The VLDB Journal (1999) 8: 267-288 The VLDB Journal
© Springer-Verlag 2000

Effective timestamping in databases

Kristian Torp !, Christian S. Jensen, Richard T. Snodgras$

1 Department of Computer Science, Aalborg University, Fredrik Bajers Vej 7E, DK-9220 Aalborg @st, Denmark; €tonpitsj@cs.auc.dk
2 Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA; e-mail: rts@cs.arizona.edu

Edited by E. Bertino. Received: March 11, 1998 / Accepted July 27, 1999

Abstract. Many existing database applications place var-are retained [24, 25]. In addition, many database applications
ious timestamps on their data, rendering temporal valuesequire the times when the facts stored in the database are
such as dates and times prevalent in database tables. Duritigie to be stored with these facts. Such applications manage
the past two decades, several dozen temporal data modelslid-time databases. A database recording both transaction
have appeared, all with timestamps being integral compoand valid time is termed bitemporal [14], and this is the type
nents. The models have used timestamps for encoding twof database considered in this paper.
specific temporal aspects of database facts, namely transac- The goal of this paper is to provide an effective ap-
tion time, when the facts are current in the database, angroach to timestamping of data that may be used directly by
valid time, when the facts are true in the modeled reality.application developers, as well as may be employed within
However, with few exceptions, the assignment of timestampa stratum, which is a layer on top of a database manage-
values has been considered only in the context of individuament system (DBMS) that translates statements in a tem-
modification statements. poral query language into conventional SQL. The stratum
This paper takes the next logical step: It considers theshould ensure ACID properties on the user transactions, by
use of timestamping for capturing transaction and valid timeexploiting the transaction and concurrency control facilities
in the context of transactions. The paper initially identifies of the underlying DBMS, specifically SQL's COMMIT and
and analyzes several problems with straightforward time-ROLLBACK statements. In particular, we do not allow any
stamping, then proceeds to propose a variety of techniquesodifications to the DBMS itself, rendering the approach
aimed at solving these problems. Timestamping the resultselevant also to non-DBMS vendors.
of a transaction with the commit time of the transaction Designing a mapping of user transactions to SQL that
is a promising approach. The paper studies how this timeprovides the desired semantics turns out to be a challenging
stamping may be done using a spectrum of techniques. Whileask. We shall see that the oft-proposed approach of using
many database facts are valid umidlw, the current time, this the commit time of a transaction as the timestamp value of
value is absent from the existing temporal types. Techniquefis database modifications is difficult to realize in practice,
that address this problem using different substitute valuegspecially from the outside of the DBMS. One problem is
are presented. Using a stratum architecture, the performandbat the commit time only becomes known when a trans-
of the different proposed techniques are studied. Althoughaction has exhausted all its statements, and so the commit
querying and modifying time-varying data is accompaniedtime cannot be used in those statements. Consequently, a
by a number of subtle problems, we present a comprehensivgsingle, temporary) transaction-internal transaction time, no
approach that provides application programmers with simdater than the time of the first modification statement, must
ple, consistent, and efficient support for modifying bitempo-be used in order to make the results of modification state-
ral databases in the context of user transactions. ments visible within the transaction itself. This raises the
concern of what value should be used for this temporary
Key words: Transactions — Timestamping NOW — Valid time value, and how and when it should be replaced with
time — Transaction time the permanent value.

This paper analyzes the implications of supporting trans-
action time in the presence of transactions and in the context
of a stratum architecture. The paper proposes and studies the

) properties, including performance, of a range of techniques
1 Introduction for updating database records resulting from a transaction’s

) o _ moadifications to reflect the permanent commit time, which
In a wide range of database applications, accountabilityonly becomes available at commit time.

and traceability are important; such applications manage
transaction-time databases, where all previous database states

268 K. Torp et al.: Effective timestamping in databases

As a next step, the paper also considers valid time, whos@ Temporal databases and stratum architecture
characteristics differ from those of transaction time. Valid
times are user-specified or given by the system using deAs a first step in introducing the topic of the paper, we briefly
fault values — transaction times are always system-specifiedlescribe bitemporal data. This type of data has associated a
The user may use the variable time vahmw that denotes valid time, indicating when the data was true in the modeled
the current time for delimiting valid time periods. Also, un- reality, and a transaction time, indicating when the data along
like transaction time, valid times cover the entire time do-with its valid time was stored as current in the database.
main from “beginning” to “forever” — transaction-time val- The valid time of a tuple, a period, may be recorded using
ues never exceed the current time. the two attributed/-Begin andV-End, and, similarly, the
The paper shows that, when the system assigns defaultansaction-time period of a tuple, also a period, may be
valid-time values, valid time must be handled identically recorded using attributeg-Start and T-Stop . We use
to transaction time. Otherwise, the user can extract dataelosed-open time periods.
base states that are inconsistent. WhenGb&RENIDATE A sample bitemporal table is shown in Table 1. The time
function (as well as the associat€2lURRENITIME and attributes are calletinplicit attributes andNameand Dept
CURRENITIMESTAMPunctions [16]) is present, we show are calledexplicit attributes The implicit attributes capture
that the value returned must be the commit time of the transthe time evolution of the table.
action. It turns out that the use of the commit time may The first tuple of Fig. 1 was recorded in the database on
lead to (illegal) periods that start after they end. When thisJanuary 1, 1998, stating that Joe was with the Shoe depart-
occurs, the intermediate result of a modification, computednent from that day onward. The variablesbind nowand
during the execution of the transaction, is different from theuntil changedwill be explained in detail later; for now, as-
final result, computed at the commit time of the transaction.sume they both mean “until we learn more.” The three next
While this phenomenon cannot be eliminated, we show thatuples record that Bob is with the Outdoor department in the
it can be detected and subsequently handled via transactiqreriod 1998-01-04 — 1998-01-11, Jim is with the Toy de-
abortion. partment in the period 1998-01-04 — 1998-01-12, and Jill is
The performance of timestamping during modificationswith the Shoe department in the period 1998-01-14 — 1998-
is a major concern. A performance study shows that the solug1-19. This was all recorded January 2. The information
tions suggested in the paper have efficient implementationgegarding Joe was believed correct until January 20, when
both for applications handling time-varying data explicitly it was discovered that Joe was only in the Shoe department
in the applications and in temporal databases handling timeuntil January 8, at which time he had been transferred to
varying data implicitly. the Toy department. As a result, the initial information was
We conclude that, although querying and modifying logically deleted, by placing 1998-01-20 in tfieStop at-
time-varying data is accompanied by a number of problemsribute of the first tuple, and by inserting the second tuple.
of surprising subtlety, it is possible to provide application A third tuple was inserted during that same transaction, on
programmers with simple, consistent, and efficient supportlanuary 20, to reflect that Joe had been in the Toy depart-

for bitemporal databases in the context of user ment since January 8. Finally, on January 23, we learned
transactions, without requiring any changes to the underthat this was incorrect: in reality Joe had been transferred
lying DBMS. to the Outdoor department, rather than the Toy department,

The paper is organized as follows. The next section in-on January 8. This led us to logically delete the third tuple
troduces the stratum approach to implementing temporafor Joe and insert the final tuple. As can be seen, the bene-
databases. Requirements for correctly supporting transadit of a bitemporal table is that it captures the history of the
tions handling time-varying data are listed in Sect. 3. Weenterprise, as well as the sequence of changes to that history.
then outline a new approach in Sect. 4. Sections 5 and 6 A number of quite different and more or less tempo-
provide the details for effecting correct timestamping of therally enhanced query languages exist that permit an applica-
transaction-time and the valid-time dimensions, respectivelytion programmer to modify and query bitemporal tables [17,
Different approaches for timestamping both valid time and21, 31]. For example, SQL-92 [16] and SQL3 provide little
transaction time are compared in Sect. 7. A performancéuilt-in support, leaving more work to the application pro-
study of design alternatives is presented in Sect. 8. Relategrammer. Other languages such as TSQL2 [22] and ATSQL
work is discussed in Sect. 9, and Sect. 10 summarizes an@] extend SQL-92 and provide advanced support, making
points to directions for future research. application development easier.

Using an integrated DBMS architecture to implement a
temporal data model that extends SQL with temporal sup-
port is a costly task, which only the major DBMS vendors

Table 1. The bitemporal tableEmp can accomplish._'!'he fact that existing DBMSs already man-
, age large quantities of temporal data suggests that a better
Name Dept V-Begin V-End T-Stat _ T-Stop approach is available: providing built-in temporal support to

Joe Shoe 1998-01-0hobind now 1998-01-01 1998-01-20

Bob Outdoor 1998.01.04 1098-01-11 1998.01-6@fil changed applications by interposing a stratum between an existing

Jm Toy 1998-01-04 1998-01-12 1998-01-Ontil changed DBMS and the application. _ _

Jil Shoe 1998-01-14 1998-01-19 1998-01-Gmil changed The stratum exploits the services already provided by
Joe Shoe 1998-01-01 1998-01-08 1998-01-26til changed the DBMS to offer temporal support to the application. In-
Joe Toy 1998-01-08nobind now 1998-01-20 1998-01-23 deed, to be cost-effective, this approach is used by some

Joe Outdoor 1998-01-0810bind now 1998-01-23 until changed vendors to enhance their own systems [26, 27]_ By adopt-

K. Torp et al.: Effective timestamping in databases 269

Temporal Statement Error Result In the approach for timestamping advocated here, only
| | few assumptions need be made about the temporal data
Stratum model implemented using the stratum architecture. In partic-
ular, the specifics of the built-in support for querying are not
important; only the facilities for database modification are of
[Meregemant H Perser [O“tpm Processer interest. So, we now describe precisely how temporal mod-
! ification statements are translated into SQL-92 modification
Code Generator statements.
We examine two simple types of modification statements.
SOL-92 Statement The first comprises the ones allowed in SQNSERT,
DELETE andUPDATEHere, the syntax is exactly that spec-

Underlying ified in SQL, with the stratum automatically supplying the
DBMS valid-time and transaction-time timestamps, consistent with
the semantics expected of these timestamps. As an example,

Fig. 1. The stratum architecture the following is a valid SQL-92 statement:
UPDATE Emp
SET Dept = 'Toy’
WHERE Name = ’'Joe’
ing a stratum approach, it is possible to maximally reuseAs Empis a bitemporal table, the semantics of this state-
existing technology and relatively quickly make a tempo- ment, consistent with the snapshot semantics of SQL-92, is
ral DBMS available to the application programmers, so thatto change Joe’s department now, and in the future.
they may benefit from the built-in temporal support of a For queries, we use the traditional SQL-SELECT
temporal query language. Among the disadvantages of usstatement, perhaps with explicit reference to the timestamp
ing a stratum approach is the inapplicability of well-known attributes.
temporal storage structures, temporal indices, and algorithms Table 2 shows how the modification statements may be
that implement temporal operations such as temporal joinmapped to SQL-92. The left column gives temporal query
coalescing, and timeslicing algorithms. language statements for insertion and deletion (updates are
In this paper, we assume a stratum architecture and thugombinations of deletions and insertions). Here, we use the
aim to reuse the services provided by an existing DBMS,syntax proposed for SQL3 [23], though we emphasize that
which is itself considered a black box. The problems dis-the specific syntax is not important. The right column pro-
cussed in this paper are relevant for both the stratum andlides the translation to SQL-92 effected by the stratum and
integrated architectures. However, the techniques and resultbus defines the semantics of the temporal statements. We
presented here are relevant for the layered implementatioglaborate on each translation below. The translation is pre-
of a temporal DBMS, as well as for application program- liminary because the representationsnofv, nobind now
mers who do not have built-in temporal support available,until changed start valug and stop valueusing values of
but must handle the temporal aspects directly in their ap-SQL-92 data types are not specified. Later sections will study
plications. The stratum architecture is illustrated in Fig. 1,the issues involved in providing such values, resulting in a
where the downward arrows denote flows of queries, the upfully specified definition of the modification statements.
ward arrows denote flows of data, and the boxes are software When we insert a tuple (the mapping for such an in-
components. sertion appears as the second row of Table 2), it is time-
In this figure, the user first enters a temporal statemenstamped with the periotiow — nobind nowin the valid-
(or an application accesses the DBMS using an interfacéime dimension. This states that the fact is valid from the
such as ODBC [13]). The stratum converts the temporalcurrent time until we learn more. In the transaction-time
statement to an SQL-92 statement that is executed in thdimension, it is timestamped with the peristhrt value—
underlying conventional DBMS. The DBMS sends the re-until changed denoting that it was present in the database
sult back to the stratum, which then displays the result ofstarting atstart value and persists to now, that is, until a
the statement to the user. The user cannot see that the ddt#ure transaction, or a future statement in the current trans-
is actually stored in a conventional DBMS — the stratumaction deletes or updates the tuple.
encapsulates the DBMS from the user’s point of view. A deletion of a tuple (the fourth row of Table 2) is ef-
The stratum approach is similar in some ways to thefected by updating th&-Stop attribute to thestop value
related area ofmediators[29, 30] and, more generally, of indicating that our old belief no longer holds, and inserting
integration architecturesBroadly speaking, a mediator of- a tuple to record our new belief that the tuple was valid in
fers a consistent data model and accessing mechanism totlhe modeled reality from the old-Begin time to the cur-
range of disparate data sources. The two approaches share tmt time ow). Note that all explicit attributes are copied.
emphasis on interposing a layer, termed the mediator (alsBecause the insertion useS&LECT, it must appear before
called awrapper[19]) that changes the data model of the the update statement. Note also that the inserted tuple will
data, or allows new query facilities for accessing the data. Anot be changed later by the update statement, becase
stratum differs from a mediator in that it is fully cognizant < V-End will not hold for the inserted tuple.
of the particular characteristics of the underlying DBMS and ~ Not shown in the above table is the translation of an
can exploit the constructs and facilities that the DBMS pro-SQL-92 update statement (with an implicit valid-time period
vides. of “now” to “forever”). Such an update can be stated as a

270 K. Torp et al.: Effective timestamping in databases

Table 2. Initial translation of temporal modification statements

Temporal statement SQL- 92 statement(s)
CREATE TABLE Emp (Name VARCHAR(20), Dept VARCHAR(20)) CREATE TABLE Emp (
AS VALIDTIME PERIOD(DATE) AND TRANSACTIONTIME Name VARCHAR(20), Dept VARCHAR(20),

V-Begin DATE, V-End DATE,
T-Start DATE, T-End DATE)

INSERT INTO Emp VALUES f(ew name new dept INSERT INTO Emp VALUES (new name new dept
now, nobind now start value until changed
VALIDTIME PERIOD [Start - Stop) INSERT INTO Emp VALUES (new name new dept
INSERT INTO Emp VALUES f(ew name new depx Start, Stop, startvalug until changed
DELETE FROM Emp INSERT INTO Emp
WHEREPredicate SELECT Name, Dept,
V-Begin, now, startvalue until changed
FROM Emp

WHEREPredicate AND T-Stop = until changed AND
V-Begin < now AND now < V-End;

UPDATE Emp SET T-Stop = stop value

WHEREPredicate AND T-Stop = until changed AND
V-Begin < now AND now < V-End

temporal deletion of the old values, coupled with a temporalbetween snapshot transactions and temporal transactions are

insertion of the new values. as follows. (1) For snapshot transactions, we store modifi-
cations made to tuples; for temporal transactions, we store
in addition when the modifications took place. (2) The time

3 Correct transactions when tuples were modified can be queried in a temporal
transaction. (3) In temporal transactions, the semantics of

This section concerns the correctness of transactions. WeURRENIDATE must be consistent with the timestamps
first review the notion of correct transactions in snapshotsigred in the database.

databases. Next, we turn to discuss the correctness of tem- For temporal transactions to be upwards compatible [1]

poral transactions and illustrate several subtle problems thakith snapshot transactions and because temporal transactions
arise when the correctness criteria of transactions on snaggre not fundamentally different from snapshot transactions,
shot databases are generalized to temporal databases. TRe want to retain the ACID properties as correctness crite-
discussion of correct temporal transactions in this section igia. In particular, we wish to retain the view that transactions
independent of implementation techniques, e.g., for concuripgically have no duration (i.e., that they appear to execute
rency control, recovery, and temporal attribute visibility. instantaneously) and that this execution corresponds to a se-
rial execution in commit order. The transaction timestamp
should be consistent both with the commit order and with
the clock time when the transaction committed.

, . . One might assume that as a DBMS has the necessary
We define snapshot transactions and temporal transactions A%chanisms for providing the ACID properties for snap-

database transactions on snapshot tables and temporal tablgﬁot transactions, the DBMS will automatically also retain

respectively. Note that we do not differentiate time valueSyo ac|D properties for temporal transactions. However, we
stored in attributes handled in an ad hoc fashion by appliyiy show that the timestamp attributes have to be handled
cations from time values stored in attributes handled by

fully t id violating the ACID ties.
temporal DBMS. %arefully to avoid violating the ACID properties

The correctness criteria for snapshot transactions run-
ning at isolation level SERIALIZABLE [16] are the ACID L .
properties [12]. These properties, guaranteed by the DBMS?"Z'l Problems occurring in temporal transactions
state that the transaction is an atomic unit of execution: it
commits or it aborts in its entirety. After the transaction TO motivate the need for additional requirements to tem-
has either committed or aborted, the database will be in #oral transactions, we illustrate the new problems that may
consistent state according to, e.g., primary key constraintsccur in temporal transactions by Table 1 and the exam-
referential integrity constraints, at@HECKstatements. The Ple in Fig. 2. For convenience, all timestamps on the figure
execution of a transaction is isolated from the execution of2re dates during the month of January, 1998, and we make
other transactions. Finally, the database state changes causé@ transactions artificially long to emphasize the semantic
by the transaction are made durable. problems that may occur. Note that the problems we illus-

trate may occur in DBMSs using two-phase locking.
Although our emphasis is on database modification state-
3.2 Correct temporal transactions ments, we occasionally need the ability to observe the con-
tents of the database being modified. For this purpose, we
In the transition from snapshot transactions to temporalse the SQL-92 query given below, denotg¢), that re-
transactions, the novel aspect is that we apply special serieves the snapshot state of Table 1 (Eraptable) as of a
mantics to the timestamp attributes. The three differencesime instantt.

3.1 Correct snapshot transactions

K. Torp et al.: Effective timestamping in databases 271

Table 3. Part of tableEmpon Day 10 before the update of Jim1

Name Dept V-Begin V-End T-Start T-Stop
Bob Outdoor 1998-01-04 1998-01-11 1998-01-01 1998- 01-04

Jim Toy 1998-01-04 1998-01-12 1998-01-02 1998- 01-07
Bob Outdoor 1998-01-04 1998-01-04 1998-01-04until changed
Bob Toy 1998-01-04 nobind now 1998-01-04 until changed
Jim Toy 1998-01-04 1998-01-07 1998-01-02 1998- 01-07

Jim Sports 1998-01-07 nobind now 1998-01-07 until changed

SELECT Name, Dept V-Begin of January 7 and (Jim, Toy) having\&End of

FROM Emp January 10, clearly missing our goal of transactions appear-
WHERE V-Begin <=¢AND¢ < V-End AND ing to execute instantaneously.

T-Start <= t ANDt < T-Stop

Above the time line in Fig. 2, we show the contents of The second problem is that a query, executed twice in
the Emptable on day 4 for Bob and Jim. Bob is with the a transaction and with no intermediate modifications, may
Outdoor department in the period 1998-01-04 — 1998-01-1Teturn different results. Returning different results is similar
and Jim is with the Toy department in the period 1998-01-to a non-repeatable read [12], which violates the isolation of
04 — 1998-01-12. Below the time-line we have shown twotransactions.
transactions7i and7». On days 6 and 107 updates Bob . .
to be with the Toy department and updates Jim to be withlEX@mple 2 As an example using Table 1, the execution
the Outdoor department, respectively. Furthgr retrieves ©f @(CURRENIDATE in a separate transaction on day 13
the current state of the database, usi(@), on day 11. On v_vould not include Jill in its result set; however, the execu-
day 8,7, updates Jim to be with the Sports departmaht. tion of Q(CURRENIDATE on day 15in the same transac-
starts on day 4 and commits on day 12; starts on day 7 tion W|_II return Jill in its result set, because_ Jill is recorded
and commits 2 days later. Henc®, starts after7} starts being in the Sports de_partment in the p_enoq 19_98-01-14 -
and commits befor&, commits. 1998-01'-19. Agam, this breaks the logical illusion of the

First consider only transactioff; in Fig. 2 and as- transaction being instantaneous.
sume that the statements are evaluated using the transla-
tions outlined in Table 2 and the obvious approach of usingusi
CURRENIDATEfor the variablesiow andstart value and
the maximum value of the time domain foobind nowand
until changed(in SQL-92, this is 9999-12-31). The follow-
ing two problems may occur.

The first problem is that a query may see that the
actual executions of transactions have durations in time
This makes it possible to perform a timeslice to an intra-
transaction state obtaining a result that may violate the con
sistency requirements of the database.

The two problems mentioned above can be solved by
ng a single fixed value fanow, start value and CUR-
RENTDATEwithin a transaction. Assume we use the start
times of the transactions and consider transactibnsnd

T, in Fig. 2. While our new approach solves the first two
problems, it also introduces two new problems.

The first problem is that the outcome of temporal trans-
actions is inconsistent with the outcome for equivalent SQL-
92 transactions. This violates temporal upwards compatibil-
ity [1], which requires that non-temporal transactions and
queries should return the same results when applied to ta-
bles with temporal support as when applied to non-temporal

Example 1 As an example, Bob and Jim exchanged de-
tables.

partments duringly; however, when we are usinGUR-
RENTDATEfor now, Q(8) executed in a separate transac- Example 3 As an exampleQ(11) in T3 will return the two

tion at day 14 is able to detect that Bob and Jim are withy,yje5"(Bob, Toy) and (Jim, Sports), whereas the equivalent
the same department. This is due to (Bob, Toy) having &pon_temporal) SQL-92 transaction will result in (Bob, Toy)
and (Jim, Outdoors). To understand why this occurs, look at

(Bob, Outdoor) the content of the&Emptable whenT; is ready to make the

Emp . o update at day 10. The content of tBenptable for Bob and
Jim is shown in Table 3. In this table, only two current tuples
(Jdim, Toy) are currently valid: (Bob, Toy) (tuple 4) and (Jim, Sports)
. o (tuple 6).
———— The update at day 10 in transacti®pn should update the
3 4 5 6 7 8 9 1011 12 13 14 Tipe last tuple in Table 3, because this is the tuple with current
Update Update and currently valid information for Jim. However, we are
(Bob, Toy) (Jim, Outdoor) using the start time of a transaction foow in the trans-
L ‘ —— action, which is day 4 and day 7 for transactidfis and
4 6 10 11 12 T>», respectively. Because transactityis executed during
Update Q(11) T, the predicate for a translated delete (the fourth tuple in
(Jim, Sports) Table 2) will fail on the last tuple in Table 3 because day 4
T Wg is not between the values d-Begin (day 7) andv-End

(nobind now. Recall that an update is a combination of a
Fig. 2. Problems occurring in temporal transactions delete and an insert.

272

Table 4. Part of TableEmpafter the Execution of;

K. Torp et al.: Effective timestamping in databases

Name Dept V-Begin V-End T-Start T-Stop

Bob Outdoor 1998-01-04 1998-01-11 1998-01-01 1998-01- 04
Jim Toy 1998-01-04 1998-01-12 1998-01-02 1998-01- 07
Bob Outdoor 1998-01-04 1998-01-04 1998-01-04until changed
Bob Toy 1998-01-04 nobind now 1998-01-04 until changed
Jim Toy 1998-01-04 1998-01-07 1998-01-02 1998-01- 07
Jim Sports 1998-01-07 nobind now 1998-01-07 1998-01- 04
Jim Sports 1998-01-07 1998-01-04 1998-01-04until changed
Jim Outdoor 1998-01-04 nobind now 1998-01-04 until changed

The second problem using the start time fiomw is what

in transactiornl; because the we do not know the value for

may be termed history correction, which undermines the acnow for the tuples modified during the transaction until the

countability of a temporal database.

Example 4 As an example, the execution Gf(5) at day

5 in a separate transaction will return (Bob, Outdoor) and

(Jim, Toy), becaus#; had not yet committed. However, the

transaction actually commits at time 12.

The central question is what the semantics should be for
the transactions shown in Fig. 2 and, indeed, for any trans-
action applied to a temporal database. Once the appropriate
semantics has been determined, one can then consider how

execution ofQ)(5) at day 14 in another separate transactiony, jmplement that semantics in a stratum architecture.

will return (Bob, Toy) and (Jim, Toy).

To solve the two problems using the start time of trans-

actions fornow, we can extend th&VHERElauses for the

delete in the fourth row of Table 2 to include a check

of whether theV-End attribute is equal tonobind now

The predicate for the valid-time dimension is thus ex-

tended from V-Begin < now AND now < V-End”to
“(V-Begin < now AND (now < V-End OR V-End
= nobind now ". All prior SQL-92 statements of the trans-
action are guaranteed to not affect tuples WENd =
nobind now With this extension, the outcome @} and7>»
is as shown in Table 4.

Query@Q(11) in transactiorf; now returns the same re-

sult as the equivalent SQL-92 transaction. Further, we n

3.2.2 Requirements to temporal transactions

Starting with the ACID properties and considering the prob-

lems illustrated in the previous section, we now enumerate
a set of requirements for a consistent, logical semantics for
temporal transactions.

Requirement 1All of the tuples modified by a single trans-

action must be given the same timestamp value in the data-
base. Otherwise, we have shown the problem of being able
to timeslice and see intra-transaction states, thus violating

c;he consistency of the database.

longer see Bob and Jim in the same department when exRequirement 2The value of CURRENIDATEmust be fixed
ecutingQ(5) at day 14 in a separate transaction. However,within a transaction. ILURRENIDATEchanges in a single
this approach introduces yet another problem: the start timg¢ransaction, we have shown in Sect. 3.2.1 that the query
of a period recorded in a temporal table can be after the)(CURRENIDATE on Table 1 on days 13 and 15 in the
stop time. This is obviously a violation of the properties of same transaction return different results. Fixing the value
a period. The new problem is shown in the sixth and seventlbf CURRENIDATEn a transaction is a refinement of the

tuples in Table 4 that shows the result after execufipgnd

SQL-92 semantics, in which the value 6URRENIDATE

T3 from Fig. 2 with the predicate changed for the valid-time is fixed only within a statement, but may change within a

dimension.

transactiont.

Note here that the problems illustrated in the four exam- _
ples above also occur if we record facts with a granularityRequirement 3The start time of a time period assigned to a

of seconds instead of days.

tuple must be smaller than or equal to the stop time of the

The fundamental problem of using the start time of aperiod. Otherwise, we violate the properties of a period.

transaction fomow is retroactive modifications of exposed
tuples. That is, a transaction with start tire can modify

a tuple also modified by a transaction with start time
andt, > t,. The problem was illustrated by transactidhis
and 73 in Fig. 2. These both update the tuple for Jim.
starts at day 4 and), starts at day 7. Howevef, modifies
and commits beford) modifies Jim, causing the problems
described above.

To avoid the problems associated with using the star

time for now, we will finally use the commit times of the
transactions as their values folow and for CURRENT

DATE When the value of either is needed, we postpon
applying the value until the transaction is ready to commit.

e

Requirement 4The timestamp used for a transaction should
not be after the commit time of the transaction. Using a
timestamp after the commit time, e.g., by adding 2 days to
the start time of the transaction and aborting all transactions
running for more than 2 days, results in an inaccuracy where
a tuple is not visible for querg)(CURRENIDATE from the
time the transaction actually commits until the time chosen

as the commit time of the transaction.
|

1 While the value is fixed within a statememthich fixed value to use is
left entirely to the implementor. General Rule 3 of Subclause<gi8tetime
value function> of the SQL-92 standard states “If an SQL-statement gen-
erally contains more than one reference to one or modatetime value
function>s, then all such references are effectively evaluated simultane-

This approach solves all of the above problems, but again inpusly. The time of evaluation of thedatetime value function during the

troduces a new problem. We cannot return a resu{p@f1)

execution of the SQL-statement is implementation-dependent.” [15, p. 110].

K. Torp et al.: Effective timestamping in databases 273

Requirement 5The result ofQ(¢,) at timet, should the same database states (requirem&d) and that transactions should
as the result of)(¢1) at timetz, wheret; < t; andt; < t3. As be able to see their own modifications (requirenf®@), can
discussed abové)(5) on day 5 in a separate transaction will be fulfilled by usingtimestamping after commj20]. How-
return Bob as being with the Outdoor department. Howevergver, timestamping after commit does not make it possible
if we use the start time for timestamping@,(5) on day 14 for a temporal transaction to see the values of timestamp at-
in another transaction will return Bob as being in the Toy tributes it has previously modified (requiremé&tit). Hence,
department. requirementsR1 and R7 are mutually exclusive. The first

. . requires that we use a value foow after all locks are
Requwement 6?_I'¢mporal transactions must be .able to Seeacquired, whereas the second requires that we use a value
their own modifications, e.g., after a transaction has Upy,efore the first lock is acquired

dated a tuple, all explicit attributes of the updated tuple petaining transaction-consistent previous database states
must be visible to a query immediately following the up- (.o irementR1) is more important than seeing perma-
date in the transaction. Otherwise, is the visibility of ex- nent timestamps within transactions (Requirenf@a. We

plicit atributes different in temporal transactions comparedineefore focus on how to make previous states transaction-
to snapshot transactions. consistent. The unavoidable consequence is that the value of

Requirement 7A transaction must be able to see the valuesT-Start or T-Stop for tuples modified by a transaction
of timestamp attributes of tuples it had previously modified.are not known during the transaction.

This is an extension of requirement 6 to include the implicit ~ The use of the commit time for timestamping modifica-
attributes of a temporal table. tions is dictated by requiremef1 and affects requirement

R9. As an example, had the que€y(11) in transactiori}
Requirement 8.The level of concurrency in a database in Fig. 2 selected th&-Start andT-Stop attributes, this
should not be lowered significantly when temporal support iswould have to result in an error or a warning. Minimizing
added, such as by requiring that all transactions be executefle effect on the temporal query language is discussed in
sequentially. Sect. 4.

Requirement 9The timestamping approach should not re- __NOte that the use of the commit time foow does not.

strict the temporal query language. As an example, a very ef[esult in S|gn|f|cantly lowering the level of concurrency in
ficient timestamping approach that disallows valid-time peri—a"d?t?b%ie (rf?ﬁi'ﬁrsn?zgﬁi:gﬁ/g’ é?cl8<s4must be held
ods into the future is not appealing. Such a restriction would®'9NtY 1oNger, ect. 8.4

reduce the benefits of a temporal database.

These requirements are used as guidelines for designing A new approach
a timestamping approach for transaction-time and valid-time
tables. Unfortunately, some of these requirements are mutue now show how the problem of not knowing the perma-
ally exclusive or may affect each other. We discuss this innent timestamp of modified tuples within a transaction can
the following, but discuss first the implications of assuming be minimized. Specifically, we propose using a temporary
a stratum architecture. value for the timestamp and then revisit tuples after all locks
We want to implement the timestamping approach usinghave been acquired, to replace the temporary value with the
a stratum architecture. The rationale for building on top of a(now-known) permanent timestamp.
conventional DBMS is to be able to reuse its functionality. = There are three major differences between the approach
Most of the major DBMSs use locking as a concurrencypresented here and previous approach to timestamping [20,
control mechanism [4]. We therefore assume that two-phas@4]. First, we consider both valid time and transaction time,
locking is used to provide the isolation property of the ACID compared to transaction time only. Second, we consider an
properties. The use of two-phase locking has some impactentire temporal query language and do not restrict ourselves
on timestamping in the stratum, as explained next. to timeslice (“as-of") queries. In particular, we consider the
Salzberg has shown that to achieve a transaction-consighisplay of the temporal attributes. Third, we assume a stra-
tent view of previous database states (requirer®t it is tum architecture, meaning that we reuse the services of, but
necessary to use the same timestamp for all modificationalso cannot change, an underlying DBMS.
within a transaction [20]. The timestamp must be after the Figure 3 illustrates our approach. In Fig. 3A, we show
time at which all locks have been acquired. Otherwise, thehe times when a transaction starts, when it has acquired
timestamps will not properly reflect the serialization order all locks, and when it commits. The shaded strip indicates
of transactions [20]. the time period, from the time when all locks have been
To make it possible for transactions to see their ownacquired to the time when the transaction commits, where it
modifications (requiremeriR6), it may be necessary to as- is possible to revisit and update tuples with their permanent
sociate timestamps with tuples before all locks have beetimestamp. Tuples modified between the time the transaction
acquired [20]. Specifically, at the time of the first modifi- started and the time when all locks were acquired must be
cation in a transaction, we may not have all locks, but werevisited.
must associate a timestamp with the modified tuples because In a conventional DBMS, typically using strict two-phase
a query follows the modification. However, it is not possible locking [2], it is not known that all locks have been acquired
to get the permanent timestamp. until when the transaction’s final statement is reached, i.e., at
The two requirements to temporal transactions discussedser-commit. Further, a stratum has no access to the internals
above, retaining a transaction-consistent view of previousof the underlying DBMS. We therefore postpone reading

274 K. Torp et al.: Effective timestamping in databases

Transaction All Locks i
Start Acquired Commit
|
| -
Read Timestamp Time
and Revisit
A
i All Locks User System
Tra&fﬁlon Acquired Commit Commit Fig. 3. A Temporal transactiorB Mapping a temporal transaction
| | - to SQL-92
Read Timestamp ~ Time
and Revisit
B

the timestamp until after user-commit and then revisit the We first give an example that raises four design issues
tuples modified by the transaction to apply the permanentvith respect to transaction timestamping. The issues are dis-
timestamp; the transaction then actually commits by havingcussed in turn, thus providing the details of how to imple-
the stratum issue a commit to the underlying DBMS. Thisment timestamping after commit for transaction time.
sequence of events is illustrated in Fig. 3B.

Using the approach shown in Fig. 3B, we read the time-
stamp after user-commit, referred to as teenmittimeBe- 51 aAp example
cause we do not yet know the commit time when a transac-

tion modifies a tuple, we set the appropriate transaction- . . L
time attribute to a temporary value and store in the tu-AS @n example of timestamping a transaction-time table,
ple the transaction id of the transaction modifying it. Af- consider the&emptable from before that stores the names and

ter user-commit, we read the system clock and save thgepartments O.f employees. To cre@mpas a transaction-
transaction id and the timestamp inGommitTime ta- time table, we issue the temporal staten@REATE TABLE
ble that has the schem&@ID INTEGER, Commit-Time Emp (Name VARCHARE@O)’ Dept VARCHAR(30))
DATH. We subsequently revisit all tuples modified by the AS _TRANSACTIO_NTIM As three separate transactions,
transaction and apply the timestamp stored in@oenmit W€ iSSue an insertion, an update, and an update followed by
Time table. We remove the transaction ids from tuples and® 9Uey. as indicated in Fig. 4. The modifications are ex-
delete the entry in th€ommitTime table. This extra step pressed In .plaln SQL-92; the tempqral semantics automat-
is similar in some ways to the revisit step in Postgres [24]./Cally supplies values for the tuple timestamps, as outlined

We term our approachiimestamping after Commit with Re- ' S€ct. 2. .
visitation. PP ping Table 5 shows th&mptable after the three transactions

The use of timestamping after commit with revisitation Comgmt- As can be seden from Table 5, we add two time
adds two additional requirements to temporal transactions?t" utt)(l—:-s,T—Srt]art ha” T-Stop .I g
First, timestamps that eventually are identical (i.e., are as-_aole 6 shows %W tﬁmpora stateLr}entsb?re_ mappe I_to
sociated with tuples modified by the same transaction) muszL.'92 statetr)rllents y t_g: ;tratuml. This table is a smpa—
not appear temporarily to be different. Otherwise, the wrong/ication of Table 2, considering only transaction time an
result will be returned when timestamps are compared. Sectilizing timestamping after commit with revisitation. For
ond, the effect of temporal modifications within a transac-

simplicity, we assume that all explicit attributes occur in
tion should be easily understandable to the user writing thanedification statements. When we insert a tuple, it is time-

transaction. stamped with the periotemporary value- until changed

The specifics of how to implement the timestamping after™ d€letion of a tuple is mapped to an update of Thgtop
commit with revisitation in a stratum are discussed in de-2itribute of the tuple taemporary value A tuple qualifies
tail in the next two sections. First, we discuss timestamping®" deletion if it satisfiesPredicateand is current. An up-

the transaction-time dimension, then we examine the consegare’ noft ihow:g in 'Il'atszl 6, iz ik;nplemented la.s a temfpcr)]ral
quences of introducing the valid-time dimension. elete of the old tuple followed by a temporal insert of the

new tuple. We do not show the mapping of insertions and
deletions with user-supplied times, because such statements
are permitted only for tables with valid-time support.
5 Transaction timestamping When a user commits, we record the transaction id
and CURRENIDATE in the CommitTime table. All tu-
. . . . L ples modified by the transaction are then revisited. Tuples
In this section we describe how timestamping in a trans-qearted by the transaction have theStart attribute up-

action-time table can be achieved. Where there are obvioUgateq to the commit time of the transaction. Similarly, tuples
choices, we identify a particular approach. Where there are

several possibilities, we list them and postpone choosing one Again, the details of the temporal extensions are not important. We use

approach Um.“ Sect. 7, where we present a specific approachiparticular syntax [23] only to provide a specific example for expository
to timestamping. purposes.

K. Torp et al.: Effective timestamping in databases

-- on 1998-01-06:

INSERT INTO Emp VALUES ('Joe’, 'Shoe’);
COMMIT;

-- on 1998-01-16:

UPDATE Emp SET Dept = ’'Sports’
WHERE Name = 'Joe’;

COMMIT;

-- on 1998-01-27:

UPDATE Emp SET Dept = 'Outdoor’
WHERE Name = 'Joe’;

SELECT Name, Dept, T-Start, T-Stop
FROM Emp;

COMMIT;

Fig. 4. Using the transaction-time tablEmp

Table 5. The transaction-time tabl&mp

Name Dept T-Start T-Stop

Joe Shoe 1998-01-06 1998-01-16
Joe Sports 1998-01-16 1998-01-27
Joe Outdoor 1998-01-27 until changed

275

We can warn the user during query analysis when a state-
ment referencing a transaction time attribute is encountered
after a modification statement. (4) We can simply return the
temporary value stored.

Disallowing references to timestamps restricts the query
language, which we prefer not doing (cf. requiremB$).
Simply returning the temporary value can be a great surprise
to users and may lead to misunderstandings (if the temporary
timestamps are relative to the smallest timestamp, the user
would indeed be surprised that the tuple appeared to be in-
serted in 1 A.D.!). This leaves us with the choice of making
it a semantic error or issuing a warning. We find the warning
more appropriate, because allowing reference to transaction
time after modifications within the same transaction is then
a decision made by the user, rather than by the system. The
warning is of the form: the transaction times displayed may
change after the transaction commits.

The temporary value must fulfill two requirements. First,
it must make the tuple qualify for the current transaction-

time state when the transaction-time attributes are referenced
in a WHERElause. Second, it must be a sensible value
deleted by the transaction have th&Stop attribute up- to return when the transaction-time attributes are used in
dated. For the twaJPDATEstatements, th&VHERElause a SELECTclause. The possible choices for the temporary
is deliberately vague; how to identify tuples modified by value are as follows.
a transaction is described in Sect. 8. After cleaning up the
CommitTime table, the transaction actually commits. If the
modification statements in Fig. 4 are translated as indicated™
in Table 6, the result is Table 5.

Studying this example raises four questions, which we
address in turn in the following sections.

— Use the start time of the transaction.

Use the time when the temporary value is first needed,

e.g., the time of the first modification.

— Use multiple values within a transaction, e@QJRRENT
DATE

hat is th lueof th L The first two alternatives will make the modified tuple

— What is thetemporary valueof the transaction-time at- o, 5jify for the current state and are sensible values to display
tributes for tuples modified within a transaction? As an .y 1a user along with a warning that the values change
example, the selection ('jn F;]g. 41 execgged befforr]e th€yhen the transaction commits. Note that the time of the first
transaction is committed. The-Stop attribute of the 1 ification within a transaction can be identified by the

second tuple and thé-Start attribute of the third tu- P : i
; . arser in Fig. 1 and stored as part of the transaction state in
ple of Table 5 will then have a temporary value. Which Fhe stratum.g P

value should be displayed for these attributes? We rule out using multiple values of two reasons. First,

— When a transaction commits, the modified tuples must be,q qjsessed in Sect. 3, this can lead to non-repeatable reads
revisited. In a multi-user system, how do we guarante§, hen, the same query is executed twice in a transaction, e.g.,
that_ tples are u_pdated with the appropriate commit tlrnedisplaying the timestamps of a tuple inserted by the trans-
during the revisit phase? . action. Second, it makes tuples temporarily have different

— How shoulduntil changedbe represented, e.g., in the (imegtamps values for timestamps that eventually get the

SELECT"? _Fig. 42 . . same value, which we do not allow (cf. requirem&itand
— Must modified tuples be revisited before the transaction,« discussion in Sect. 4).

actually commits?

5.3 Associating transaction ids with tuples
5.2 Finding a temporary timestamp value

We use a transaction id when revisiting tuples to identify the
Using timestamping after commit with revisitation, per- tuples being modified. There are several ways to associate a
manent transaction timestamps are first applied after usetransaction id with tuples. First, we can store the transaction
commit. A potential problem therefore occurs when a trans-ds directly in the tuples. In such an approach, the stratum
action first modifies the database and then queries it, referadds an extra attribute when it passe€REATE TABLE
ring to the transaction timestamps. For example, this probstatement to the underlying DBMS. Storing the transaction
lem occurs in the last transaction in Fig. 4. In general, manyids in the tuples can be done in two ways: in an extra attribute
temporal queries may refer to the tuples’ timestamps. Ther@r encoded in the timestamp attributes themselves.
are several possible responses to this situation. (1) We can Using an extra attribute is straightforward: we simply
disallow queries that access the timestamps. (2) We can treatore the transaction id in this attribute; Postgres uses this
it as a semantic error when a transaction modifies a tuple andpproach [24]. In contrast, storing the transaction id in a
subsequently queries the transaction time of that tuple. (3)ransaction-time attribute requires type conversion, because

276

K. Torp et al.: Effective timestamping in databases

Table 6. Mapping statements on transaction-time tables into equivalent SQL-92 statements

Temporal statement

Resulting SQL-92 statement(s)

INSERT INTO Emp VALUES f(ew name new depx

INSERT INTO Emp VALUES

(new name new dept temporary value until changed
UPDATE Emp SET T-Stop temporary value
WHEREPredicate AND T-Stop = until changed
¢ + CURRENIDATE;
INSERT INTO CommitTime VALUES (transactionid c);
UPDATE Emp SET T-Start = ¢
WHEREuple inserted by transaction ;id
UPDATE Emp SET T-Stop = ¢
WHEREtuple deleted by transaction;id
DELETE FROM CommitTime
WHERE TID =transaction id
COMMIT

DELETE FROM Emp
WHEREPredicate
COMMIT

the domain of transaction-time attributes differs from theally will not be able to distinguistuntil changedfrom the
domain of transaction ids (typicallfIMESTAMPversus value with which it is represented. Even avoiding these pos-
INTEGER. Collision between the encoded transaction idssibilities, several values are still available for representing
and actual timestamps can be avoided because transactiomtil changed Specifically, three possible values remain.
timestamps are larger than the time when the database was

created. Thus the transaction ids can be relative to the small-— Any time before the database was created.

est timestamp (typically 0001-01-01): the first transaction id — The largest value in the domain (9999-12-31 in SQL-92).
is mapped to the smallest value in the time domain, the sec-— The valueNULL

ond transaction id is mapped to the second smallest value in . N
Using a value before the database was created implies

the time domain, and so on. When storing the transaction id h oo | b ller than th
in the transaction-time attributes, we must in addition storelnat the transaction-time stop value may be smaller than the
nsaction-time start value, which we do not allow (cf. re-

the temporary value as discussed in Sect. 5.2. The temporary”. . y .
porary b uirementR3). The requirement can be fulfilled by using

value could, e.g., be stored in a small main memory has . . .

the largest value in the domain. The last alternative, us-
structure. . . : :

ng NULL for until changed is also possible because the

The choice of using an extra attribute versus convertin) . BEULL: hus * .
transaction ids in order to associate a transaction id within tulransaction-time stop cannot we can thus “reuse
ULL without overloading it. FurthefNULL often requires

ples represents a space-time trade-off. The conversion m) .

be useful, but is not very elegant in SQL-92, where thel©SS Space in a database than other timestamps.
conversion betweefNTEGER and TIMESTAMPIs via an

INTERVAL [16]. This means we first have to convert a trans-) o

action id to anNTERVAL and next have to add the interval 5-5 Strategies for revisiting tuples

to the smallest value in the time domain. This manipulation

would be done in the first and second rows of Table 6 beforeYet another issue is when to update temporary timestamps to
the insert and update in the second column. A reverse, twothe permanent commit times, or to be specific, when to exe-
step expression is needed to decode a transaction id aga@tite the two updates and the delete for the translated commit
when identifying the tuples to update in the second columrstatement in Fig. 6. We prefer flexibility in scheduling these
of the third row in Table 6. database modifications.

As another alternative, we may store the transaction ids Because revisiting tuples adds to the system load, to be
separately from the tuples. Here, the stratum defines for eactiiscussed further in Sect. 8.4, we first identify which mod-
user-specified table a new table that stores the tuple id, théications and queries need permanent timestamps. Second,
transaction id, and the timestamp attributes affected by thave explore different approaches for updating the temporary
modification. This approach has the consequence that twmestamps to the permanent values, the purpose being to
tables must be updated for each modification, compared witfind the most efficient approach.
one table when storing the transaction ids directly in the In Sect. 5.1, we described a scenario where the tempo-
tuples. rary values of the transaction-time attributes are updated to
the commit time right after user-commit. Examining which
modifications and queries that need to know the perma-
nent transaction timestamps, we see that no modifications
and queries on the current state depend on the permanent
Another and separate issue is the representationntf transaction timestamps; the current states are the tuples
changed All tuples not logically deleted are timestamped with until changedin the T-Stop attribute. Only modi-
with until changedin the T-Stop attribute as shown in fications and queries on previous states depend on the per-
Table 6. The value fountil changedcannot be between manent transaction timestamps for their correct execution.
the time the database was created and the current time; us&s queries on previous states are often syntactically iden-
ing a value in the near future is also not a safe optiontifiable, e.g., [3, 23], syntactic analysis can decide when
These representations are ambiguous because we evenpermanent transaction timestamps are required for reasons

5.4 Representation of until changed

K. Torp et al.: Effective timestamping in databases 277

of correctness of query processing. As an example, selectttributes are rarely referenced, say, no more than two or
ing all tuples (with their transaction timestamps) can be ex-three times in the lifetime of a tuple [24].

pressed aFRANSACTIONTIME SELECT * FROM Emp

in an SQL3 proposal [23]. Selecting the current transaction-

time state (without transaction timestamps) is expressed simg Adding valid timestamping

ply as SELECT * FROM EmpTrhe keywordTRANSAC-

TIONTIME makes it possible to determine when Correct, |, s section we discuss how the valid-time dimension is

perr;anent(;!fr_ne?_tamps ‘Zre needed atnd not _nee?hed. timestamped. The valid-time dimension is different from the
or moditications and queries not requinng the perma-y ansaction-time dimension in that the valid-time periods as-

nent timestamps, there are several ap.proaches to the revisifyciated with tuples may be user-supplied. Further, for the
ing of tuples to apply the permanent timestamping. valid-time dimension an additional special valid-time value

— Eaget For each transaction, the permanent timestamp iss defined:nobind now([5].
applied immediately, at user-commit.
— Low system usageOn low system load, e.g., during
lunch breaks or late at night, the tuples are revisited. 6.1 An example
— Piggy-backing On pages brought into the buffer, check
if any tuples need to be revisited, and then do so. We describe the general idea of adding valid time by redefin-
— Explicitly scheduled revisitingRevisit tuples at times of ing the Emptable from Sect. 5.1 to be a bitemporal table.
expected low system load, e.g., at 2 a.m. every night. The example will raise two questions on how to timestamp
— Lazy Reuvisit only tuples with the temporary timestamps the valid-time dimension, which we then address.
when a query refers to the timestamps and the permanent T changeEmpto a bitemporal table, we issue the tem-

values are needed to process the query correctly. poral statement [23ALTER TABLE Emp ADD VALID-
— Never If a query needs the permanent timestamp of aTyME PERIOD(DATE) on February 1. The tuples already
tuple, extract it from the&CommitTime table. in the table are timestamped with the valid-time period 1998-

The eager approach was implicitly assumed in Sect. 5.102-01 —nobind now where nobind now has a semantics
It can be implemented by using after-triggers. The approact$imilar to until changedfor the transaction-time dimension
is attractive if imestamps are often referenced in queries an@nd means “until we learn more.

modifications. However, the approach is less cost efficient Ve also consider a new type of modification, which is a

The “low-system-usage” approach is used in postgregnented statement, the user specifies the valid-time extent of
[24]; it is appropriate for an integrated architecture. How- the modification.
ever, the approach is not well suited in a stratum becausga IDTIME PERIOD ’[1998-02-01-1998-03-01)
it requires scheduling of an asynchronous process based QippaTE Emp
the system load. It is hard to obtain this fine-level degree ofggt Dept = 'Toy’
control of the underlying DBMS from the stratum. WHERE Name = 'Joe’
The “piggy-backing” approach is not possible in a stra-
tum, as the movement of pages in and out of the buffer is
transparent to, and cannot be controlled by, the stratum. This update reflects that Joe was in the Toy department dur-
Explicit scheduling of the revisit is a good choice if there ing the month of February, 1998. We allow the temporal
are only current-state queries. The approach is not sufficierextent to be specified for all three types of modification
if there is a mixture of current-state and past-state queriestatements.
within a transaction. Such queries may not execute correctly To add more tuples to the bitemporgmp table, we
if a revisit has not yet occurred, because queries assumexecute the temporal statements in Fig. 5. On February 1,
that the permanent timestamp values are already in placee insert Kim in the Sports department. On February 2,
for committed tuples. The approach will have to be used inwe insert that Jill will be in the Sports department in the
combination with the lazy approach, or the never approachperiod 1998-02-05 — 1998-02-14. In the SQL3 proposal, this
both of which are now described. is indicated by prefixing a query witMALIDTIME <period
The lazy approach takes advantage of the fact thaspecification-. On February 13, we update Kim to be with
queries requiring permanent transaction timestamps can bie Toy department, and on February 16, we delete Kim.
identified by the stratum, which will then first update the Finally, on February 27, we record that John has and always
transaction timestamps. This may be very cost efficient ifwill be in the Toy department.
few queries depend on the permanent transaction timestamps Table 7 shows thEmptable resulting from the execution
for their correctness. of these transactions. As can be seen, we include four im-
The never approach does not apply the timestamps fronplicit attributes in bitemporal table¥/-Begin andV-End
the CommitTime table to the temporal tables at all, but for valid time, andT-Start andT-Stop for transaction
rather is applicable only if the timestamps are retained intime.
a separate table. In the never approach,GoenmitTime We next turn to how the stratum converts modifications
table is joined with the temporal table when referring to thein a temporal query language on bitemporal tables to SQL-
transaction-time attributes. This will be expensive for large92 modifications on SQL-92 tables. The conversion is shown
temporal tables, and is mostly useful if the transaction-timein Table 8.

278

Table 7. The bitemporal tableEmp

K. Torp et al.: Effective timestamping in databases

Name Dept V-Begin V-End T-Start T-Stop

Joe Shoe 1998-02-01 nobind now 1998-01-06 1998-01-16
Joe Sports 1998-02-01 nobind now 1998-01-16 1998-01-27
Joe Outdoor 1998-02-01 nobind now 1998-01-27 until changed
Kim Sports 1998-02-01 nobind now 1998-02-01 1998-02-13
Jill Sports 1998-02-05 1998-02-14 1998-02-02until changed
Kim Sports 1998-02-01 1998-02-13 1998-02-13until changed
Kim Toy 1998-02-13 nobind now 1998-02-13 1998-02-16
Kim Toy 1998-02-13 1998-02-16 1998-02-16 until changed
John Toy 0001-01-01 9999-12-31 1998-02-27until changed

Table 8. Mapping statements on bitemporal tables into equivalent SQL-92 statements

Temporal statement

SQL-92 statement(s)

INSERT INTO Emp VALUES f(ew name new depx

INSERT INTO Emp VALUES (hew name new dept
now, nobind now temporary value until changed

VALIDTIME PERIOD [Start - Stop)
INSERT INTO Emp VALUES few name new depf

INSERT INTO Emp VALUES (new name new dept
Start, Stop, startvalug until changed

DELETE FROM Emp

INSERT INTO Emp

WHEREPredicate SELECT Name, Dept,
V-Begin, now,

FROM Emp

WHEREPredicate AND T-Stop = until changed AND
V-Begin < now AND now < V-End;

UPDATE Emp SET T-Stop = temporary value

WHEREPredicate AND T-Stop = until changed AND
V-Begin < now AND now < V-End

INSERT INTO Emp

SELECT Name, Dept,

temporary value until changed

VALIDTIME PERIOD [Start -
DELETE FROM Emp

Stop)

WHEREPredicate V-Begin, Start, startvalue until changed

FROM Emp

WHEREPredicate AND T-Stop = until changed AND
V-Begin < Start AND Start < V-End;

INSERT INTO Emp

SELECT A1, ..., An,
Stop, V-End, start valug until changed

FROM Emp

WHEREPredicate AND T-Stop = until changed AND
V-Begin < Stop AND Stop < V-End;

UPDATE Emp SET T-Stop = stop value
WHEREPredicate AND T-Stop = until changed AND
V-Begin < Stop AND Start < V-End

When we insert a tuple without a user-specified valid- An update, e.g., that updates Kim to be in the Toy depart-
time period, it is timestamped with the periadw —nobind ~ ment on February 13, is a temporal delete of the old values
now in the valid-time dimension. This states that the tu- followed by a temporal insert of the new values. Similarly,
ple is valid from the current time until we learn more. In an update with a user-specified valid-time period is a delete
the transaction-time dimension, it is timestamped with thewith a user-specified valid-time period followed by an insert
period temporary value— until changed For an insertion with a user-specified valid-time period.
with a user-specified valid-time period, the user-specified When the user enters commit, the approprigtstart
V-Begin andV-End attributes are simply inserted into the and T-Stop attributes are updated, similarly to what oc-
database. The transaction-time dimension is timestamped asirred in Table 6.
before. If the statements described in Table 8 are applied to the

Deletions of tuples are mapped to logical deletions oftransactions in Fig. 5, Table 7 results.
currently valid tuples. A tuple is logically deleted by up- We now address in turn three questions with respect to
dating theT-Stop attribute totemporary value The up- timestamping the valid-time dimension. How ®w rep-
date is followed by an insertion that records the new beliefresented, what shoulBURRENIDATEbe mapped to, and
that the tuple was valid in the modeled reality from the old how is nobind nowrepresented?

V-Begin to the current timer{ow). All explicit attribute
values are copied.

For a delete statement with a user-specified valid-time
period, two insertions are needed, one for the portion of the
original tuple’s valid time that idefore the user-specified
period, and one for the portion after the user-specified periodSection 3 illustrated that a single value foow must be
The last statement, the update, terminates the original tuplaised throughout a transaction in order to avoid violating the

.2 Handling now

K. Torp et al.: Effective timestamping in databases

-- on 1998-02-01:

INSERT INTO Emp VALUES ('Kim’, 'Sports’);
COMMIT;

-- on 1998-02-02:

VALIDTIME PERIOD [1998-02-05 - 1998-02-14)
INSERT INTO Emp VALUES (Jill', 'Sports’);
COMMIT;

-- on 1998-02-13:

UPDATE Emp SET Dept = 'Toy’

WHERE Name = 'Kim’;

COMMIT;

-- on 1998-02-16:

DELETE FROM Emp

WHERE NAME = ’Kim’;

COMMIT;

-- on 1998-02-27:

VALIDTIME PERIOD [0001-01-01 - 9999-12-31)
INSERT INTO Emp VALUES('John’, 'Toy");
COMMIT;

Fig. 5. Modifying the bitemporal tableEmp

-- on 1998-02-20:

INSERT INTO Emp VALUES (‘James’, 'Shoe’);
VALIDTIME PERIOD [1998-02-01 - 1998-02-21)
DELETE FROM Emp

WHERE Name = 'James’;

COMMIT;

Fig. 6. A race condition in a delete transaction

279
T1 T2
Ins a Ins
Time

Fig. 7. The general problem using the commit time faw

The result of the two transactior’s and 7, does not
correspond to any serial execution of the transactions. In a
serial execution, the two problems discussed above cannot
occur because the start times will reflect the commit order
of the transactions.

Because using the start time as well as using the time
of the first modification fornow can lead to violation of
the isolation property of transactions, we elect to use the
commit time fornow. For transactions to be able to see
their own modifications to the valid-time dimension, modi-
fied tuples are given eemporary valueand are revisited, to
update thegemporary value after user commit. We use the
same temporary value farow as for until changedin the
transaction-time dimension.

Using the commit time eliminates both the problem of
current time moving backwards and the violation of the iso-
lation property. The drawback is that modified tuples must
be revisited, which requires extra resources. However, in the
case of bitemporal tables, the tuples must be revisited any-
how, to apply the permanent transaction-time timestamps.
Thus, the number of tuples that are to be revisited is not
increased.

consistency property. The question is, then, which value to However, for valid time revisitation raises a new prob-

use fornow. We see the following possibilities.

— The start time of the transaction.

— The time of the first modification in the transaction.

— The commit time of the transaction.

lem. Consider the example in Fig. 6. This transaction inserts
James in the Shoe department and then deletes James from
the the Sports department in the period 1998-02-01 — 1998-
02-21. This leads to a race condition. If the transaction com-
mits on February 20, the delete will have an effect on the
inserted tuple. If the clock ticks and the transaction actually

It has been shown that using the start time of the transeommits on February 21, the update has no effect on the
action can lead to the current time appearing to move backinserted tuple because the valid-time period associated with
wards [10]. It has also been shown that using the time of theéhe insertion no longer overlaps with the valid-time period
first update can cause a violation of the isolation property specified in the delete. When the delete is actually executed,
even when two-phase locking is used [10]. Both problemsthe commit time is not known, and we cannot determine
occur because neither the start times nor the times of thevhat to do.
first updates in transactions reflect the commit order of the The general problem is illustrated in Fig. 7. Here, the cir-

transactions.

cles (filled or non-filled) represent timestamp values given

It is also the case that using the start time of the transexplicitly in a modification statement, and* represents

action can result in the violation of the ACID properties, the temporary value ofiow used in modifications. The se-
because the transactions are no longer serializable. Considguence of modifications within a transaction that can cause
Fig. 2 again. Assume Jim was inserted in the Shoe departhe problem is an insertion (or an update) of one or more
ment on January 2 and we are using the start time of theuples usinghow (indicated by the two “a™s in Fig. 7), fol-
transaction fonow. The result after the execution @f and lowed by a deletion (or an update) of the same tuples, using
T, is shown in Table 3. an explicitly given period that overlaps with the temporary
First, notice that the seventh tuple is timestamped withvalue ofnow(indicated by the two “b™s in Fig. 7).
the valid-time period 1998-01-07 — 1998-01-04; the value Syntactic analysis may be applied to detect when the
of V-Begin is larger than the value 0f-End. Second, problem may occur. We have to store the smallest explicit
notice that the fifth and the eight tuples are both in the curtimestamp value for any periodow — explicit timestamp
rent transaction-time state (the current time is 1998-01-04within a transaction. If the smallest explicit timestamp value
and have overlapping valid-time periods, namely 1998-01-04s smaller than the commit time, the problem is present. We
— 1998-01-07 and 1998-01-04 nebind now respectively, have not found any way of solving the problem and getting
even though Fig. 2 shows that Jim was only in a singlea clear semantics. Therefore, when this situation occurs, the
department at any point in time. transaction is declared illegal and is rolled back.

280 K. Torp et al.: Effective timestamping in databases

T T T T T T T T T T T T~
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 :
-- on 1998-02-20: Time

VALIDTIME PERIOD [CURRENT_DATE - 1998-02-21) T | ‘ ‘ |
INSERT INTO Emp Values (‘James’, 'Shoe’); Insert(Joe, Shoe) M
COMMIT; T,

A

Insert(Tim, Shoe)
Fig. 8. A race condition in an insert transaction T,

A

Insert(Lee, Shoe, 15, 25)

6.3 HandlingCURRENIDATE Fig. 9. Using a single value foCURRENIDATEIn queries

The presence offURRENIDATE (and CURRENITIME)

and CURRENITIMESTAMP in queries and in modifica- The content of th&mptable on February 19, whel is

tion statements causes some problems. Users expect that thady to execute, is shown in Table 9. Remembghas not
value is identical to the value afow that is stored in tuples, Ccommitted yet, which meang-Begin and T-Start of

yet that latter value is the commit time for the transaction.the first tuple have a temporary value, 1998-02-08, because
So, we must map usages GURRENIDATEinto expres- this is when the value is first needed Th. To emphasize
sions consistent with the value obw. this, these temporary values are shown in italics.

We will address the handling @URRENIDATEin two T1 now executes the modificatioh/. Referring to the
steps. First, we handle this function in the context of mod-delete in Table 8 and assumingbind nowhas a reasonable
ifications, discussing implications of several alternative ap-value, the first tuple is deleted becaté®egin is smaller
proaches. Second, we consider the function in queries anf@n or equal to the value afow. The second tuple has a

again discuss implications of various approaches. V-Begin Iarggr than the value afow. Hov_vever, it must be
deleted to fulfill the SQL-92 query requirement. The tuple

is inserted by a transaction that commits before the deletion
6.3.1 CURRENIDATEIin modifications is applied. The third tuple is also inserted by a transaction
that commits before the deletion is applied, and the tuple
A user may specify arbitrary valid-time periods in modifica- is in the current bitemporal state wh&h commits. This
tion statements. The combination of using the commit timecould indicate that the third tuple should also be deleted.
for bothnow and CURRENIDATEand the constraint (cf. re- However, the valid-time period associated with the tuple
quirementR3) thatV-Begin must be smaller thaw-End does not overlap with the value abw.
can cause problems in transactions, as shown in Fig. 8. Here The impact of using one value farow in transactions
we use a period constructor, which takes two SQL-92 datecan be summarized as follows. Tuples that havwé-End
time expressions as arguments. value of nobind nowwill be affected by modifications in a

The transaction inserts a tuple and timestamps it with thdéransaction, even if the value abw used in the transaction
period now — 1998-02-21. This leads to a race condition. is smaller than th&-Begin attribute values of the tuples.

If the transaction commits on February 20, no anomaliesThis ensures that SQL-92-like modifications on temporal ta-
occur. However, if the transaction does not commit beforebles have the expected results. For tuples with an explicit
February 22, the/-Begin will be larger than the/-End value inV-End , read-level consistency within a transaction
value, which is not allowed. is provided.

A possible approach to addressing this problem is for It is important that the valid-time periods associated
the revisit step to remove tuples with erroneous valid-timewith tuples are checked for whether theEnd is equal
periods. However, this does not work because subsequetd nobind nowor the valid-time periods overlap with the
statements in the transaction might reference these tuples walue of now used in queries. Doing just the latter, which
the meantime, corrupting the result of the transaction. In-may seem sufficient, can violate the requirement of tempo-
stead, we adopt the solution of the previous section, of idenfal upward compatibility, stating that SQL-92 queries should
tifying the smallest explicit timestamp value for any period have the same effect on snapshot as on bitemporal tables.
now — explicit timestampwithin the transaction (here, the
explicit timestamp is 1998-02-21). If that value is smaller
than the commit time, the transaction is considered illegal6.3.2 CURRENIDATEIn queries
and is rolled back.

We next examine the consequences of using a singl@imestamping after commit with revisitation presents the
value for CURRENIDATE and show it impacts the query same problem for the valid-time dimension as for the trans-
rewriting performed in the stratum to retain the semantics ofaction-time dimension when the user modifies the database
SQL-92 queries. and then queries it with explicit reference to valid time. The

In Fig. 9, transactior?; inserts Joe in the Shoe Depart- handling of CURRENIDATE in queries is further compli-
ment on February 8. On February 19,executes the modifi- cated by the user being allowed to insert tuples with valid-
cation M that deletes all employees in the Shoe departmenttime attributes in the future.

DELETE FROM Emp WHERE Dept = 'Shoe’ Trans- There are two approaches for usiGy RRENIDATEIN
action7 inserts Tim in the Shoe department and transactiomgueries. (a) We can use the same value in the entire transac-
T3 inserts Lee in the Shoe department for the period 1998tion, e.g., the time when a value GURRENIDATE: s first
02-10 — 1998-02-25. The question is, what effect dd€s needed. (b) We can permit the use of different values for
have on the insertions made By and73? CURRENIDATE in different queries in the same transac-

K. Torp et al.: Effective timestamping in databases 281

Table 9. The bitemporal tabl&Empat 1998-02-19

Name Dept. V-Begin V-End T-Start T-Stop

Joe Shoe 1998-02-08 nobind now 1998-02-08 until changed
Tim Shoe 1998-02-15 nobind now 1998-02-15 until changed
Lee Shoe 1998-02-15 1998-02-25 1998-02-1funtil changed

(dill, Shoe) bility of inserting tuples with a valid time into the future;
this is not allowed for transaction-time. We have to choose
1 12 13 14 15 15 17 18 19 %0 o - between disallow insertion of tuples with valid times into
Time the future or use one of the approaches mention above.
| ‘ ‘ | Disallowing valid times into the future is a serious re-
Q, 2 striction on temporal databases: it will make them useless
for many applications such as, e.g., planing applications.
This option is therefore ruled out (cf. requiremdr®). We
must then choose to use one value or multiple values for
CURRENIDATEIn queries. We chose the former alterna-
tive, because using multiple values can cause non-repeatable
reads to occur in SQL-92 queries on temporal tables.

Fig. 10. CURRENIDATEIn queries

tion, which may be obtained simply by leaving invocations
of CURRENIDATEas are in queries.
When using a single value f@@URRENIDATEIn que-
ries, we cannot use the same value as for modification, be-
cause this time is the commit time, which is unknown until . .
the transaction actually commits. Instead, assume we usg4 Handling nobind now
the time whenCURRENIDATE s first needed, which can]]]]
be determined syntactically, and consider the transaction if\S discussed in Sect. 6.1, there is also the special value
Fig. 10. nobmd nowin the valid-time phmensmn. Becayse this value
This transaction starts on January 16 and commits ods hot part of the SQL-92 timestamp domain, an SQL-92
January 22. The database includes a tuple recording Jim iéalue for representing it must be identified. _
in the Shoe department in the period 1998-01-14 — 1998-01- We can useNULL or a value from the time domain. The
19. Now assume that query;, executed January 18, asks problem ywth usingNULL for nobind nowis that it is then
for all the employees currently in the Toy departmefi. n_ot p05_3|ble to store “re_aINU_LL_ values in the valld-tlm_e
must use a value foEURRENIDATEand this is the time, dimension. Problems with picking a value from the time
it is first needed, sSCURRENIDATE will be instantiated domain are that this restricts the time domain and that we
to January 18. On January 20, quefy asks for all the must handle the representative value specially.
employees currently in the Shoe department. Because we
use only one value fACURRENIDATEIn a transaction, we
return January 16, an@ will return that Jim is in the Shoe 7 A specific proposal
department, even though the query is executed at January
20, and we have recorded that Jim is in the Shoe departmenithis section motivates and presents an overall approach
only during the period 1998-01-14 — 1998-01-19. to timestamping the valid-time and transaction-time dimen-
Next, we consider the alternative of using multiple val- sions. The proposal is based on two assumptions. We are
ues forCURRENIDATEIn queries within a transaction. For focusing on the stratum approach to implement a temporal
each statement within a query, we ret&@8URRENIDATE DBMS; and to be specific, we are using Oracle 8 as the
as is, with each invocation possibly yielding a different underlying DBMS in the stratum approach.
value. Consider Fig. 10 again. This approach evaluates Fortimestamping the transaction-time dimension, we use
CURRENIDATEto January 18 and January 20 in queriestimestamping after commit with revisitation. For tteampo-
Q1 and Q),, respectively. This also causes problems. Forrary value of the commit time, we use one value throughout
example, letQ; and), be the same query, retrieving all a transaction. We choose to use the time of the first modifi-
employees currently in the Shoe department. On Januargation statement or the time of the first statement that refer-
18, the query will return that Jill is in the Shoe department,encesCURRENIDATE whichever comes first. This is the
and on January 20, the query will find no employees in theconstant value closest to the commit time we can use within
Shoe department. Two identical queries with no intermediate transaction. For the value oftil changed we choose the
modifications within the same transaction should not returnargest value in the time domain. We could also bHdL L
different results. The disappearance of the tuple recordingHowever, this may invalidate the use of indexes in Ora-
Jill in the Shoe department is similar to the non-repeatablecle [6].
read problem [12, pp. 380] and constitutes a violation of For the valid-time dimension, we use the commit time as
the isolation property of transactions. Non-repeatable readthe value ofnow in modifications. When using the commit
is a multi-user problem in conventional database systemsime, we again need a temporary value faw within the
here, a non-repeatable read can also appear in a single-ugeansaction. The temporary value fapw is the same as
system. the temporary valueused for transaction time. We also use
The problems using a single value or multiple values forthis value forCURRENIDATEIn queries and modification
CURRENIDATEIn a transaction are caused by the possi-statements.

282 K. Torp et al.: Effective timestamping in databases

Table 10. Representation of the special temporal values In the implementation used in the performance evalua-

Special value Representation tion presented in Sect. 8, bofDELETE statements in Ta-
nobind now 9999-12-30 ble 12 are accomplished using cursors. This is done for effi-
beginning 0001-01-01

ciency reasons: when using cursors, all tuples to delete can
be retrieved by evaluating a singlWHEREIlause, instead
of the two and thre&VHERElauses used in Table 12.
Finally, Table 13 shows the mapping of transaction start
and eager and lazy commit. When a transaction starts, we
initialize the variablesmallestexplicit timestampgo the max-
Again, because Oracle handIB&JLL badly in connec- imum value in the time domain (the variable is local to each
tion with indexes, we do not usBULL as the value of transaction). For both eager and lazy timestamping, the vari-
nobind now Instead, we use the second largest value in theable is used to determine if any race conditions occurred,
time domain, as the largest value in the time domain is com+equiring that the transaction be rolled back, as indicated by
monly used to represefidbrever. The representations of the thelF statements in Table 13.
special temporal values can be seen in Table 10. When a transaction commits and we are using eager
When the timestamp attributes occur irBELECTor a timestamping and no race conditions occur, we find the value
WHERElause, &£ASEstatement is introduced to ensure that of now, and all tuples modified by the transaction are revis-
the special temporal valuembind nowand until changed ited. For lazy timestamping, this is a two-stage process. First,
are interpreted correctly and to ensure that their representavhen the transaction commits, the commit time is stored in
tions remain hidden from the user. As an exampJERE the tableCommitTime . Second, the revisit step is sched-
V-End < '1998-01-10’ is converted t®€WHERE CASE uled in a separate transaction, shown in the fourth row of
WHEN V-End = '9999-12-30' THEN CURRENT _ Table 13. When the revisit step is executed, all tuples mod-
TIME ELSE V-End END < '1998-01-10' . This ap- ified since the last revisit are updated with the permanent
proach is consistent with the recommendations by Cliffordtimestamps fomow by using the commit times stored the

forever 9999-12-31
until changed 9999-12-31

et al. [5]. CommitTime table. When the timestamps have been ap-
In the following three tables, we provide the specifics plied, theCommitTime table is cleaned up.

for mapping temporal statements. We use Emeptable as As for the DELETE statement, th&€€OMMITstatements

an example. used in the performance study are implemented using cur-

Table 11 shows the mapping of tt@REATE TABLE sors.
and INSERT statements. The first row shows the mapping The WHERElauses for the mapping of theOMMIT
of aCREATE TABLBtatement. For a bitemporal table, four statements in Table 13 are deliberately vague. This is be-
attributes are added (as an aside, more attributes are addeduse two open issues remain: (1) how to associate transac-
in Sect. 8). The second row shows that at the time of thetion ids with tuples (discussed in Sect. 5.3), and (2) which of
first modification or the first use @URRENIDATE we fix the revisiting approaches identified in Sect. 5.5 is the most
the value otemporary valuewithin a transaction. The value cost-efficient and thus should be adopted. We now conduct
of temporary valuds used in the third row, which gives the a performance study resolving these issues.
mapping of anINSERT statement and uses several of the
special temporal values. The fourth row shows the mapping
of an INSERT statement with a user-specified period. The 8 Performance evaluation
IF statement is used to find the smallest explicit timestamp
in periods of the formnow — explicit timestampwithin a Section 5.3 discussed how transaction ids can be associ-
transaction. The valusmallestexplicittimestamgs used to ated with tuples, and Sect. 5.5 presented a spectrum of ap-
detect race conditions, as discussed in Sect. 6.3. proaches for scheduling the revisiting step. Some of these

Table 12 cover©ELETEstatements. In the first row, a approaches are viable only within the DBMS; others ap-
DELETEstatement without a user-specified period is shownply equally well to situations with applications directly han-
The statement is mapped to BMSERT of a new tuple fol- dling time-varying data or with temporal support being im-
lowed by anUPDATEof the existing tuple. The last line in plemented in a stratum. After having stated the objectives of
theWHERElauses for théNSERT andUPDATEstatements the performance study and described the experimental setup
is used to identify the tuples inserted by other transactionsn Sects. 8.1 and 8.2, we evaluate in Sects. 8.3 and 8.4 the
that must be logically deleted to fulfill the temporal upwards two revisiting approaches anchoring the spectrum, the eager

compatibility requirement, as discussed in Sect. 6.3.1. Thend lazy approaches; both are well suited for implementation
second row in the table gives the mapping oDELETE in a stratum.

statement with a user-specified period. As for insertions with

user-specified periods, thE statement keeps track (within

a transaction) of the smallest explicit timestamp used in peg.1 Objectives of the performance evaluation

riods of the formnow — explicit timestampNote that the

DELETEwith a user-specified period may result in two new jith the performance study of revisiting approaches we

tuples being added to the table and a single tuple being Upyant to answer the following two questions.
dated. This happens if, for example, the period 20 — 30 is

deleted from a tuple timestamped with the valid period 10 1. For different transaction sizes, which revisiting approach
— 40. is most cost efficient, the eager or the lazy approach?

K. Torp et al.: Effective timestamping in databases 283

Table 11. Mapping create table and insert statements on bitemporal tables

Temporal statement Resulting statement(s)
CREATE TABLE Emp (Name VARCHAR(20), Dept VARCHAR(20)) CREATE TABLE Emp (
AS VALIDTIME PERIOD(DATE) AND TRANSACTIONTIME Name VARCHAR(20), Dept VARCHAR(20),

V-Begin DATE, V-End DATE,
T-Start DATE, T-Stop DATE)
first modification or use o0€EURRENIDATE temporary value— CURRENIDATE
INSERT INTO Emp VALUES f(ew name new depx INSERT INTO Emp VALUES (
new name new dept
temporary value nobind now
temporary value until changed
VALIDTIME PERIOD [Start - Stop) IF (Start is now AND Stop is anexplicit timestamp
INSERT INTO Emp VALUES f(ew name new dept AND smallestexplicittimestamp> Stop)
smallestexplicittimestamp«— Stop
INSERT INTO Emp VALUES f(ew name new dept
Start, Stop, temporary valuge until changed

Table 12. Mapping the delete statement on bitemporal tables

Temporal statement Resulting statement(s)
DELETE FROM Emp INSERT INTO Emp
WHEREPredicate SELECT Name, Dept, V-Begin, temporary value temporary value until changed
FROM Emp

WHEREPredicate AND T-Stop = until changed AND
((v-Begin <= temporary value AND temporary value< V-End) OR
(V-Begin <= T-Start AND V-End = nobind now);

UPDATE Emp SET T-Stop = temporary value

WHEREPredicate AND T-Stop = until changed AND
((v-Begin <= temporary value AND temporary value< V-End) OR

(V-Begin = T-Start AND V-End = nobind now);
VALIDTIME PERIOD [Start - Stop) |IF (Startisnow AND Stop = is anexplicit timestampAND
DELETE FROM Emp smallestexplicittimestamp > Stop)
WHEREPredicate smallesexplicittimestamp <« Stop

INSERT INTO Emp
SELECT Name, Dept, V-Begin, Start, temporary value until changed
FROM Emp
WHEREPredicate AND T-Stop = until changed AND
V-Begin < Start AND Start < V-End,;
INSERT INTO Emp
SELECT Name, Dept, Stop, V-End, temporary value until changed
FROM Emp
WHEREPredicate AND T-Stop = until changed AND
V-Begin < Stop AND Stop < V-End,;
UPDATE Emp SET T-Stop = temporary value
WHEREPredicate AND T-Stop = until changed AND
V-Begin < Stop AND Start < V-End;

2. How expensive is the revisiting step compared to thedetermine which approach is the most cost efficient in a
actual execution of the transaction? particular situation.
The second question is important for transaction perfor-
mance reasons. Using timestamping after commit adds the
isiting step to the cost of executing a transaction.
We investigate the questions by running a set of exper-
ments using the stratum architecture described in Sect. 2.

The answer to the first question is important becausé €V
it affects temporal DBMS implementation and transaction.

design. It is more complicated to implement and schedule_ " > ; . ;
9 P P his architecture is well suited for the evaluation, because

the revisiting of modified tuples in the lazy approach, com- i ial relational DBMS. th
pared to the straightforward revisiting of tuples in the eagerWe can use an existing commercial relationa » tus

approach. If lazy revisitation does not perform better thanobtaining a realistic picture of transaction performance.
eager revisitation, e.g., by allowing us to postpone the re-

visiting step to be done during off hours, there is no reason .

to add the extra complexity of the lazy approach to the tem-8.2 Performance evaluation setup

poral DBMS implementation.

Further, the answer to the first question is important forwe use the Oracle 8.0.4 DBMS running on a SUN Ultra-
the transaction designer to be able to tune applications. IEparc-2. Our test database contains a single bitemporal table
one revisitation approach is superior for certain transactiorEmpthat has two explicit attribute®yameld andDeptid ,
sizes and the other approach is superior for other transamf type INTEGER recording which employees are affili-
tion sizes then for a given transaction size, the designer caated with which departments. The four timestamp attributes

284 K. Torp et al.: Effective timestamping in databases

Table 13. Mapping start and commit of transactions on bitemporal tables

Temporal statement Resulting statement(s)
start transaction smallesxplicittimestamp«— 9999-12-31
COMMIT(eager) now < CURRENIDATE;

IF (smallestexplicittimestamp < now)

ROLLBACK;
ELSE
UPDATE Emp SET V-Begin = now
WHEREtuple modified by this transaction
UPDATE Emp SET V-End =now
WHEREuple modified by this transaction
UPDATE Emp SET T-Start = now
WHEREuple modified by this transaction
UPDATE Emp SET T-Stop = now
WHEREuple modified by this transaction
COMMIT;
COMMIT(lazy) now <— CURRENIDATE;
IF smallestexplicittimestamp < now
ROLLBACK;
ELSE
INSERT INTO CommitTime VALUES (transactionid now);
COMMIT;
timestamptable UPDATE Emp SET V-Begin =

SELECT Commit-Time FROM CommitTime WHERE TID =T1D modified V-Begin
WHERE V-Begin needs revisiting
UPDATE Emp SET V-End =

SELECT Commit-Time FROM CommitTime WHERE TID =TID modified V-End
WHERE V-Endneeds revisiting
UPDATE Emp SET T-Start =

SELECT Commit-Time FROM CommitTime WHERE TID =T1D modified T-Start
WHERE T-Start needs revisiting
UPDATE Emp SET T-Stop =

SELECT Commit-Time FROM CommitTime WHERE TID =T1D modified T-Stop
WHERE T-Stop needs revisiting
DELETE FROM CommitTime;

V_BEGIN, V_LENDQ) T_START, and T_STOP capture valid The tests are performed by executing a total of 2000
and transaction time. Further, the attribdiDS is added, modifications as a series of transactions where we vary the
which encodes the transaction ids of tuples that must béransaction sizernq, the number of modifications in each
timestamped. A performance study showed that encodindransaction). For the lazy approach, we also varyither-
all transaction id in a single attribute was faster than bothvisitation interval that is, the numbem() of transactions be-
storing transaction ids in the timestamp attributes or addingween revisiting tuples. The elapsed time is measured using
a TID attribute for each of the four timestamp attributes. Oracle’sDBMSUTILITY.GET _TIME function [9] before
Details can be found in [28]. the first transaction starts and then after each user-commit
Although we are only concerned with modifications in and system-commit for the eager approach. For the lazy ap-
this performance study, we have chosen to use an indexproach, we also measure the time before a revisit. As is
ing scheme that is suitable when both queries and modificacustomary for (non-simulation-based) performance measure-
tions are considered. We used a compositerBe index on ments on database systems [7, 11, 18], we only report the
the Nameld, V_BEGIN, andV_ENDattributes. This index elapsed time. The numbers we report here are the averages
speeds up modifications and queries. In addition, we add af our measurements for a single test series, i.e., execution
B*-tree index on thelIDS attribute. This index speeds up of the 2000 modifications with fixed values far and m.
revisitation. Repeated executions of the test series showed little varia-
There are 5000 tuples in the current state of Enepta- tion.
ble; this number is constant. We simulate the update activity Note that only one table is needed for the test setup be-
of an application over a number of months. For each simu-cause we are examining modifications. A modification state-
lated month, we insert 5%, delete 5%, and update 10% of thenent, by its very nature, concerns only a single table.
current state. We run our experiments starting with an 18-
month-old table. This table contains approximately 822,000
tuples, which occupy approximately 42 MB. Our page size8.3 Eager versus lazy revisitation
is 8 KB, and the buffer size of the database is 1.5 MB. The .))
entire current state does not fit in the buffer because the tabl&Ne experiment measures the cost of executing transactions
is stored inT-Start order and tuples in the current state USINg €ager versus lazy revisitation strategies. To be able

can haveT-Start values within the entire transaction-time {0 compare the cost for various transaction sizes and inter-
period (18 months) of the table. visitation intervals, we report the cost on a per-modification
basis.

K. Torp et al.: Effective timestamping in databases 285

80
lazyn=1 <—
70+ lazyn=2 -+--
lazyn=5 -8--
. N lazyn =10 -»--
8 603 - lazy n =50 -&--
= AN eager -x--
o N
E
P 40
E
'_
o 30 —
(7] EEESISagnieoo e
[%]
&
o 20
10
0 T T T T T T T T

1 2 3 4 5 6 7 8 9 10
Transaction Size (m)

Fig. 11. Elapsed time per modification for eager and lazy revisitation

We use the database schema and associated indexing That lazy revisitation becomes cost-efficient already for
scheme, discussed in the previous section. We arrived atn inter-visitation interval«() larger than two, and is almost
the indexing scheme after running a set of six test queriegndependent of the transaction size)(is surprising. How-
and six test modifications on five different indexing schemesever, that the elapsed time converges towards the same value
and chose the one with the best overall response time. Thevas expected, because both approaches have to do almost
first index was needed to speed up queries; and the lattehe same work; for the lazy approach, there is an extra over-
index speeds up modifications. head in saving the commit times of transactions, keeping

Figure 11 shows the total elapsed time per modificationtrack of which tables should be timestamped, and execut-
for the eager and lazy approaches. The elapsed time is showng an extra (revisitation) transaction. However, in contrast
for varying transaction sizesr(). For the lazy approach, we to eager revisitation, more tuples can be timestamped in a
also vary the inter-visitation intervalnj. The time taken single revisit step during lazy revisitation.
to revisit tuples in the lazy approaches have been divided
equally among the transactions executed since the last re- o
visit. For example, if the inter-visitation interval is five, we 8-4 The cost of revisiting
have added to each transaction’s total elapsed time one fift

of the elapsed time for revisiting. Note that this is possiblev\/e next consider the cost of performing the revisiting step

as compared to the cost of the actual execution of the trans-

because the transaction size is fixed within a test series. . . Y
Figure 11 shows that using lazy revisitation immediatelyacuon.' Because neither lazy nor eager revisitation proved
superior in the previous study, we study the revisiting cost

after a transacglon containing only one modification is aPsor poth. Figure 12 shows the relative cost of executing the
proximately 11% more expensive than eager revisitation fortransactions and revisiting the modified tuples for eager and
the same transaction size. Lazy revisitation is more expenl—azy revisitation 9 P 9

sive because the revisiting is done using a separate trans- For eager timestamping of small transactions £ 10)
action, whereas eager revisitation is done in the transactiop, revisiting step accounts for between 33% and 58% (’)f the
:\t/]v%t ?;SZ; glrﬁ gg&ggﬂg'?ﬂgg; Sf(f)i\(lzviz\r/]?r’ forlarger than total elapsed time. For larger transaction sizes, the revisiting
X : R cost stabilizes at approximately 20% of the total elapsed
In geperal, Fig. 11 shpyvs _that the comblnatlpn of Smalltime. We have measured the elapsed time for transactions
transactions and lazy revisitation can be expensive on a per:

modification basis. This is due to the extra transaction re_contalnlng up to 1000 modifications. That study shows that

9 0 .
quired by lazy revisitation. However, if a transaction con- the revisitation cost converges to 17% of the elapsed time.

tains more than iust five modifications. then. independent For larger transaction sizes, the overhead of revisiting is
, 1an Just | ' ! b very stable, because approximately half the tuples to revisit
of the inter-visitation interval, the costs of eager and lazy

revisitation are virtually identical. are clus_terec_i at the enddof thehtable (the_ table ||s stored bln
We also ran experiments with inter-visitation intervals transaction-time start or e_r). The remaining tuples can be
; . : found efficiently using the index on tHEDS attribute. The
(n) of up to 200 transactions for transaction sizeg Of up

o o . L7 Y L Trevisiting step s relatively more expensive at smaller trans-
to 5 modifications; and we experimented with inter-visitation action sizes because the same number of tuples modified

intervals of up to 10 transactions for transaction sizes of up ta ~ . . - .
100 modifications. These experiments were consistent ngurlng the transaction must be revisited, and the clustering

the trend illustrated by Fig. 11 and showed that the eIapseBrOVideS no substantial benefits because few tuples are in-

time per modification converges to approximately 30 ms volved. o .
' We now turn to lazy revisitation. Figure 12 also shows

the relative costs of transaction execution, saving the commit

286 K. Torp et al.: Effective timestamping in databases

90
804 e T
_g 70- Execute (Eager) -— |
= Execute (Lazy) -+--
s Revisit (Eager) -8--
g 60 Revisit (Lazy) -
IS i Save (Lazy) -&-
w b
5 50}/
o 4 L
= 404
o
() 3
g 30
c
8
E_’ B0 e el
10
,,, A
O T T T T T T

T T T
10 20 30 40 50 60 70 80 90 100
Transaction Size (m)

Fig. 12. Relative cost of transaction execution versus revisiting using eager revisitation or using lazy revisitatibn,

time, and revisiting the modified tuples. We use an inter-cation for eager and lazy revisitation without the revisiting
visitation interval ofn = 5. Experiments using = 1,n» =10, cost.
andn = 100 showed similar behavior.
The revisit step for eager revisitation is to be compared
with the combination of the save and revisit steps for lazyg Related work
timestamping. The total cost of these latter two steps for the

lazy approach is relatively higher than the revisit step for_.
Timestamping after commit of time-varying data in local
the eager approach because the lazy approaches perform th

and distributed environments was previously studied by
same tasks as the eager approach, but have an extra admg'élzber [20]. As outlined in Sect. 4, the present paper
istration cost for temporarily recording the timestamp, and 9 ' o P pap

) - .extends and refines that study in several respects. While
because they use separa_te transqctlon_s for the revisiting. FI%'aIzberg is concerned with timestamping the transaction-
ure 12 also shows that this administrative cost becomes rel%ime dimension. this paper considers also valid time and
tively lower for larger transactions. This is because the SaVE o hcaction an d, vali dptirr%e together. In Salzberg’s study
step simply stores the TID and timestamp of the transacuOntimeslice queries are considered; this paper proceeds to con-

:ir;(i then commits, which is independent of the transactlonsider general queries in a temporal SQL. Finally, Salzberg

The relative cost of the revisiting step is constant, at ap_assumes an integrated DBMS architecture, which may may

proximately 17%, for various transaction sizes. Although notbe Ie_xctj_ended_ to |Incorporat|e_ a dnew .rt_acovery algorr:_thm and
clear from Fig. 12 alone, this indicates that the cost of revis-U!t-dimensional temporal indexes; in contrast, this paper
e > ! ;~ describes how timestamping after commit may be achieved
iting grows linearly with the transaction size. The revisiting in a laver. without necessitating anv chanaes to the under-
consists of two parts: (a) timestamping new tuples inserte Ving DyBMS g any 9
at the end of the table and (b) timestamping modified tu- . : . S L i
ples that were already present in the table. The first part is Finger and McBrle_n [:.LO] stud.|ed timestamping, mclud
nearly independent of the transaction size (or, equivalentl fng the use of the valid-time variablow. They take into

y P » €4 Yeonsideration that the actual execution of a transaction has

the number of tuples to revisit) because the tuples are clusé1 duration in time, and they argue that the value row

tered on a few disk pages. The cost of the second part 9"OWShould remain constant within a transaction. However they
linearly with the transaction size. The linear growth OCCUrs /o0t using the commit time for timestamping the valid-

because the index on tfi@DS attribute is used to locate the .. ; . : . :

modified tuples. When the tuples are spread evenly over th |me_d|men5|on, _and instead suggest using the start time or
. ; ! . . e time of the first update fanow. They showed that us-

table, the timestamping of each tuple will consist of an index.

. . ing the start time can lead toow appearing to be moving
look-up and the assignment of the permanent timestamp. backwards in time and — in the case of using the time of
Figure 12 indicates that the relative cost of transac- 9

tion execution versus the revisiting using laz revisitationthe first update — that the serialization of transactions can be

. ' g using ‘azy . violated. They suggest ignoring the problem of time moving

is largely independent of the transaction size).(Thus if . - o)
fackwards or making transactions serializable on their start

we can postpone the revisiting step of transactions, e.g., t ; : .]
do it once per night, the number of transactions execute imes. This paper takes the opposite approach, ruling out us

per time unit can be increased by approximately 17% for'ﬁnrzta}[ﬂgtvﬁl]ze f%"gf‘)av:nog;]%wh;g\me ngwv:fat:anseéz\ﬁg?gg
lazy revisitation. In absolute numbers, this will make lazy P g

revisitation more efficient than eager revisitation, as show gnored because it may also violate the isolation principle.

in Fig. 13. This figure shows the elapsed time per modifi?s.e(.:ond’ we argue that fransaction executions cannot be. Se-
rializable in the order of their start times if concurrency is

K. Torp et al.: Effective timestamping in databases 287

80

lazyn=1 <—
704 lazyn=2 -+-
lazyn=5 -8--
N lazyn =10 -»--
60 .. lazyn =50 -&-
eager - -

50+

A

40- "

30

Elapsed Time (milliseconds)

20+

10+

O T T T T T T T T
1 2 3 4 5 6 7 8 9 10
Transaction Size (m)

Fig. 13. Elapsed time per modification for the eager and lazy approaches without revisiting

allowed. Finally, we show that using the commit time, canand the transaction is ready to commit. The paper provides
solve the two problems identified by Finger and McBrien. the details necessary for implementing this timestamping ap-
An alternative to a stratum approach to building a tem-proach in a stratum architecture, where an temporal database
poral DBMS is the integrated architecture where the DBMSmanagement system (DBMS) is built via a layer on top of
is built from scratch and the implementation incorporatesan existing DBMS. In particular, the paper investigates a
temporal support. The Postgres DBMS [24, 25] is the besspectrum of revisiting strategies, ranging from eager to lazy.
known system with an integrated architecture. Postgres sup- The paper also considers the timestamping of the valid-
ports transaction time only and uses timestamping after comtime dimension. In contrast to previous work, the paper illus-
mit. Commit times of transactions are stored in a speciatrates that the default timestamp values for the valid-time di-
Time table. To associate transactions-ids and timestampmension must be identical to values used for the transaction-
with tuples, Postgres adds eight extra attributes to each taime dimension, i.e., timestamping after commit must also
ble. To support both valid time and transaction time, webe used for valid time. This use of timestamping after com-
add five attributes. There is no discussion of temporary valmit causes problems for the valid-time dimension because
ues of the timestamp attributes in Postgres. The transactioref the notion ofnow (the current time) and because users
time values are left unassigned when a tuple is stored irmay supply valid times in the future. It is shown that when
the database [24]. With respect to revisiting tuples for ap-using the default value for valid time, isolation level SE-
plying the permanent timestamps, Postgres uses either tHRIALIZABLE can be obtained; however, for user-supplied
“never” or the lazy approach. The integrated architecture ofvalid times in the future, only read-level consistency can be
Postgres also permits experimentation with (asynchronousirchived.
low-system-usage approach to revisiting tuples [24]. A performance study demonstrated that, for transactions
containing few modifications, eager revisitation is the most
o cost efficient. For transactions containing more than ten mod-
10 Summary and research directions ifications, the eager and lazy approaches are almost equally

. . . . __efficient.
This paper provides a comprehensive approach to time- Overall, we have shown how to provide users with sim-

stamping in temporal databases with transaction support a e, consistent, and efficient support for modifying bitem-

mﬂleiziiﬂgport’ for both the valid-time and transactlon-nmeporal databases in the context of user transactions. This can
: done while fulfilling our requirements, perhaps most notably

We_ show Fhat _the stra|ghtforward_ ap_proach to tlme'without lowering the level of concurrency of transactions and
stamping modifications may lead to violations of the con-

sistency and isolation properties of transactions. To avoid” 'thOUt. wolatmg the ACID properties. .
L . An interesting topic for future research is the use of more
these violations, we formulate a set of requirements for

timestamping database modifications. The most importanfjldv"JlnCGd revisitation approaches, e.g., low-system-usage re-

requirements being to preserve of the ACID properties OfV|S|tat|on, in an integrated DBMS architecture. Also the par-

transaction and to retain a non-reduced level of interleaveiitioning of the temporal tables, e.g., into old, current, and
. . - . ture data is a topic of future research; partitioning ma
transaction execution. The requirements are independent s!r::)eed up the revisiFt)ing and should be inveF;tigated. gurthgr
the Ig(;]rd t?\relzytl:]agn;eagt?grﬁlirggtgitr)r?sr?s?c:ﬁh:}veectusree .timestampinqt)he new capabilities in the object-relational DBMSs now
after commit with revisitation, where permanent timestamps eing sold, allow parts of the functionality currently imple-

. P . mented in the stratum to be moved closer to the DBMS ker-
are assigned to the results of the modifications in a ransac: .| \is of interest to determine what functionality may be

tion only after all statements in the transaction are exhaustel]

288

moved to the kernel and the performance and other benefitss.
16.

of doing so.

17.

AcknowledgementsThis research, conducted in part while the first author

visited the University of Arizona, was supported in part by the Danish Tech-18.

nical Research Council through grant 9700780, by the CHOROCHRONOS

project, funded by the European Commission DG Xl Science, Researchl9.

and Development, contract no. FMRX-CT96-0056, by a grant from the
Nykredit corporation, and by grants IRI-9632569 and 11S-9817798 from
the U.S. National Science Foundation. We also thank the reviewers for
their helpful comments.

References

22.

1. Bair J, Bbhlen MH, Jensen CS, Snodgrass RT (198@}ions of Up-
ward Compatibility of Temporal Query Languag@aisiness Informat-
ics (Wirtschaftsinformatik) 39(1):25-34

2. Bernstein PA, Hadzilacos V, Goodman N (19&9ncurrency Control
and Recovery in Database Systemddison Wesley, Cambridge, Mass.

3. Bdhlen MH, Jensen CS (1998 Seamless Integration of Time into
SQL Technical Report R-96-2049, Aalborg University, Denmark

4. Bontempo CJ, Saracco CM (199Batabase Management Principles
and Products Prentice Hall, Englewood Cliffs, N.J.

5. Clifford J, Dyreson CE, Isakowitz T, Jensen CS, Snodgrass RT (1997)
On the Semantics of ‘Now’ in DatabasesCM Trans Database Syst
22(2):171-214

6. Corrigan P, Gurry M (1993pracle Performance Tunind'Reilly &
Associates, Sebastopol, Calif.

7. DeWitt DJ (1993)The Wisconsin Benchmark: Past, Present, and Fu-
ture. In [11], Chapter 4, pp 269-315

8. Etzion O, Jajodia S, Sripada S (eds) (19%8nporal Databases: Re-
search and PraticeLNCS 1399, Springer, Berlin Heidelberg New York

9. Feuerstein S (199%)racle PL/SQL ProgrammingO’Reilly & Asso-

ciates, Sebastopol, Calif.

Finger M, McBrien P (1996Dn the Semantics of ‘Current-Time’ in

Temporal Databasedn: Vieira MTP, Traina AJM (eds) 11th Brazilian

Symposium on Databasesa® Carlos, Brazilian Computer Society,

Porto Alegre, Brazil, pp 324-337

Gray J (1993Yhe Benchmark Handbook for Database and Transaction

Processing SystemMorgan Kaufmann, San Mateo, Calif.

Gray J, Reuter A (1993Jransaction Processing: Concepts and Tech-

nigues Morgan Kaufmann

Geiger K (1995)nside ODBC Microsoft Press, Redmond, Wash.

Jensen CS, Dyreson CE (eds) (199Bg Consensus Glossary of Tem-

poral Database Concept#n [8], pp 367—405

10.

11.

12.

13.
14.

20.

21.

23.

24.

26.

27.

31.

K. Torp et al.: Effective timestamping in databases

Melton J (1992Patabase Language — SQANSI X3.135-1992

Melton J, Simon AR (1993)nderstanding the New SQL: A Complete
Guide Morgan Kaufmann, San Mateo, Calif.

Ozsoydlu G, Snodgrass RT (1999emporal and Real-Time Databa-
ses: A SurveylEEE Trans Knowl Data Eng 7(4):513-532

Raab F (1993Dverview of the TPC Benchmark C: A Complex OLTP
BenchmarkIn [11] Chapter 3, pp 131-267

Roth MT, Schwarz PM (1997pon’t Scrap it, Wrap It! A Wrapper
Architecture for Legacy Data Sourcds: Jarke M, Carey JM, Dittrich
KR et al. (eds) Proceedings of the VLDB Conference, Athens, Greece.
Morgan Kaufmann, San Mateo, Calif., pp 265-275

Salzberg B (1994)imestamping After Commiln Proceedings of the
Conference on Parallel and Distributed Information Systems, Austin,
Texas. IEEE Computer Society, pp 160-167

Snodgrass RT (1987)he Temporal Query Language TQu&CM
Trans Database Syst 12(2):247-298

Snodgrass RT (ed) (1999)he TSQL2 Temporal Query Language
Kluwer Academic, Amsterdam

Snodgrass RT,dhlen MH, Jensen CS, Steiner A (1998jding Valid
Time to SQL/TemporalANSI X3H2-96-501r2, ISO/IEC JTC 1/SC
21/WG 3 DBL-MAD-146r2

Stonebraker M (1987he Design of the Postgres Storage System
Stocker PM, Kent W, Hammersley P (eds) Proceedings of VLDB Con-
ference, Brighton, England. Morgan Kaufmann, San Mateo, Calif., pp
289-300

. Stonebraker M, Rowe LA, Hirohama M (199Dhe Implementation of

Postgres IEEE Trans Knowl Data Eng 2(1):125-142

Torp K, Jensen CS,dlen M (1997)Layered Implementation of Tem-
poral DBMSs — Concepts and Techniqués Topor RW, Tanaka K
(eds) Proceedings of the Fifth International Conference On Database
Systems for Advanced Applications, Melbourne, Australia. World Sci-
entific Press, Singapore, pp 371-380

Torp K, Jensen CS, Snodgrass RT (1998xatum Approaches To Tem-
poral Database Implementatiotn: Eaglestone B, Desai BC, Shao J
(eds) Proceedings of the International Database Engineering & Appli-
cation Symposium, Cardiff, Wales, UK. IEEE Computer Science, pp
4-13

28. Torp K, Jensen CS, Snodgrass RT (19E88gctive Timestamping in

Databases TimeCenter Technical Report TR-4, Aalborg University,
Denmark

29. Wiederhold G (1992Mediators in the Architecture of Future Informa-

tion SystemslEEE Computer 25(3):38-49

30. Wiederhold G (1995Mediation in Information System&CM Comp

Surv 27(2):265-267
Wu Y, Jajodia S, Wang XS (1998emporal Database Bibliography
Update In [8], pp 338-366

