (c.f. previous paragraph).

5.2.3 Transaction Time

With respect to temporal upward compatibility, transaction time behaves almost identically to
valid time. Exactly the same semantics applies to transaction-time tables and valid-time tables.

Even bitemporal tables behave quite similarly. In non-destructive statements and insertions,
both time dimensions inherit the unitemporal semantics. Deletions and updates are somewhat
more complicated, due to the nature of transaction time which guarantees that at each point in
time, it is possible to reconstruct previous database states. A temporal upward compatible deletion
of a bitemporal row triggers the following steps.

16

1. Qualifying rows with a transaction-time end equal to 9999-12-31 are duplicated. The
transaction-time end of the original row and the transaction-time start of the duplicated
row are set to the current time.

2. The valid-time deletion is applied to qualifying rows with a transaction-time end equal to
9999-12-31.

The first step saves the current state and thus ensures reconstructability, whereas the second step
performs the valid-time deletion. Update follows a similar pattern.

6 Conclusion

Upward compatibility aids in the smooth migration of applications from a conventional to a tempo-
ral data model. The definitions introduced here allow a specific temporal language to be evaluated
as to the degree that it ensures upward compatibility. The extant temporal extensions to SQL are
all deficient in one or more ways, rendering migration more difficult. We subsequently showed how
SQL-92 can be extended to yield a temporal data model satisfying all three notions of upward
compatibility. Applications can be much more easily migrated to this new data model.

The notion of temporal upward compatibility can be viewed as a form of logical data indepen-
dence. In the same way that an external schema can ensure that applications are not impacted
by changes to the logical schema, temporal upward compatibility ensures that applications are not
impacted by a specific kind of change to the logical schema: adding or removing temporal support.
Logical data independence is an important benefit provided by modern data models, in particular
by the relational data model, and the specific kind discussed here provides similar advantages.

The approach we espouse here to providing temporal upward compatibility relative to SQL
was adopted in the SQL/Temporal proposals [SBJS96a, SBJS96b]. These language constructs
were explicitly designed to ensure upward compatibility and temporal upward compatibility with
the entire SQL-92 standard. The constructs have been proposed to the American ANSI and
international ISO SQL committees for inclusion into the next ISO SQL standard.

Several directions for further research are promising. First, there is a need for exploring dif-
ferent implementation alternatives for upward compatible temporal SQL extensions. Alternatives
range from stand-alone implementations to implementations that maximally reuse the functional-
ity offered by existing DBMS’s with an SQL interface. Second, it is felt that much could be learned
from conducting actual case studies of the migration of legacy applications to temporal platforms.
Third, the transition from explicit to implicit temporal knowledge should be investigated. Strate-
gies must be designed to assist the user in migrating nontemporal tables with explicit time columns
to temporal tables. This is essential to maximally exploit the capabilities of temporal database
systems.

7 Acknowledgments

Michael H. Bohlen and Christian S. Jensen were supported in part by the CHOROCHRONOS
project, funded by the European Commission DG XII Science, Research and Development, as a
Networks Activity of the Training and Mobility of Researchers Programme, contract no. FMRX-
CT96-0056. Richard Snodgrass was supported in part by NSF grants [S1-9202244 and ISI-9632569
and by a grant from DuPont.

17

References

[ACT5]

[Ari86]

[BGY3]

[BJS95]

[Boh94]

[CDI*97]

[Cod70]

[GBY3]

[GN93]

[LMO6]

[Lor91]

[Lor93]

[MNAST7]

[MS93]

INAS7]

M. M. Astrahan and D. D. Chamberlin. Implementation of a Structured English Query
Language. Communications of the ACM, 18(10):580-588, October 1975.

G. Ariav. A Temporally Oriented Data Model. ACM Transactions on Database Systems,
11(4):499-527, December 1986.

G. Bhargava and S. K. Gadia. Relational database systems with zero information loss.
IEEE Transactions on Knowledge and Data Engineering, 5(1):76 87, February 1993.

M. H. Bohlen, C. S. Jensen, and R. T. Snodgrass. Evaluating the Completeness of
TSQL2. In Recent Advances in Temporal Databases, International Workshop on Tem-
poral Databases, pages 153—-172, Zurich, Switzerland, September 1995. Springer, Berlin.

M. Bohlen. Managing Temporal Knowldege in Deductive Databases. PhD thesis, De-
partement fir Informatik, ETH Zirich, Switzerland, 1994.

J. Clifford, C. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass. On the
Semantics of “NOW?” in Temporal Databases. ACM Transactions on Database Systems,
to appear 1997.

E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communications
of the ACM, 13(6):377 387, June 1970.

S. K. Gadia and G. Bhargava. SQL-like Seamless Query of Temporal Data. In R. T.
Snodgrass, editor, Proceedings of the International Workshop on an Infrastructure for
Temporal Databases, Arlington, Texas, June 1993.

S. K. Gadia and S. S. Nair. Temporal Databases: A Prelude to Parametric Data, chapter
2 of [TCG193], pages 28 66. 1993.

N. A. Lorentzos and Y. G. Mitsopoulos. SQL Extension for Interval Data. [EEFE
Transactions on Knowledge and Data Engineering, to appear 1996.

N. Lorentzos. Management of Intervals and Temporal Data in the Relational Model.
Technical Report 49, Agricultural University of Athens, 1991.

N. Lorentzos. The Interval-extended Relational Model and Its Application to Valid-time
Databases, chapter 3 of [TCGT93], pages 67-91. 1993.

N. G. Martin, S. B. Navathe, and R. Ahmed. Dealing with temporal schema anoma-
lies in history databases. In P. Hammersley, editor, Proceedings of the Thirteenth In-
ternational Conference on Very Large Databases, pages 177-184, Brighton, England,
September 1987.

J. Melton and A. R. Simon. Understanding the new SQL: A Complete Guide. Morgan
Kaufmann Publishers, San Mateo, California, 1993.

S. B. Navathe and R. Ahmed. TSQL - A Language Interface for History Databases.
In Proceedings of the Conference on Temporal Aspects in Information Systems, pages
113 128. AFCET, May 1987.

18

[NA8Y]
[NA93]
[0S95]

[SAA*94]

[Sar90a]
[Sar90b]
[Sar93]

[SBJSY6a]

[SBJSY6b]

[Sno95]

[TCG+93]

[TK96]

[TL82]

S. B. Navathe and R. Ahmed. A Temporal Relational Model and a Query Language.
Information Systems, 49(2):147 175, 1989.

S. Navathe and R. Ahmed. Temporal Extensions to the Relational Model and SQL,
chapter 4 of [TCGT93], pages 92 109. 1993.

G. Ozsoyoglu and R. T. Snodgrass. Temporal and Real-Time Databases: A Survey.
IEEE Transactions on Knowledge and Data Engineering, 7(4):513-532, August 1995.

R. T. Snodgrass, I. Ahn, G. Ariav, D. Batory, J. Clifford, C. E. Dyreson, R. Elmasri,
F. Grandi, C. S. Jensen, W. Kafer, N. Kline, K. Kulkarni, T. Y. C. Leung, N. Lorentzos,
J. F. Roddick, A. Segev, M. D. Soo, and S. M. Sripada. TSQL2 Language Specification.
SIGMOD RECORD, 23(1):65-86, March 1994.

N. Sarda. Algebra and Query Language for a Historical Data Model. IEEE Computer
Journal, 33(1):11 18, February 1990.

N. Sarda. Extensions to SQL for Historical Databases. IEEE Transactions on Knowl-
edge and Data Engineering, 2(2):220 230, June 1990.

N. Sarda. HSQL: A Historical Query Language, chapter 5 of [TCG193], pages 110 140.
1993.

R. T. Snodgrass, M. H. Bohlen, C. S. Jensen, and A. Steiner. Adding Valid Time to
SQL/Temporal. ANSI X3H2-96-151r1, ISO-ANSI SQL/Temporal Change Proposal,
ISO/TIEC JTC1/SC21/WG3 DBL MCI-142, May 1996.

R. T. Snodgrass, M. H. Bohlen, C. S. Jensen, and A. Steiner. Adding Transaction Time
to SQL/Temporal. ANSI X3H2-96-152r, ISO-ANSI SQL/Temporal Change Proposal,
ISO/TIEC JTC1/SC21/WG3 DBL MCI-143, May 1996.

R. T. Snodgrass (editor). The TSQL2 Temporal Query Language. Kluwer Academic
Publishers, Boston, 1995.

A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass. Tempo-
ral Databases: Theory, Design, and Implementation. Benjamin/Cummings Publishing
Company, Inc., Redwood City, California, 1993.

V. J. Tsotras and A. Kumar. Temporal Database Bibliography Update. SIGMOD
Record, 25(1):41 51, March 1996.

D. C. Tsichritzis and F. H. Lochovsky. Data models. In Software Series. Prentice-Hall,
1982.

19

