
VLDB Journal (2005) 14: 2–29 / Digital Object Identifier (DOI) 10.1007/s00778-003-0111-3

Join operations in temporal databases

Dengfeng Gao1, Christian S. Jensen2, Richard T. Snodgrass1, Michael D. Soo3

1 Computer Science Department, P.O. Box 210077, University of Arizona, Tucson, AZ 85721-0077, USA
e-mail: {dgao,rts}@cs.arizona.edu

2 Department of Computer Science, Aalborg University, Fredrik Bajers Vej 7E, 9220 Aalborg Ø, Denmark
e-mail: csj@cs.auc.dk

3 Amazon.com, Seattle; e-mail: soo@amazon.com

Edited by T. Sellis. Received: October 17, 2002 / Accepted: July 26, 2003
Published online: October 28, 2003 – c© Springer-Verlag 2003

Abstract. Joins are arguably the most important relational
operators. Poor implementations are tantamount to comput-
ing the Cartesian product of the input relations. In a temporal
database, the problem is more acute for two reasons. First, con-
ventional techniques are designed for the evaluation of joins
with equality predicates rather than the inequality predicates
prevalent in valid-time queries. Second, the presence of tempo-
rally varying data dramatically increases the size of a database.
These factors indicate that specialized techniques are needed
to efficiently evaluate temporal joins.

We address this need for efficient join evaluation in tempo-
ral databases. Our purpose is twofold. We first survey all previ-
ously proposed temporal join operators. While many temporal
join operators have been defined in previous work, this work
has been done largely in isolation from competing propos-
als, with little, if any, comparison of the various operators.
We then address evaluation algorithms, comparing the appli-
cability of various algorithms to the temporal join operators
and describing a performance study involving algorithms for
one important operator, the temporal equijoin. Our focus, with
respect to implementation, is on non-index-based join algo-
rithms. Such algorithms do not rely on auxiliary access paths
but may exploit sort orderings to achieve efficiency.

Keywords: Attribute skew – Interval join – Partition join –
Sort-merge join – Temporal Cartesian product – Temporal join
– Timestamp skew

1 Introduction

Time is an attribute of all real-world phenomena. Conse-
quently, efforts to incorporate the temporal domain into
database management systems (DBMSs) have been ongo-
ing for more than a decade [39,55]. The potential benefits of
this research include enhanced data modeling capabilities and
more conveniently expressed and efficiently processed queries
over time.

Whereas most work in temporal databases has concen-
trated on conceptual issues such as data modeling and query

languages, recent attention has been on implementation-
related issues, most notably indexing and query processing
strategies. In this paper, we consider an important subproblem
of temporal query processing, the evaluation ad hoc temporal
join operations, i.e., join operations for which indexing or sec-
ondary access paths are not available or appropriate. Temporal
indexing, which has been a prolific research area in its own
right [44], and query evaluation algorithms that exploit such
temporal indexes are beyond the scope of this paper.

Joins are arguably the most important relational operators.
This is so because efficient join processing is essential for the
overall efficiency of a query processor. Joins occur frequently
due to database normalization and are potentially expensive to
compute [35]. Poor implementations are tantamount to com-
puting the Cartesian product of the input relations. In a tem-
poral database, the problem is more acute. Conventional tech-
niques are aimed at the optimization of joins with equality
predicates, rather than the inequality predicates prevalent in
temporal queries [27]. Moreover, the introduction of a time
dimension may significantly increase the size of the database.
These factors indicate that new techniques are required to ef-
ficiently evaluate joins over temporal relations.

This paper aims to present a comprehensive and systematic
study of join operations in temporal databases, including both
semantics and implementation. Many temporal join operators
have been proposed in previous research, but little compari-
son has been performed with respect to the semantics of these
operators. Similarly, many evaluation algorithms supporting
these operators have been proposed, but little analysis has ap-
peared with respect to their relative performance, especially
in terms of empirical study.

The main contributions of this paper are the following:

• To provide a systematic classification of temporal join op-
erators as natural extensions of conventional join opera-
tors.

• To provide a systematic classification of temporal join
evaluation algorithms as extensions of common relational
query evaluation paradigms.

• To empirically quantify the performance of the temporal
join algorithms for one important, frequently occurring,
and potentially expensive temporal operator.

D. Gao et al.: Join operations in temporal databases 3

Our intention is for DBMS vendors to use the contribu-
tions of this paper as part of a migration path toward incorpo-
rating temporal support into their products. Specifically, we
show that nearly all temporal query evaluation work to date
has extended well-accepted conventional operators and eval-
uation algorithms. In many cases, these operators and tech-
niques can be implemented with small changes to an existing
code base and with acceptable, though perhaps not optimal,
performance.

Research has identified two orthogonal dimensions of time
in databases – valid time, modeling changes in the real world,
and transaction time, modeling the update activity of the
database [23,51]. A database may support none, one, or both
of the given time dimensions. In this paper, we consider only
single-dimension temporal databases, so-called valid-time and
transaction-time databases. Databases supporting both time
dimensions, so-called bitemporal databases, are beyond the
scope of this paper, though many of the described techniques
extend readily to bitemporal databases. We will use the terms
snapshot, relational, or conventional database to refer to data-
bases that provide no integrated support for time.

The remainder of the paper is organized as follows. We
propose a taxonomy of temporal join operators in Sect. 2.
This taxonomy extends well-established relational operators
to the temporal context and classifies all previously defined
temporal operators. In Sect. 3, we develop a corresponding
taxonomy of temporal join evaluation algorithms, all of which
are non-index-based algorithms. The next section focuses on
engineering the algorithms. It turns out that getting the details
right is essential for good performance. In Sect. 5, we empiri-
cally investigate the performance of the evaluation algorithms
with respect to one particular, and important, valid-time join
operator. The algorithms are tested under a variety of resource
constraints and database parameters. Finally, conclusions and
directions for future work are offered in Sect. 6.

2 Temporal join operators

In the past, temporal join operators were defined in different
temporal data models; at times the essentially same operators
were even given different names when defined in different
models. Further, the existing join algorithms have also been
constructed within the contexts of different data models. This
section enables the comparison of join definitions and imple-
mentations across data models. We thus proceed to propose
a taxonomy of temporal joins and then use this taxonomy to
classify all previously defined temporal joins.

We take as our point of departure the core set of conven-
tional relational joins that have long been accepted as “stan-
dard” [35]: Cartesian product (whose “join predicate” is the
constant expression TRUE), theta join, equijoin, natural join,
left and right outerjoin, and full outerjoin. For each of these, we
define a temporal counterpart that is a natural, temporal gener-
alization of it. This generalization hinges on the notion of snap-
shot equivalence [26], which states that two temporal relations
are equivalent if they consist of the same sequence of time-
indexed snapshots. We note that some other join operators do
exist, including semijoin, antisemijoin, and difference. Their
temporal counterparts have been explored elsewhere [11] and
are not considered here.

Having defined this set of temporal joins, we show how
all previously defined operators are related to this taxonomy
of temporal joins. The previous operators considered include
Cartesian product, Θ-JOIN, EQUIJOIN, NATURAL
JOIN,TIME JOIN [6,7],TE JOIN,TE OUTERJOIN, and
EVENT JOIN [20,46,47,52] and those based on Allen’s [1]
interval relations ([27,28,36]). We show that many of these
operators incorporate less restrictive predicates or use spe-
cialized attribute semantics and thus are variants of one of the
taxonomic joins.

2.1 Temporal join definitions

To be specific, we base the definitions on a single data model.
We choose the model that is used most widely in tempo-
ral data management implementations, namely, the one that
timestamps each tuple with an interval. We assume that the
timeline is partitioned into minimal-duration intervals, termed
chronons [12], and we denote intervals by inclusive starting
and ending chronons.

We define two temporal relational schemas, R and S, as
follows.

R = (A1, . . . , An, Ts, Te)
S = (B1, . . . , Bm, Ts, Te)

The Ai, 1 ≤ i ≤ n and Bi, 1 ≤ i ≤ m are the explicit
attributes found in corresponding snapshot schemas, and Ts

and Te are the timestamp start and end attributes, recording
when the information recorded by the explicit attributes holds
(or held or will hold) true. We will use T as shorthand for the
interval [Ts, Te] and A and B as shorthand for {A1, . . . , An}
and {B1, . . . , Bn}, respectively. Also, we define r and s to be
instances of R and S, respectively.

Example 1 Consider the following two temporal relations. The
relations show the canonical example of employees, the de-
partments they work for, and the managers who supervise
those departments.

Employee

EmpName Dept T

Ron Ship [1,5]
George Ship [5,9]
Ron Mail [6,10]

Manages

Dept MgrName T

Load Ed [3,8]
Ship Jim [7,15]

Tuples in the relations represent facts about the modeled re-
ality. For example, the first tuple in the Employee relation
represents the fact that Ron worked for the Shipping depart-
ment from time 1 to time 5, inclusive. Notice that none of the
attributes, including the timestamp attributes T, are set-valued
– the relation schemas are in 1NF. ��

2.2 Cartesian product

The temporal Cartesian product is a conventional Cartesian
product with a predicate on the timestamp attributes. To define
it, we need two auxiliary definitions.

First, intersect(U, V), where U and V are inter-
vals, returns TRUE if there exists a chronon t such that

4 D. Gao et al.: Join operations in temporal databases

t ∈ U ∧ t ∈ V . Second, overlap(U, V) returns the max-
imum interval contained in its two argument intervals. If no
nonempty intervals exist, the function returns ∅. To state this
more precisely, let first and last return the smallest and largest
of two argument chronons, respectively. Also, let Us and Ue

denote, respectively, the starting and ending chronons of U ,
and similarly for V .

overlap(U, V) =




[last(Us, Vs), first(Ue, Ve)]
if last(Us, Vs) ≤ first(Ue, Ve)

∅ otherwise

Definition 1 The temporal Cartesian product, r ×Ts, of two
temporal relations r and s is defined as follows.

r ×Ts = {z(n+m+2) | ∃x ∈ r ∃y ∈ s (
z[A] = x[A] ∧ z[B] = y[B] ∧
z[T] = overlap(x[T], y[T]) ∧ z[T] �= ∅)}

The second line of the definition sets the explicit attribute val-
ues of the result tuple z to the concatenation of the explicit
attribute values of x and y. The third line computes the time-
stamp of z and ensures that it is nonempty. ��
Example 2 Consider the query “Show the names of employees
and managers where the employee worked for the company
while the manager managed some department in the com-
pany.” This can be satisfied using the temporal Cartesian prod-
uct.

Employee ×T Manager

EmpName Dept Dept MgrName T

Ron Ship Load Ed [3,5]
George Ship Load Ed [5,8]
George Ship Ship Jim [7,9]

Ron Mail Load Ed [6,8]
Ron Mail Ship Jim [7,10]

��
The overlap function is necessary and sufficient to ensure

snapshot reducibility, as will be discussed in detail in Sect. 2.7.
Basically, we want the temporal Cartesian product to act as
though it is a conventional Cartesian product applied inde-
pendently at each point in time. When operating on interval-
stamped data, this semantics corresponds to an intersection:
the result will be valid during those times when contributing
tuples from both input relations are valid.

The temporal Cartesian product was first defined by Segev
and Gunadhi [20,47]. This operator was termed the time
join, and the abbreviation T-join was used. Clifford and
Croker [7] defined a Cartesian product operator that is a com-
bination of the temporal Cartesian product and the temporal
outerjoin, to be defined shortly. Interval join is a building block
of the (spatial) rectangle join [2]. The interval join is a one-
dimensional spatial join that can thus be used to implement
the temporal Cartesian product.

2.3 Theta join

Like the conventional theta join, the temporal theta join sup-
ports an unrestricted predicate P on the explicit attributes of
its input arguments. The temporal theta join, r �T

P s, of two

relations r and s selects those tuples from r ×Ts that satisfy
predicate P (r[A], s[B]). Let σ denote the standard selection
operator.

Definition 2 The temporal theta join, r �T
P s, of two temporal

relations r and s is defined as follows.
r �T

P s = σP (r[A],s[B])(r ×Ts) ��

A form of this operator, the Θ-JOIN, was proposed by
Clifford and Croker [6]. This operator was later extended to
allow computations more general than overlap on the time-
stamps of result tuples [53].

2.4 Equijoin

Like snapshot equijoin, the temporal equijoin operator en-
forces equality matching among specified subsets of the ex-
plicit attributes of the input relations.

Definition 3 The temporal equijoin on two temporal relations
r and s on attributes A′ ⊆ A and B′ ⊆ B is defined as the
theta join with predicate P ≡ r[A′] = s[B′].
r �T

r[A′]=s[B′] s ��
Like the temporal theta join, the temporal equijoin was

first defined by Clifford and Croker [6]. A specialized oper-
ator, the TE-join, was developed independently by Segev
and Gunadhi [47]. The TE-join required the explicit join
attribute to be a surrogate attribute of both input relations.
Essentially, a surrogate attribute would be a key attribute of
a corresponding nontemporal schema. In a temporal context,
a surrogate attribute value represents a time-invariant object
identifier. If we augment schemas R and S with surrogate at-
tributes ID, then the TE-join can be expressed using the
temporal equijoin as follows.

r TE-join s ≡ r �T
r[ID]=s[ID] s

The temporal equijoin was also generalized by Zhang et al.
to yield the generalized TE-join, termed the GTE-join, which
specifies that the joined tuples must have their keys in a spec-
ified range while their intervals should intersect a specified
interval [56]. The objective was to focus on tuples within in-
teresting rectangles in the key-time space.

2.5 Natural join

The temporal natural join and the temporal equijoin bear the
same relationship to one another as their snapshot counter-
parts. That is, the temporal natural join is simply a temporal
equijoin on identically named explicit attributes followed by
a subsequent projection operation.

To define this join, we augment our relation schemas with
explicit join attributes, Ci, 1 ≤ i ≤ k, which we abbreviate
by C.

R = (A1, . . . , An, C1, . . . , Ck, Ts, Te)
S = (B1, . . . , Bm, C1, . . . , Ck, Ts, Te)

Definition 4 The temporal natural join of r and s, r �Ts, is
defined as follows.

D. Gao et al.: Join operations in temporal databases 5

r �Ts = {z(n+m+k+2) | ∃x ∈ r ∃y ∈ s(x[C] = y[C]∧
z[A] = x[A] ∧ z[B] = x[B] ∧ z[C] = y[C]∧
z[T] = overlap(x[T], y[T]) ∧ z[T] �= ∅)}

The first two lines ensure that tuples x and y agree on the values
of the join attributes C and set the explicit attributes of the
result tuple z to the concatenation of the nonjoin attributes A
and B and a single copy of the join attributes, C. The third line
computes the timestamp of z as the overlap of the timestamps
of x and y and ensures that x[T] and y[T] actually overlap. ��

This operator was first defined by Clifford and Croker [6],
who named it thenatural time join.We showed in ear-
lier work that the temporal natural join plays the same impor-
tant role in reconstructing normalized temporal relations as the
snapshot natural join for normalized snapshot relations [25].
Most previous work in temporal join evaluation has addressed,
either implicitly or explicitly, the implementation of the tem-
poral natural join or the closely related temporal equijoin.

2.6 Outerjoins and outer Cartesian products

Like the snapshot outerjoin, temporal outerjoins and Cartesian
products retain dangling tuples, i.e., tuples that do not partic-
ipate in the join. However, in a temporal database, a tuple
may dangle over a portion of its time interval and be covered
over others; this situation must be accounted for in a temporal
outerjoin or Cartesian product.

We may define the temporal outerjoin as the union of two
subjoins, like the snapshot outerjoin. The two subjoins are the
temporal left outerjoin and the temporal right outerjoin. As the
left and right outerjoins are symmetric, we define only the left
outerjoin.

We need two auxiliary functions. The coalesce function
collapses value-equivalent tuples – tuples with mutually equal
nontimestamp attribute values [23] – in a temporal relation
into a single tuple with the same nontimestamp attribute val-
ues and a timestamp that is the finite union of intervals that
precisely contains the chronons in the timestamps of the value-
equivalent tuples. (A finite union of time intervals is termed
a temporal element [15], which we represent in this paper as
a set of chronons.) The definition of coalesce uses the func-
tion chronons that returns the set of chronons contained in the
argument interval.

coalesce(r) = {z(n+1) |
∃x∈ r(z[A] = x[A] ⇒ chronons(x[T]) ⊆ z[T]∧

∀x′ ∈ r(x[A] = x′[A] ⇒ (chronons(x′[T]) ⊆ z[T]))) ∧
∀t ∈ z[T] ∃x′′ ∈ r(z[A] = x′′[A] ∧ t ∈ chronons(x′′[T]))}
The second and third lines of the definition coalesce all value-
equivalent tuples in relation r. The last line ensures that no
spurious chronons are generated.

We now define a function expand that returns the set of
maximal intervals contained in an argument temporal element,
T .

expand(T) = {[ts, te] |
ts ∈ T ∧ te ∈ T ∧ ∀t ∈ chronons([ts, te])(t ∈ T)∧
¬∃t′s ∈ T (t′s < ts ∧ ∀t (t′s < t < ts ⇒ t ∈ T)) ∧
¬∃t′e ∈ T (t′e > te ∧ ∀t (te < t < t′e ⇒ t ∈ T))}

The second line ensures that a member of the result is an
interval contained in T . The last two lines ensure that the
interval is indeed maximal.

We are now ready to define the temporal left outerjoin.
Let R and S be defined as for the temporal equijoin. We use
A′ ⊆ A and B′ ⊆ B as the explicit join attributes.

Definition 5 The temporal left outerjoin, r �T
r[A′]=s[B′]s, of

two temporal relations r and s is defined as follows.

r �T
r[A′]=s[B′]s = {z(n+m+2) |

∃x ∈ coalesce(r) ∃y ∈ coalesce(s)
(x[A′] = y[B′] ∧ z[A] = x[A] ∧ z[T] �= ∅ ∧

((z[B] = y[B] ∧ z[T] ∈ expand(x[T] ∩ y[T])) ∨
(z[B] = null ∧ z[T] ∈ expand(x[T] − y[T])))) ∨

∃x ∈ coalesce(r) ∀y ∈ coalesce(s)
(x[A′] �= y[B′] ⇒ z[A] = x[A] ∧ z[B] = null ∧

z[T] ∈ expand(x[T]) ∧ z[T] �= ∅)}
The first five lines of the definition handle the case where,
for a tuple x deriving from the left argument, a tuple y with
matching explicit join attribute values is found. For those time
intervals of x that are not shared with y, we generate tuples
with null values in the attributes of y. The final three lines of the
definition handle the case where no matching tuple y is found.
Tuples with null values in the attributes of y are generated. ��

The temporal outerjoin may be defined as simply the union
of the temporal left and the temporal right outerjoins (the union
operator eliminates the duplicate equijoin tuples). Similarly,
a temporal outer Cartesian product is a temporal outerjoin
without the equijoin condition (A′ = B′ = ∅).

Gunadhi and Segev were the first researchers to investi-
gate outerjoins over time. They defined a specialized version
of the temporal outerjoin called the EVENT JOIN [47]. This
operator, of which the temporal left and right outerjoins were
components, used a surrogate attribute as its explicit join at-
tribute. This definition was later extended to allow any at-
tributes to serve as the explicit join attributes [53]. A spe-
cialized version of the left and right outerjoins called the
TE-outerjoinwas also defined. TheTE-outerjoin in-
corporated the TE-join, i.e., temporal equijoin, as a com-
ponent.

Clifford and Croker [7] defined a temporal outer Cartesian
product, which they termed simply Cartesian product.

2.7 Reducibility

We proceed to show how the temporal operators reduce to
snapshot operators. Reducibility guarantees that the seman-
tics of the snapshot operator is preserved in its more complex
temporal counterpart.

For example, the semantics of the temporal natural join
reduces to the semantics of the snapshot natural join in that
the result of first joining two temporal relations and then trans-
forming the result to a snapshot relation yields a result that is
the same as that obtained by first transforming the arguments
to snapshot relations and then joining the snapshot relations.
This commutativity diagram is shown in Fig. 1 and stated for-
mally in the first equality of the following theorem.

6 D. Gao et al.: Join operations in temporal databases

�

�

��

Snapshot relationsTemporal relations

��T

τ T
t

τ T
t

τ T
t (r �Tr′) = τ T

t (r) �τ T
t (r′)r �Tr′

τ T
t (r), τ T

t (r′)r, r′

Fig. 1. Reducibility of temporal nat-
ural join to snapshot natural join

The timeslice operation τ T takes a temporal relation r as
argument and a chronon t as parameter. It returns the corre-
sponding snapshot relation, i.e., with the schema of r but with-
out the timestamp attributes, that contains (the nontime stamp
portion of) all tuples x from r for which t belongs to x[T]. It
follows from the theorem below that the temporal joins defined
here reduce to their snapshot counterparts.

Theorem 1 Let t denote a chronon and let r and s be relation
instances of the proper types for the operators they are applied
to. Then the following hold for all t.

τ T
t (r �Ts) = τ T

t (r) � τ T
t (s)

τ T
t (r ×Ts) = τ T

t (r) × τ T
t (s)

τ T
t (r �T

P s) = τ T
t (r) �P τ T

t (s)
τ T
t (r �Ts) = τ T

t (r) � τ T
t (s)

τ T
t (r � Ts) = τ T

t (r) � τ T
t (s)

Proof: An equivalence is shown by proving its two inclu-
sions separately. The nontimestamp attributes of r and s are
AC and BC, respectively, where A, B, and C are sets of at-
tributes and C denotes the join attribute(s) (cf. the definition
of temporal natural join). We prove one inclusion of the first
equivalence, that is, τ T

t (r �Ts) ⊆ τ T
t (r) � τ T

t (s). The remain-
ing proofs are similar in style.

Let x′′ ∈ τ T
t (r � s) (the left-hand side of the equiv-

alence to be proved). Then there is a tuple x′ ∈ r �Ts
such that x′[ABC] = x′′ and t ∈ x′[T]. By the definition
of �T, there exist tuples x1 ∈ r and x2 ∈ s such that
x1[C] = x2[C] = x′[C], x1[A] = x′[A], x2[B] = x′[B],
x′[T] = overlap(x1[T], x2[T]). By the definition of τ T

t , there
exist a tuple x′

1 ∈ τ T
t (r) such that x′

1 = x1[AC] = x′[AC] and
a tuple x′

2 ∈ τ T
t (s) such that x′

2 = x2[BC] = x′[BC]. Then
there exists x′′

12 ∈ τ T
t (r) � τ T

t (s) (the right-hand side of the
equivalence) such that x′′

12[AC] = x′
1 and x′′

12[B] = x′
2[B].

By construction, x′′
12 = x′′. This proves the ⊆ inclusion. ��

2.8 Summary

We have defined a taxonomy for temporal join operators. The
taxonomy was constructed as a natural extension of corre-
sponding snapshot database operators. We also briefly de-
scribed how previously defined temporal operators are accom-
modated in the taxonomy.

Table 1 summarizes how previous work is represented
in the taxonomy. For each operator defined in previ-
ous work, the table lists the defining publication, re-
searchers, the corresponding taxonomy operator, and any

restrictions assumed by the original operators. In early
work, Clifford [8] indicated that an INTERSECTION JOIN
should be defined that represents the categorized nonouter
joins and Cartesian products, and he proposed that a UNION
JOIN be defined for the outer variants.

3 Evaluation algorithms

In the previous section, we described the semantics of all pre-
viously proposed temporal join operators. We now turn our
attention to implementation algorithms for these operators. As
before, our purpose is to enumerate the space of algorithms
applicable to the temporal join operators, thereby providing
a consistent framework within which existing temporal join
evaluation algorithms can be placed.

Our approach is to extend well-understood paradigms
from conventional query evaluation to temporal databases.
Algorithms for temporal join evaluation are necessarily more
complex than their snapshot counterparts. Whereas snapshot
evaluation algorithms match input tuples based on their ex-
plicit join attributes, temporal join evaluation algorithms typ-
ically must additionally ensure that temporal restrictions are
met. Furthermore, this problem is exacerbated in two ways.
Timestamps are typically complex data types, e.g., intervals
requiring inequality predicates, which conventional query pro-
cessors are not optimized to handle. Also, a temporal database
is usually larger than a corresponding snapshot database due
to the versioning of tuples.

We consider non-index-based algorithms. Index-based al-
gorithms use an auxiliary access path, i.e., a data structure that
identifies tuples or their locations using a join attribute value.
Non-index-based algorithms do not employ auxiliary access
paths. While some attention has been focused on index-based
temporal join algorithms, the large number of temporal in-
dexes that have been proposed in the literature [44] precludes
a thorough investigation in this paper.

We first provide a taxonomy of temporal join algorithms.
This taxonomy, like the operator taxonomy of Table 1, is based
on well-established relational concepts. Sections 3.2 and 3.3
describe the algorithms in the taxonomy and place existing
work within the given framework. Finally, conclusions are
offered in Sect. 3.4.

3.1 Evaluation taxonomy

All binary relational query evaluation algorithms, including
those computing conventional joins, are derived from four

D. Gao et al.: Join operations in temporal databases 7

Table 1. Temporal join operators

Operator Initial citation Taxonomy operator Restrictions

Cartesian product [7] Outer Cartesian product None
EQUIJOIN [6] Equijoin None
GTE-join [56] Equijoin 2, 3
INTERVAL JOIN [2] Cartesian product None
NATURAL JOIN [6] Natural join None
TIME JOIN [6] Cartesian product 1
T-join [20] Cartesian product None
TE-JOIN [47] Equijoin 2
TE-OUTERJOIN [47] Left outerjoin 2
EVENT JOIN [47] Outerjoin 2
Θ-JOIN [6] Theta join None
Valid-time theta join [53] Theta join None
Valid-time left join [53] Left outerjoin None

Restrictions:
1 = restricts also the valid time of the result tuples
2 = matching only on surrogate attributes
3 = includes also intersection predicates with an argument surrogate range and a time range

basic paradigms: nested-loop, partitioning, sort-merge, and
index-based [18].

Partition-based join evaluation divides the input tuples into
buckets using the join attributes of the input relations as key
values. Corresponding buckets of the input relations contain
all tuples that could possibly match with one another, and
the buckets are constructed to best utilize the available main
memory buffer space. The result is produced by performing
an in-memory join of each pair of corresponding buckets from
the input relations.

Sort-merge join evaluation also divides the input relation
but uses physical memory loads as the units of division. The
memory loads are sorted, producing sorted runs, and written to
disk. The result is produced by merging the sorted runs, where
qualifying tuples are matched and output tuples generated.

Index-based join evaluation utilizes indexes defined on the
join attributes of the input relations to locate joining tuples ef-
ficiently. The index could be preexisting or built on the fly.
Elmasri et al. presented a temporal join algorithm that uti-
lizes a two-level time index, which used a B+-tree to index
the explicit attribute in the upper level, with the leaves ref-
erencing other B+-trees indexing time points [13]. Son and
Elmasri revised the time index to require less space and used
this modified index to determine the partitioning intervals in a
partition-based timestamp algorithm [52]. Bercken and Seeger
proposed several temporal join algorithms based on a multi-
version B+-tree (MVBT) [4]. Later Zhang et al. described
several algorithms based on B+-trees, R∗-trees [3], and the
MVBT for the related GTE-join. This operation requires that
joined tuples have key values that belong to a specified range
and have time intervals that intersect a specified interval [56].
The MVBT assumes that updates arrive in increasing time or-
der, which is not the case for valid-time data. We focus on
non-index-based join algorithms that apply to both valid-time
and transaction-time relations, and we do not discuss these
index-based joins further.

We adapt the basic non-index-based algorithms
(nested-loop, partitioning, and sort-merge) to support
temporal joins. To enumerate the space of temporal join algo-

rithms, we exploit the duality of partitioning and sort-merge
[19]. In particular, the division step of partitioning, where
tuples are separated based on key values, is analogous to the
merging step of sort-merge, where tuples are matched based
on key values. In the following, we consider the character-
istics of sort-merge algorithms and apply duality to derive
corresponding characteristics of partition-based algorithms.

For a conventional relation, sort-based join algorithms or-
der the input relation on the input relations’ explicit join at-
tributes. For a temporal relation, which includes timestamp
attributes in addition to explicit attributes, there are four pos-
sibilities for ordering the relation. First, the relation can be
sorted by the explicit attributes exclusively. Second, the rela-
tion can be ordered by time, using either the starting or ending
timestamp [29,46]. The choice of starting or ending timestamp
dictates an ascending or descending sort order, respectively.
Third, the relation can be ordered primarily by the explicit at-
tributes and secondarily by time [36]. Finally, the relation can
be ordered primarily by time and secondarily by the explicit
attributes.

By duality, the division step of partition-based algorithms
can partition using any of these options [29,46]. Hence four
choices exist for the dual steps of merging in sort-merge or
partitioning in partition-based methods.

We use this distinction to categorize the different ap-
proaches to temporal join evaluation. The first approach above,
using the explicit attributes as the primary matching attributes,
we term explicit algorithms. Similarly, we term the second ap-
proach timestamp algorithms. We retain the generic term tem-
poral algorithm to mean any algorithm to evaluate a temporal
operator.

Finally, it has been recognized that the choice of buffer
allocation strategy, GRACE or hybrid [9], is independent of
whether a sort-based or partition-based approach is used [18].
Hybrid policies retain most of the last run of the outer relation
in main memory and so minimize the flushing of intermediate
buffers to disk, thereby potentially decreasing the I/O cost.

Figure 2 lists the choices of sort-merge vs. partitioning,
the possible sorting/partitioning attributes, and the possible

8 D. Gao et al.: Join operations in temporal databases

{
Sort-merge
Partitioning

}
×




Explicit
Timestamp

Explicit/timestamp
Timestamp/explicit



×

{
GRACE
Hybrid

}

Fig. 2. Space of possible evaluation algorithms

buffer allocation strategies. Combining all possibilities yields
16 possible evaluation algorithms. Including the basic nested-
loop algorithm and GRACE and hybrid variants of the sort-
based interval join mentioned in Sect. 2.2 results in a total
of 19 possible algorithms. The 19 algorithms are named and
described in Table 2.

We noted previously that time intervals lack a natural or-
der. From this point of view spatial join is similar because
there is no natural order preserving spatial closeness. Previous
work on spatial join may be categorized into three approaches.
Early work [37,38] used a transformation approach based on
space-filling curves, performing a sort-merge join along the
curve to solve the join problem. Most of the work falls in the
index-based approaches, utilizing spatial index structures such
as the R-tree [21], R+-tree [48], R∗-tree [3], Quad-tree [45],
or seeded tree [31]. While some algorithms use preexisting
indexes, others build the indexes on the fly.

In recent years, some work has focused on non-index-
based spatial join approaches. Two partition-based spa-
tial join algorithms have been proposed. One of them
[32] partitions the input relations into overlapping buckets and
uses an indexed nested-loop join to perform the join within
each bucket. The other [40] partitions the input relations into
disjoint partitions and uses a computational-geometry-based
plane-sweep algorithm that can be thought of as the spatial
equivalent of the sort-merge algorithm. Arge et al. [2] intro-
duced a highly optimized implementation of the sweeping-
based algorithm that first sorts the data along the vertical axis
and then partitions the input into a number of vertical strips.
Data in each strip can then be joined by an internal plane-
sweep algorithm. All the above non-index-based spatial join
algorithms use a sort- or partition-based approach or combine
these two approaches in one algorithm, which is the approach
we adopt in some of our temporal join algorithms (Sect. 4.3.2).

In the next two sections, we examine the space of explicit
algorithms and timestamp algorithms, respectively, and clas-
sify existing approaches using the taxonomy developed in this
section. We will see that most previous work in temporal join
evaluation has centered on timestamp algorithms. However,
for expository purposes, we first examine those algorithms
based on manipulation of the nontimestamp columns, which
we term “explicit” algorithms.

3.2 Explicit algorithms

Previous work has largely ignored the fact that conventional
query evaluation algorithms can be easily modified to eval-
uate temporal joins. In this section, we show how the three
paradigms of query evaluation can support temporal join eval-
uation. To make the discussion concrete, we develop an algo-
rithm to evaluate the valid-time natural join, defined in Sect. 2,
for each of the three paradigms. We begin with the simplest
paradigm, nested-loop evaluation.

explicitNestedLoop(r, s):
result← ∅;
for each block br ∈ r

read(br);
for each block bs ∈ s

read(bs);
for each tuple x ∈ br

for each tuple y ∈ bs

if x[C] = y[C] and
overlap(x[T], y[T]) �= ∅
z[A]← x[A];
z[B]← y[B];
z[C]← x[C];
z[T]← overlap(x[T], y[T]);
result← result ∪ {z};

return result;

Fig. 3. Algorithm explicitNestedLoop

3.2.1 Nested-loop-based algorithms

Nested-loop join algorithms match tuples by exhaustively
comparing pairs of tuples from the input relations. As an I/O
optimization, blocks of the input relations are read into mem-
ory, with comparisons performed between all tuples in the
input blocks. The size of the input blocks is constrained by the
available main memory buffer space.

The algorithm operates as follows. One relation is des-
ignated the outer relation, the other the inner relation
[35,18]. The outer relation is scanned once. For each block
of the outer relation, the inner relation is scanned. When a
block of the inner relation is read into memory, the tuples
in that “inner block” are joined with the tuples in the “outer
block.”

The temporal nested-loop join is easily constructed from
this basic algorithm. All that is required is that the timestamp
predicate be evaluated at the same time as the predicate on the
explicit attributes. Figure 3 shows the temporal algorithm. (In
the figure, r is the outer relation and s is the inner relation. We
assume their schemas are as defined in Sect. 2.)

While conceptually simple, nested-loop-based evaluation
is often not competitive due to its quadratic cost. We now
describe temporal variants of the sort-merge and partition-
based algorithms, which usually exhibit better performance.

3.2.2 Sort-merge-based algorithms

Sort-merge join algorithms consist of two phases. In the first
phase, the input relations r and s are sorted by their join at-
tributes. In the second phase, the result is produced by simulta-
neously scanning r and s, merging tuples with identical values
for their join attributes.

Complications arise if the join attributes are not key at-
tributes of the input relations. In this case, multiple tuples in
r and in s may have identical join attribute values. Hence a
given r tuple may join with many s tuples, and vice versa.
(This is termed skew [30].)

As before, we designate one relation as the outer relation
and the other as the inner relation. When consecutive tuples in

D. Gao et al.: Join operations in temporal databases 9

Table 2. Algorithm taxonomy

Algorithm Name Description

Explicit sort ES GRACE sort-merge by explicit attributes
Hybrid explicit sort ES-H Hybrid sort-merge by explicit attributes
Timestamp sort TS GRACE sort-merge by timestamps
Hybrid timestamp sort TS-H Hybrid sort-merge by timestamps
Explicit/timestamp sort ETS GRACE sort-merge by explicit attributes/time
Hybrid explicit/timestamp sort ETS-H Hybrid sort-merge by explicit attributes/time
Timestamp/explicit sort TES GRACE sort-merge by time/explicit attributes
Hybrid timestamp/explicit sort TES-H Hybrid sort-merge by time/explicit attributes
Interval join TSI GRACE sort-merge by timestamps
Hybrid interval join TSI-H Hybrid sort-merge by timestamps
Explicit partitioning EP GRACE partitioning by explicit attributes
Hybrid explicit partitioning EP-H Hybrid partitioning by explicit attributes
Timestamp partitioning TP Range partition by time
Hybrid timestamp partitioning TP-H Hybrid range partitioning by time
Explicit/timestamp partitioning ETP GRACE partitioning by explicit attributes/time
Hybrid explicit/timestamp partitioning ETP-H Hybrid partitioning by explicit attributes/time
Timestamp/explicit partitioning TEP GRACE partitioning by time/explicit attributes
Hybrid timestamp/explicit partitioning TEP-H Hybrid partitioning by time/explicit attributes
Nested-loop NL Exhaustive matching

structure state
integer current block;
integer current tuple;
integer first block;
integer first tuple;
block tuples;

Fig. 4. State structure for merge scanning

the outer relation have identical values for their explicit join at-
tributes, i.e., their nontimestamp join attributes, the scan of the
inner relation is “backed up” to ensure that all possible matches
are found. Prior to showing the explicitSortMerge al-
gorithm, we define a suite of algorithms that manage the scans
of the input relations. For each scan, we maintain the state
structure shown in Fig. 4. The fields current block and cur-
rent tuple together indicate the current tuple in the scan by
recording the number of the current block and the index of
the current tuple within that block. The fields first block and
first tuple are used to record the state at the beginning of a
scan of the inner relation in order to back up the scan later
if needed. Finally, tuples stores the block of the relation cur-
rently in memory. For convenience, we treat the block as an
array of tuples.

The initState algorithm shown in Fig. 5 initializes the
state of a scan. Essentially, counters are set to guarantee that
the first block read and the first tuple scanned are the first
block and first tuple within that block in the input relation. We
assume that a seek operation is available that repositions the
file pointer associated with a relation to a given block number.

The advance algorithm advances the scan of the argu-
ment relation and state to the next tuple in the sorted relation.
If the current block has been exhausted, then the next block of
the relation is read. Otherwise, the state is updated to mark the
next tuple in the current block as the next tuple in the scan. The

initState(relation, state):
state.current block ← 1;
state.current tuple← 0;
state.first block ←⊥;
state.first tuple←⊥;
seek(relation, state.current block);
state.tuples← read block(relation);

advance(relation, state):
if (state.current tuple = MAX TUPLES)

state.tuples← read block(relation);
state.current block ← state.current block + 1;
state.current tuple← 1;

else
state.current tuple← state.current tuple + 1;

currentTuple(state):
return state.tuples[state.current tuple]

backUp(relation, state):
if (state.current block �= state.first block)

state.current block ← state.first block;
seek(relation, state.current block);
state.tuples← read block(relation);

state.current tuple← state.first tuple;

markScanStart(state):
state.first block ← state.current block;
state.first tuple← state.current tuple;

Fig. 5. Merge algorithms

10 D. Gao et al.: Join operations in temporal databases

explicitSortMerge(r, s, C):
r′ ← sort(r, C);
s′ ← sort(s, C);

initState(r′, outer state); initState(s′, inner state);
x′[C]←⊥;
result← ∅;
advance(s′, inner state);
y ← currentTuple(inner state);

for i← 1 to |r′|
advance(r′, outer state);
x← currentTuple(outer state);

if x[C] = x′[C]
backUp(s′, inner state);
y ← currentTuple(s′, inner state);

x′[C]← x[C];

while (x[C] > y[C])
advance(s′, inner state);
y ← currentTuple(inner state);

markScanStart(inner state);

while (x[C] = y[C])
if overlap(x[T], y[T]) �= ∅)

z[A]← x[A]; z[B]← y[B]; z[C]← x[C];
z[T]← overlap(x[T], y[T]);
result← result ∪ {z};

advance(s′, inner state);
y ← currentTuple(inner state);

return result;

Fig. 6. explicitSortMerge algorithm

current tuple algorithm merely returns the next tuple in
the scan, as indicated by the scan state. Finally, the backUp
and markScanStart algorithms manage the backing up of
the inner relation scan. The backUp algorithm reverts the
current block and tuple counters to their last values. These
values are stored in the state at the beginning of a scan by the
markScanStart algorithm.

We are now ready to exhibit the explicitSortMerge
algorithm, shown in Fig. 6. The algorithm accepts three pa-
rameters, the input relations r and s and the join attributes C.
We assume that the schemas of r and s are as given in Sect. 2.
Tuples from the outer relation are scanned in order. For each
outer tuple, if the tuple matches the previous outer tuple, the
scan of the inner relation is backed up to the first matching
inner tuple. The starting location of the scan is recorded in
case backing up is needed by the next outer tuple, and the
scan proceeds forward as normal. The complexity of the al-
gorithm, as well as its performance degradation as compared
with conventional sort-merge, is due largely to the bookkeep-
ing required to back up the inner relation scan. We consider
this performance hit in more detail in Sect. 4.2.2.

Segev and Gunadhi developed three algorithms based on
explicit sorting, differing primarily by the code in the inner
loop and by whether backup is necessary. Two of the algo-
rithms, TEJ-1 and TEJ-2, support the temporal equijoin [46];

the remaining algorithm, EJ-1, evaluates the temporal outer-
join [46].

TEJ-1 is applicable if the equijoin condition is on the
surrogate attributes of the input relations. The surrogate at-
tributes are essentially key attributes of a corresponding snap-
shot schema. TEJ-1 assumes that the input relations are sorted
primarily by their surrogate attributes and secondarily by their
starting timestamps. The surrogate matching, sort-ordering,
and 1TNF assumption described in Sect. 3.3.1 allows the re-
sult to be produced with a single scan of both input relations,
with no backup.

The second equijoin algorithm, TEJ-2, is applicable when
the equijoin condition involves any explicit attributes, surro-
gate or not. TEJ-2 assumes that the input relations are sorted
primarily by their explicit join attribute(s) and secondarily by
their starting timestamps. Note that since the join attribute can
be a nonsurrogate attribute, tuples sharing the same join at-
tribute value may overlap in valid time. Consequently, TEJ-2
requires the scan of the inner relation to be backed up in order
to find all tuples with matching explicit attributes.

For the EVENT JOIN, Segev and Gunadhi described the
sort-merge-based algorithm EJ-1. EJ-1 assumes that the input
relations are sorted primarily by their surrogate attributes and
secondarily by their starting timestamps. Like TEJ-1, the result
is produced by a single scan of both input relations.

3.2.3 Partition-based algorithms

As in sort-merge-based algorithms, partition-based algorithms
have two distinct phases. In the first phase, the input relations
are partitioned based on their join attribute values. The par-
titioning is performed so that a given bucket produced from
one input relation contains tuples that can only match with
tuples contained in the corresponding bucket of the other in-
put relation. Each produced bucket is also intended to fill the
allotted main memory. Typically, a hash function is used as
the partitioning agent. Both relations are filtered through the
same hash function, producing two parallel sets of buckets. In
the second phase, the join is computed by comparing tuples in
corresponding buckets of the input relations. Partition-based
algorithms have been shown to have superior performance
when the relative sizes of the input relations differ [18].

A partitioning algorithm for the temporal natural join is
shown in Fig. 7. The algorithm accepts as input two relations
r and s and the names of the explicit join attributes C. We
assume that the schemas of r and s are as given in Sect. 2.

As can be seen, the explicit partition-based join algorithm
is conceptually very simple. One relation is designated the
outer relation, the other the inner relation. After partitioning,
each bucket of the outer relation is read in turn. For a given
“outer bucket,” each page of the corresponding “inner bucket”
is read, and tuples in the buffers are joined.

The partitioning step in Fig. 7 is performed by the
partition algorithm. This algorithm takes as its first argu-
ment an input relation. The resulting n partitions are returned
in the remaining parameters. Algorithm partition assumes that
a hash functionhash is available that accepts the join attribute
values x[C] as input and returns an integer, the index of the
target bucket, as its result.

D. Gao et al.: Join operations in temporal databases 11

explicitPartitionJoin(r, s, C):
result← ∅;

partition(r, r1, . . . , rn);
partition(s, s1, . . . , sn);

for i← 1 to n
outer bucket← read partition(ri);
for each page p ∈ si

p← read page(si);
for each tuple x ∈ outer bucket

for each tuple y ∈ p
if (x[C] = y[C] and

overlap(x[T], y[T]) �= ∅)
z[A]← x[A];
z[B]← y[B];
z[C]← x[C];
z[T]← overlap(x[T], y[T]);
result← result ∪ {z};

return result;

partition(r, r1, . . . , rn):
for i← 1 to p

ri ← ∅;

for each block b ∈ r
read block(b);
for each tuple x ∈ b

i← hash(x[C]);
ri ← ri ∪ {x};

Fig. 7.AlgorithmsexplicitPartitionJoin andpartition

3.3 Timestamp algorithms

In contrast to the algorithms of the previous section, timestamp
algorithms perform their primary matching on the timestamps
associated with tuples.

In this section, we enumerate, to the best of our knowl-
edge, all existing timestamp-based evaluation algorithms for
the temporal join operators described in Sect. 3. Many of these
algorithms assume sort ordering of the input by either their
starting or ending timestamps. While such assumptions are
valid for many applications, they are not valid in the general
case, as valid-time semantics allows correction and deletion
of previously stored data. (Of course, in such cases one could
resort within the join.) As before, all of the algorithms de-
scribed here are derived from nested loop, sort-merge, or par-
titioning; we do not consider index-based temporal joins.

3.3.1 Nested-loop-based timestamp algorithms

One timestamp nested-loop-based algorithm has been pro-
posed for temporal join evaluation. Like the EJ-1 algorithm
described in the previous section, Segev and Gunadhi devel-
oped their algorithm, EJ-2, for the EVENT JOIN [47,20] (Ta-
ble 1).

EJ-2 does not assume any ordering of the input relations.
It does assume that the explicit join attribute is a distinguished

surrogate attribute and that the input relations are in Temporal
First Normal Form (1TNF). Essentially, 1TNF ensures that
tuples within a single relation that have the same surrogate
value may not overlap in time.

EJ-2 simultaneously produces the natural join and left out-
erjoin in an initial phase and then computes the right outerjoin
in a subsequent phase.

For the first phase, the inner relation is scanned once from
front to back for each outer relation tuple. For a given outer
relation tuple, the scan of the inner relation is terminated when
the inner relation is exhausted or the outer tuple’s timestamp
has been completely overlapped by matching inner tuples. The
outer tuple’s natural join is produced as the scan progresses.
The outer tuple’s left outerjoin is produced by tracking the
subintervals of the outer tuple’s timestamp that are not over-
lapped by any inner tuples. An output tuple is produced for
each subinterval remaining at the end of the scan. Note that
the main memory buffer space must be allocated to contain
the nonoverlapped subintervals of the outer tuple.

In the second phase, the roles of the inner and outer rela-
tions are reversed. Now, since the natural join was produced
during the first phase, only the right outerjoin needs to be
computed. The right outerjoin tuples are produced in the same
manner as above, with one small optimization. If it is known
that a tuple of the (current) outer relation did not join with
any tuples during the first phase, then no scanning of the inner
relation is required and the corresponding outerjoin tuple is
produced immediately.

Incidentally, Zurek proposed several algorithms for eval-
uating temporal Cartesian product on multiprocessors based
on nested loops [57].

3.3.2 Sort-merge-based timestamp algorithms

To date, four sets of researchers – Segev and Gunadhi, Leung
and Muntz, Pfoser and Jensen, and Rana and Fotouhi – have
developed timestamp sort-merge algorithms. Additionally, a
one-dimensional spatial join algorithm proposed by Arge et
al. can be used to implement a temporal Cartesian product.

Segev and Gunadhi modified the traditional merge-join
algorithm to support the T-join and the temporal equijoin [47,
20]. We describe the algorithms for each of these operators in
turn.

For the T-join, the relations are sorted in ascending order
of starting timestamp. The result is produced by a single scan
of the input relations.

For the temporal equijoin, two timestamp sorting algo-
rithms, named TEJ-3 and TEJ-4, are presented. Both TEJ-3
and TEJ-4 assume that their input relations are sorted by start-
ing timestamp only. TEJ-4 is applicable only if the equijoin
condition is on the surrogate attribute. In addition to assuming
that the input relations are sorted by their starting timestamps,
TEJ-4 assumes that all tuples with the same surrogate value
are linked, thereby allowing all tuples with the same surrogate
to be retrieved when the first is found. The result is performed
with a linear scan of both relations, with random access needed
to traverse surrogate chains.

Like TEJ-2, TEJ-3 is applicable for temporal equijoins
on both the surrogate and explicit attribute values. TEJ-3 as-
sumes that the input relations are sorted in ascending order of

12 D. Gao et al.: Join operations in temporal databases

their starting timestamps, but no sort order is assumed on the
explicit join attributes. Hence TEJ-3 requires that the inner
relation scan be backed up should consecutive tuples in the
outer relation have overlapping interval timestamps.

Leung and Muntz developed a series of algorithms based
on the sort-merge algorithm to support temporal join predi-
cates such as “contains” and “intersect” [1]. Although their
algorithms do not explicitly support predicates on nontem-
poral attribute values, their techniques are easily modified to
support more complex join operators such as the temporal
equijoin. Like Segev and Gunadhi, this work describes evalu-
ation algorithms appropriate for different sorting assumptions
and access paths.

Leung and Muntz use a stream-processing approach. Ab-
stractly, the input relations are considered as sequences of
time-sorted tuples where only the tuples at the front of the
streams may be read. The ordering of the tuples is a tradeoff
with the amount of main memory needed to compute the join.
For example, Leung and Muntz show how a contain join [1]
can be computed if the input streams are sorted in ascending
order of their starting timestamp. They summarize for various
sort orders on the starting and ending timestamps what tuples
must be retained in main memory during the join computa-
tion. A family of algorithms are developed assuming different
orderings (ascending/descending) of the starting and ending
timestamps.

Leung and Muntz also show how checkpoints, essentially
the set of tuples valid during some chronon, can be used to
evaluate temporal joins where the join predicate implies some
overlap between the participating tuples. Here, the check-
points actually contain tuple identifiers (TIDs) for the tuples
valid during the specified chronon and the TIDs of the next
tuples in the input streams. Suppose a checkpoint exists at
time t. Using this checkpoint, the set of tuples participating
in a join over a time interval containing t can be computed by
using the cached TIDs and “rolling forward” using the TIDs
of the next tuples in the streams.

Rana and Fotouhi proposed several techniques to improve
the performance of time-join algorithms in which they claimed
they used a nested-loop approach [43]. Since they assumed the
input relations were sorted by the start time and/or end time,
those algorithms are more like the second phase of sort-merge-
based timestamp algorithms. The algorithms are very similar
to the sort-merge-based algorithms developed by Segev and
Gunadhi.

Arge et al. described the interval join, a one-
dimensional spatial join algorithm, which is a building block
of a two-dimensional rectangle join [2]. Each interval is de-
fined by a lower boundary and an upper boundary.The problem
is to report all intersections between an interval in the outer
relation and an interval in the inner relation. If the interval
is a time interval instead of a spatial interval, this problem is
equivalent to the temporal Cartesian product. They assumed
the two input relations were first sorted by the algorithm into
one list by their lower boundaries. The algorithm maintains
two initially empty lists of tuples with “active” intervals, one
for each input relation. When the sorted list is scanned, the
current tuple is put into the active list of the relation it be-
longs to and joins only with the tuples in the active list of the
other relation. Tuples becoming inactive during scanning are
removed from the active list.

Most recently, Pfoser and Jensen [41] applied the sort-
merge approach to the temporal theta join in a setting where
each argument relation consists of a noncurrent and a current
partition. Tuples in the former all have intervals that end be-
fore the current time, while all tuples of the latter have intervals
that end at the current time. They assume that updates arrive in
time order, so that tuples in noncurrent partitions are ordered
by their interval end times and tuples in current partitions are
ordered by their interval start times. A join then consists of
three different kinds of subjoins. They develop two join algo-
rithms for this setting and subsequently use these algorithms
for incremental join computation.

As can be seen from the above discussion, a large num-
ber of timestamp-based sort-merge algorithms have been pro-
posed, some for specific join operators. However, each of these
proposals has been developed largely in isolation from other
work, with little or no cross comparison. Furthermore, pub-
lished performance figures have been derived mainly from
analytical models rather than from empirical observations. An
empirical comparison, as provided in Sect. 5, is needed to truly
evaluate the different proposals.

3.3.3 Partition-based timestamp algorithms

Partitioning a relation over explicit attributes is relatively
straightforward if the partitioning attributes have discrete val-
ues. Partitioning over time is more difficult since our time-
stamps are intervals, i.e., range data, rather than discrete val-
ues. Previous timestamp partitioning algorithms therefore de-
veloped various means of range partitioning the time intervals
associated with tuples.

In previous work, we described a valid-time join algorithm
using partitioning [54]. This algorithm was presented in the
context of evaluating the valid-time natural join, though it is
easily adapted to other temporal joins. The range partitioning
used by this algorithm mapped tuples to singular buckets and
dynamically migrated the tuples to other buckets as needed
during the join computation. This approach avoided data re-
dundancy, and associated I/O overhead, at the expense of more
complex buffer management.

Sitzmann and Stuchey extended this algorithm by using
histograms to decide the partition boundary [49]. Their algo-
rithm takes the number of long-lived tuples into consideration,
which renders its performance insensitive to the number of
long-lived tuples. However, it relies on a preexisting temporal
histogram.

Lu et al. described another range-partitioning algorithm
for computing temporal joins [33]. This algorithm is applica-
ble to theta joins, where a result tuple is produced for each pair
of input tuples with overlapping valid-time intervals. Their ap-
proach is to map intervals to a two-dimensional plane, which
is then partitioned into regions. The join result is produced
by computing the subjoins of pairs of partitions correspond-
ing to adjacent regions in the plane. This method applies to
a restricted temporal model where future time is not allowed.
They utilize a spatial index to speed up the joining phase.

D. Gao et al.: Join operations in temporal databases 13

Table 3. Existing algorithms and taxonomy counterparts

Algorithm Defined by Taxonomy Assumptions

TEJ-1 Segev and Gunadhi Explicit/timestamp sort Surrogate attribute and 1TNF
TEJ-2 Segev and Gunadhi Explicit/timestamp sort None
EJ-2 Segev and Gunadhi Nested-loop Surrogate attribute and 1TNF
EJ-1 Segev and Gunadhi Explicit/timestamp sort Surrogate attribute and 1TNF
Time-join Segev and Gunadhi Timestamp sort None
TEJ-3 Segev and Gunadhi Timestamp sort None
TEJ-4 Segev and Gunadhi Timestamp sort Surrogate attribute/access chain
Several Leung and Muntz Timestamp sort None
Interval Arge et al. Timestamp sort None
Two Pfoser and Jensen Timestamp sort Partitioned relation; time-ordered updates
– Soo et al. Timestamp partition None
– Sitzmann and Stuckey Timestamp partition Requires preexisting temporal histogram
– Lu et al. Timestamp partition Disallows future time; uses spatial index

3.4 Summary

We have surveyed temporal join algorithms and proposed
a taxonomy of such algorithms. The taxonomy was devel-
oped by adapting well-established relational query evaluation
paradigms to the temporal operations.

Table 3 summarizes how each temporal join operation pro-
posed in previous work is classified in the taxonomy. We be-
lieve that the framework is complete since, disregarding data-
model-specific considerations, all previous work naturally fits
into one of the proposed categories.

One important property of an algorithm is whether it deliv-
ers a partial answer before the entire input is read. Among the
algorithms listed in Table 3, only the nested-loop algorithm
has this property. Partition-based algorithms have to scan the
whole input relation to get the partitions. Similarly, sort-based
algorithms have to read the entire input to sort the relation.
We note, however, that it is possible to modify the temporal
sort-based algorithms to be nonblocking, using the approach
of progressive merge join [10].

4 Engineering the algorithms

As noted in the previous section, an adequate empirical inves-
tigation of the performance of temporal join algorithms has
not been performed. We concentrate on the temporal equijoin,
defined in Sect. 2.4. This join and the related temporal natural
join are needed to reconstruct normalized temporal relations
[25]. To perform a study of implementations of this join, we
must first provide state-of-the-art implementations of the 19
different types of algorithms outlined for this join. In this sec-
tion, we discuss our implementation choices.

4.1 Nested-loop algorithm

We implemented a simple block-oriented nested-loop algo-
rithm. Each block of the outer relation is read in turn into
memory. The outer block is sorted by the explicit joining at-
tribute (actually, pointers are sorted to avoid copying of tu-
ples). Each block of the inner relation is then brought into
memory. For a given inner block, each tuple in that block is
joined by binary searching the sorted tuples.

This algorithm is simpler than the nested-loop algorithm,
EJ-2, described in Sect. 3.3.1 [20,47]. In particular, our al-
gorithm computes only the valid-time equijoin, while EJ-2
computes the valid-time outerjoin, which includes the equi-
join in the form of the valid-time natural join. However, our
algorithm supports a more general equijoin condition than
EJ-2 in that we support matching on any explicit attribute
rather than solely on a designated surrogate attribute.

4.2 Sort-merge-based algorithms

We were careful to use a high-performance sort-merge algo-
rithm with the features covered next.

4.2.1 Combining last sort step with merge step

Sort-merge join uses a disk-based sorting phase that starts
by generating many small, fully sorted runs, then repeatedly
merges these into increasingly longer runs until a single run
is obtained (this is done for the left-hand side and right-hand
side independently). Each step of the sort phase reads and
writes the entire relation. The merge phase then scans the fully
sorted left-hand and right-hand relations to produce the output
relation. A common optimization is to stop the sorting phase
one step early, when there is a small number of fully sorted
runs. The final step is done in parallel with the merge phase
of the join, thereby avoiding one read and one write scan.
Our sort-merge algorithms implemented for the performance
analysis are based on this optimization. We generated initial
runs using an in-memory quicksort on the explicit attributes
(ES and ES-H), the timestamp attributes (TS and TS-H), or
both (ETS and ETS-H) and then merged the two relations on
multiple runs.

4.2.2 Efficient skew handling

As noted in Sect. 3.2.2, sort-merge join algorithms become
complicated when the join attributes are not key attributes.
Our previous work on conventional joins [30] shows that in-
trinsic skew is generally present in this situation. Even a small
amount of intrinsic skew can result in a significant perfor-
mance hit because the naive approach to handling skew is to

14 D. Gao et al.: Join operations in temporal databases

520

540

560

580

600

620

640

660

680

0 10 20 30 40 50

el
ap

se
d

tim
e

(s
ec

s)

skew (percentage)

ES Reread
ES Cache

Fig. 8. Performance improvement of ES with spooled cache on
skewed data

reread the previous tuples in the same value packet (containing
the identical values for the equijoin attribute); this rereading in-
volves additional I/O operations. We previously proposed sev-
eral techniques to handle skew efficiently [30]. Among them,
SC-n (spooled cache on multiple runs) was recommended due
to its strikingly better performance in the presence of skew for
both conventional and band joins. This algorithm also exhibits
virtually identical performance as a traditional sort-merge join
in the absence of skew. SC-n uses a small cache to hold the
skewed tuples from the right-hand relation that satisfy the join
condition. At the cache’s overflow point, the cache data are
spooled to disk.

Skew is prevalent in temporal joins. SC-n can be adapted
for temporal joins by adding a supplemental predicate (re-
quiring that the tuples overlap) and calculating the resulting
timestamps, by intersection.We adopt this spooled cache in ES
instead of rereading the previous tuples. The advantage of us-
ing spooled cache is shown in Fig. 8. ES Reread is the multirun
version of the explicitSortMerge algorithm exhibited
in Sect. 3.2.2, which backs up the right-hand relation when a
duplicate value is found in the left-hand relation.

The two algorithms were executed in the TimeIt sys-
tem. The parameters are the same as those that will be used
in Sect. 5.1. In this experiment, the memory size was fixed at
8 MB and the cache size at 32 KB.The relations were generated
with different percentages of smooth skew on the explicit at-
tribute. A relation has 1% smooth skew when 1% of the tuples
in the relation have one duplicate value on the join attribute
and the remaining 98% of the tuples have no duplicates. Since
the cache can hold the skewed tuples in memory, no additional
I/O is caused by backing up the relation. The performance im-
provement of using a cache is approximately 25% when the
data have 50% smooth skew. We thus use a spooled cache to
handle skew. Spooling will generally not occur but is available
in case a large value packet is present.

4.2.3 Time-varying value packets
and optimized prediction rule

ES utilizes a prediction rule to judge if skew is present. (Recall
that skew occurs if the two tuples have the same join attribute
value.) The prediction rule works as follows. When the last

tuple in the right-hand relation (RHR) buffer is visited, the
last tuple in the left-hand relation (LHR) buffer is checked to
determine if skew is present and the current RHR value packet
needs to be put into the cache.

We also implemented an algorithm (TS) that sorts the input
relations by start time rather than by the explicit join attribute.
Here the RHR value packet associated with a specific LHR
tuple is not composed of those RHR tuples with the same
start time but rather of those RHR tuples that overlap with
the interval of the LHR tuple. Hence value packets are not
disjoint, and they grow and shrink as one scans the LHR. In
particular, TS puts into the cache only those tuples that could
overlap in the future: the tuples that do not stop too early, that
is, before subsequent LHR tuples start. For an individual LHR
tuple, the RHR value packet starts with the first tuple that stops
sometime during the LHR tuple’s interval and goes through
the first RHR tuple that starts after the LHR tuple stops. Value
packets are also not totally ordered when sorting by start time.

These considerations suggest that we change the predic-
tion rule in TS. When the RHR reaches a block boundary, the
maximum stop time in the current value packet is compared
with the start time of the last tuple in the LHR buffer. If the
maximum stop time of the RHR value packet is less than the
last start time of the LHR, none of the tuples in the value packet
will overlap with the subsequent LHR tuples. Thus there is no
need to put them in the cache. Otherwise, the value packet is
scanned and only those tuples with a stop time greater than
the last start time of the LHR are put into the cache, thereby
minimizing the utilization of the cache and thus the possibility
of cache overflow.

ETS sorts the input relations by explicit attribute first and
then by start time. Here the RHR value packet associated with
a left tuple is composed of those right tuples that not only have
the same value of the explicit attribute but also overlap with
the interval of the left tuple. The prediction rules used in ES
and TS are combined to decide whether or not to put a tuple
or a value packet into the cache.

To make our work complete, we also implemented TES,
which sorts the input relations primarily by start time and sec-
ondarily by the explicit attribute. The logic of TES is exactly
the same as that of TS for the joining phase. We expect the
extra sorting by explicit attribute will not help to optimize the
algorithm but rather will simply increase the CPU time.

4.2.4 Specialized cache purging

Since the cache size is small, it could be filled up if a value
packet is very large or if several value packets accumulate in
the cache. For the former, nothing but spooling the cache can
be done. However, purging the cache periodically can avoid
unnecessary cache spool for the latter and may result in fewer
I/O operations.

Purging the cache costs more in TS since the RHR value
packets are not disjoint, while in ES they are disjoint both in
each run and in the cache. The cache purging process in ES
scans the cache from the beginning and stops whenever the
first tuple that belongs to the current value packet is met. But
in TS, this purging stage cannot stop until the whole cache
has been scanned because the tuples belonging to the current
value packet are spread across the cache. An inner long-lived

D. Gao et al.: Join operations in temporal databases 15

3

3.5

4

4.5

5

5.5

2 4 8 16 32 64

C
P

U
 ti

m
e

(s
ec

s)

memory size (MB)

No Heap
Heap

Fig. 9. Performance improvement of using a heap in ES

tuple could be kept in the cache for a long time because its
time interval could intersect with many LHR tuples.

4.2.5 Using a heap

As stated in Sect. 4.2.1, the final step of sorting is done in
parallel with the merging stage.Assuming the two relations are
sorted in ascending order, in the merging stage the algorithm
first has to find the smallest value from the multiple sorted runs
of each relation and then compare the two values to see if they
can be joined. The simplest way to find the smallest value is
to scan the current value of each run. If the relation is divided
into m runs, the cost of selecting the smallest value is O(m).
A more efficient way to do this is to use a heap to select the
smallest value. The cost of using a heap is O(log2m) when
m > 1. By utilizing a heap, the time complexity is reduced.

At the beginning of the merging step, the heap is built based
on the value of the first tuple in each run. Whenever advance
is called, the run currently on the top of the heap advances its
reading pointer to the next tuple. Since the key value of this
tuple is no less than the tuple in the current state, it should
be propagated down to maintain the heap structure. When a
run is backed up, its reading pointer is restored to point to a
previously visited tuple, which has a smaller key value, and
thus should be propagated up the heap.

When the memory size is relatively small, which indicates
that the size of each run is small and therefore that a relation
has to be divided into more runs (the number of runs m is
large), the performance of using a heap will be much better
than that without a heap. However, using a heap causes some
pointer swaps when sifting down or propagating up a tuple in
the heap, which are not needed in the simple algorithm. When
the memory size is sufficiently large, the performance of using
a heap will be close to or even worse than that of the simple
algorithm.

Figure 9 shows the total CPU time of ES when using and
not using a heap. The data used in Fig. 9 are two 64-MB re-
lations. The input relations are joined while using different
sizes of memory. Note that the CPU time includes the time of
both the sorting step and the merging step. As expected, the
performance of using a heap is better than that without a heap

when the memory is small. The performance improvement
is roughly 40% when the memory size is 2 MB. The perfor-
mance difference decreases as the memory increases. When
the memory size is greater than 32 MB, which is one half of the
relation size, using a heap has no benefit. Since using a heap
significantly improves the performance when the memory is
relatively small and barely degrades performance when the
memory is large, we use a heap in all sort-based algorithms.

4.2.6 GRACE and hybrid variants

We implemented both GRACE and hybrid versions of each
sort-based algorithm. In the GRACE variants, all the sorted
runs of a relation are written to disk before the merging stage.
The hybrid variants keep most of the last run of the outer
relation in memory. This guarantees that one (multiblock) disk
read and one disk write of the memory-resident part will be
saved. When the available memory is slightly smaller than the
dataset, the hybrid algorithms will require relatively fewer I/O
operations.

4.2.7 Adapting the interval join

We consider the interval join a variant of the timestamp sort-
merge algorithm (TS). In this paper, we call it TSI and its
hybrid variant TSI-H. To be fair, we do not assume the input
relations are sorted into one list. Instead, TSI begins with sort-
ing as its first step. Then it combines the last step of the sort
with the merge step. The two active lists are essentially two
spooled caches, one for each relation. Each cache has the same
size as that in TS. This is different from the strategy of keeping
a single block of each list in the original paper. A small cache
can save more memory for the input buffer, thus reducing the
random reads. However, it will cause more cache spools when
skew is present. Since timestamp algorithms tend to encounter
skew, we choose a cache size that is the same as that in TS,
rather than one block.

4.3 Partition-based algorithms

Several engineering considerations also occur when imple-
menting the partition-based algorithms.

4.3.1 Partitioning details

The details of algorithm TP are described elsewhere [54]. We
changed TP to use a slightly larger input buffer (32 KB) and a
cache for the inner relation (also 32 KB) instead of using a one-
page buffer and cache. The rest of the available main memory
is used for the outer relation. There is a tradeoff between a
large outer input buffer and a large inner input buffer and
cache. A large outer input buffer implies a large partition size,
which results in fewer seeks for both relations. But the cache
is more likely to spool. On the other hand, allocating a large
cache and a large inner input buffer results in a smaller outer
input buffer, thus a smaller partition size. This will increase
random I/O. We chose 32 KB instead of 1 KB (the page size)

16 D. Gao et al.: Join operations in temporal databases

as a compromise. The identification of the best cache size is
given in Sect. 6 as a direction of future research.

The algorithms ETP and TEP partition the input relations
in two steps. ETP partitions the relations by explicit attribute
first. For each pair of the buckets to be joined, if none of them
fits in memory, a further partition by timestamp attribute will
be made to these buckets to increase the possibility that the
resulting buckets do not overflow the available buffer space.
TEP is similar to ETP, except that it partitions the relations in
the reverse order, first by timestamp and then, if necessary, by
explicit attribute.

4.3.2 Joining the partitions

The partition-based algorithms perform their second phase,
the joining of corresponding partitions of the outer and inner
relations, as follows. The outer partition is fetched into mem-
ory, assuming that it will not overflow the available buffer
space, and pointers to the outer tuples are sorted using an in-
memory quicksort. The inner partition is then scanned, using
all memory pages not occupied by the outer partition. For each
inner tuple, matching outer tuples are found by binary search.
If the outer partitions overflow the available buffer space, then
the algorithms default to an explicit attribute sort-merge join
of the corresponding partitions.

4.3.3 GRACE and hybrid variants

In addition to the conventional GRACE algorithm, we imple-
mented the hybrid buffer management for each partition-based
algorithm. In the hybrid algorithms, one outer bucket is des-
ignated as memory-resident. Its buffer space is increased ac-
cordingly to hold the whole bucket in memory. When the inner
relation is partitioned, the inner tuples that map to the corre-
sponding bucket are joined with the tuples in the memory-
resident bucket. This eliminates the I/O operations to write
and read one bucket of tuples for both the inner and the outer
relation. Similar to the hybrid sort-based algorithms, the hy-
brid partition-based algorithms are supposed to have better
performance when the input relation is slightly larger than the
available memory size.

4.4 Supporting the iterator interface

Most commercial systems implement the relational operators
as iterators [18]. In this model, each operator is realized by
three procedures called open, next, and close. The algorithms
we investigate in this paper can be redesigned to support the
iterator interface.

The nested-loop algorithm and the explicit partitioning al-
gorithms are essentially the corresponding snapshot join algo-
rithms except that a supplemental predicate (requiring that the
tuples overlap) and the calculation of the resulting timestamps
are added in the next procedure.

The timestamp partitioning algorithms determine the peri-
ods for partitions by sampling the outer relation and partition
the input relations in the open procedure. The next procedure
calls the next procedure of nested-loop join for each pair of

partitions. An additional predicate is added in the next proce-
dure to determine if a tuple should be put into the cache.

The sort-based algorithms generate the initial sorted runs
for the input relations and merge runs until the final merge
step is left in the open procedure. In the next procedure, the
inner runs, the cache, and the outer runs are scanned to find a
match. At the same time, the inner tuple is examined to decide
whether to put it in the cache. The close procedure destroys
the input runs and deallocates the cache. The open and close
procedures of interval join algorithms are the same as the other
sort-based algorithms. The next procedure gets the next tuple
from the sorted runs and scans the cache to find the matching
tuple and purges the cache at the same time.

5 Performance

We implemented all 19 algorithms enumerated in Table 2 and
tested their performance under a variety of data distributions,
including skewed explicit and timestamp distributions, time-
stamp durations, memory allocations, and database sizes. We
ensured that all algorithms generated exactly the same output
tuples in all of the experiments (the ordering of the tuples will
differ).

The remainder of this section is organized as follows. We
first give details on the join algorithms used in the experiments
and then describe the parameters used in the experiments. Sec-
tions 5.2 to 5.9 contain the actual results of the experiments.
Section 5.10 summarizes the results of the experiments.

5.1 Experimental setup

The experiments were developed and executed using the
TimeIT [17] system, a software package supporting
the prototyping of temporal database components. Using
TimeIT, we fixed several parameters describing all test re-
lations used in the experiments. These parameters and their
values are shown in Table 4. In all experiments, tuples were
16 bytes long and consisted of two explicit attributes, both
being integers and occupying 4 bytes, and two integer times-
tamps, each also requiring 4 bytes. Only one of the explicit
attributes was used as the joining attribute. This yields result
tuples that are 24 bytes long, consisting of 16 bytes of explicit
attributes from each input tuple and 8 bytes for the timestamps.

We fixed the relation size at 64 MB, giving four million
tuples per relation. We were less interested in absolute relation
size than in the ratio of input size to available main memory.
Similarly, the ratio of the page size to the main memory size
and the relation size is more relevant than the absolute page
size. A scaling of these factors would provide similar results.
In all cases, the generated relations were randomly ordered
with respect to both their explicit and timestamp attributes.

The metrics used for all experiments are listed in Table 5. In
a modern computer system, a random disk access takes about
10 ms, whereas accessing a main memory location typically
takes less than 60 ns [42]. It is reasonable that a sequential
I/O takes about one tenth the time of a random I/O. Modern
computer systems usually have hardware data cache, which
can reduce the CPU time on cache hit. Therefore, we chose
the join attribute compare time as 20 ns, which was slightly less

D. Gao et al.: Join operations in temporal databases 17

Table 4. System characteristics

Parameter Value

Relation size 64 MB
Tuple size 16 bytes
Tuples per relation 4 million
Timestamp size ([s,e]) 8 bytes
Explicit attribute size 8 bytes
Relation lifespan 1,000,000 chronons
Page size 1 KB
Output buffer size 32 KB
Cache size in sort-merge 64 KB
Cache size in partitioning 32 KB

Table 5. Cost metrics

Parameter Value

Sequential I/O cost 1 ms
Random I/O cost 10 ms
Join attribute compare 20 ns
Timestamp compare 20 ns
Pointer compare 20 ns
Pointer swap 60 ns
Tuple move 80 ns

than, while in the same magnitude of, the memory access time.
The cost metrics we used is the average memory access time
given a high hit ratio (> 90%) of cache. It is possible that the
CPU cache has lower hit ratio when running some algorithms.
However, the magnitude of the memory access time will not
change. We assumed that the sizes of both a timestamp and
a pointer were the same as the size of an integer. Thus, their
compare times are the same as that of the join attribute. A
pointer swap takes three times as long as the pointer compare
time because it needs to access three pointers. A tuple move
takes four times as long as the integer compare time since the
size of a tuple is four times that of an integer.

We measured both main memory operations and disk I/O
operations. To eliminate any undesired system effects from
the results, all operations were counted using facilities pro-
vided by TimeIT. For disk operations, random and sequen-
tial access was measured separately. We included the cost of
writing the output relation in the experiments since sort-based
and partition-based algorithms exhibit dual random and se-
quential I/O patterns when sorting/coalescing and partition-
ing/merging. The total time was then computed by weighing
each parameter by the time values listed in Table 5.

Table 6 summarizes the values of the system parameters
that varied among the different experiments. Each row of the
table identifies the figures that illustrate the results of the ex-
periments given the parameters for the experiment. The reader
may have the impression that the intervals are so small that
they are almost like the standard equijoin atributes. Are there
tuples overlapping each other? In many cases, we performed
the self-join, which guaranteed for each tuple in one relation
that there is at least one matching tuple in the other relation.
Long-duration timestamps (100 chronons) were used in two
experiments. It guaranteed that there were on average four tu-
ples valid in each chronon. Two other experiments examine
the case where one relation has short-duration timestamps and

the other has long-duration timestamps. Therefore, our exper-
iments actually examined different degrees of overlapping.

5.2 Simple experiments

In this section, we perform three “base case” experiments,
where the join selectivity is low, i.e., for an equijoin of valid-
time relations r and s, a given tuple x ∈ r joins with one, or
few, tuples y ∈ s. The experiments incorporate random data
distributions in the explicit join attributes and short and long
time intervals in the timestamp attributes.

5.2.1 Low explicit selectivity with short timestamps

In this experiment, we generated a relation with little explicit
matching and little overlap and joined the relation with itself.
This mimics a foreign key-primary key natural join in that the
cardinality of the result is the same as one of the input rela-
tions. The relation size was fixed at 64 MB, corresponding to
four million tuples. The explicit joining attribute values were
integers drawn from a space of 231 − 1 values. For the given
cardinality, a particular explicit attribute value appeared on av-
erage in only one tuple in the relation. The starting timestamp
attribute values were randomly distributed over the relation
lifespan, and the duration of the interval associated with each
tuple was set to one chronon. We ran each of the 19 algorithms
using the generated relation, increasing main memory alloca-
tions from 2 MB, a 1:32 memory to input size ratio, to 64 MB,
a 1:1 ratio.

The results of the experiment are shown in Fig. 10. In each
panel, the ordering of the legend corresponds to the order of
either the rightmost points or the leftmost points of each curve.
The actual values of each curve in all the figures may be found
in the appendix of the associated technical report [16]. Note
that both the x-axis and the y-axis are log-scaled.As suspected,
nested loop is clearly not competitive. The general nested-loop
algorithm performs very poorly in all cases but the highest
memory allocation. At the smallest memory allocation, the
least expensive algorithm, EP, enjoys an 88% performance
increase. Only at the highest memory allocation, that is, when
the entire left-hand side relation can fit in main memory, does
the nested-loop algorithm have comparable performance with
other algorithms. Given the disparity in performance and given
that various characteristics, such as skew or the presence of
long-duration tuples, do not impact the performance of the
nested-loop algorithm, we will not consider this algorithm in
the remainder of this section.

To get a better picture of the performance of the remaining
algorithms, we plot them separately in Fig. 11. From this figure
on, we eliminate the noncompetitive nested loop. We group
the algorithms that have a similar performance and retain only
a representative curve for each group in the figures. In this
figure, TES-H and TSI-H have performances very similar to
that of TS-H; ETS-H has a performance very similar to that of
ES-H; ETP-H, TP-H, and TEP-H have performances similar to
that of EP-H; the remaining algorithms all have a performance
similar to that of EP.

In this graph, only the x-axis is log-scaled. The sort-based
and partition-based algorithms exhibit largely the same per-
formance, and the hybrid algorithms outperform their GRACE

18 D. Gao et al.: Join operations in temporal databases

Table 6. Experiment parameters

Explicit Timestamp Timestamp Outer Inner Memory
Figure skew skew duration size size size
numbers (%) (%) (chronons) (MB) (MB) (MB)

10 and 11 None None 1 64 64 2–64
12 None None 100 64 64 2–64
13 None None Outer: 1; Inner: 100 64 64 2–64
14 None None 1 4–64 64 16
15 and 16 None None 100 4–64 64 16
17 None None Outer: 1; Inner: 100 4–64 64 16
18 0–100% one side None 1 64 64 16
19 None 0–100% one side 1 64 64 16
20 0–100% one side 0–100% one side 1 64 64 16
21 0–4% both sides None 1 64 64 16
23 None 0–4% both sides 1 64 64 16
25 0–4% both sides 0–4% both sides 1 64 64 16

300

400

500

600

700
800
900

1000

2000

3000

4000

5000

2 4 8 16 32 64

el
ap

se
d

tim
e

(s
ec

s)

memory size (MB)

NL
TES-H

TS-H
TSI-H

ETS-H
ES-H

ETP-H
EP-H

TEP-H
TP-H
TEP

TP
ETS

ES
TES
TSI
TS

ETP
EP

Fig. 10. Low explicit selectivity,
low timestamp selectivity

counterparts at high memory allocations, in this case when the
ratio of main memory to input size reaches approximately 1:8
(2 MB of main memory) or 1:4 (4 MB of main memory). The
poor performance of the hybrid algorithms stems from reserv-
ing buffer space to hold the resident run/partition, which takes
buffer space away from the remaining runs/partitions, causing
the algorithms to incur more random I/O. At small memory
allocations, the problem is acute. Therefore, the hybrid group
starts from a higher position and ends in a lower position. The
GRACE group behaves in the opposite way.

The performance differences between the sort-based algo-
rithms and their partitioning counterparts are small, and there
is no absolute winner. TES, the sort-merge algorithm that sorts
the input relation primarily by start time and secondarily by
explicit attribute, has a slightly worse performance than TS,
which sorts the input relation by start time only. Since the order
of the start time is not the order of the time interval, the extra

sorting by explicit attribute does not help in the merging step.
The program logic is the same as for TS, except for the extra
sorting. We expect TES will always perform a little worse than
TS. Therefore, neither TES nor TES-H will be considered in
the remainder of this section.

5.2.2 Long-duration timestamps

In the experiment described in the previous section, the join
selectivity was low since explicit attribute values were shared
among few tuples and tuples were timestamped with intervals
of short duration. We repeated the experiment using long-
duration timestamps. The duration of each tuple timestamp
was fixed at 100 chronons, and the starting timestamps were
randomly distributed throughout the relation lifespan. As be-
fore, the explicit join attribute values were randomly dis-

D. Gao et al.: Join operations in temporal databases 19

300

600

900

1200

1500

1800

2 4 8 16 32 64

el
ap

se
d

tim
e

(s
ec

s)

memory size (MB)

TS-H
ES-H
EP-H

EP

Fig. 11. Low explicit selectivity, low timestamp selectivity (without
nested loop)

300

600

900

1200

1500

1800

2100

2400

2700

2 4 8 16 32 64

el
ap

se
d

tim
e

(s
ec

s)

memory size (MB)

TS-H
TSI-H

TS
TSI

ES-H
TP-H

ES

Fig. 12. Low explicit selectivity (long-duration timestamps)

tributed integers; thus the size of the result was just slightly
larger due to the long-duration timestamps.

The results are shown in Fig. 12, where the x-axis is log-
scaled. In this figure, the group of ES-H and ETS-H are repre-
sented by ES-H; the group of ETP-H, EP-H, TEP-H, and TP-H
by TP-H; the group of TP, TEP, ES, ETS, EP, and ETP by ES;
and the rest are retained. The timestamp sorting algorithms,
TS and TS-H, suffer badly. Here, the long duration of the tuple
lifespans did not cause overflow of the tuple cache used in these
algorithms. To see this, recall that our input relation cardinality
was four million tuples. For a 1,000,000 chronon relation lifes-
pan, this implies that 4, 000, 000/1, 000, 000 = 4 tuples arrive
per chronon. Since tuple lifespans were fixed at 100 chronons,
it follows that 4×100 = 400 tuples should be scanned before
any purging of the tuple cache can occur. However, a 64-KB
tuple cache, capable of holding 4000 tuples, does not tend to
overflow. Detailed examination verified that the cache never
overflowed in these experiments. The poor performance of TS
and TS-H are caused by the repeated in-memory processing
of the long-lived tuples.

TSI and TSI-H also suffer in the case of long duration but
are better than TS and TS-H when the main memory size is
small. TSI improves the performance of TS by 32% at the

smallest memory allocation, while TSI-H improves the per-
formance of TS-H by 13%. Our detailed results show that the
TS had slightly less I/O time than TSI. TS also saved some
time in tuple moving since it did not move every tuple into
cache. However, it spent much more time in timestamp com-
paring and pointer moving. In TSI, each tuple only joined with
the tuples in the cache of the other relation. The caches in TSI
were purged during the join process; thus the number of time-
stamp comparisons needed by the next tuple was reduced. In
TS, an outer tuple joined with both cache tuples and tuples
in the input buffer of the inner relation, and the input buffer
was never purged. Therefore, TS had to compare more times-
tamps. Pointer moving is needed in the heap maintenance,
which is used to sort the current tuples in each run. TS fre-
quently backed up the inner runs inside the inner buffer and
scanned tuples in the value packets multiple times. In each
scan, the heap for the inner runs had to sort the current inner
tuples again. In TSI, the tuples are sorted once and kept in or-
der in the caches. Therefore, the heap overhead is small. When
the main memory size is small, the number of runs is large, as
are the heap size and the heap overhead.

The timestamp partitioning algorithms, TP and TP-H,
have a performance very similar to that described in
Sect. 5.2.1. There are two main causes of the good perfor-
mance of TP and TP-H. The first is that TP does not replicate
long-lived tuples that overlap with multiple partition intervals.
Otherwise, TP would need more I/O for the replicated tuples.
The second is that TP sorts each partition by the explicit at-
tribute. The long duration does not have any effect on the per-
formance of the in-memory joining. All the other algorithms
sort or partition the relations by explicit attributes. Therefore,
their performance is not affected by the long duration.

We may conclude from this experiment that the timestamp
sort-based algorithms are quite sensitive to the durations of
input tuple intervals. When tuple durations are long, the in-
memory join in TS and TS-H performs poorly due to the need
to repeatedly back up the tuple pointers.

5.2.3 Short- and long-duration timestamps

In the experiments described in the previous two sections, the
timestamps are either short or long for both relations. We ex-
amined the case where the durations for the two input relations
are different. The duration of each tuple timestamp in the outer
relation was fixed at 1 chronon, while the duration of that in
the inner relation was fixed at 100 chronons. We carefully gen-
erated the two relations so that the outer relation and the inner
relation had a one-to-one relationship. For each tuple in the
outer relation, there is one tuple in the inner relation that has
the same value of the explicit attributes and the same start time
as the outer tuple with a long duration instead of a short du-
ration. This guaranteed that the selectivity was between that
of the two previous experiments. As before, the explicit join
attribute values and the start time were randomly distributed.

The results are shown in Fig. 13, where the x-axis is log-
scaled. The groups of the curves are the same as in Fig. 12.
The relative positions of the curves are similar to those in the
long-duration experiment. The performance of the timestamp
sorting algorithms were even worse than that of the others,
but better than that in the experiment where long-duration tu-

20 D. Gao et al.: Join operations in temporal databases

300

600

900

1200

1500

1800

2100

2400

2 4 8 16 32 64

el
ap

se
d

tim
e

(s
ec

s)

memory size (MB)

TS-H
TSI-H

TS
TSI

ES-H
TP-H

ES

Fig. 13. Low explicit selectivity (short-duration timestamps join long-
duration timestamps)

ples were in both input relations. Long-duration tuples reduce
the size of value packets for each tuple on only one side and
therefore result in fewer timestamp comparisons in all four
timestamp sorting algorithms and fewer backups in TS and
TS-H.

We also exchanged the outer and inner relations for this
experiment and observed results identical to those in Fig. 13.
This indicates that whether the long-duration tuples exist in
the outer relation or the inner relation has little impact on the
performance of any algorithm.

5.3 Varying relation sizes

It has been shown for snapshot join algorithms that the rela-
tive sizes of the input relations can greatly affect which sort-
or partition-based strategy is best [18]. We investigated this
phenomenon in the context of valid-time databases.

We generated a series of relations, increasing in size from
4 MB to 64 MB, and joined them with a 64-MB relation. The
memory allocation used in all trials was 16 MB, the size at
which all algorithms performed most closely in Fig. 11. As
in the previous experiments, the explicit join attribute val-
ues in all relations were randomly distributed integers. Short-
duration timestamps were used to mitigate the in-memory ef-
fects on TS and TS-H seen in Fig. 12. As before, starting
timestamps were randomly distributed over the relation lifes-
pan. Since the nested-loop algorithm is expected to be a com-
petitor when one of the relations fits in the memory, we incor-
porated this algorithm into this experiment. The results of the
experiment are shown in Fig. 14. In this figure, ES represents
all the GRACE sorting algorithms, ES-H all the hybrid sorting
algorithms, EP all the GRACE partitioning algorithms, TP-H
the hybrid timestamp partitioning algorithms, and EP-H the
hybrid explicit partitioning algorithms, and NL is retained.

The impact of a differential in relation sizes for the
partition-based algorithms is clear. When an input relation is
small relative to the available main memory, the partition-
based algorithms use this relation as the outer relation and
build an in-memory partition table from it. The inner relation is
then linearly scanned, and for each inner tuple the in-memory

100

200

300

400

500

600

700

4 8 16 32 64

el
ap

se
d

tim
e

(s
ec

s)

outer relation size (MB)

ES
ES-H

EP
NL

TP-H
EP-H

Fig. 14. Different relation sizes (short-duration timestamps)

partition table is probed for matching outer tuples. The benefit
of this approach is that each relation is read only once, i.e., no
intermediate writing and reading of generated partitions oc-
curs. Indeed, the inner relation is not partitioned at all, further
reducing main memory costs in addition to I/O savings.

The nested-loop algorithm has the same I/O costs as
partition-based algorithms when one of the input relations fits
in the main memory. When the size of the smaller input rela-
tion is twice as large as the memory size, the performance of
nested-loop algorithms is worse than that of any other algo-
rithms. This is consistent with the results shown in Fig. 10.

An important point to note is that this strategy is bene-
ficial regardless of the distribution of either the explicit join
attributes and/or the timestamp attributes, i.e., it is unaffected
by either explicit or timestamp skew. Furthermore, no similar
optimization is available for sort-based algorithms. Since each
input relation must be sorted, both relations must be read and
written once to generate sorted runs and subsequently read
once to scan and match joining tuples.

To further investigate the effectiveness of this strategy,
we repeated the experiment of Fig. 14 with long-duration
timestamps, i.e., tuples were timestamped with timestamps
100 chronons in duration. We did not include the nested-loop
algorithm because we did not expect the long-duration tuples
to have any impact on it. The results are shown in Fig. 15. The
grouping of the curves in this figure is slightly different from
the grouping in Fig. 14 in that timestamp sorting algorithms
are separated instead of grouped together.

As expected, long-duration timestamps adversely affect
the performance of all the timestamp sorting algorithms for
reasons stated in Sect. 5.2.2. The performance of TSI and TSI-
H is slightly better than that of TS and TS-H, respectively.
This is consistent with the results at 16 MB memory size in
Fig. 12. Replotting the remaining algorithms in Fig. 16 shows
that the long-duration timestamps do not significantly impact
the efficiency of other algorithms.

In both the short-duration and the long-duration cases,
the hybrid partitioning algorithms show the best performance.
They save about half of the I/O operations of their GRACE
counterparts when the size of the outer relation is 16 MB. This
is due to the hybrid strategy.

D. Gao et al.: Join operations in temporal databases 21

0

200

400

600

800

1000

1200

4 8 16 32 64

el
ap

se
d

tim
e

(s
ec

s)

outer relation size (MB)

TS
TSI

TS-H
TSI-H

ES
ES-H

EP
TP-H
EP-H

Fig. 15. Different relation sizes (long-duration timestamps)

50

100

150

200

250

300

350

400

450

4 8 16 32 64

el
ap

se
d

tim
e

(s
ec

s)

outer relation size (MB)

ES
ES-H

EP
TP-H
EP-H

Fig. 16. Different relation sizes (long-duration timestamps, without
TS/TS-H)

We further changed the input relations so that the tuples in
the outer relations have the fixed short duration of 1 chronon
and those in the outer relations have the fixed long duration
of 100 chronons. Other features of the input relations remain
the same. The reults, as shown in Fig. 17, are very similar to
the long-duration case. The performance of timestamp sorting
algorithms is slightly better than that in Fig. 15. Again, we re-
generated the relations such that the tuples in the outer relation
have the long-duration fixed at 100 chronons and those in the
inner relation have the short-duration fixed at 1 chronon. The
results are almost identical to those shown in Fig. 17.

The graph shows that partition-based algorithms
should be chosen whenever the size of one or both of
the input relations is small relative to the available buffer
space. We conjecture that the choice between explicit par-
titioning and timestamp partitioning is largely dependent
on the presence or absence of skew in the explicit and/or
timestamp attributes. Explicit and timestamp skew may or
may not increase I/O cost; however, they will increase main
memory searching costs for the corresponding algorithms, as
we now investigate.

0

200

400

600

800

4 8 16 32 64

el
ap

se
d

tim
e

(s
ec

s)

outer relation size (MB)

TS
TSI

TS-H
TSI-H

ES
ES-H

EP
TP-H
EP-H

Fig. 17. Different relation sizes (short- and long-duration timestamps)

5.4 Explicit attribute skew

As in the experiments described in Sect. 5.3, we fixed the
main memory allocation at 16 MB to place all algorithms on
a nearly even footing. The inner and outer relation sizes were
fixed at 64 MB each. We generated a series of outer relations
with increasing explicit attribute skew, from 0% to 100% in
20% increments. Here we generated data with chunky skew.
The explicit attribute has 20% chunky skew, which indicates
that 20% of the tuples in this relation have the same explicit
attribute value. Explicit skew was ensured by generating tu-
ples with the same explicit join attribute value. Short-duration
timestamps, randomly distributed over the relation lifespan,
were used to mitigate the long-duration timestamp effect on
timestamp sorting algorithms. The results are shown in Fig. 18.
In this figure, TSI, TS, TEP, and TP are represented by TS and
their hybrid counterparts by TS-H, and other algorithms are
retained.

There are three points to emphasize in this graph. First,
the explicit partitioning algorithms, i.e., EP, EP-H, ETP, and
ETP-H, show increasing costs as the explicit skew increases.
The performance of EP and EP-H degrades dramatically with
increasing explicit skew. This is due to the overflowing of main
memory partitions, causing subsequent buffer thrashing. The
effect, while pronounced, is relatively small since only one of
the input relations is skewed. Encountering skew in both rela-
tions would exaggerate the effect. Although the performance
of ETP and ETP-H also degrades, the changes are much less
pronounced. The reason is that they employ time partitioning
to reduce the effect of explicit attribute skew.

As expected, the group of algorithms that perform sorting
or partitioning on timestamps, TS, TS-H, TP, TP-H, TEP, and
TEP-H, have relatively flat performance. By ordering or parti-
tioning by time, these algorithms avoid effects due to explicit
attribute distributions.

The explicit sorting algorithms, ES, ES-H, ETS, and
ETS-H, perform very well. In fact, the performance of ES
and ES-H increases as the skew increases. As the skew in-
creases, by default the relations become increasingly sorted.
Hence, ES and ES-H expend less effort during run generation.

We conclude from this experiment that if high explicit
skew is present in one input relation, then explicit sorting,

22 D. Gao et al.: Join operations in temporal databases

340

370

400

430

460

490

520

550

580

0 20 40 60 80 100

el
ap

se
d

tim
e

(s
ec

s)

explicit skew in outer relation (percentage)

EP
EP-H
ETP

TS
ETP-H

TS-H
ETS

ES
ETS-H

ES-H

Fig. 18. Explicit attribute skew (short-
duration timestamps)

timestamp partitioning, and timestamp sorting appear to be the
better alternatives. The choice among these is then dependent
on the distribution and the length of tuple timestamps, which
can increase the amount of timestamp skew present in the
input, as we will see in the next experiment.

5.5 Timestamp skew

Like explicit attribute distributions, the distribution of time-
stamp attribute values can greatly impact the efficiency of the
different algorithms. We now describe a study on the effect of
this aspect.

As in the experiments described in Sect. 5.3, we fixed
the main memory allocation at 16 MB and the sizes of all
input relations at 64 MB. We fixed one relation with randomly
distributed explicit attributes and randomly distributed tuple
timestamps, and we generated a series of relations with in-
creasing timestamp attribute chunky skew, from 0% to 100%
in 20% increments. The timestamp attribute has 20% chunky
skew, which indicates that 20% of the tuples in the relation
are in one value packet. The skew was created by generat-
ing tuples with the same interval timestamp. Short-duration
timestamps were used in all relations to mitigate the long-
duration timestamp effect on timestamp sorting algorithms.
Explicit join attribute values were distributed randomly. The
results of the experiment are shown in Fig. 19. In this figure,
all the GRACE explicit algorithms are represented by EP, hy-
brid explicit sorting algorithms by ES-H, and hybrid explicit
partition algorithms by EP-H; the remaining algorithms are
retained.

Four interesting observations may be made. First, as ex-
pected, the timestamp partitioning algorithms, i.e., TP, TEP,
TP-H, and TEP-H, suffered increasingly poorer performance
as the amount of timestamp skew increased. This skew causes

overflowing partitions. The performance all four of these al-
gorithms is good when the skew is 100% because TP and
TP-H become explicit sort-merge joins and TEP and TEP-H
become explicit partition joins. Second, TSI and TSI-H also
exhibited poor performance as the timestamp skew increased
because 20% skew in the outer relation caused the outer cache
to overflow. Third, TS and TS-H show increased performance
at the highest skew percentage. This is due to the sortedness
of the input, analogous to the behavior of ES and ES-H in
the previous experiment. Finally, as expected, the remaining
algorithms have flat performance across all trials.

When timestamp skew is present, timestamp partitioning
is a poor choice. We expected this result, as it is analogous
to the behavior of partition-based algorithms in conventional
databases, and similar results have been reported for temporal
coalescing. The interval join algorithms are also bad choices
when the amount of timestamp skew is large. A small amount
of timestamp skew can be handled efficiently by increasing
the cache size in interval join algorithms. We will discuss this
issue again in Sect. 5.8. Therefore, the two main dangers to
good performance are explicit attribute skew and/or timestamp
attribute skew. We investigate the effects of simultaneous skew
next.

5.6 Combined explicit/timestamp attribute skew

Again, we fixed the main memory allocation at 16 MB and
set the input relation sizes at 64 MB. Timestamp durations
were set to 1 chronon to mitigate the long-duration timestamp
effect on the timestamp sorting algorithms. We then generated
a series of relations with increasing explicit and timestamp
chunky skew, from 0% to 100% in 20% increments. Skew was
created by generating tuples with the same explicit joining
attribute value and tuple timestamp. The explicit skew and
the timestamp skew are orthogonal. The results are shown in

D. Gao et al.: Join operations in temporal databases 23

300

350

400

450

500

550

600

650

0 20 40 60 80 100

el
ap

se
d

tim
e

(s
ec

s)

timestamp skew in outer relation (percentage)

TSI
TSI-H

TP
TEP

TP-H
EP

ES-H
TS

EP-H
TS-H

Fig. 19. Timestamp attribute skew
(short-duration timestamps)

300

350

400

450

500

550

600

650

0 20 40 60 80 100

el
ap

se
d

tim
e

(s
ec

s)

explicit and timestamp skew in outer relation (percentage)

TSI
TSI-H

TEP
EP

TEP-H
EP-H
ETP

ETP-H
ES
TP

TP-H
ES-H

Fig. 20. Combined explicit/timestamp
attribute skew

Fig. 20. In this figure, ETS, ES, and TS are represented by ES;
and ETS-H, ES-H, and TS-H by ES-H; the other algorithms
are retained.

The algorithms are divided into three groups in terms of
performance. As expected, most of the partition-based al-
gorithms and the interval join algorithms, TEP, TEP-H, TP,
TP-H, EP, EP-H, TSI, and TSI-H, show increasingly poorer
performance as the explicit and timestamp skew increases. The
remaining explicit/timestamp sorting algorithms show rela-
tively flat performance across all trials, and the explicit sorting
and timestamp sorting algorithms exhibit increasing perfor-
mance as the skew increases, analogous to their performance

in the experiments described in Sects. 5.4 and 5.5. While the
elapsed time of ETP and ETP-H increases slowly along with
increasing skew, these two algorithms perform very well. This
is analogous to their performance in the experiments described
in Sect. 5.4.

5.7 Explicit attribute skew in both relations

In previous work [30], we studied the effect of data skew on
the performance of sort-merge joins. There are three types of
skew: outer relation skew, inner relation skew, and dual skew.

24 D. Gao et al.: Join operations in temporal databases

400

500

600

700

1000

1500

2000

3000

4000

5000

6000

0 1 2 3 4

el
ap

se
d

tim
e

(s
ec

s)

explicit skew in both relations (percentage)

ES
ES-H

EP
TP
TS

Fig. 21. Explicit attribute skew in both relations

0

1000

2000

3000

4000

5000

0 1 2 3 4

C
P

U
 ti

m
e

(s
ec

s)

explicit skew in both relations (percentage)

ES
ES-H

EP
TP
TS

Fig. 22. Explicit attribute skew in both relations

Outer skew occurs when value packets in the outer relation
cross buffer boundaries. Similarly, inner skew occurs when
value packets in the inner relation cross buffer boundaries.
Dual skew indicates that outer skew occurs in conjunction with
inner skew. While outer skew does not cause any problems for
TS and TS-H, it degrades the performance of TSI and TSI-
H; dual skew degrades the performance of the TS and TS-H
joins. In this section, we compare the performance of the join
algorithms in the presence of dual skew in the explicit attribute.

The main memory allocation was fixed at 16 MB and the
size of all input relations at 64 MB. We generated a series
of relations with increasing explicit attribute chunky skew,
from 0% to 4% in 1% increments. To ensure dual skew, we
performed self-join on these relations. Short-duration times-
tamps, randomly distributed over the relation lifespan, were
used to mitigate the long-duration timestamp effect on the
timestamp sorting algorithms. The results are shown in Fig. 21.
In this figure, all the explicit partitioning algorithms are rep-
resented by EP, all the timestamp partitioning algorithms by
TP, all the sort merge algorithms except ES and ES-H by TS,
and ES and ES-H are retained.

There are three points to discuss regarding the
graph. First, the explicit algorithms, i.e., ES, ES-H, EP,
EP-H, ETP, and ETP-H, suffer when the skew increases. Al-

though the numbers of I/O operations of these algorithms in-
crease along with the increasing skew, the I/O-incurred dif-
ference between the highest and the lowest skew is only 2 s.
The difference in the output relation size between the highest
and the lowest skew is only 460 KB, which leads to about a
4.6-s performance difference. Then what is the real reason for
the performance hit of these algorithms? Detailed examination
revealed that it is in-memory operations that cause the poor
performance of these algorithms. When data skew is present,
these algorithms have to do substantial in-memory work to
perform the join. This is illustrated in Fig. 22, which shows
the CPU time used by each algorithm. To present the differ-
ence clearly, we do not use a log-scale y-axis. Note that six
algorithms, i.e., ETS, TSI, TS, ETS-H, TSI-H, and TS-H, have
very low CPU cost (less than 30 s) in all cases. So their perfor-
mance does not degrade when the degree of skew increases.

Second, the performance of the timestamp partitioning al-
gorithms, i.e., TP, TP-H, TEP, and TEP-H, degrade with in-
creasing skew, but not as badly as do the explicit algorithms.
Although timestamp partitioning algorithms sort each parti-
tion by the explicit attribute, the explicit attribute inside each
partition is not highly skewed. For example, if n tuples have
the same value as the explicit attribute, they will be put into
one partition after being hashed in EP. In the join phase, there
will be an n × n loop within the join. In TP, this value packet
will be distributed evenly across partitions. Assuming there
are m partitions, each partition will have n/m of these tuples,
which leads to an n2/m2 loop within the join per partition.
The total number of join operations in TP will be n2/m, which
is 1/m of that of EP. This factor can be seen from Fig. 22.

Finally, the timestamp sorting algorithms, i.e., TS, TS-
H, TSI, TSI-H, ETS, and ETS-H, perform very well
under explicit skew. TS and TS-H only use the time-
stamp to determine if a backup is needed. TSI and
TSI-H only use the timestamp to determine if the cache tu-
ples should be removed. We see the benefit of the secondary
sorting on the timestamp in the algorithms ETS and ETS-H.
Since these two algorithms define the value packet by both the
explicit attribute and the timestamp, the big loop in the join
phase is avoided.

From this experiment, we conclude that when explicit dual
skew is present, all the explicit algorithms are poor choices
except for ETS and ETS-H. The effects of timestamp dual
skew are examined next.

5.8 Timestamp dual skew

Like explicit dual skew, timestamp dual skew can affect the
performance of the timestamp sort-merge join algorithms. We
look into this effect.

We fixed main memory at 16 MB and input relations at
64 MB. We generated a series of relations with increasing
timestamp chunky skew, from 0% to 4% in 1% increments.
To ensure dual skew, we performed a self-join on these rela-
tions. Short-duration timestamps, randomly distributed over
the relation lifespan, were used to mitigate the long-duration
timestamp effect on timestamp sorting algorithms. The ex-
plicit attribute values were also distributed randomly. The re-
sults are shown in Fig. 23. In this figure, GRACE explicit sort
merge algorithms are represented by ES; all hybrid partition-

D. Gao et al.: Join operations in temporal databases 25

400
600

1000

2000

5000

10000

50000

200000

500000

1100000

0 1 2 3 4

el
ap

se
d

tim
e

(s
ec

s)

timestamp skew in both relations (percentage)

TSI
TS

TS-H
ES
EP

EP-H

Fig. 23. Timestamp attribute skew in both relations

5

10

50

200

500

1000

2000

4000

6000

0 1 2 3 4

C
P

U
 ti

m
e

(s
ec

s)

timestamp skew in both relations (percentage)

TS
TSI

TS-H
ES
EP
TP

Fig. 24. Timestamp attribute skew in both relations

ing algorithms by EP-H, TSI and TSI-H by TSI, and TEP, TP,
ETP, EP, ETS-H, and ES-H by EP; the remaining algorithms
are retained.

The algorithms fall into three groups. All the timestamp
sort-merge algorithms exhibit poor performance. However, the
performance of TS and TS-H is much better than that of TSI
and TSI-H. At the highest skew, the performance of TS is
174 times better than that of TSI. This is due to the cache
overflow in TSI. One percent of 64 MB is 640 KB, which is
ten times the cache size. The interval join algorithm scans and
purges the cache once for every tuple to be joined. The cache
thrashing occurs when the cache overflows. As before, there
is no cache overflow in TS and TS-H. The performance gap
between these two algorithms and the group with flat curves is
caused by in-memory join operations. The CPU time used by
each algorithm is plotted separately in Fig. 24. In this figure,
all the explicit sort-merge algorithms are represented by ES,
all the explicit partitioning algorithms by EP, all the timestamp
partitioning algorithms by TP, and TSI and TSI-H by TSI ; the
remaining algorithms are retained. Since all but timestamp
sort-merge algorithms perform the in-memory join by sorting
the relations or the partitions on the explicit attribute, their
performance is not at all affected by dual skew.

400
600

1000

2000

5000

10000

50000

200000

500000

1100000

0 1 2 3 4

el
ap

se
d

tim
e

(s
ec

s)

explicity/timestamp skew in both relations (percentage)

TSI
ES

ES-H
EP
TP

Fig. 25. Explicit/timestamp attribute skew in both relations

It is interesting that the CPU time spent by TSI is less than
that spent by TS. The poor overall performance of TSI due to
the cache overflow can be improved by increasing the cache
size of TSI. Actually, TSI performs the join operation in the
two caches rather than in the input buffers. Therefore, a large
cache size can be chosen when dual skew is present to avoid
cache thrashing. In this case, a 1-MB cache size for TSI will
result in a performance similar to that of TS.

5.9 Explicit/timestamp dual skew

In this section, we investigate the simultaneous effect of dual
skew in both the explicit attribute and the timestamp. This is
a challenging situation for any temporal join algorithm.

The memory size is 16 MB, and we generated a series
of 64-MB relations with increasing explicit and timestamp
chunky skew, from 0% to 4% in 1% increments. Dual skew
was guaranteed by performing a self-join on these relations.
The results are shown in Fig. 25. In this figure, TSI and TSI-H
are represented by TSI, TS and ES by ES, TS-H and ES-H by
TS-H, all the explicit partitioning algorithms by EP, and the
remaining algorithms by TP.

The interesting point is that all the algorithms are affected
by the simultaneous dual skew in both the explicit and time-
stamp attributes. But they fall into two groups. The algorithms
that are sensitive to the dual skew in either explicit attribute
or timestamp attribute perform as badly as they do in the ex-
periments described in Sects. 5.7 and 5.8. The performance
of the algorithms not affected by the dual skew in either ex-
plicit attribute or timestamp attribute degrades with increasing
skew. However, their performance is better than that of the al-
gorithms in the first group. This is due to the orthogonality of
the explicit skew and the timestamp skew.

5.10 Summary

The performance study described in this section is the first
comprehensive, empirical analysis of temporal join algo-
rithms. We investigated the performance of 19 non-index-
based join algorithms, namely, nested-loop (NL), explicit

26 D. Gao et al.: Join operations in temporal databases

partitioning (EP and EP-H), explicit sorting (ES and ES-
H), timestamp sorting (TS and TS-H), interval join (TSI
and TSI-H), timestamp partitioning (TP and TP-H), com-
bined explicit/timestamp sorting (ETS and ETS-H) and time-
stamp/explicit sorting (TES and TES-H), and combined ex-
plicit/timestamp partitioning (ETP and ETP-H) and time-
stamp/explicit partitioning (TEP and TEP-H) for the temporal
equijoin. We varied the following main aspects in the experi-
ments: the presence of long-duration timestamps, the relative
sizes of the input relations, and the explicit-join and timestamp
attribute distributions.

The findings of this empirical analysis can be summarized
as follows.

• The algorithms need to be engineered well to avoid perfor-
mance hits. Care needs to be taken in sorting, in purging
the cache, in selecting the next tuple in the merge step, in
allocating memory, and in handling intrinsic skew.

• Nested-loop is not competitive.
• The timestamp sorting algorithms, TS, TS-H, TES,

TES-H, TSI, and TSI-H, were also not competitive. They
were quite sensitive to the duration of input tuple times-
tamps. TSI and TSI-H had very poor performance in the
presence of large amounts of skew due to cache overflow.

• The GRACE variants were competitive only when there
was low selectivity and a large memory size relative to the
size of the input relations. In all other cases, the hybrid
variants performed better.

• In the absence of explicit and timestamp skew, our results
parallel those from conventional query evaluation. In par-
ticular, when attribute distributions are random, all sort-
ing and partitioning algorithms (other than those already
eliminated as noncompetitive) have nearly equivalent per-
formance, irrespective of the particular attribute type used
for sorting or partitioning.

• In contrast with previous results in temporal coalescing
[5], the binary nature of the valid-time equijoin allows
an important optimization for partition-based algorithms.
When one input relation is small relative to the available
main memory buffer space, the partitioning algorithms
have uniformly better performance than their sort-based
counterparts.

• The choice of timestamp or explicit partitioning depends
on the presence or absence of skew in either attribute di-
mension. Interestingly, the performance differences are
dominated by main memory effects. The timestamp parti-
tioning algorithms were less affected by increasing skew.

• ES and ES-H were sensitive to explicit dual skew.
• The performance of the partition-based algorithms, EP and

EP-H, was affected by both outer and dual explicit attribute
skew.

• The performance of TP and TP-H degraded when
outer skew was present. Except for this one situ-
ation, these partition-based algorithms are generally
more efficient than their sort-based counterparts since
sorting, and associated main memory operations, are
avoided.

• It is interesting that the combined explicit/timestamp-
based algorithms can mitigate the effect of either explicit
attribute skew or timestamp skew. However, when dual
skew was present in the explicit attribute and the timestamp

simultaneously, the performance of all the algorithms de-
graded, though again less so for timestamp partitioning.

6 Conclusions and research directions

As a prelude to investigating non-index-based temporal join
evaluation, this paper initially surveyed previous work, first
describing the different temporal join operations proposed in
the past and then describing join algorithms proposed in previ-
ous work. The paper then developed evaluation strategies for
the valid-time equijoin and compared the evaluation strategies
in a sequence of empirical performance studies. The specific
contributions are as follows.

• We defined a taxonomy of all temporal join operators pro-
posed in previous research. The taxonomy is a natural one
in the sense that it classifies the temporal join operators as
extensions of conventional operators, irrespective of spe-
cial joining attributes or other model-specific restrictions.
The taxonomy is thus model independent and assigns a
name to each temporal operator consistent with its exten-
sion of a conventional operator.

• We extended the three main paradigms of query evalua-
tion algorithms to temporal databases, thereby defining the
space of possible temporal evaluation algorithms.

• Using the taxonomy of temporal join algorithms, we de-
fined 19 temporal equijoin algorithms, representing the
space of all such possible algorithms, and placed all exist-
ing work into this framework.

• We defined the space of database parameters that affect the
performance of the various join algorithms. This space is
characterized by the distribution of the explicit and time-
stamp attributes in the input relation, the duration of times-
tamps in the input relations, the amount of main memory
available to the join algorithm, the relative sizes of the
input relations, and the amount of dual attribute and/or
timestamp skew for each of the relations.

• We empirically compared the performance of the algo-
rithms over this parameter space.

Our empirical study showed that some algorithms can be
eliminated from further consideration: NL, TS, TS-H, TES,
TES-H, ES, ES-H, EP, and EP-H. Hybrid variants generally
dominated GRACE variants, eliminating ETP, TEP, and TP.
When the relation sizes were different, explicit sorting (ETS,
ETS-H, ES, ES-H) performed poorly.

This leaves three algorithms, all partitioning ones: ETP-H,
TEP-H, TP-H. Each dominates the other two in certain circum-
stances, but TP-H performs poorly in the presence of time-
stamp and attribute skew and is significantly more compli-
cated to implement. Of the other two, ETP-H came out ahead
more often than TEP-H. Thus we recommend ETP-H, a hybrid
variant of explicit partitioning that partitions primarily by the
explicit attribute. If this attribute is skewed so that some buck-
ets do not fit in memory, a further partition on the timestamp
attribute increases the possibility that the resulting buckets will
fit in the available buffer space.

The salient point of this study is that simple modifications
to an existing conventional evaluation algorithm (EP) can be
used to effect temporal joins with acceptable performance and
at relatively small development cost. While novel algorithms

D. Gao et al.: Join operations in temporal databases 27

(such as TP-H) may have better performance in certain circum-
stances, well-understood technology can be easily adapted and
will perform acceptably in many situations. Hence database
vendors wishing to implement temporal join may do so with
a relatively low development cost and still achieve acceptable
performance.

The above conclusion focuses on independent join opera-
tions rather than a query consisting of several algebraic oper-
ations. Given the correlation between various operations, the
latter is more complex. For example, one advantage of sort-
merge algorithms is that the output is also sorted, which can
be exploited in subsequent operations. This interesting order
is used in traditional query optimization to reduce the cost of
the whole query. We believe temporal query optimization can
also take advantage of this [50]. Among the sort-merge al-
gorithms we have examined, the output of explicit algorithms
(ES, ES-H, ETS, ETS-H) is sorted by the explicit join attribute;
interval join algorithms produce the output sorted by the start
timestamp. Of these six algorithms, we recommend ETS-H
due to its higher efficiency.

Several directions for future work exist. Important prob-
lems remain to be addressed in temporal query processing, in
particular with respect to temporal query optimization. While
several researchers have investigated algebraic query opti-
mization, little research has appeared with respect to cost-
based temporal query optimization.

In relation to query evaluation, additional investigation of
the algorithm space described in Sect. 5 is needed. Many op-
timizations originally developed for conventional databases,
such as read-ahead and write-behind buffering, forecasting,
eager and lazy evaluation, and hash filtering, should be ap-
plied and investigated. Cache size and input buffer allocation
tuning is also an interesting issue.

All of our partitioning algorithms generate maximal parti-
tions, that of the main memory size minus a few blocks for the
left-hand relation of the join, and then apply that partitioning
to the right-hand relation. In the join step, a full left-hand par-
tition is brought into main memory and joined with successive
blocks from the associated right-hand partition. Sitzmann and
Stuckey term this a static buffer allocation strategy and in-
stead advocate a dynamic buffer allocation strategy in which
the left-hand and right-hand relations are partitioned in one
step, so that two partitions, one from each relation, can si-
multaneously fit in the main memory buffer [49]. The advan-
tage over the static strategy is that fewer seeks are required
to read the right-hand side partition; the disadvantage is that
this strategy results in smaller, and thus more numerous, par-
titions, which increases the number of seeks and requires that
the right-hand side also be sampled, which also increases the
number of seeks. It might be useful to augment the timestamp
partitioning to incorporate dynamic buffer allocation, though
it is not clear at the outset that this will yield a performance
benefit over our TP-H algorithm or over ETP-H.

Dynamic buffer allocation for conventional joins was first
proposed by Harris and Ramamohanarao [22]. They built the
cost model for nested loop and hash join algorithms with the
size of buffers as one of the parameters. Then for each algo-
rithm they computed the optimal, or suboptimal but still good,
buffer allocation that led to the minimum join cost. Finally,
the optimal buffer allocation was used to perform the join. It
would be interesting to see if this strategy can improve the per-

formance of temporal joins. It would also be useful to develop
cost models for the most promising temporal join algorithm(s),
starting with ETP-H.

The next logical progression in future work is to extend this
work to index-based temporal joins, again investigating the
effectiveness of both explicit attribute indexing and timestamp
indexing. While a large number of timestamp indexes have
been proposed in the literature [44] and there has been some
work on temporal joins that use temporal or spatial indexes [13,
33,52,56], a comprehensive empirical comparison of these
algorithms is needed.

Orthogonally, more sophisticated techniques for tempo-
ral database implementation should be considered. In partic-
ular, we expect specialized temporal database architectures to
have a significant impact on query processing efficiency. It
has been argued in previous work that incremental query eval-
uation is especially appropriate for temporal databases [24,
34,41]. In this approach, a query result is materialized and
stored back into the database if it is anticipated that the same
query, or one similar to it, will be issued in the future. Updates
to the contributing relations trigger corresponding updates to
the stored result. The related topic of global query optimiza-
tion, which attempts to exploit commonality between multiple
queries when formulating a query execution plan, also has yet
to be explored in a temporal setting.

Acknowledgements. This work was sponsored in part by National
Science Foundation Grants IIS-0100436, CDA-9500991, EAE-
0080123, IRI-9632569, and IIS-9817798, by the NSF Research In-
frastructure Program Grants EIA-0080123 and EIA-9500991, by the
Danish National Centre for IT-Research, and by grants from Ama-
zon.com, the Boeing Corporation, and the Nykredit Corporation.

We also thank Wei Li and Joseph Dunn for their help in imple-
menting the temporal join algorithms.

References

1. Allen JF (1983) Maintaining knowledge about temporal inter-
vals. Commun ACM 26(11):832–843

2. Arge L, Procopiuc O, Ramaswamy S, Suel T, Vitter JS (1998)
Scalable sweeping-based spatial join. In: Proceedings of the
international conference on very large databases, New York,
24–27 August 1998, pp 570–581

3. Beckmann N, Kriegel HP, Schneider R, Seeger B (1990) The
R∗-tree: an efficient and robust access method for points and
rectangles. In: Proceedings of the ACM SIGMOD conference,
Atlantic City, NJ, 23–25 May 1990, pp 322–331

4. van den Bercken J, Seeger B (1996) Query processing tech-
niques for multiversion access methods. In: Proceedings of the
international conference on very large databases, Mubai (Bom-
bay), India, 3–6 September 1996, pp 168–179

5. Böhlen MH, Snodgrass RT, Soo MD (1997) Temporal coalesc-
ing. In: Proceedings of the international conference on very
large databases, Athens, Greece, 25–29 August 1997, pp 180–
191

6. Clifford J, Croker A (1987) The historical relational data model
(HRDM) and algebra based on lifespans. In: Proceedings of the
international conference on data engineering, Los Angeles, 3–5
February 1987, pp 528–537. IEEE Press, New York

7. Clifford J, Croker A (1993) The historical relational data model
(HRDM) revisited. In: Tansel A, Clifford J, Gadia S, Jajodia S,

28 D. Gao et al.: Join operations in temporal databases

Segev A, Snodgrass RT (eds) Temporal databases: theory, de-
sign, and implementation, ch 1. Benjamin/Cummings, Reading,
MA, pp 6–27

8. Clifford J, Uz Tansel A (1985) On an algebra for historical rela-
tional databases: two views. In: Proceedings of the ACM SIG-
MOD international conference on management of data, Austin,
TX, 28–31 May 1985, pp 1–8

9. DeWitt DJ, Katz RH, Olken F, Shapiro LD, Stonebraker MR,
Wood D (1984) Implementation techniques for main memory
database systems. In: Proceedings of the ACM SIGMOD in-
ternational conference on management of data, Boston, 18–21
June 1984, pp 1–8

10. Dittrich JP, Seeger B, Taylor DS, Widmayer P (2002) Pro-
gressive merge join: a generic and non-blocking sort-based join
algorithm. In: Proceedings of the conference on very large data-
bases, Madison, WI, 3–6 June 2002, pp 299–310

11. Dunn J, Davey S, Descour A, Snodgrass RT (2002) Sequenced
subset operators: definition and implementation. In: Proceed-
ings of the IEEE international conference on data engineering,
San Jose, 26 February–1 March 2002, pp 81–92

12. Dyreson CE, Snodgrass RT (1993) Timestamp semantics and
representation. Inform Sys 18(3):143–166

13. Elmasri R, Wuu GTJ, Kim YJ (1990) The time index: an ac-
cess structure for temporal data. In: Proceedings of the confer-
ence on very large databases, Brisbane, Queensland, Australia,
13–16 August 1990, pp 1–12

14. Etzion O, Jajodia S, Sripada S (1998) Temporal databases:
research and practice. Lecture notes in computer science,
vol 1399. Springer, Berlin Heidelberg New York

15. Gadia SK (1988) A homogeneous relational model and query
languages for temporal databases. ACM Trans Database Sys
13(4):418–448

16. Gao D, Jensen CS, Snodgrass RT, Soo MD (2002) Join
operations in temporal databases. TimeCenter TR-71
http://www.cs.auc.dk/TimeCenter/pub.htm

17. Gao D, Kline N, Soo MD, Dunn J (2002) TimeIT: the Time
integrated testbed, v. 2.0 Available via anonymous FTP at:
ftp.cs.arizona.edu

18. Graefe G (1993) Query evaluation techniques for large data-
bases. ACM Comput Surv 25(2):73–170

19. Graefe G, Linville A, Shapiro LD (1994) Sort vs. hash revisited.
IEEE Trans Knowl Data Eng 6(6):934–944

20. Gunadhi H, Segev A (1991) Query processing algorithms for
temporal intersection joins. In: Proceedings of the IEEE con-
ference on data engineering, Kobe, Japan, 8–12 April 1991,
pp 336–344

21. GuttmanA (1984) R-trees: a dynamic index structure for spatial
searching. In: Proceedings of the ACM SIGMOD conference,
Boston, 18–21 June 1984, pp 47–57

22. Harris EP, Ramamohanarao K (1996) Join algorithm costs re-
visited. J Very Large Databases 5(1):64–84

23. Jensen CS (ed) (1998) The consensus glossary of temporal
database concepts – February 1998 version. In [14], pp 367–
405

24. Jensen CS, Mark L, Roussopoulos N (1991) Incremental imple-
mentation model for relational databases with transaction time.
IEEE Trans Knowl Data Eng 3(4):461–473

25. Jensen CS, Snodgrass RT, Soo MD (1996) Extending existing
dependency theory to temporal databases. IEEE Trans Knowl
Data Eng 8(4):563–582

26. Jensen CS, Soo MD, Snodgrass RT (1994) Unifying temporal
models via a conceptual model. Inform Sys 19(7):513–547

27. Leung TY, Muntz R (1990) Query processing for temporal
databases. In: Proceedings of the IEEE conference on data en-
gineering, Los Angeles, 6–10 February 1990, pp 200–208

28. Leung TYC, Muntz RR (1992) Temporal query processing and
optimization in multiprocessor database machines. In: Proceed-
ings of the conference on very large databases, Vancouver, BC,
Canada, pp 383–394

29. Leung TYC, Muntz RR (1993) Stream processing: tempo-
ral query processing and optimization. In: Tansel A, Clifford
J, Gadia S, Jajodia S, Segev A, Snodgrass RT (eds) Tempo-
ral databases: theory, design, and implementation, ch 14, Ben-
jamin/Cummings, Reading, MA, pp 329–355

30. Li W, Gao D, Snodgrass RT (2002) Skew handling techniques
in sort-merge join. In: Proceedings of the ACM SIGMOD con-
ference on management of data Madison, WI, 3–6 June 2002,
pp 169–180

31. Lo ML, Ravishankar CV (1994) Spatial joins using seeded trees.
In: Proceedings of the ACM SIGMOD conference, Minneapo-
lis, MN, 24–27 May 1994, pp 209–220

32. Lo ML, Ravishankar CV (1996) Spatial hash-joins. In: Proceed-
ings of ACM SIGMOD conference, Montreal, 4–6 June 1996,
pp 247–258

33. Lu H, Ooi BC, Tan KL (1994) On spatially partitioned temporal
join. In: Proceedings of the conference on very large databases,
Santiago de Chile, Chile, 12–15 September 1994, pp 546–557

34. McKenzie E (1988) An algebraic language for query and up-
date of temporal databases. Ph.D. dissertation, Department of
Computer Science, University of North Carolina, Chapel Hill,
NC

35. Mishra P, Eich M (1992) Join processing in relational databases.
ACM Comput Surv 24(1):63–113

36. Navathe S, Ahmed R (1993) Temporal extensions to the rela-
tional model and SQL. In: Tansel A, Clifford J, Gadia S, Jajodia
S, Segev A, Snodgrass RT (eds) Temporal databases: theory, de-
sign, and implementation. Benjamin/Cummings, Reading, MA,
pp 92–109

37. Orenstein JA (1986) Spatial query processing in an object-
oriented database system. In: Proceedings of the ACM
SIGMOD conference, Washington, DC, 28–30 May 1986,
pp 326–336

38. Orenstein JA, Manola FA (1988) PROBE spatial data modeling
and query processing in an image database application. IEEE
Trans Software Eng 14(5):611–629

39. Özsoyoǧlu G, Snodgrass RT (1995) Temporal and real-time
databases: a survey. IEEE Trans Knowl Data Eng 7(4):513–532

40. Patel JM, DeWitt DJ (1996) Partition based spatial-merge join.
In: Proceedings of the ACM SIGMOD conference, Montreal,
4–6 June 1996, pp 259–270

41. Pfoser D, Jensen CS (1999) Incremental join of time-oriented
data. In: Proceedings of the international conference on scien-
tific and statistical database management, Cleveland, OH, 28–30
July 1999, pp 232–243

42. Ramakrishnan R, Gehrke J (2000) Database management sys-
tems. McGraw-Hill, New York

43. Rana S, Fotouhi F (1993) Efficient processing of time-joins
in temporal data bases. In: Proceedings of the international
symposium on DB systems for advanced applications, Daejeon,
South Korea, 6–8 April 1993, pp 427–432

44. Salzberg B, Tsotras VJ (1999) Comparison of access methods
for time-evolving data. ACM Comput Surv 31(2):158–221

45. Samet H (1990) The design and analysis of spatial data struc-
tures. Addison-Wesley, Reading, MA

46. Segev A (1993) Join processing and optimization in temporal
relational databases. In: Tansel A, Clifford J, Gadia S, Jajo-
dia S, Segev A, Snodgrass RT (eds) Temporal databases: the-
ory, design, and implementation, ch 15. Benjamin/Cummings,
Reading, MA, pp 356–387

D. Gao et al.: Join operations in temporal databases 29

47. SegevA, Gunadhi H (1989) Event-join optimization in temporal
relational databases. In: Proceedings of the conference on very
large databases, Amsterdam, 22–25 August 1989, pp 205–215

48. Sellis T, Roussopoulos N, Faloutsos C (1987) The R+-tree: a
dynamic index for multidimensional objects. In: Proceedings
of the conference on very large databases, Brighton, UK, 1–4
September 1987, pp 507–518

49. Sitzmann I, Stuckey PJ (2000) Improving temporal joins using
histograms. In: Proceedings of the international conference on
database and expert systems applications, London/Greenwich,
UK, 4–8 September 2000, pp 488–498

50. Slivinskas G, Jensen CS, Snodgrass RT (2001) A foundation
for conventional and temporal query optimization addressing
duplicates and ordering. Trans Knowl Data Eng 13(1):21–49

51. Snodgrass RT, Ahn I (1986) Temporal databases. IEEE Comput
19(9):35–42

52. Son D, Elmasri R (1996) Efficient temporal join processing
using time index. In: Proceedings of the conference on statistical
and scientific database management, Stockholm, Sweden, 18–
20 June 1996, pp 252–261

53. Soo MD, Jensen CS, Snodgrass RT (1995) An algebra for
TSQL2. In: Snodgrass RT (ed) The TSQL2 temporal query
language, ch 27, Kluwer, Amsterdam, pp 505–546

54. Soo MD, Snodgrass RT, Jensen CS (1994) Efficient evalua-
tion of the valid-time natural join. In: Proceedings of the inter-
national conference on data engineering, Houston, TX, 14–18
February 1994, pp 282–292

55. Tsotras VJ, Kumar A (1996) Temporal database bibliography
update. ACM SIGMOD Rec 25(1):41–51

56. Zhang D, Tsotras VJ, Seeger B (2002) Efficient temporal join
processing using indices. In: Proceedings of the IEEE interna-
tional conference on data engineering, San Jose, 26 February–1
March 2002, pp 103–113

57. Zurek T (1997) Optimisation of partitioned temporal joins.
Ph.D. Dissertation, Department of Computer Science, Edin-
burgh University, Edinburgh, UK

