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Abstract 

Coalescing is a unary operator applicable to 
temporal databases; it is similar to duplicate 
elimination in conventional databases. Tu- 
ples in a temporal relation that agree on the 
explicit attribute values and that have adja- 
cent or overlapping time periods are candi- 
dates for coalescing. Uncoalesced relations 
can arise in many ways, e.g., via a projection 
or union operator, or by not enforcing coa- 
lescing on update or insertion. In this paper 
we show how semantically superfluous coalesc- 
ing can be eliminated. We then turn to effi- 
ciently performing coalescing. We sketch a va- 
riety of iterative and non-iterative approaches, 
via SQL and embedded SQL, demonstrating 
that coalescing can be formulated in SQL-89. 
Detailed performance studies show that all 
such approaches are quite expensive. We 
propose a spectrum of coalescing algorithms 
within a DBMS, based on nested-loop, ex- 
plicit partitioning, explicit sorting, temporal 
sorting, temporal partitioning, and combined 
explicit/temporal sorting, and summarize a 
performance study involving a subset of these 
algorithms. The study shows that coalesc- 
ing can be implemented with reasonable effi- 
ciency, and with modest development cost. 
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Name Title 

Ron President [1981,~~,Z~~~98~,~~,~~~ 

Ron President [1985/01/20~1989/01/20) 

Figure 1: Uncoalesced Valid-Time Relation 

1 Introduction 

Coalescing [JCE+94] is a unary operator applicable to 
temporal databases; it is similar to duplicate elimina- 
tion in conventional databases. Temporal databases 
are extensions of conventional databases that support 
the recording and retrieval of time-varying informa- 
tion [TCG+93]. Associated with each tuple in a tem- 
poral relation is a timestamp, denoting some period of 
time. In a temporal database, information is “uncoa- 
lesced” when tuples have identical attribute values and 
their timestamps are either adjacent in time (“meet” in 
Allen’s taxonomy [A1183]) or share some time in com- 
mon. Consider the relation in Figure 1. The ,tuples 
in this relation denote the fact “Ronald Reagan was 
president” over two adjacent time periods. The two 
tuples can be replaced by a single tuple, timestamped 
with the period [1981/01/20-1989/01/20), to repre- 
sent when Ron was President, instead of which terms 
he was elected to, which is represented in the uncoa- 
lesced relation. In general, two tuples in a valid-time 
relation are candidates for coalescing if they have iden- 
tical explicit attribute values and adjacent or overlap- 
ping timestamps. Such tuples can arise in many ways. 
For example, a projection of a coalesced temporal re- 
lation may produce an uncoalesced result, much as du- 
plicate tuples may be produced by a projection on a 
duplicate-free snapshot relation. In addition, update 
and insertion operations may not enforce coalescing, 
possibly due to efficiency concerns. 

As with duplicate elimination in snapshot data- 
bases, prior coalescing is necessary to ensure the 
semantics of some operators in temporal databases 
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[SJS95], e.g., temporal aggregation [KSL95] and tem- 
poral selection [SSJ94]. While many temporal data 
models and languages have implicitly or explicitly 
assumed or provided coalescing [Ari86, TCG+93, 
McK88, SSD87], only recently has the importance of 
this operation with respect to semantics and perfor- 
mance been emphasized [Bijh94]. Consider the rela- 
tion in Figure 1. A relational algebra expression that 
selects those persons who were president for more than 
six years does not return Ron because the valid-time of 
either fact is less than six years. However, coalescing 
the relation prior to evaluating the query causes Ron 
to qualify. Thus, whether a relation is coalesced or not 
makes a semantic difference. In general, it is not pos- 
sible to switch between a coalesced and an uncoalesced 
representation without changing the semantics of pro- 
grams. Moreover, as frequently used database opera- 
tions (projection, union, insertion, and update) may 
lead to potentially uncoalesced relations and because 
many (but not all) real world queries require coalesced 
relations, a fast implementation is imperative. 

Coalescing is potentially more expensive than dupli- 
cate elimination, which relies on an equality predicate 
over the attributes. Coalescing also requires detecting 
tuple overlap, which is an inequality predicate over the 
timestamp attribute. Most conventional DBMSs han- 
dle inequality predicates poorly; the typical strategy 
is to resort to exhaustive comparison when confronted 
with such predicates [LM90], yielding quadratic com- 
plexity (or worse) for this operation, as will be demon- 
strated later in this paper. For these reasons, effective 
optimization techniques for temporal queries involv- 
ing coalescing must be devised. Efficient algorithms 
for evaluating the coalescing operator are also needed. 
Together these capabilities are critical to achieving ac- 
ceptable performance in a temporal DBMS. We ad- 
dress these topics in this paper. 

The remainder of the paper is organized as follows. 
We first examine how coalescing has arisen in previ- 
ous temporal data models and query languages. Sec- 
tion 3 formally defines coalesced relations. Section 4 
discusses how to eliminate semantically superfluous co- 
alescing. We turn our attention to operator evaluation 
outside a DBMS in Section 5. In Section 6 we define 
the space of algorithms to evaluate coalescing within a 
DBMS and summarize a performance study involving 
a subset of these algorithms. Finally, conclusions and 
directions for future work are offered in Section 7. 

2 Related Work 

Early temporal relational models implicitly assumed 
that the relations were coalesced. Ariav’s Tempo- 
rally Oriented Data Model (TODM) [Ari86], Ben Zvi’s 
Time Relational Model [TCG+93, p.202-2081, Clif- 

ford and Croker’s Historical Relational Data Model 
(HRDM) [TCG+93, p.6-271, Navathe’s Temporal Re- 
lational Model (TRM) [TCG+93, p.92-1091, and the 
data models defined by Gadia [TCG+93, p.28-661, 
Sadeghi [SSD87] and Tansel [TCG+93, p.183-2011 all 
have this property. The term coalesced was coined by 
Snodgrass in his description of the data model under- 
lying TQuel, which also requires coalescing [Sno87]‘. 
Later data models, such as those associated with 
HSQL [TCG+93, p.llO-1401 and TSQL2 [Sno95], 
explicitly required coalesced relations. The query lan- 
guages associated with these data models generally did 
not include explicit constructs for coalescing. HSQL is 
the exception; it includes a COALESCE ON clause within 
the select statement, and an COALESCE optional modi- 
fier immediately following SELECT [TCG+93, p.1254. 
Some query languages that don’t require coalesced 
relations provide constructs to explicitly specify co- 
alescing; ChronoBase [SriSl], ChronoSQL [Boh94], 
VT-SQL [Lor93] and ATSQLZ [BJS95] are examples. 
The SQL/Temporal part of SQL3 [Me1961 contains 
a NORMALIZE ON clause that coalesces on specified 
columns. 

For many of these query languages, temporal al- 
gebras have been defined [MS91]. For those based 
on attribute timestamping, projection retains coalesc- 
ing; generally the algebras for these models extend 
the union operator so that it also guarantees coalesc- 
ing [Tan86, McK88, Gad88]. For those models based 
on tuple timestamping, some also include coalescing 
in the projection operator, e.g., the conceptual aige- 
bra for TSQL2 [SJS95]. Navathe and Ahmed defined 
the first coalescing algebraic operator; they called this 
COMPRESS [TCG+93, p.1081. Sarda defined an op- 
erator called Coalesce [TCG+93, p.1221, Lorentzos’ 
FOLD operator includes coalescing [TCG+93, p.751, 
Leung’s second variant of a temporal select join opera- 
tor TSJz can be used to effect coalescing, and TSQL2’s 
representational algebra also included a coalesce oper- 
ator [SJS95]. 

The expressive power of coalescing has been open 
to question. Leung and Muntz state that “the 
time-union operator is really a fixed-point computa- 
tion and cannot be expressed in terms of traditional 
relational algebra” [TCG+93, p. 3371, implying that 
coalescing is beyond relational completeness; this is a 
commonly held belief. Recently, Leung and Pirahesh 
provided a mapping of the coalesce operation into re- 
cursive SQL [LP95, p. 3291. However, Lorentzos and 
Johnson provided a translation of his FOLD operator 
(which also incorporates coalescing) into Quel [LJ88, 
p. 2951, implying that coalescing does not add expres- 

‘SQL-92 contains an unrelated COALESCE operator that is 
shorthand of CASE that replaces NULL values with other val- 
ues [MS931 
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sive power to the relational algebra. In Section 5, 
we settle the question by proving that coalescing is 

expressible in the (nonrecursive) relational algebra. 
We will also show that performing coalescing solely 
within SQL or the relational algebra is impractical, 
due to its extremely poor performance. 

Despite the need for effective query optimization 
techniques and operator evaluation algorithms for co- 
alescing, there has been scant coverage in the litera- 
ture on either of these topics (indeed, a contribution 
of the present paper is highlighting this operator for 
further investigation by the temporal database com- 
munity). This is in contrast to the conventional du- 
plicate elimination operator, for which a large body 
of research exists [Gra93]. Concerning temporal coa- 
lescing, Navathe and Ahmed provided the first algo- 
rithm: sort the relation on a composite key of explicit 
attributes and time start, then scan the relation, ex- 
tending the period of some tuples and deleting other 
tuples [TCG+93, p.1081. Lorentzos uses a similar algo- 
rithm to implement FQLD [TCG+93, p. 891. In Sec- 
tion 6, we evaluate this algorithm against a suite of 
other approaches. 

3 Basic Definitions 

While coalescing can be defined in almost all temporal 
data models, we choose a particular model in order to 
concretely define its semantics. Definitions for other 
data models, while not given here, can be constructed 
similarly. The data model we use is a first normal 
form model that timestamps tupies with open periods 
[ts-te), i.e., an instant t is contained in [ts-te) if and 
only if t, 5 t < t,. In this paper, we consider valid- 
time relations [JCE+94], modeling changes in the mini- 
world represented in the database, though our results 
apply equally to transaction-time relations, and can 
be extended to bitemporal relations. 

We define a relation schema R = (AI,. . . , ANIVT) 
as a set of expcplicit attributes {AI, . . . , AN} and a pe- 
riod timestamp VT= [S - E). We use T to denote an 
instance of R, and x and y to denote tuples in I-. As a 
shorthand, we use A to represent the set of attributes 
{AI, . . . . AN}. 

Prior to defining the coalescing operator we first 
define three auxiliary predicates. The first predicate 
determines if two argument tuples agree on the values 
of their explicit attributes. 

value-eq(x, y) := (x[A] = y[A]) 

The remaining predicates accept period timestamps as 
arguments. The second predicate determines if the be- 
ginning of the first argument period meets the ending 
of the second argument period, and vice-versa. 

adj([& -El), [S2-~92)) := (El = S2 V ST = Es) 

The third predicate determines if two argument peri- 
ods share any instant in time (termed a chronon), i.e., 
if the periods overlap. 

~lP([Sl -El), p2 -E2)) := 

(34Wl 5 c < -&).A (S2 L c < J32))) 

Finally, a relation instance T of the schema 
R= (A~,...,AN(IV/T) is coalesced if all pairs of dis- 
tinct tuples from the relation are either not value- 
equivalent, or, if they are value-equivalent, then they 
must be non-adjacent and non-overlapping. 

isamZ(r) := Vx, y E r-(x = y V w.mZue-eq(x, y) V 

b~~P~~W1, YWI) A --N4W~ YWl)N 

4 Eliminating Superfluous Coalescing 

Due to the nature of coalescing (merging value- 
equivalent tuples), coalescing is at least as costly as du- 
plicate elimination (deleting identical tuples) in non- 
temporal databases. This means that it is best to 
simply avoid coalescing where possible. As previously 
mentioned, coalescing is required at some places in 
order to guarantee the correctness of query results 
[BBh94, TCG+93, SJS95, SriSl]. However there are 
many cases where coalescing can be omitted or where 
it can be postponed. 

4.1 Basic Assumptions 

Whether or not coalescing can be omitted or delayed 
depends on the definition of temporal operations and 
on the basic framework of the optimizer. This sit- 
uation is identical to duplicate elimination in non- 
temporal databases. It is well known that projec- 
tion does (or has the potential to) introduce dupli- 
cates when evaluated on a relation with no duplicates, 
whereas a join does not. Obviously this is only true 
for a particular definition of the algebraic operators. 
Besides this it is important to know whether dupli- 
cates are possible in base relations. 

We assume that temporal operations are imple- 
mented as extensions of standard relational database 
operations2. To each relational algebra operator op a 
valid time counterpart opv exists that defines the se- 
mantics of valid time [BSSSS]. While all operations 
axe period-based, i.e., the format of periods is rele- 
vant for the computation of the result, it is also the 
case that these operators respect snapshot reducibil- 
ity [BJS95, Sno87]. This means that one can describe 
the semantics of a temporal operation in terms of its 
non-temporal counterpart applied to all snapshots of 
a database. But note that while, at the conceptual 

2While we couch our discussion in terms of a particular tem- 
poral algebra, a similar analysis could be performed on other 
temporal algebras [MS91]. 
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level, these operators simultaneously operate on many 
states of the databases, only start and end points of 
periods are considered, never intermediate time points. 
This allows for an efficient (granularity-independent) 
implementation. 

It is possible to identify operations that poten- 
tially destroy coalescing and operations that preserve 
coalescing. 

Theorem 4.1 Temporal projection and temporal 
union have the potential to return an uncoalesced re- 
lation when evaluated over coalesced input relations. 

Proof: Assume temporal schemas Ri = (A,BIVT) 
and R2 = (A,B(VT) with associated coalesced rela- 
tion instances ri = {(u,b)[2-5)),(~,~1[5-8))}andrz = 
UGWf4)~. We hav-S-1) = U4W)~ G-W-W 
and ~1 U 73 = {(a, bll[2-5)), (a, 4[5--8)), (a, b!lW))). 
Both results are uncoalesced because they contain 
value-equivalent tuples with adjacent periods. 0 

Theorem 4.2 Temporal selection, temporal Carte- 
sian product, and temporal negation preserve coalesc- 
ing when evaluated over coalesced input relations. 

Proof: Temporal selection selects a subset of the in- 
put tuples. The input relation does not contain value- 
equivalent tuples with overlapping or adjacent periods 
which is also true for any subset of the relation. The 
proofs for temporal Cartesian product and temporal 
negation are similar. In both cases (see below) the 
valid-time of the tuples of the input relation ~1 is nar- 
rowed, i.e., restricted to a sub-period of the original 
period. As ~1 does not contain value-equivalent tuples 
with adjacent or overlapping periods this is also true 
for any relation that only contains tuples with a valid- 
time contained in the valid-time of a value equivalent 
tuple in ~1. It’s straightforward to see that the output 
relation of temporal negation satisfies this criterion. 
With temporal Cartesian product we first abstract the 
result tuple to (ti, . . . i[S-E)). Assuming that there 
are no additional explicit attributes the result relation 
qualifies again. By adding explicit attributes we don’t 
get more value-equivalent tuples. At best, i.e., if for 
each tuple the additional explicit attribute values are 
the same, we get the same number of value-equivalent 
tuples. 0 

These theorems can be extended to apply to derived 
operators. For example, a contains join can be defined 
in terms of temporal Cartesian product (which retains 
the timestamps of the underlying tuples) and temporal 
selection, and thus preserves coalescing. 

We discuss coalescing by partitioning the set of 
coalescing rules into two classes: unconditional and 
conditional ones. Unconditional coalescing rules only 
depend on temporal relational operators, whereas con- 

ditional coalescing rules additionally depend on pa 
rameters to these operators (e.g., selection conditions). 
Conditional rules are harder to deal with because they 
involve the analysis of functions and boolean expres- 
sions. 

4.2 Unconditional Coalescing Rules 

A first rule eliminates successive coalescing operations. 

(r0) coal(coaJ(rl)) E cod(9-1) 

A more enhanced set of optimization rules exploits 
the fact that some operations preserve coalescing, i.e., 
if the input is coalesced the output relation is coalesced 
too. 

(rl) cod(n X” r2) s cod(r1) xv coaqrz) 
(r2) co&-1 \” T2) 5 cod(r1) \” cod(r2) 

(r3) cod(c~~(cod(n))) 1 a~(cod(r~)) 

Temporal Cartesian product and temporal set differ- 
ence both preserve coalescing. Moreover, if coalescing 
is carried out, it does not matter whether coalescing is 
applied before or after the respective operation. Note 
that it is not a priori clear whether to push coalescing 
inside or whether to defer it. For example, if ri and 
rz are both base relations known to be coalesced (e.g., 
because of model inherent constraints or according to 
database statistics) we push coalescing inside. In this 
case rule (rl) degenerates to coal(ri x” ~2) E rr x” rz 
and we do not have to coalesce at all. However if ~1 and 
rs are uncoalesced base relations and if a join (i.e., a 
Cartesian product followed by a selection) is expected 
to cut down on the size of the input relations it might 
be better to postpone coalescing until after the join 
(see also (rS), below). 

Analogous to these rules is rule (r4) which states 
that it is unnecessary to coalesce before and after tem- 
poral union. 

(r4) coal(coal(ri) Uv cod(rz)) s cod(rI U” ~2) 

This is quite obvious because temporal union poten- 
tially destroys coalescing but is invariant with respect 
to the timestamp format of input relations. Note that 
it is not possible to give a similar rule for temporal 
projection $, the other operation that potentially de- 
stroys coalescing. The reason for this is that the result 
of a temporal projection may vary with the timestamp 
format of.the input relation (if the projection function 
f, which is a vector of expressions reflecting the select 
list of SQL statements, computes a value based on the 
valid-time of the input relation). 

A final unconditional optimization applies to tem- 
poral set difference. 

(r5) 7.1 \” coaJ(r2) E 7-l \” TZ 
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Rule (r5) states that it is not necessary to coalesce 
the negated operand in a temporal set difference. This 
result is in accordance with non-temporal set difference 
which is indifferent with respect to duplicates in the 
negated part. 

4.3 Conditional Coalescing Rules 

As stated earlier unconditional coalescing rules are 
easier to deal with than conditional rules. However 
restricting attention to this class of rules means not 
to exploit the full potential of query optimization. 
Enhanced query optimizers have to take conditional 
coalescing rules into consideration as well. A first con- 
ditional coalescing rule states that coalescing can be 
deferred until after a selection if the selection condi- 
tion c does not constrain the valid-time of the input 
relation. This is easily checked with the syntactic con- 
dition vt-free(c) which ensures that the valid time is 
not used in the condition c. 

(r6) CJ~(CO~(T-I)) I coal(u:(rl)) iff vt-free(c) ’ 

Note that this rule can be quite effective in terms of 
efficiency, when the selectivity of the predicate is high. 
Given that the costs of coalescing are super-linear with 
the number of tuples to be coalesced (as shown in Sec- 
tions 5 and 6) it can be useful to postpone coalescing. 

A similar rule applies to the temporal projection 
operator. 

(r7) coal(?r;(cod(n))) 3 cod(7r;(rl)) iff vt-free(f) 

Finally, there is a rule that eliminates coalescing of 
coalesced (base) relations. 

W coal(ri) E ri iff is-coal(n) 

In data models that enforce coalesced base relations 
this rule is quite effective. Models without this re- 
striction still can exploit the rule by maintaining ap- 
propriate statistics. 

5 Performing the Coalescing Opera- 
tion 

In this section we investigate the possibilities avail- 
able to a database user to implement coalescing. A 
database user cannot directly access and manipulate 
physically stored tables. Instead he is forced to use the 
data manipulation interface (e.g., SQL) to do changes. 
As we will see this is a significant obstacle. In Section 6 
we consider implementing coalescing within a DBMS. 

We assume a valid-time relation r with one explicit 
attribute. Valid-time is represented by two attributes, 
S, denoting the start point and E, denoting the end 
point. 

To empirically determine upper and lower bound 
costs for coalescing we have used two instantiations 
of r, each with n tuples. (See Section 6 for a discus- 
sion of different database instances.) The first one, ~1, 
consists of a single chain of adjacent value-equivalent 
tuples. All tuples in rr can be coalesced into a single 
tuple with S = 0 and E = n, i.e., the reduction factor 
[Gra93, p.lOO] is n. Relation 7-2, on the other hand, 
contains no value-equivalent tuples, thus, the reduc- 
tion factor is 1. 

5.1 SQL Implementation 

All database statements we give are specific to Oracle. 
The tests have first been run on a Sun 3180 running 
Oracle 6.2.1. Later we have rerun them on a Spare 
5 running Oracle 7.0.16. While the absolute numbers 
were quite different the relative differences remained 
about the same. 

5.1.1 Iterative Approaches 

Coalescing requires (chains of) value-equivalent tuples 
with adjacent or overlapping valid-times to be coa- 
lesced into a single tuple [Biih94]. A similar problem 
is the computation of the transitive closure of a graph 
with the subsequent deletion of non-maximal paths. 
In SQL the computation of the transitive closure can 
be implemented by iterating an insert statement that 
coalesces two valid-time periods (i.e., paths) and in- 
serts a new tuple into the relation. Searching for value- 
equivalent tuples with overlapping or adjacent periods 
has to be done with a self-join. 

r(X,j[A-B)) A r(XI[C-D)) A 
A<CAC<BAB<D 

An optimization exploits the fact that we are only in- 
terested in maximal periods. Rather than inserting a 
new tuple (and retaining the old ones) we update one 
of the tuples that was used to derive the new one. This 
approach can be implemented by iterating an update 
statement. In each case, the statement is repeated 
until r doesn’t change anymore. After both kinds of 
iterations we have to delete tuples with non-maximal 
valid-times (i.e., with valid-times that are contained in 
the valid-time of another value-equivalent tuple). 

If a database system supports recursion or transi- 
tive closure computations it is possible to perform the 
iteration directly in SQL (c.f., [LP95]) instead of em- 
bedding SQL into a general purpose programming lan- 
guage. 

5.1.2 Non-Iterative Approaches . 

The algorithms developed in the previous section were 
based on ideas used for the computation of transitive 
path closures. However time has special properties 

184 



which makes it possible to employ quite different al- 
gorithms. Assuming that time is linear, i.e., totally 
ordered, it is possible to compute maximal periods 
with a single SQL statement (see also [Ce195, p. 2911). 
The basic idea is illustrated by the following range- 
restricted first-order logic formula. 

r(XI[S-m)) A r(XJ[--E)) A S < E A 
VA(r(XI[A-e)) AS < A < E + 

3U, V(r(X([U--V)) A U < A 5 V)) A 
-3A, B(r(XI[A-B)) A (A < S 5 B V A 5 E < B)) 

On the first line we search for two (possibly the same) 
value-equivalent tuples defining start point S.snd end 
point E of a coalesced tuple. The second and third 
line ensure that all start points A between S and E 
of value-equivalent tuples are extended (towards S) by 
another value-equivalent tuple. This guarantees that 
there are no holes between S and E, i.e., no time points 
where the respective fact does not hold. The last line 
makes sure that we get maximal periods only, i.e., S 
and E may not be part of a larger value-equivalent 
tuple. 

The above first-order logic formula can be trans- 
lated to SQL by first eliminating V-quantifiers and 
implications [BCST96] and then translating to SQL 
directly [BSSSS]. The resulting select statement is 
considerably more complex than the insert or update 
statement discussed in the previous section. However 
it only has to be executed once and does not require 
a procedural extension of SQL or use of recursive con- 
structs. In Section 5.1.4 we will see how these aspects 
impact performance. 

5.1.3 Optimizations 

There exist standard optimization techniques that 
might be applied to either the iterative or the non- 
iterative solutions [O’N94]. It is, e.g., possible to cre- 
ate an index on the valid time start point for the pur- 
pose of coalescing. The effectiveness of such optimiza- 
tions depends on the query optimizer of the respective 
database system. Therefore we only include them se- 
lectively into the empirical measurements, mainly to 
exemplify the relative speedup that can be expected. 
It should be obvious that standard optimization tech- 
niques, lie indexing and clustering, are applicable to 
all three approaches provided above. However their 
effectiveness has to be verified in each particular sit- 
uation. We show the results for the most promising 
algorithm only. 

5.1.4 Empirical Results 

185 

Figure 2 summarizes the performance of the three ap- 
proaches, along with the update algorithm using an 
‘index. All were performed on the uncoalesced rela- 
tion rr. The x-axis provides the size of the relation; 

the y-axis the total time for coalescing, in seconds. 
Recall that for all but the “select” approach the state- 
ment has to be iterated (in this, worst, case, log,(n) 
times [B6h94]) until the fixpoint is reached, i.e., until 
no more tuples are inserted or updated (Oracle pro- 
vides an easy way to ascertain this). Timings with 
an index are included for the update statement only, 
which has the best overall performance. Here, the in- 
dex has little impact on the performance. 

3500 J T t I 

Figure 2: Coalescing a relation where all tuples can be 
coalesced into a single one. 

The costs to coalesce relation ri are dominated (a) 
by the costs to insert new tuples and (b) by the com- 
plexity of the SQL statement. It also turns out to 
be much cheaper to iterate the moderately complex 
update statement instead of executing the even more 
complex select statement once. Even an index does 
not help. Instead of speeding up the select state- 
ment an index slows it down-even more. Also the up- 
date statement could not take advantage of an index. 
Experiments with indexes revealed that it is best to 
create a temporary index on the valid-time start point 
for the purpose of the iteration. A permanent index 
considerably slows down the delete statement. The in- 
crease in execution time was always greater than the 
time to create and drop the index. Finally, we note 
that performance would perhaps be improved signif- 
icantly if Oracle supported local tables, as proposed 
for SQL3. Such tables, which persist only for the 
duration of a single transaction, would incur signif- 
icantly smaller penalties of update and insertion, as 
these modifications would not have to be logged or 
participate in locking. 

Figure 3 displays the costs to coalesce an already 
coalesced relation. Note that the scale of the x-axis 
has changed. When the relation is already coalesced, 
the coalescing algorithms all are still very slow, with 
the top two about 70% more costly than the bottom 
two. Not surprisingly the insert statement is the most 
efficient. Even, without an index it achieves a perfor- 
mance comparable to that one of the update statement 
with an index. Clearly an index would speed up the 
insert statement even more. However we have not in- 



Figure 3: Coalescing a relation without value- 
equivalent tuples. 
chided these measurements because of the really poor 
performance of the insert statement when the relation 
contains value-equivalent tuples. 

In summary, performing coalescing in SQL, using 
any of the approaches discussed, is exceedingly ineffi- 
cient . 

5.2 Main Memory Implementation 

One means to improve the performance of coalescing 
is to load the relation into main memory, coalesce it 
manually, and then store it back in the database. A 
straightforward implementation suffers from two seri- 
ous constraints. It is not always feasible to load a 
(huge) relation into main memory and coalescing is 
based on sorting which is time-consuming and non- 
trivial. Of course, both issues can be addressed with 
a sophisticated implementation. However, this means 
that we have to reimplement DBMS functionality. A 
better approach is to fetch tuples ordered primarily by 
explicit attribute values and secondarily by start time. 
This allows us to reuse the sorting mechanism of the 
DBMS and to perform coalescing with just a single 
tuple in main memory. The C code is given elsewhere 
[BSSSS]. 

The main memory approach has one disadvan- 
tage when compared to the SQL implementations in 

* the previous section. It suffers from the socalled 
“entry-costs”, i.e., the costs to move data between the 
database and the application. Our measurements re- 
veal that the entry-costs are indeed significant. How- 
ever, they are considerably lower than the costs to ex- 
ecute the SQL statements discussed in the previous 
section. 

Figure 4 illustrates the costs to coalesce the tem- 
plate relations. It is cheaper to apply main mem- 
ory coalescing to relations with large reduction fac- 
tors. (This is in contrast to the SQL-based algorithms 
discussed in the previous section.) The reason is that 
fewer tuples have to be stored back. Four factors con- 
tribute to the total coalescing time, namely the sort- 
ing performed by the DBMS, loading the relation into 

Figure 4: Coalescing a relation by loading it into main 
memory and then storing it back, as compared with 
the entry costs and duplicate elimination. 
main memory, the main memory coalescing steps, and 
storing back the tuples into the database. The domi- 
nating factor are the entry costs (storing and fetching 
tuples). The additional costs for coalescing (DBMS 
sorting and main memory operations) are the differ- 
ence between (a) and (b), the top two graphs. They 
are not relevant. The costs for storing back are the 
dominating factor. These costs are the difference be- 
tween (a) and (c). They amount to about 70% of the 
time. Note that (a) is the upper bound for the coa- 
lescing costs (maximal costs for storing back, reduction 
factor = 1) whereas (c) is the lower bound (no costs 
for storing back, reduction factor = n). Finally, we 
recall that, as with the SQL-based algorithms, perfor- 
mance might improve significantly if local tables were 
available. Specifically, we expect them to speed up the 
storing back into the database. 

Also shown in the figure is the cost to eliminate du- 
plicates. Note that in both cases (with and without 
duplicates), duplicate elimination within the DBMS is 
much faster than coalescing outside the DBMS. This 
is an apples and oranges comparison, as coalescing 
is somewhat more complex than duplicate elimina- 
tion. Nevertheless, it indicates the potential perfor- 
mance improvement possible by implementing coalesc- 
ing within the DBMS, which we examine in the next 
section. 

In summary, a database user should do coalescing 
by fetching all tuples ordered primarily by explicit at- 
tribute values and secondarily by the start time. A 
single tuple is kept in main memory. Whenever this 
tuple cannot be coalesced with a newly fetched tuple 
anymore it is stored back. 

6 DBMS Implementation 

In this section, we derive new algorithms to imple- 
ment coalescing as an internal DBMS operation, and 
briefly summarize a performance study comparing 
these algorithms under a variety of database condi- 
tions. Our goals are two-fold: to identify the space of 
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algorithms applicable to coalescing, and to investigate 
how coalescing can be implemented cheaply, and with 
adequate performance. 

6.1 Algorithm Space 

Operationally, coalescing is very similar to unary 
relational operations such as duplicate elimination, 
and related operations such as grouping for aggrega 
tion. Whereas duplicate elimination matches value- 
equivalent tuples, coalescing performs the same match- 
ing, with the added restriction that tuple timestamps 
must either be overlapping or adjacent. We use this 
similarity to derive coalescing algorithms from well- 
established techniques for duplicate elimination. 

Duplicate elimination algorithms, and all relational 
query evaluation algorithms, are based on three main 
paradigms: nested-loop, partitioning, and sort-merge 
[Gra93]. Nested-loop algorithms are the the simplest; 
typical implementations perform exhaustive compari- 
son to find matching input tuples. Partitioning and 
sorting are divide. and conquer algorithms that pre- 
process the input in order to reduce the number of 
comparisons needed to find matching tuples. 

Partition-based duplicate elimination divides the 
input tuples into buckets using the attributes of the 
input relation as key values. Each bucket contains all 
tuples that could possibly match with one another, and 
the buckets are approximately the size of the alloted 
main memory. The result is produced by perform- 
ing an in-memory duplicate elimination on each of the 
derived buckets. 

Sort-merge duplicate elimination also divides the in- 
put relation, but uses physical memory loads as the 
units of division. The memory loads are sorted, pre 
ducing sorted runs, and written to disk. The result is 
produced by merging the sorted runs, where duplicates 
encountered during the merge step are eliminated. 

We adapt the&q basic duplicate elimination algo- 
rithms to support coalescing. To enumerate the space 
of coalescing algorithms, we use the duality of par- 
titioning and sort-merge [GLS94]. In particular, the 
division step of partitioning, where tuples are sepa- 
rated based on key values, is analogous to the merging 
step of sort-merge, where tuples are matched based on 
key values. In the following, we consider the charac- 
teristics of sort-merge algorithms and apply duality to 
derive corresponding characteristics of partition-based 
algorithms. 

For a conventional relation, sort-based duplicate 
elimination algorithms order the input relation on the 
relation’s explicit attributes. For a temporal relation, 
which has timestamp attributes in addition to explicit 
attributes, there are four possibilities for ordering the 
relation. First, the relation can be sorted using the ex- 

plicit attributes exclusively. Second, the relation can 
be ordered on time, using either the starting or end- 
ing timestamp [TCG+93, p.329-3871. The choice of 
starting or ending timestamp dictates an ascending or 
descending sort order, respectively. Third, the relation 
can be ordered primarily on the explicit attributes and 
secondarily on time [TCG+93, p.92-1091. Lastly, the 
relation can be ordered primarily on time and secon- 
darily on the explicit attributes. 

By duality, the division step of partition-based 
algorithms can partition using any of these options 
[TCG+93, p.329-3871. Hence, four choices exist for 
the dual steps of merging in sort-merge or partition- 
ing in partition-based methods. 

Lastly, it has been recognized that the choice of 
buffer allocation strategy, Grace or hybrid [DK0+84], 
is independent of whether a sort or partition-based 
approach is used [Gra93]. Hybrid policies minimize 
the flushing of intermediate buffers from main mem- 
ory, and hence can decrease the I/O cost for a given 
execution. 

Figure 5 shows the choices of sort-merge versus par- 
titioning, the possible sorting/partitioning attributes, 
and the possible buffer allocation strategies. Com- 
bining all possibilities gives sixteen possible evalua- 
tion algorithms. Including the basic nested-loop al- 
gorithm results in a total of seventeen possible algo- 
rithms. The seventeen algorithms are named and de- 
scribed in Figure 6. 

C 
Sort-merge 
Partitioning > 

X 

Explicit 
Timestamp 

Explicit/timestamp 
Time&amp/explicit 1 X 

Figure 5: Space of possible evaluation algorithms 

6.2 Algorithm Implementations 

Of the seventeen possible choices, we excluded six of 
the algorithms, TES, TES-H, TP-H, ETP, ETP-H, 
TEP, and TEP-H from the final study. TES and TES- 
H are optimizations of TS and TS-H, respectively, us- 
ing a secondary sort-order on the explicit attributes. 
Intuitively, a secondary ordering on explicit attributes 
would not be effective if the start time of value- 
equivalent tuples are separated by long time periods. 
TP-H, ETP,,ETP-H, TEP, and TEP-H perform parti- 
tioning on time, either primarily (TP, TP-H, TEP and 
TEP-H) or secondarily (ETP and ETP-H). For each 
of these algorithms, range-partitioning [LM92] is per- 
formed on the period timestamp attributes. Whereas 
range partitioning has been successfully applied in con- 
ventional query evaluation with its discrete attribute 
values [DNSSl], it is much more difficult to perform 
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I Algorithm 1 Name 1 

Figure 6: Possible algorithms for performance study 
range-partitioning using more complex period times- 
tamps. We included the simplest temporal partition- 
ing algorithm, TP, in the study. 

The algorithms we include are adaptations of exist- 
ing duplicate elimination algorithms. A database ven- 
dor can use the* techniques to construct coalescing 
operators from existing code at fairly minimal imple- 
mentation cost. While we do not consider them in this 
study, optimizations such as read-ahead using forecast- 
ing, early coalescing, merge optimizations, large clus- 
ter sizes, and bucket tuning [Gra93] can be applied to 
the coalescing algorithms as well. 

A final few words of explanation are needed. We 
used a simple implementation of hybrid buffer man- 
agement. For partition-based algorithms, e.g., EP-H, a 
partition was chosen to remain memory resident with- 
out being flushed to disk during, and after, the division 
step. Similarly, for the sort-based algorithms, ES-H, 
TS-H, and ETS-H, most of the last run generated was 
retained in memory rather than being flushed to disk. 
This required fairly straightforward calculations to al- 
locate some of the buffer space being used by the last 
run to the remaining runs during merging. 

For the algorithms ES, ES-H, EP, TP, EP-H, and 
NL we build the temporal element [TCG+93, p.341 of 
value-equivalent tuples as a main-memory data struc- 
ture. The temporal element is represented as a binary 
tree, where nodes in the tree contain a time period, 
whose start time is the tree’s sort key, and left and 
right child pointers. On insertion, a new period is co- 
alesced into an existing node if it is possible to do so 
without violating the sortedness of the tree, otherwise 
a new leaf node is added. As this scheme may not elii- 
inate all overlapping .or adjacent time periods, maxi- 
mal intervals are produced via a final tree traversal 
performed after all value-equivalent tuples have been 
scanned. In all cases, the space requirement of the 
temporal element was small relative to the available 

Parameter Value 

Relation size 16 MB 
Tuple size 16 bytes 

Tuples per relation 1M 
Timestamp size ([s,e]) 8 bytes 
Explicit attribute size 8 bytes 

Relation lifespan 100000 chronons 
Page size 1 KB 

Cluster size 32 KB 

Figure 7: System characteristics 
buffer space. Algorithms that employ sorting on time, 
i.e., TS/TS-H and ETS/ETS-H, do not require this 
data structure, as the sort ordering on time ensures 
that each set of value-equivalent tuples can be coa- 
lesced within a constant in-memory workspace. 

The temporal sorting algorithms, TS and TS-H, use 
tuple caching [SSJ94] to retain, in memory, tuples dur- 
ing the merging step that could coalesce with tuples 
appearing later in the scan. The tuple cache size was 
set at 32 KB, i.e., one .cluster of I/O (see Figure 7). 
The temporal partitioning algorithm, TP, which could 
also use tuple caching, was instead implemented using 
simple tuple replication. 

Lastly, all algorithms were developed and experi- 
ments were run using the TIME-IT temporal database 
test environment [KS95], a system for prototyping 
query evaluation components. TIME-IT provides a 
synthetic temporal database generator, a simulated 
single disk system, and I/O and CPU cost measure- 
ment tools. 

6.3 Parameters 

Using TIME-IT we fixed several parameters describing 
all test relations used in the experiments. These pa- 
rameters and their values are shown in Figure 7. (The 
page size of 1 KB is fixed by TIME-IT. We plan to 
enhance the tool to support variable page sizes, but, 
in any case, our present results would scale to large 
page sizes.) We lixed the tuple size at 16 bytes and 
the relation size at 16 MB, giving 1 M tuples per rela- 
tion. We chose a 16 M relation size since we were less 
interested in absolute size than in the ratio of input size 
to available main memory. A scaling of these factors 
would provide similar results. In all cases, the gener- 
ated relations were randomly ordered with respect to 
both their explicit and timestamp attributes. 

The metrics we used for all experiments are shown 
in Figure 8. We measured both main memory op- 
erations and disk I/O operations. All operations 
were measured synthetically using facilities provided 
by TIME-IT to eliminate any undesired system effects 
from the results. For disk operations, random and se- 
quential access were measured separately with a five 
times cost factor for random accesses. We included 
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Parameter 

Sequential I/O cost 
R&dom IjO cost 

Explicit attribute compare 
Timestamp compare 

Pointer compare 
Pointer swap 
TuDle move 

1 Value 
5 msec 
25 msec 
2 psec 
4 psec 
1 psec 
3 jLsec 
4P= 

Figure 8: Cost metrics 
the cost of writing the output relation in the experi- 
ments since sort-based and partition-based algorithms 
exhibit dual random and sequential I/O patterns when 
sorting/coalescing and partitioning/merging. 

6.4 Performance Summary 

We implemented the ten algorithms NL, EP, EP-H, 
ES, ES-H, TS, TS-H, TP, ETS, and ETS-H described 
above, and evaluated their performance under a va- 
riety of database and system parameters. We sum- 
marize the results of this study here-full details are 
provided elsewhere [BSSSS]. 

Nested-loop (NL) was not competitive under any 
circumstances. Lie some of the SQL solutions of Sec- 
tion 5, the nested-loop program effectively performed a 
fix-point computation. A simple improvement to this 
algorithm is to first sort the input on the explicit at- 
tributes, and use the sort-ordering to reduce the num- 
ber of blocks scanned in the inner loop. This is essen- 
tially the approach proposed by Navathe and Ahmed 
for the COMPRESS operator [TCG+93, p-92-1091 and 
by Lorentzos for his Fold operator [TCG+93, p.67-911. 
However, rather than perform a separate sort opera- 
tion, it is possible to sort and coalesce simultaneously. 
The sort-merge algorithms we consider opera;te in this 
manner, and had uniformly better performance than 
NL at all memory allocations. 

The timestampbased algorithms, especially TS and 
TS-H, showed good performance in special cases, e.g., 
when timestamps are randomly distributed and are 
short in duration, and when little value-equivalence is 
present in the explicit attributes. However, the per- 
formance of these algorithms degraded quickly when 
timestamp durations increase, due to tuple caching 
and tuple replication, or when the explicit and times- 
tamp distributions interact in certain ways, e.g., a high 
explicit cardinality with increasing timestamp skew. 
While these algorithms appear beneficial in certain cir- 
cumstances, it would be unwise for a DBMS to rely 
solely on them. 

Unlike the timestampbased algorithms, EP, EP-H, 
ES, and ES-H, along with the simple variants ETS and 
ETS-H, show relatively stable performance. As in con- 
ventional databases, the performance of EP and EP-H 
degrade when explicit skew is present. However, ES, 
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ES-H, ETS, ETS-H show relatively stable performance 
in the presence of explicit skew and timestamp skew, 
as expected. This is good news for commercial vendors 
interested in implementing temporal operations-they 
can construct temporal operators easily by modify- 
ing their existing software base, at presumably small 
development cost, and still achieve very acceptable 
performance. The choice of between ES/ES-H and 
ETS/ETS-H is a tradeoff between the additional sort- 
ing expense ETS and ETS-H incur to secondarily order 
the input on time, and the cost that ES and ES-H in- 
cur to build in-memory temporal elements. While the 
space requirement for temporal element construction 
is usually small, the size of the available buffer space 
may be the deciding factor. Of course, when sufficient 
main memory is available, hybrid algorithms should 
be chosen over their Grace counterparts. 

7 Conclusions 

Temporal coalescing is an important operation in 
terms of both database semantics and performance. 
While many temporal data models and languages have 
implicitly or explicitly assumed or provided coalesc- 
ing, only recently has the importance of this operator 
to performance been emphasized. We hope the work 
described in this paper will help focus the research 
community’s attention on this operation. 

The contributions of this paper can be summarized 
as follows. 

l We motivated the importance, and difficulty, of 
performing coalescing. 

l We defined rules for eliminating superfluous coa- 
lescing operations in algebraic expressions. 

l We showed how database users can implement co- 
alescing in SQL and investigated the performance 
of three different ways of doing this. We showed 
that the relational algebra has sufficient expres- 
sive power to implement coalescing. Database 
users get the best performance if they fetch tu- 
ples ordered first on explicit attributes and second 
on the temporal attribute. A single tuple is kept 
in memory and whenever a new tuple is fetched 
the memory tuple is either updated or stored back 
and replaced. 

l We proposed seventeen algorithms which could be 
used as part of an internal DBMS implementation 
for coalescing, and compared the performance of 
ten of these algorithms. The conclusion was that 
existing algorithms can be augmented to imple- 
ment coalescing, at presumably modest develop- 
ment cost, and with acceptable performance. 



In terms of future research, more work is needed 
to understand the interplay of coalescing and other 
temporal operators with respect to queSy optimization 
and evaluation. Concerning query optimization, exist- 
ing approaches, such as predicate pushdown [U1188] 
and pullup [HS93, He194], early and late aggregation 
(c.f., [YL94]), duplicate elimination removal [PL94], 
and DISTINCT pullup and pushdown, should be ap- 
plied to coalescing. Effective cost formulas for coalesc- 
ing are needed. Concerning evaluation, composite op- 
erators which implement two or more operators from 
a base set of algebraic operators could be exploited. 
Finally, a more thorough study of the algorithm space 
for temporal coalescing would be beneficial to iden- 
tify cases where specialized temporal algorithms can 
be exploited. 

8 Acknowledgments 

The second and third authors were supported in part 
by NSF grant ISI- and a grant from the AT&T 
Foundation. The authors thank Goetz Graefe and the 
anonymous reviewers for their insights. 

References 

[A11831 

[Ari86] 

[BCST96] 

[B JS95] 

[BBh94] 

[BSSSS] 

[BD83] 

J. F. Allen. Maintaining Knowledge about 
Temporal Intervals. CACM, 16(11):832- 
843,1983. 

G. Ariav. A Temporally Oriented Data 
Model. ACM TODS, 11(4):499-527, De- 
cember 1986. 

M. BGhlen, J. Chomicki, R. Snodgrass, and 
D. Toman. Querying TSQLS Databases 
with Temporal Logic. In Proceedings of 
the International Conference on Extended 
Database Technology, France, March, 1996. 

M. H. Bohlen, C. S. Jensen, and R. T. 
Snodgrass. Evaluating and Enhancing the 
Completeness of TSQLZ. Technical Report 
TR 95-5, Computer Science Department, 
University of Arizona, 1995. 

M. BGhlen. The Temporal Deductive 
Database System ChronoLog. PhD the- 
sis, Departement Informatik, ETH Ziirich, 
1994. 
M. H. Bohlen, R. T. Snodgrass, and M. D. 
Soo. Coalescing in Temporal Databases. 
R-96-2026, Aalborg University, Depart- 
ment of Mathematics and Computer Sci- 
ence, Denmark, June 1996. 
D. Bitton and D. J. Dewitt. Duplicate 
Record Removal in Large Data Files. ACM 
TODS, S(2), June 1983, p. 255. 

[DNSSl] 

[GadSS] 

[GLS94] 

[Gra93] 

[He1941 

[HS93] 

[JCE+94] 

[KS951 

[KSL95] 

[DK0+84] D. J. Dewitt, R. H. Katz, F. Olken, 
L. D. Shapiro, M. R. Stonebraker, and 
D. Wood. Implementation Techniques for 
Main Memory Database Systems. In Pro- 
ceedings of the ACM SIGMOD Interna- 
tional Conference on Management of Data, 
pp. 1-8, June 1984. 

D. DeWitt, J. Naughton, and D. Schnei- 
der. An Evaluation of Non-Equijoin Al- 
gorithms. In Proceedings of the. Inter- 
national Conference on Very Large Data 
Bases, p. 443452, 1991. 

S. K. Gadia. A Homogeneous Relational 
Model and Query Languages for Temporal 
Databases. ACM TODS, 13(4):418-448, 
December 1988. 

G. Graefe, A. Linville, and L. D. Shapiro. 
Sort vs. hash revisited. IEEE finsac- 
tions on Knowledge and Data Engineeting, 
6(6):934-944, December 1994. 

G. Graefe. Query Evaluation Techniques 
for Large Databases. ACM Computing 
Surweys, 25(2):73-170, June 1993. 

J. M. Hellerstein. Practical Predicate 
Placement. In Proc. of the ACM SIGMOD 
International Conference on Management 
of Data, Minneapolis, MN, R. Snodgrass 
and M. Winslett, editors, pp. 325-335, 
June 1994. 

J. M. Hellerstein and M. Stonebraker. 
Predicate Migration: Optimizing Queries 
with Expensive Predicates. In Proceedings 
of the ACM SIGMOD Internation Confer- 
ence on Management of Data, San Jose, 
CA, M. Carey and D. Schneider, editors, 
pp. 267-276, May 1993. 

C. S. Jensen, J. Clifford, R. Elmasri, S. K. 
Gadia, P. Hayes, and S. Jajodia. A 
Glossary of Temporal Database Concepts. 
ACM SIGMOD RECORD, 23(1):5264, 
March 1994. 

N. Kline and M. D. Soo. TIME-IT: The 
TIME Integrated Testbed. Pre-beta ver- 
sion 0.1 available via anonymous ftp from 
f tp. cs . arizona. edu, September 1995. 

N. Kline, R. T. Snodgrass, and T. Y. C. 
Leung. Aggregates. In R. T. Snodgrass, 
editor, The TSQL.5Temporal Q-W+y&n- 

[Ce195] J. Celko. SQL for Smarties: Advanced 
SQL Programming. Morgan Kaufmann, 
1995. 

190 



[LJ88] 

[LM90] 

[LM92] 

[Lor93] 

[LP95] 

[McK88] 

[Me1961 

[MS911 

[MS93] 

[O’N94] 

[PL94] 

guage, chapter 21, pp. 395-425. Kluwer 
Academic Publishers, 1995. 

N. Lorentzos and R. Johnson. Extend- 
ing Relational Algebra to Manipulate Tem- 
poral Data. Information Systems, 15(3), 
1988. 

C. Leung and R. Muntz. Query Processing 
for Temporal Databases. In Proceedings of 
the International Conference on Data En- 
gineering, February 1990. 

T. Y. C. Leung and R. R. Muntz. Tem- 
poral Query Processing and Optimization 
in Multiprocessor Database Machines. In 
Proceedings of the International Confer- 
ence on Vey Large Data Bases, Vancou- 
ver, Canada, August, 1992. 

N. Lorentzos. Specification of Valid Time 
SQL. ESPRIT III Project 7224 (ORES) 
Deliverable D2, April, 1993. 

T. Y. C. Leung and H. Pirahesh. Querying 
Historical Data in IBM DB2 C/S DBMS 
Using Recursive SQL. In J. Clifford and 
A. Tuzhilin, editors, Recent Advances in 
Temporal Databases, Workshops in Com- 
puting, Ziirich, Switzerland, September 
1995. Springer Verlag. 

E. McKenzie. An Algebraic Language for 
Query and Update of Tempoml Databases. 
PhD thesis, University of North Carolina, 
Computer Science Department, September 
1988. 

Melton, J. (ed.) SQL/Tempo&. ISO/IEC 
JTC l/SC 21/WG 3 DBLMCI-009. 
March, 1996. 

L. E. McKenzie and R. T. Snodgrass. Eval- 
uation of Relational Algebras Incorporat- 
ing the Time Dimension in Databases. 
ACM Computing Surveys, 23(4):501-543, 
December 1991. 

J. Melton and A. R. Simon. Understanding 
the New SQL: A Complete Guide. Morgan 
Kaufmann Publishers, Inc., 1993. 

P. O’Neil. Database Principles Progmm- 
ming Performance. Morgan Kaufmann, 
San Fhncisco, 1994. 

G. N. Paulley and P.-A. Larson. Exploit- 
ing Uniqueness in Query Optimization. In 
Proceedings of the International Confer- 
ence on Data Engineering, Houston, TX, 
pp. 68-79, February 1994. 

[S JS95] 

[Sno87] 

[Sno95] 

[Sri911 

[SSD87] 

[SSJ94] 

M. D. Soo, C. S. Jensen, and R. T. Snod- 
grass. An Aigebra for TSQLS. In R. T. 
Snodgrass, editor, The TSQLZ Temporal 
Query Language, chapter 27, pp. 505-546. 
Kluwer Academic Publishers, 1995. 

R. T. Snodgrass. The Temporal Query 
Language TQuel. ACM TODS, 12(2):247- 
298, June 1987. 

R. T. Snodgrass. The TSQL2 Temporal 
Query Language. Kluwer Academic Pub- 
lishers, 1995. 

S. M. Sripada. Temporal Reasoning in De- 
ductive Databases. PhD thesis, Imperial 
College of Science and Technology, Univer- 
sity of London, 1991. 

R. Sadeghi, W. B. Samson, and S. M. 
Deen. HQL - A Historical Query Lan- 
guage. Technical report, Dundee College 
of Technology, Dundee, Scotland, Septem- 
ber 1987. 

M. D. Soo, R. T. Snodgrass, and C. S. 
Jensen. Efficient Evaluation of the Valid- 
Time Natural Join. In Proceedings of the 
International Conference on Data Engi- 
neering, Houston, TX, pp. 282-292, Febru- 
ary 1994. 

A. U. Tansel. Adding Time Dimension 
to Relational Model and Extending Re- 
lational Algebra. Information Systems, 
11(4):343-355, 1986. 

[TCG+93] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, 
A. Segev, and R. T. Snodgrass. Tempo- 
ml Databases: Theory, Design, and Imple- 
mentation. Benjamin/Cummings Publiih- 
ing Company, 1993. 

[U1188] J. D. Ullman. Principles of Database and 
Knowledge-Base Systems, Volume I. Com- 
puter Science Press, 1988. 

IF941 W. P. Yan and P.-A. Larson. Perform- 
ing Group-By Before Join. In Proceed- 
ings of the International Conference on 
Data Engineering, Houston, TX, pp. 89 
100, February 1994. 

191 


