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Abstract

Appropriate clustering of objects into pages in secondary memory is crucial to achieving good
performance in a persistent object store. We present a new approach, termed semantic clustering, that
exploits more of a program’s data accessing semantics than previous proposals. We insulate the source
code from changes in clustering, so that clustering only impacts performance. The linguistic constructs
used to specify semantic clustering are illustrated with an example of two tools with quite different
access patterns. Experimentation with this example indicates that, for the tools, object sizes, and
hardware configuration considered here, performing any clustering at all yields an order of magnitude
improvement in overall tool execution time over pure page faulting, and that semantic clustering is faster
than other forms of clustering by 20%–35%, and within 25% of the (unattainable) optimal clustering.

The most salient aspect of a tightly coupled persistent object store is that it blurs the distinction
between data stored in main memory and data resident on secondary storage. Objects are accessed in a
program using such an object store with little or no regard to where the object actually resides [Balch et
al. 1989]. If in fact the object has not been cached in main memory, the first access to the object results in
an object fault, in which the object is read in from disk and made available for access. Generally, objects
are clustered on disk into segments, and an object fault transfers an entire segment from disk to main
memory. We don’t consider here objects whose size is greater than the smallest segment, in part because
such objects won’t benefit from any clustering scheme.

In this paper we present a new approach to clustering that exploits more of a program’s data accessing
semantics than previous proposals. This approach retains the user’s lack of concern for whether an object
is cached in main memory, while significantly increasing the performance of the program by simultaneously
reducing CPU overhead and disk I/O time.

The next section introduces the tradeoffs inherent in clustering and summarizes previous approaches.
We present an overview of our approach, termed semantic clustering, in Section 2, with a detailed example
appearing in Section 3. Section 4 presents the results of experiments that indicate several performance
advantages to semantic clustering. The last section briefly examines how we plan to put this approach into
practice in a fairly large programming environment.

1 Implementing Object Faulting

The data model supported by a persistent object store is a (potentially very large) collection of objects, each
containing uninterpreted data along with references to other objects. Programs start with a designated root
object, traverse some of the embedded references, and make changes to some of the objects encountered.
When the program commits, all changes become visible to other programs that use the object store. The
runtime system is responsible for moving objects between main memory and secondary storage, and for
converting between alternative representations. To the program, all objects are equally accessible; it is the
runtime library’s responsibility to maintain this fiction in the presence of disparate main memory and disk
access speeds.

There are three policies the runtime system must implement. First, how should objects be grouped
into segments? Second, when should each object or segment be transferred to or from disk? And third,
when should the representation of each object be converted from external form to internal form, and vice
versa?
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The most obvious implementation simply brings in only the relevant object when it is first accessed by
the program. With this approach, termed strict object faulting, objects reside in main memory only if they
are actually needed, minimizing main memory usage [Straw et al. 1989]. Another advantage is that locking,
which is the usual method of concurrency control, can be easily applied to individual objects. Strict object
faulting has several disadvantages. Each access to an object must check for cache residency. Such checks
add significant overhead. Weddell has shown that in a main memory object-oriented DBMS which closely
approximates a tightly-coupled persistent object store, a cache residency check on each access can slow
computation by as much as 20% [Weddell 1989]. Alternatively, cache residency checking may be done in
hardware, say via a virtual memory mechanism. However, such a mechanism may significantly increase the
cost of an object fault, since two context switches are generally involved. In either case, each object fault
stops the program for disk I/O, increasing turnaround time. Each object fault results in approximately one
disk seek, so the number of disk seeks approaches the number of objects cached in main memory. Memory
and disk allocation are complex, due to variable object size. Finally, a cached object table is needed to
record which objects are cached in main memory and where such objects are located.

At the other end of the spectrum is a much simpler approach, termed big inhale [Conradi & Wanvik
1985], in which all possibly accessible objects are read at program initialization. The advantages and
disadvantages trade places relative to strict object faulting: once the objects have been read in, the
program runs at full speed, with no cache residency checks or disk reads; a cached object table is not
needed; and disk I/O is quite efficient, with few seeks. The disadvantages are all performance related:
excessive main memory usage, excessive I/O, and excessive locking.

Clustering has been proposed as a compromise. With clustering, the unit of transfer is a segment,
containing multiple objects. The advantages are that I/O is somewhat more efficient, since segments
are generally a multiple of a fixed page size, and memory and disk allocation (and perhaps locking) are
simplified. These advantages depend on an assumed correlation of temporal locality and spatial locality:
objects referenced together in time reside together in the same segment. In any case, there are still
significant disadvantages: each segment fault stops the program and causes a disk seek, a cached object
table is still generally needed, and cache residency checks are still required.

The fundamental issue concerning clustering is assigning objects to segments to obtain a high tempo-
ral/spatial correlation. Various approaches have been proposed. One is to cluster on object creation, either
by the program specifying another object with which the newly created object is to share a segment (OB2,
ObjectStore), or by defining logical clusters and manually inserting newly created objects into them (OB2,
ObjectStore, ObServer [Hornick & Zdonik 1987], Versant). The primary disadvantage here is that the
clustering decision is localized to the program which creates the object, and is thus hard to implement or
change. Another approach is to cluster by object type (PS-Algol [Cockshott et al. 1984], ObServer), with
the disadvantage that such clustering generally results in a lower temporal/spatial correlation. Clustering
by total closure, in which all objects reachable from some designated object are placed in the same segment
(OB2), generally results in excessively large segments. Finally, clustering by segmenting an embedded tree
(termed syntactic clustering) results in poor performance for programs that don’t walk the embedding tree.

All of the proposed clustering schemes still suffer from several drawbacks. First, entire objects are
always transferred, even when only a few attributes are needed by the program. Secondly, all accesses
must perform cache residency checks, though syntactic clustering obviates the need for such checks across
attributes defining the embedded (abstract syntax) tree. Third, clustering is system-wide, and cannot be
configured on a program by program basis. Finally, in most realizations of these clustering schemes, the
program source code must be changed if the clustering is modified.

We have developed a new approach to clustering that addresses all of these drawbacks, allowing more
of the advantages of both the big inhale and strict object faulting to be simultaneously realized. The basic
idea behind our approach is to utilize the semantics of persistent data access by individual programs in
determining clustering.

2 Semantic Clustering

In this section we introduce a new approach to clustering; the next section will apply it to an example.
Many of our design decisions will become clearer when this example is presented.

Semantic clustering is specified manually by the programmer, who is in the best position to know



how the program(s) access data. Of course, the programmer can use statistics on attribute access in
clustering the data. Clustering is by partial closure: a subset of attributes are specified, and all objects
reachable from a designated object, termed the root of the cluster, via those attributes are placed in
the same cluster instance. Particular attributes are designated cut attributes; the object referenced by
such an attribute becomes the root of a separate cluster instance. The attributes are thereby partitioned
into internal attributes, whose referent object is guaranteed to be coresident in the same cluster as the
object containing the attribute, and external attributes, for which no such guarantee is possible. This
clustering defines an integrity constraint: no two internal attributes of objects in different cluster instances
can reference the same object. It has been our experience that defining appropriate internal attributes
is straightforward; often the internal attributes form an embedded tree. Also, it turns out that checking
this integrity constraint is almost free during the write operation. Note that clustering determines in
which cluster instance each object resides. Interestingly, the concepts of cut attributes, internal attributes,
and partial closure for clustering also appear in a different guise, and for a different rationale (logical
organization verses performance), in the WorldBase system [Wile & Allard 1989, Widjojo et al. 1990].

Clusters are then fragmented by specifying a sequence of sets of attributes. All attributes in the first set
are placed in the first fragment type. Those remaining attributes that are in the second set are placed in
the second fragment type. This continues until all the attributes in all of the object types have been placed
into a fragment type. Hence, an object is represented by a collection of one or more object fragments,
each in a different fragment instance, termed a segment. The first object fragment is termed the identity

fragment; all references from other objects point to this fragment. The identity fragment points to all other
fragments of that object, and they all contain pointers back to the identity fragment. In this way, a cluster
instance is composed of potentially many segments, each containing some of the attributes of each object
in the cluster instance.

Clustering is specified both for the main memory of each program accessing persistent data and also
for the data stored on disk. Clustering defines the fragment types to be present in each location, with
the runtime system effecting a translation of the data from one clustering arrangement to another as a
result of a segment read operation (translating from disk clustering to main memory clustering on input)
or an explicit commit operation by the program (translating back to disk clustering on output). The main
memory and disk clusterings are designed together to ensure high performance. Generally, a program’s
main memory is clustered similarly to the disk data, so that minimal translation is needed.

Each program is associated with one or more input and output ports, each of which is itself associated
with a set of relevant attributes. Programs access stored data through ports, which appear to the program
as routines that may be invoked with object identifiers. Invoking an input port causes all objects reachable
from the provided object via the port attributes to be logically read into main memory; in practice the
objects are faulted in as needed as the program executes. Invoking an output port causes the port attributes
of all objects reachable from the provided object via the port attributes to be updated in the store.

When a port routine is invoked, only the relevant segment(s) containing the root object are read in.
Access through internal attributes is always permitted. Access through an external attribute requires a
cache residency check, which determines whether the object identifier is a non-persistent reference (NPR),
i.e., a pointer (which must be an even value), or a persistent identifier (PID, which we represent as an
odd integer). If the latter is the case, an object fault occurs, and the runtime system determines whether
the segment containing the object is resident in main memory. If not, a segment fault occurs, and the
cluster instance containing the object is retrieved from disk. In particular, only the relevant segments are
retrieved, i.e., those containing attributes of interest to the program. Some segments may not yet exist, if
their attributes have not yet been computed, in which case new segments are initialized so that all of the
relevant attributes are available to the program. The PID is swizzled into an NPR (actually, all internal
attributes in the just input segment(s) are swizzled, termed eager swizzling [Moss 1990]) and control returns
to the program.

At the same time that the indicated cluster instance is retrieved during a segment fault, additional
cluster instances may also be retrieved, as specified when the program was clustered. The advantages are
two-fold. First, objects in these other segments presumably will be needed later by the program, so they
might as well be read in now, potentially saving disk seeks. Second, pre-paging other segments allows more
attributes in the program to be designated as internal, reducing (sometimes dramatically) the number of
cache residency checks and object faults performed at runtime.

During the write operation though an output port, the port attributes determine which objects, and



thus which cluster instances, are written. Additionally, the programmer can assert that certain clusters
or fragments are not modified by the program; the output port need not update these segments, saving
disk write operations. In order to further reduce I/O time, the programmer can also specify the order the
segments are laid out on disk, potentially decreasing the number of disk seeks.

Sets of attributes are used extensively to specify clusters, fragments, ports, pre-paging, and read-only
portions. We utilize structures, which are collections of object declarations, as a linguistic device to aid in
the expression of clustering. Structures can be derived from other structures in various ways, permitting
sets of attributes to be expressed indirectly in terms more natural to the user. One additional benefit of
these specifications is that they are language-independent, so that multiple programming languages can be
made persistent, and can even share data.

The analysis of structure specifications and of clustering specifications, the designation of internal and
external attributes, and the generation of code and tables for attribute access, attribute modification, object
creation, object faulting, and object output during commit is performed by a data structure compiler. The
data structure compiler is responsible for the exact layout of data both on disk and in main memory.

Finally, it is important that clustering not change the semantics of programs; clustering should only
impact performance. Since all aspects of data access, modification, and I/O must be moderated, application
programs are processed by a preprocessor that inserts the appropriate code to effect the specified clustering.
Clustering is easily altered as new insight is gained into how the programs access data, without necessitating
any changes to the source code of the application program. This property permits graceful evolution of
closely cooperating persistent programs [Snodgrass & Shannon 1990].

3 An Example

To illustrate the effectiveness of semantic clustering, we examine an application appropriate for persistent
data stores, namely a programming environment. This highly simplistic environment for a functional
language contains two tools, among others: a semantic analyzer and a cross referencer, communicating
through a central data store, termed a repository. We focus on the semantic analyzer, because its algorithms
(name resolution being top-down and type resolution being bottom-up, both computing new attributes)
and accessing strategies (both traverse the abstract syntax tree) are fairly typical of analysis tools found in
a software development environment. We focus also on the cross referencer because its accessing strategy
is not oriented around the abstract syntax tree, yet is also fairly typical.

We first specify the input and output data structures. We give the actual specifications in their entirety.
The details of the specifications are less important than their general flavor. The tool code is given elsewhere
[Snodgrass 1989]. Instances of the abstract syntax structure, shown in Figure 1, are created by a parser
tool (not described here) and read by the semantic analyzer. The root object, of type functions, contains
an attribute syn funcs, which is a sequence of function objects, each with a name and a body. The
function return type is a class containing two members, the int and real types. Similarly, expression
is a class containing the object parameterRef and the classes constant and operation. The Enumerated

representation uses integers for the unattributed types int and real.
Instances of this structure are processed by the semantic analysis tool, which creates instances of the

attributed syntax structure, also shown in Figure 1. This structure is derived from the previous structure,
and in this case adds three attributes. Name resolution records with each parameter reference the defining
occurrence of the parameter, which will have the same name. It also adds each parameter reference
to a sequence attached to the parameter; this sequence will be useful during cross reference generation.
The Threaded representation is a linked list, with each parameterRef containing an internally generated
attribute that points to the next parameterRef in the sequence. Type resolution involves determining the
type of each expression. Since expression is a class, each member will inherit this attribute. A partial
instance of attributed syntax is illustrated in Figure 2.

Finally, we declare two tools and a central repository, and specify their interactions. The input ports are
designated with Pre and the output ports with Post. The output of CrossRef is not specified; presumably
it is textual output to the screen, to a file, or to a printer. Tools and repositories both have ports. These
ports can be connected, with the result that data in the form of structure instances flow out of a tool
or repository via an output port, through a connection, and into another tool or repository via an input
port. Only two tools are shown; a fully realized programming environment could contain many such tools,



Structure abstract_syntax Root functions Is

functions => syn_funcs: Seq Of function;

function => syn_name: identifier,

syn_header: functionDef;

identifier => lex_token: String,

lex_pos: Integer;

functionDef => syn_ret_type: types,

syn_parameters: Seq Of parameter,

syn_definition: expression;

parameter => syn_name: identifier,

syn_param_type: types;

types ::= int | real;

int =>; real =>;

For types Use Representation Enumerated;

expression ::= constant | parameterRef | operation;

constant ::= integer_constant | real_constant;

integer_constant => lex_value: Integer;

real_constant => lex_value: Rational;

parameterRef => syn_name: identifier;

operation ::= binary_operation | unary_operation;

binary_operation => syn_op: binaryoperator,

syn_left: expression,

syn_right: expression;

binaryoperator ::= plus | minus | times | divide;

plus =>; minus =>; times =>; divide =>;

unary_operation => syn_op: unaryoperator,

syn_argument: expression;

unaryoperator ::= unaryplus | unaryminus;

unaryplus =>; unaryminus =>;

End

Structure attributed_syntax Derives abstract_syntax Is

-- name resolution

parameterRef => sem_entity: parameter;

parameter => sem_cross_uses: Seq Of parameterRef;

For parameter.sem_cross_uses Use Representation Threaded;

-- type checking

expression => sem_type: types;

End

Figure 1: The abstract syntax and attributed syntax Structures



function A(p:int; q:real):real = p + q;

Figure 2: An Instance of attributed syntax

connected either to each other or to one or more repositories.

Tool SemanticAnalyzer Is

Pre insyn: abstract_syntax;

Post outsem: attributed_syntax;

End

Tool CrossRef Is

Pre insem: attributed_syntax;

End

Repository Rep Is

Pre insyn: abstract_syntax; -- computed by parser

Post outsyn: abstract_syntax;

Pre insem: attributed_syntax;

Post outsem: attributed_syntax; -- sent to optimizer

End

Connect Rep.outsyn To SemanticAnalyzer.insyn;

Connect SemanticAnalyzer.outsem To Rep.insem;

Connect Rep.outsem To CrossRef.inSem;

The unclustered environment executes correctly, but is not particularly efficient. We specify additional
statements to cluster the data to increase efficiency. While these changes do not impact the tools’ source
code, they do change the underlying data organization, yielding very efficient object access and modifica-
tion. We exploit our knowledge of how the tools access and modify data stored in the repository. The
semantic analyzer reads in the functions object, searches for a function of a given name, then makes
two passes over the body of the function: a top-down pass to resolve parameter names and a bottom-
up pass to type each expression. To avoid reading the bodies of all the functions, we specify that the
syn header attribute of function is a cut attribute, implying that the functionDef object will be the
root object of a cluster. The cross referencer tool similarly searches for a function of a give name, iterates
through the sequence of parameters searching through one of a given name, then iterates through the



sem cross uses sequence, touching all references to this parameter. To make this operation efficient, we
gather parameterRefs together in a cluster to separate them from the rest of the function body.

To specify this clustering, we first define a view, or subset, of the attributed syntax structure contain-
ing the attributes useful to the cross referencer. The most important omission is the syn body attribute
of functionDef.

Structure TopSem Views attributed_syntax Is

functions => syn_funcs: Seq Of function;

function => syn_name: identifier,

syn_header: functionDef;

identifier => lex_token: String,

lex_pos: source_position;

functionDef => syn_ret_type: types,

syn_parameters: Seq Of parameter;

parameter => syn_name: identifier,

syn_param_type: types,

sem_cross_uses: Seq Of parameterRef;

types ::= int | real;

int =>; real =>;

parameterRef => syn_name: identifier,

sem_entity: parameter,

sem_type: types;

End

We group all objects reachable from the functionDef object in a cluster, which we partition into
two subclusters, one containing those objects needed by the cross referencer (as specified in the TopSem

structure), and one containing the remaining objects. We then fragment these latter two clusters into the
syntactic and semantic attributes, the former computed by the parser and read by the semantic analyzer;
the latter computed and written by the semantic analyzer. The cross referencer tool will read a subset of
these segments. We refine our repository to effect the desired clustering.

Repository Rep Refines Rep Is

Cluster Invariant Is

Cluster A At function.syn_header Via attributed_syntax Is

Cluster B At functionDef.syn_parameters Via TopSem Is

Fragment Between abstract_syntax And attributed_syntax

End;

Cluster C At functionDef.syn_definition Via attributed_syntax Is

Fragment Between abstract_syntax And attributed_syntax

End

End

End;

-- Order the segments on disk

Order A, B.1, C.1, B.2, C.2;

End

The At construct specifies the cut attribute, the Via clause specifies the attributes that determine object
membership in the cluster, and syntactic nesting specifies cluster containment. The Order clause will
reduce the number of required disk seeks. Figure 3 illustrates the segments that comprise the stored data
for the example function shown in Figure 2. We label each object with a PID; the functions object has
a PID of 1. Sets of objects (denoted with “{ }” ) and sequences of objects (denoted with “< >”) are
themselves objects. Objects can appear in several segments if they are fragmented (an example is the
parameter object with PID 4, whose attributes are located in segments 3 and 4). Object references are
eventually represented in main memory as pointers; in the figure we show pointers to objects in other
segments with an oval containing the segment number and PID within that segment (e.g., reference 2.8 in
the top function object points to the functionDef object in segment 2). The first segment of a cluster



is always the identity fragment; it points to the other segments for that cluster (via generated child

attributes), and the other segments point back to it (via generated parent attributes). The parser creates
segments 1, 2, 3, and 5; segments 4 and 6 are computed by the semantic analyzer.

We refine the SemanticAnalyzer tool, specifying a clustering identical to that of the repository, in
order to minimize data format conversions during reading and writing.

Tool SemanticAnalyzer Refines SemanticAnalyzer Is

Cluster Invariant Is

Cluster A At function.syn_header Via attributed_syntax Is

Cluster B At functionDef.syn_parameters Via TopSem Is

Fragment Between abstract_syntax And attributed_syntax

End;

Cluster C At functionDef.syn_definition Via attributed_syntax Is

Fragment Between abstract_syntax And attributed_syntax

End

End

End;

-- Read and write Clusters B and C at same time as Cluster A

Use Cluster A Segments;

-- Specify which portion of output port structure won’t change

For outsem Use No Write Of abstract_syntax;

End

We specify that the required segments reachable from cluster A should be transferred during I/O. We
need these segments anyway, and this clause will reduce disk seeks, residency checks, and object and
segment faults. Finally, we assert that the syntactic attributes will not be modified by the semantic
analyzer. Conceivably the preprocessor could figure this out, but it affords more type checking to have
the programmer explicitly state this assertion. Note that the length of the cluster specification is roughly
independent of the length or complexity of the underlying structures. For example, the clustering for the
invariant of an Ada semantic analyzer would be very similar to that above.

We cluster the cross referencer tool in a similar manner.

Tool CrossRef Refines CrossRef Invariant TopSem Is

Cluster Invariant Is

Cluster A At function.syn_header Via TopSem Is

Cluster B At functionDef.syn_parameters Via TopSem Is

Fragment Between abstract_syntax And attributed_syntax

End

-- No Cluster C needed

End

End;

-- Read Cluster B at the same time as Cluster A

Use Cluster A Segments;

End

This clustering differs from that of the semantic analyzer in three ways. First, this tool does not need all
of the attributes in attributed syntax; it only requires those in TopSem. Hence, we specify the global
data structure within the tool (termed the invariant) to be TopSem. Second, no cluster C is specified, as
the attributes in that cluster are not of interest to this tool. Third, since there is no output port, we need
not specify the read-only portion.

4 Performance

To determine how effective semantic clustering is in relation to other proposed clustering methods, we ran
experiments on six configurations, the preliminary results of which are described here. The source code



function A(p:int; q:real):real = p * q;

Figure 3: The Layout of the attributed syntax Instance on Disk



remained the same in all configurations; only the policy decisions about how to group objects, when to
read or write objects, and when to swizzle were varied. One obvious configuration, strict object faulting,
was not included because others have found its performance to be substantially worse than page faulting
in the presence of adequate main memory [DeWitt et al. 1990, Stamos 1984].

Configuration 1, termed pure page faulting, does not employ application dependent clustering. Instead,
objects are grouped on pages based solely on their type. We make the optimistic assumption that the
objects of a particular type for each function were grouped together on pages. This assumption, not
generally borne out in practice, will minimize the I/O traffic. It also provides a lower bound on the
performance of page-based static grouping strategies [Stamos 1984]. In pure page faulting, each access
through an attribute that may reference an object is subject to a residency check. If the reference is a
PID (this involves simply checking the low-order bit), an object fault occurs, and the PID is looked up in
a resident hash table. If the PID is not found there, a page fault occurs, a single page is read in, and all
of the objects on the page are placed in the resident hash table. The original attribute is then swizzled.
Configuration 2 uses manual clustering, where the objects are clustered by executable statements in the
parser, which creates the objects. This code arranges that all objects reachable from each functionDef

object are clustered together in the same segment, which is transferred in whole. Residency checks, object
faults, and lazy swizzling (swizzling on access [Moss 1990]) still occur, since the runtime system doesn’t
know how objects are clustered. However, I/O time is reduced considerably, compared with pure page
faulting, since most I/O here is sequential, at least for reasonably sized functions.

In the remaining configurations, the programmer specifies the clustering declaratively in various ways,
and the runtime system utilizes this information to increase performance. In the third configuration, syn-
tactic clustering, residency checks and object faults are needed only at the boundaries between segments.
As a result, very few residency checks or object faults occur. Configuration 4 uses semantic clustering
without fragmentation, here termed basic semantic clustering. Compared with syntactic clustering, the
partitioning is more sophisticated, as it does not rely on the embedded syntax tree for cluster definition.
Configuration 5 uses semantic clustering with fragmentation. The clustering statements given in the pre-
vious section generate configuration 5; if the Fragment clauses are omitted, then configuration 4 results.
Configuration 6 assumes an optimal clustering strategy that brings in during initialization only those at-
tributes and objects that will accessed. No residency checks are needed; no object faults occur, and no
swizzling on input or deswizzling on output is required. Such a strategy is clearly impossible to implement,
but provides a convenient lower bound for comparison. Only one seek for read and one for write is needed;
the rest of the I/O is sequential.

We instrumented both the semantic analyzer and the cross referencer. We assumed that the repository
holds many functions. The tools were executed over five randomly generated function instances stored in
the respository; these functions contained from 10 to 100,000 objects. All identifiers in these instances
were single characters. The primary metric was total time in seconds to execute the tool. This time may
be broken down into the following components: the algorithm, residency checks, processing object faults,
reading and writing pages, and swizzling attributes on input and deswizzling attributes on output. Our
initial investigations indicated that attribute swizzling/deswizzling in no case totaled more than 2% of the
aggregate run time. Hence, we focused on the other components. A somewhat less critical metric is the
amount of disk and main memory space required by each configuration.

We ran our tests on an otherwise unloaded NeXT workstation with a 25MHz MC68030 cpu and 16MB of
main memory running Version 1.0 of the Mach operating system. All experiments used a local Maxtor 448
MB (formatted) disk, which has an average seek time of 16.5 msec and a raw transfer rate of 4.8 MB/sec,
and buffered file I/O. We ensured a cold cache, and flushed the cache to ensure that all modifications were
written back to the repository. The source code is in C, and was compiled with gcc. All experiments were
run a sufficient number of times to achieve a 95% confidence level of plus or minus 7%.

The algorithm time is not dependent on configuration. To measure it, we loaded the entire database
in main memory, swizzled all of the object references, then ran the algorithm multiple times. To measure
residency check time, we first measured the number of residency checks performed by each tool in each
configuration for each input size, then measured the cost of a single residency check (2.7 µsec). We
computed object fault time in a similar manner (a single object fault, which requires a lookup in the object
hash table, takes 36 µsec).

I/O time depends on two aspects: the number of seeks and the number of pages read or written. The
latter depends on the number of objects transferred, the sizes of the objects, and the page size. We used



Figure 4: Total Execution Time for the Various Configurations

a page size of 1K bytes; segments consist of an integral number of pages. We measured sequential read
and write times (2.2 msec and 2.7 msec, respectively) and random read and write times (38 msec and 37
msec), and determined the number of each required by each configuration to arrive at the total I/O time.

Figure 4 shows how the total time varies over function instance size. All runtimes are in seconds. Both
axes are logarithmic. The relative difference between approaches is fairly constant across a wide range of
number of objects. Below about 1,000 objects, the minimum number of seeks dominates. The optimal case
is shown with a darker line.

The following table gives the breakdown for 100,000 objects for the semantic analyzer.

Page Manual Syntactic Basic Semantic Optimal
Faulting Clustering Clustering Semantic w/Fragmentation

Algorithm time 6.89 6.89 6.89 6.89 6.89 6.89
# Residency checks 426,977 426,977 2 2 2 0
Residency check time 1.15 1.15 0 0 0 0
# Object faults 100,000 100,000 2 2 2 0
Object fault time 3.59 3.59 0 0 0 0
# Input disk seeks 1,684 2 2 2 2 1
# Input pages 1,684 1,664 1,664 1,665 1,502 873
Input time 63.3 3.6 3.6 3.6 3.3 1.9
# Output disk seeks 1,684 1 1 1 2 1
# Output pages 1,684 1,663 1,663 1,663 791 477
Output time 61.7 4.5 4.5 4.5 2.2 1.3
Total time 137 19.9 15.2 15.2 12.5 10.3

Pure page faulting is by far the slowest, due primarily to the number of disk seeks performed. Each object
fault to a non-resident page causes a random page to be read, preceded by a disk seek. Recall that this
number is a lower bound, since we assumed each page contained only objects relevant to the algorithm,
which the runtime system had no way of ensuring. Manual clustering effects almost an order of magnitude
improvement, as the number of seeks decreased to 3, independent of the size of the input. However, the
time to perform residency checks and objects faults becomes more important; this time approaches that
of the algorithm, and accounts for almost one-fifth of the total time. Syntactic clustering informs the
runtime system of the clustering, reducing residency checks and object faults from an amount linear in
the number of objects to 2, independent of the size of the input. Basic semantic clustering in this case



takes exactly as long as syntactic clustering, because the accessing patterns of the two configurations are
identical. Fragmentation cuts the time down by another 18%, because the semantic attributes are not
read and the syntactic attributes are not written. The optimal (and unattainable) clustering is faster still,
by 18%, in part because fewer seeks are required (one input and one output, verses two of each). More
importantly, fewer attributes, and hence fewer pages, need to be transferred: the values of constants and
the operator attribute of operation objects are not needed, and so are not transferred in this configuration,
and various internal pointers such as those employed between fragments also are not needed.

The following table gives the breakdown for the cross referencer tool, again for 100,000 objects.

Page Manual Syntactic Basic Semantic Optimal
Faulting Clustering Clustering Semantic w/Fragmentation

Algorithm time 0.74 0.74 0.74 0.74 0.74 0.74
# Residency checks 4,640 4,640 2 2 2 0
Residency check time 0.01 0.01 0 0 0 0
# Object faults 4,638 4,638 2 2 2 0
Object fault time 0.17 0.17 0 0 0 0
# Input disk seeks 665 2 2 2 3 1
# Input pages 665 1,664 1,664 656 820 491
Input time 25.0 3.65 3.65 1.48 1.87 1.09
Total time 25.9 4.57 4.39 2.22 2.61 1.83

Cross referencing takes an order of magnitude less time (in large part due to the sem cross uses sequence so
conveniently created during name resolution). Interestingly, pure page faulting has an advantage when used
with the cross referencer tool, because the tool touches objects of only a few object types. Hence, the data
is accidentally clustered. However, seek time still dominates. Compared with syntactic clustering, basic
semantic clustering is significantly faster, because it avoids reading the body of the function. Fragmentation
increases the size of objects slightly to accommodate pointers connecting objects in different segments,
resulting in slightly lower performance (the increase is more the compensated by the decrease observed in
semantic analysis).

The differences in the space requirements aren’t as dramatic. The following table how much disk space
in MB is required to store a 100,000 object function instance, and how much main memory is used by each
of the tools for each configuration. Basic semantic clustering reduces the main memory usage as compared
with the other clustering approaches, and semantic clustering with fragmentation generally trades disk
space for execution time. The disk space overhead imposed by fragmentation is accentuated by the small
objects used in this experiment. If somewhat larger objects were used, then the relative overhead of the
additional pointers required by fragmentation would be less.

Page Manual Syntactic Basic Semantic Optimal
Faulting Clustering Clustering Semantic w/Fragmentation

Disk space 1.68 1.66 1.66 1.67 2.29 1.65
Sem. analy. main mem. 1.68 1.66 1.66 1.67 2.29 1.35
Cross ref main mem. 0.67 1.66 1.66 0.66 0.82 0.49

This experiment indicates that the following factors may be ranked as follows according to their con-
tribution to the total execution time of each tool: disk seeks (35 msec), pages transferred (2.2–2.7 msec),
object faults (36 µsec), and residency checks (2.7 µsec). We now discuss strategies to minimize each in
turn.

Minimizing disk seeks is difficult when multiple tools exhibit different accessing patterns. Pure page
faulting suffered because page faults were to random pages, requiring a seek for each page read (a total of
3368 seeks in semantic analysis and 665 in cross referencing). Increasing the page size would substantially
improve the performance of this configuration for large functions. A page size of 32K bytes would for
example cut the semantic analysis execution time to approximately one-fourth and the cross referencer
time to one half for functions of 10,000 objects, at the cost of significant wasted main memory (416KB of
main memory needed to store 171 KB of data). However, pure page faulting even with this change would
not be competitive with the other configurations. Larger page sizes would probably not substantially help
the other configurations. Preliminary studies by others have yielded the same conclusion [DeWitt et al.
1990].



The other five configurations required from 1 to 4 seeks for both tools, independent of the number
of objects transferred. Semantic clustering minimizes disk seeks in three ways: segments are defined in
such a way as to select exactly those objects and attributes of interest to each tool, entire segments are
transferred at a time, and the segments are manually ordered on disk to allow several segments to be read
in one sequential pass. Even though fragmentation increases the number of segments required (manual,
syntactic, and pure semantic clustering required one segment per function, while fragmentation required
four), the number of disk seeks required by fragmentation were comparable, and in some cases identical,
to these other configurations.

Minimizing pages transferred involves not transferring unneeded objects and attributes. Syntactic
clustering suffered in the semantic analyzer because it had to read the uninitialized semantic attributes; it
suffered in the cross referencer because it had to read the entire function body, much of which was never
used. Fragmentation is the key to minimizing the number of pages read and written, effecting a time
savings of 20% for the semantic analysis tool.

Minimizing object faults and residency checks requires knowledge by the runtime system of what objects
will be co-resident. In pure page faulting the time to perform these two bookkeeping tasks approached
that required to execute the semantic analysis algorithm (disk I/O time still overwhelmed these other
components). In manual clustering these bookkeeping tasks accounted for a quarter of the total time.
The other configurations all performed exactly two residency checks and two object faults, independent
of the number of objects. This low count is due in part to the simplicity and small number of the tools;
we envision that other tools may require somewhat more checks. Semantic clustering offers flexibility
in clustering objects, and also allows enclosing clusters to be simultaneously read or written by a tool,
permitting more attributes to be internal and thus not subject to residency checks or object faults.

As processing speed continues to improve at a faster rate than disk access speed, this ranking of factors
should continue to hold, and in fact the goal of reducing the number of disk seeks and page transfers will
become increasingly important.

5 Summary and Future Work

In this paper we introduced a new approach to clustering in a persistent object store. Semantic clustering
differs from other proposed clustering methods in the following ways.

• Clustering is by partial closure, via a subset of the attributes.

• Objects are then fragmented in a controlled fashion, splitting attributes across segments.

• The program’s main memory is clustered to eliminate most residency checks and to effect prepaging
of objects.

• The ordering of segments on disk and the portion of main memory objects that are modified by a
tool can both be specified; this information is used to reduce I/O time.

• Structures are utilized as a declarative linguistic device to aid the specification of clustering.

• We insulate the source code from changes in clustering, with the result that the clustering impacts
performance only (the tool developer need not be concerned with clustering).

We presented results of experiments on a semantic analyzer and a cross referencer, which exhibit quite
different object access patterns. While semantic clustering exploits knowledge of these access patterns, it
should work well with all of the tools that access the repository. The total execution time for both tools
is shown below, along with the overhead imposed by making the tool persistent (calculated as total time
minus algorithm time).

Page Manual Syntactic Basic Semantic Optimal
Faulting Clustering Clustering Semantic w/Fragmentation

Both tools 163 24.5 19.6 17.4 15.1 12.1
Persistent Overhead 155 16.9 12.0 9.8 7.5 4.5



This experiment indicates that, for the tools, object sizes, and hardware configuration considered here,
performing any clustering at all yields almost an order of magnitude improvement in overall tool execution
time over pure page faulting, and that semantic clustering is faster than other forms of clustering by
20%–35%, and within 25% of the (unattainable) optimal clustering.

The drawbacks of semantic clustering are (a) the clustering must be correctly specified by the program-
mer (a bad clustering is often worse than none at all), (b) new or modified tools may be inconsistent with
the current clustering in place, resulting in either slow tools or repository reorganization (this tradeoff may
be managed by effective tools [Snodgrass & Shannon 1990]), (c) fragmentation requires more disk and main
memory space to store cross pointers between segments, and (d) the runtime system is somewhat more
complicated than pure page faulting, but similar to that needed for syntactic clustering,

We have developed a formal semantics for the clustering constructs, and are now implementing a runtime
system that fully supports semantic clustering. We will then apply this clustering to a large programming
environment [Snodgrass 1990]. This environment includes a data structure compiler of the form mentioned
in Section 2, as well as a window-based debugger, an assertion checker, an unparser, and a cross reference
generator. The dozen programs contain some 20 persistent tools, for a total of approximately 100K lines
of source code. This code will require few changes to use the new runtime system, and will provide
an opportunity for a much more complete evaluation of this approach. We also plan to apply semantic
clustering to specific persistent languages such as Modula-3 [Hosking & Moss 1990] as alternatives to the
language-independent constructs illustrated in Section 3.
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